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Abstract. We study equilibria in a reinsurance market with multiple reinsurers that are endowed
with heterogeneous beliefs, where preferences are given by distortion risk measures, and pricing is done
via Choquet integrals. We construct a model in the form of a sequential economic game, where the
reinsurers have the first-mover advantage over the insurer, as in the Stackelberg setting. However,
unlike the Stackelberg setting, which assumes a single monopolistic reinsurer on the supply side,
our model accounts for strategic price competition between reinsurers. We argue that the notion
of a Subgame Perfect Nash Equilibrium (SPNE) is the appropriate solution concept for analyzing
equilibria in the reinsurance market, and we characterize SPNEs using a set of sufficient conditions.
We then examine efficiency properties of the contracts induced by an SPNE, and show that these
contracts result in Pareto-efficient allocations. Additionally, we show that under mild conditions, the
insurer realizes a strict welfare gain, which addresses the concerns of Boonen and Ghossoub [8] with
the Stackelberg model and thereby ultimately reflects the benefit to the insurer of competition on the
supply side. We illustrate this point with a numerical example.

1. Introduction

Reinsurance is an important risk management tool for insurance companies. An insurer, subject
to a state-contingent risk at the end of a given time horizon, can enter into a reinsurance contractual
agreement whereby it can cede part of its future liabilities to a reinsurer, in exchange for a premium
payment. The problem faced by the insurer is straightforward: the insurance company wishes to
choose the level of reinsurance that minimizes their ultimate, end-of-period risk exposure. On the
other hand, the reinsurer wishes to maximize its own profit from the sale of reinsurance. These two
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questions lie at the heart of the optimal (re)insurance literature, and their study has been extensive
and thorough.

The underlying approach to problems of optimal (re)insurance can be broadly classified into two
main categories: (i) those that study Pareto efficiency of contractual agreements, and (ii) those
that study equilibria in the (re)insurance market. The literature examining efficiency focuses on
the properties of each agent’s welfare, after the terms of the contract have been specified (i.e., the
indemnification function and the pricing functional). The primary solution concept in this setting
is that of Pareto efficiency (PE). That is, one seeks those allocations in which no one agent can
strictly improve their welfare without negatively affecting the welfare of another. On the other hand,
the literature on equilibria takes a different approach: market mechanisms are specified a priori,
and the focus is on identifying allocations that result from this underlying structure. The primary
solution concept of interest is that of a market equilibrium, which in general does not have to be
Pareto efficient. While the literature on PE in reinsurance markets is vast, market equilibria have
been comparatively less studied. We note that the term “equilibria” is sometimes invoked in the
cooperative sense to refer to the study of efficient allocations. For the sake of expositional clarity, the
terms “equilibrium” and “equilibria” refer only to market equilibria in the remainder of this paper.

The theory of efficient optimal (re)insurance has its roots in seminal work by Borch [11] and Arrow
[2], who showed that stop-loss contracts are efficient when both the insurer’s and reinsurer’s prefer-
ences admit an Expected-Utility (EU) representation, the insurer is risk-averse, and the reinsurer is
risk neutral. It is shown in this case that premia are priced via the equivalence principle. That is,
premia are determined by the expected indemnified loss (e.g., as in Arrow [2]), sometimes multiplied
by a loading factor to represent variable costs to the reinsurer (e.g., as in Raviv [25]). The prefer-
ences of the risk-neutral reinsurer imply that in a PE allocation, the premium is a function of the
indemnified risk (henceforth referred to as a premium principle). Under this premium principle, the
efficient indemnification is obtained by solving a problem of demand for the insurer. This problem
has been extensively studied in the two-agent case, and we refer to Gollier [21] and Schlesinger [26],
for instance, for a review of the literature on optimal insurance with EU preferences. Of the numerous
generalizations of the original EU model, we highlight the two that are most relevant to the present
project: the use of distortion risk measures (DRMs) or Rank-Dependent Utility (RDU) preferences,
and the consideration of heterogeneous beliefs.

In contrast to the literature on efficiency in reinsurance, the literature on market equilibria in
reinsurance contracting is fairly sparse. This approach has been fruitful in broader problems of
risk sharing, due to the close link with the classical literature on competitive equilibria. Each agent
participates in a reinsurance market by buying or selling reinsurance with the objective of minimizing
a measure of their end-of-period risk exposure, where the price of reinsurance is itself endogenously
determined at an equilibrium. Competitive equilibria have been characterized in the case of EU
(Aase [1]), the case of VaR and ES (Embrechts et al. [19, 20]), the case of convex DRMs (Boonen
[6]), and the case of general DRMs for comonotonic indemnities (Boonen et al. [9]).

However, the problem of reinsurance contracting (i.e., between an insurer subject to risk and its
reinsurer counterparties) has been comparatively less studied from a competitive perspective. The
closest example is the Stackelberg setting1, an example of a sequential economic model first examined
by Chan and Gerber [14] in a reinsurance context. This setting returns to the case where there is
only one counterparty (the reinsurer), but this counterparty now has the first-mover advantage:
the reinsurer is able to fix a premium principle before reinsurance is purchased, which allows the
reinsurer to profit if they correctly anticipate the actions of the insurer. Chan and Gerber [14]
formulate this problem for EU preferences, and they characterize solutions under the special case

1Some authors refer to this setting as the Bowley setting, and to their solutions as Bowley optima. We use the
Stackelberg terminology; solutions are referred to as Stackelberg equilibria.
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of exponential utility. Cheung et al. [16] solve for Stackelberg equilibria when both the insurer
and the reinsurer have DRM preferences, and some recent papers examine the dynamic context of
reinsurance in continuous time (e.g., Chen and Shen [15] and Cao et al. [12]). The link between
Stackelberg equilibria and PE is first examined by Boonen and Ghossoub [8] for the DRM case,
where Stackelberg equilibria are shown to be a strict subset of all PE allocations. However, they
highlight a caveat in the Stackelberg setting: in equilibrium, the insurer has no incentive to purchase
insurance, which suggests a shortcoming of the Stackelberg framework and its applications to optimal
reinsurance. Furthermore, the Stackelberg model assumes monopolistic control of the reinsurance
market by one entity, and it does not generalize directly to the case of multiple reinsurers. While the
interaction between insurer and reinsurer can be interpreted as a form of competition, it is difficult
to argue that this model reflects a truly competitive setting under the shadow of a monopolistic
reinsurer.

In the present paper, we seek to address these latter issues by formulating a sequential model of a
reinsurance market with multiple reinsurers. Similar to the Stackelberg model, the reinsurers collec-
tively have the first-mover advantage, and they can choose their premium principles in anticipation of
the insurer’s behaviour. However, the reinsurers are in strategic competition when it comes to setting
the price of reinsurance. This model is, to the best of our knowledge, the first model that examines
reinsurance contracting between an insurer and multiple reinsurers from the perspective of market
equilibrium. We assume that the preferences of each agent are given by DRMs under heterogeneous
beliefs, which allows for a high level of flexibility. Furthermore, we allow the premium principles
posted by each reinsurer to be fully general. In particular, a reinsurer’s premium principle is not
required to be related to their true preferences, thereby reflecting the strategic nature of interaction
on the supply side of the market. This is a significant departure from the efficiency literature. In our
market model, we propose the notion of a Subgame Perfect Nash Equilibrium (SPNE), a refinement
of the Nash Equilibrium (NE), as the primary solution concept. These concepts emphasize com-
petition within the reinsurance market. We assume that each reinsurer acts in order to maximize
their own welfare, which is in line with the literature on competitive equilibria (notably, this is in
contrast to the cooperative model proposed by Asimit and Boonen [3]). We argue in this paper that
our model, as well as our suggested solution concept, act as a natural extension of the Stackelberg
setting to multiple reinsurers. In particular, we show that if we consider a special case of our model
in which there is only one reinsurer (n “ 1), we can recover the Stackelberg model as a special case,
in which all Stackelberg equilibria are SPNEs.

A standard result allows us to characterize SPNEs through the process of backward induction,
which splits the problem into two steps: (i) the decision problem of the insurer, and (ii) that of
the reinsurers. The insurer’s decision problem reduces to a demand problem under fixed premium
principles, and indemnities are fully characterized through the Marginal Indemnity Function (MIF)
approach, as in Assa [4] or Zhuang et al. [28], for instance. To address the reinsurers’ decision
problem, we provide a set of sufficient conditions that explicitly characterize a class of SPNEs. In
these equilibria, the insurer is subject to prices corresponding to the second-lowest true preferences
of the reinsurers as measured by distorted subjective survival probabilities, similarly to the premium
principle suggested by Boonen et al. [10] to represent the maximum possible premium that preserves
coalitional stability. Our results expand on this by showing that this premium principle plays a
central role in determining stability of SPNEs as well.

We then use our characterization to examine efficiency properties of the resulting equilibrium
contracts. Since SPNEs are market equilibria by definition, it is not true in general that these
coincide with PE allocations. However, we show that all allocations resulting from our class of
SPNEs are indeed PE, thereby providing a link to the literature on efficient reinsurance contracting.
We emphasize that PE in our setting results from the structure of the reinsurance market, and it

Electronic copy available at: https://ssrn.com/abstract=4538484



4 MICHAEL B. ZHU, MARIO GHOSSOUB, AND TIM J. BOONEN

is not assumed a priori. Furthermore, it is also important to examine allocations in terms of their
relationship to the status quo – market participants can only be incentivised to enter into contracts
that induce a welfare gain, which is not true in the Stackelberg model (as concluded by Boonen and
Ghossoub [8]). We find that within our class of SPNEs, each agent is able to realize a welfare gain
under mild conditions, a consequence of both the competition in the reinsurance market and of the
heterogeneity of beliefs. Moreover, one would expect that the welfare gain of the insurer increases
as the level of competition in the market increases. We formalize this notion by showing that the
insurer experiences an improvement in welfare if an additional reinsurer is added to the market. A
consequence is that the presence of just two reinsurers is enough to realize a strict gain for the insurer
compared to the Stackelberg case. This point is illustrated by a numerical example.

The remainder of this paper is organized as follows. Section 2 presents our sequential model for the
reinsurance market, and it introduces SPNEs in this context. Section 3 provides a characterization of
SPNEs and specific examples thereof. An analysis of SPNE contracts is given in Section 4, in which
we examine efficiency of these contracts, as well as the relationship between SPNE contracts and the
status quo. We also provide a numeral example, exhibiting an SPNE that achieves a welfare gain for
all agents. Section 5 concludes. The proofs of most of this paper’s results are given in Appendix A.
Additional illustrative constructions of equilibria are presented in Appendix B.

2. Setup and Definitions

We examine a model of optimal reinsurance, in a market represented by a measurable space
pS,Σq. Let X denote the collection of all measurable real-valued functions on pS,Σq. An insurer
is subject to a random insurable loss X, which is represented by a non-negative random variable
X P X . Throughout this paper, the principal method for evaluating the risk of positions Y P X is
the Choquet expectation, which rigorously defines integration with respect to general set functions.

Definition 2.1. A (finite, non-negative) set function ν : Σ Ñ r0,M s, for some M P R`, is called a
capacity if:

(1) νp∅q “ 0 and νpSq “M ; and,

(2) If A,B P Σ such that A Ď B, then νpAq ď νpBq .

We denote the set of all capacities by C.

Definition 2.2. The Choquet expectation of Y P X with respect to ν P C is defined as

(2.1) ρνpY q “

ż

Y dν :“

ż `8

0
νpY ą tq dt`

ż 0

´8

rνpY ą tq ´ νpSqs dt .

For a detailed treatment of capacities and Choquet integration, we refer to Denneberg [18] and
Marinacci and Montrucchio [23]. A special case of a capacity is a distorted probability measure; if
T is a monotone function on r0, 1s such that T p0q “ 0 and T p1q “ 1, and µ is a probability measure,
then T ˝ µ is a capacity. In this case, ρT˝µ is called a distortion risk measure (DRM), a general class
of risk measures that satisfy several desirable properties (e.g., Wang et al. [27]). One such property
is comonotonic additivity – distortion risk measures are additive over comonotonic random variables.

Definition 2.3. Two random variables X1, X2 P X are comonotonic if for all s1, s2 P S,

pX1ps1q ´X1ps2qq pX2ps1q ´X2ps2qq ě 0 .
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It follows directly from Definition 2.3 that if X P X and I : R Ñ R is a non-decreasing function,
then X and IpXq are comonotonic and ρT˝µpX`IpXqq “ ρT˝µpXq`ρT˝µpIpXqq, for any DRM ρT˝µ.
We refer to Denneberg [18] for an extended characterization of comonotonicity.

2.1. The Market Participants’ Preferences. The insurer is imbued with beliefs on the space
pS,Σq, represented by a probability measure P. We assume that the insurer’s preferences are repre-
sented by a DRM consisting of the measure P distorted by a distortion function g. That is, for every
risk Y P X , the risk measure of the insurer is given by

(2.2) ρIN pY q :“ ρg˝PpY q “

ż

Y dg ˝ P .

We assume that there are n reinsurers in this market, denoted by the set N :“ t1, . . . , nu.
Each reinsurer has heterogeneous beliefs on the states of nature, represented by probability mea-
sures Q1, . . . ,Qn for reinsurers 1, . . . , n respectively. We do not assume any relationship between
P,Q1, . . . ,Qn, allowing for a flexible setup such as that in Boonen and Ghossoub [7]. Like the in-
surer, each reinsurer evaluates risk according to a DRM. For each i P N , denote by gi the distortion
function of reinsurer i. Then the preference of reinsurer i is represented by the risk measure

(2.3) ρipY q :“ ρgi˝QipY q “

ż

Y dgi ˝Qi .

To avoid pathological cases, we impose the restriction that all agents attribute finite risk to the initial
position. Namely, for all i P N ,

(2.4) ρipXq ă 8 and ρIN pXq ă 8 ,

which can be interpreted as an assumption of well-posedness of the problem. Under this restriction,
all admissible premia are finite.

2.2. Reinsurance Contracts. We assume that the premium principles charged by each reinsurer
also follow a Choquet expectation. That is, the premium charged by reinsurer i to ensure a risk Y is

(2.5) πipY q :“

ż

Y dνi ,

where νi P C. Similar to (2.1), we also use the notation

(2.6) πνipY q :“

ż

Y dνi .

Here, we use π to refer to premia and ρ to refer to risk measures. Note here that we do not further
restrict the set of possible premium principles in C. In particular, we do not require ν P C to be
normalized such that νpSq “ 1. Hence, the reinsurer is free to introduce a loading factor if they so
choose, to represent any frictional cost of reinsurance.

In this market, the insurer may cede a portion of risk IipXq to reinsurer i by paying the premium

πipIipXqq. Let the vector ~I :“ pI1, . . . , Inq denote the indemnity schedule chosen by the insurer. We
impose the following assumption, which restricts the available indemnities to those that satisfy the
so-called no-sabotage condition (e.g., Carlier and Dana [13]):

Assumption 2.4. Ii P I for each i P N , and
ř

iPN Ii P I, where

I :“
 

f : R` Ñ R`
ˇ

ˇ fp0q “ 0, f is absolutely continuous, 0 ď f 1pxq ď 1 for a.e. x P R`
(

.
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That is, each indemnity function, as well as the aggregate indemnity, is monotone and 1-Lipschitz.

We refer to the class of indemnity schedules ~I satisfying Assumption 2.4 as

~I Ă In.
Restricting the set of admissible indemnities a priori to those in the above class rules out any
potential moral hazard that might arise from the insurer’s misreporting of the true value of the loss
in a given state of the world.

2.3. A Sequential Game Framework. We model this reinsurance market as a sequential game.
First, all reinsurers simultaneously select pricing capacities νi P C. The insurer then views these
pricing rules and selects an indemnity vector pI1, . . . , Inq. The remaining random loss of the insurer
is X´

ř

iPN IipXq and the insurer pays the premium πipIipXqq “ πνipIipXqq to reinsurer i. Hence, the
resulting risk exposure of the insurer is X ´

ř

iPN IipXq `
ř

iPN πipIipXqq, and the insurer evaluates
this end-of-period risk exposure via

(2.7) ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πipIipXqq

¸

“ ρIN pXq ´ ρIN

˜

ÿ

iPN
IipXq

¸

`
ÿ

iPN
πνipIipXqq ,

where the simplification follows from comonotonicity, and comonotonic additivity and translation
invariance of the risk measure ρIN . Each reinsurer i will have assumed the risk IipXq upon payment
of the premium πipIipXqq. Their resulting risk exposure is IipXq ´ πipIipXqq, and they evaluate it
via

(2.8) ρi pIipXq ´ πipIipXqqq “ ρipIipXqq ´ π
νipIipXqq .

The goal of each agent is to minimize their risk exposure – as such, (2.7) and (2.8) represent the
payoffs of the game to the insurer and reinsurers respectively. We note that as a consequence of
(2.4), the expressions (2.7) and (2.8) are always well-defined and finite.

Similar to the Stackelberg setting, reinsurers have the first-mover advantage, and their strategy is
determined by their collective simultaneous choice of premium principles (which, by (2.6), depends
only on pricing capacities). Therefore, the reinsurers’ strategy can be identified by the choice of a
vector of capacities pν1, . . . , νnq P Cn. Here, the strategy of reinsurer i is denoted by νi P C. The
insurer’s strategy is determined by its choice of indemnity schedule, after viewing the pricing rules
selected by the reinsurers. This can be identified by a function

I : Cn Ñ ~I
pν1, . . . , νnq ÞÑ I pν1, . . . , νnq ,

(2.9)

which maps the observed pricing capacities to a feasible indemnity schedule. A strategy (in the

formal game-theoretical sense) is therefore represented by the tuple pν1, . . . , νn, Iq P Cn ˆ p~IqC
n
.

2.4. Additional Notational Conventions. We use the following conventions in the remainder of
this paper. Recall that N “ t1, . . . , nu denotes the set of reinsurers. For each reinsurer i P N , we
define the capacity

(2.10) τi :“ gi ˝Qi

to represent the true preferences of the reinsurer. For ease of notation, we use the index 0 to represent
the insurance company. Hence, all agents in the reinsurance market are given by N Yt0u. Following
this convention, we define

(2.11) ρ0 :“ ρIN
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to represent the risk measure of the insurer, and

(2.12) I0pXq :“ X ´
ÿ

iPN
IipXq

to represent the retained loss of the insurer. Note that as a consequence of Assumption 2.4, we have
I0 P I. Additionally, we define

(2.13) τ0 :“ g ˝ P
as the true preferences of the insurer. It will also be convenient to define

(2.14) ν0 :“ g ˝ P
as the “pricing rule” used by the insurer in the reinsurance market. While (2.13) and (2.14) are
different notational conventions for the same capacity, this will be convenient for the exposition of
our main results. Note that we use the letter τ to represent true preferences of market agents, and
we use the letter ν to represent pricing rules in the market. The interpretation for the insurer is
as follows: the insurer uses their own true preferences as a premium principle when deciding which
contracts to participate in (and which contracts to decline).

We use the unstyled capital letter I to refer to indemnity functions, i.e., elements of I. Vectors of

indemnities are notated with the vector symbol. For example, ~I is an element of ~I.

In the context of the economic game, the notation I denotes a strategy, and it is therefore a map

from Cn to ~I, as defined in (2.9). Hence, for any fixed reinsurance strategies pν1, . . . , νnq P Cn, the

choice of indemnities Ipν1, . . . , νnq is a vector in ~I. For a reinsurer i P N , we use the notation
Iipν1, . . . , νnq to refer to the i-th component of Ipν1, . . . , νnq. That is, Iipν1, . . . , νnq is the indemnity
ceded to the i-th insurer under the strategy I, when the pricing capacities of the reinsurers are given
by pν1, . . . , νnq. When pricing capacities pν1, . . . , νnq are fixed in context and we are only concerned
with the indemnities Ipν1, . . . , νnq, we drop the capacities from the argument of the function and
write Ii “ Iipν1, . . . , νnq.

2.5. Equilibria in Sequential Games. A common solution concept for sequential games is that
of the Subgame Perfect Nash Equilibrium (SPNE), which is given in the following definitions.

Definition 2.5. A strategy pν˚1 , . . . , ν
˚
n, I

˚q is a Nash Equilibrium (NE) if:

(1) There does not exist a capacity ν̃ and i P N such that

ρipI
˚
i pν̃, ν

˚
´iqpXqq ´ π

ν̃pI˚i pν̃, ν
˚
´iqpXqqq ă ρipI

˚
i pν

˚
1 , . . . , ν

˚
nqpXqq ´ π

ν˚i pI˚i pν
˚
1 , . . . , ν

˚
nqpXqq,

where pν̃, ν˚´iq denotes the vector pν˚1 , . . . , ν
˚
nq with the i-th component replaced by ν̃.

(2) There does not exist an indemnity selection Ĩ such that

ρIN pXq´
ÿ

iPN
ρIN

´

Ĩipν
˚
1 , . . . , ν

˚
nqpXq

¯

`
ÿ

iPN
πν

˚
i pĨipν

˚
1 , . . . , ν

˚
nqpXqq

ă ρIN pXq ´ ρIN pI
˚
i pν

˚
1 , . . . , ν

˚
nqpXqq `

ÿ

iPN
πν

˚
i pI˚i pν

˚
1 , . . . , ν

˚
nqpXqq .

Definition 2.6. In our setting, a strategy pν˚1 , . . . , ν
˚
n, I

˚q is a Subgame Perfect Nash Equilibrium
(SPNE) if:

(1) It is an NE.
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(2) For any choice of capacities pν1, . . . , νnq P Cn, there does not exist an indemnity selection Ĩ
such that

ρIN pXq´
ÿ

iPN
ρIN

´

Ĩipν1, . . . , νnqpXq
¯

`
ÿ

iPN
πνipĨipν1, . . . , νnqpXqq

ă ρIN pXq ´
ÿ

iPN
ρIN pI

˚
i pν1, . . . , νnqpXqq `

ÿ

iPN
πνipI˚i pν1, . . . , νnqpXqq .

A subgame is defined as a subset of a sequential game that is induced by viewing previous decisions
as fixed. A strategy is an SPNE if it induces a NE in every subgame. In the context of the present
paper, each strict subgame consists of the insurer’s decision problem after observing the premium
principles of the reinsurers. The main difference is that in an SPNE, the insurer behaves optimally
for any choice of capacities pν1, . . . , νnq P Cn. For the strategy to be an NE, it is only required that
the insurer behaves optimally for the specific choice of capacities pν˚1 , . . . , ν

˚
nq. For a formal definition

of subgames and SPNEs and an extensive discussion thereof, we refer to Osborne and Rubinstein
[24].

While it is clear that every SPNE is an NE, the converse does not hold: in general, there exist
NEs that are not SPNEs. This is true even in our setting, where the structure of the game is simple.
We provide an example in Appendix B.2, and we briefly comment on the advantages of SPNEs over
NEs.

3. A Characterization of SPNEs

In this section, we provide sufficient conditions to characterize SPNEs in the sequential market
outlined in Section 2. It is well known that all SPNEs can be found via the process backward
induction (see, e.g., Osborne and Rubinstein [24, Proposition 99.2]). We restate this result in our
setting in the following proposition.

Proposition 3.1. A strategy pν˚1 , . . . , ν
˚
n, I

˚q is an SPNE if and only if it can be found through
backward induction. In other words, for any choice of pricing capacities pν1, . . . , νnq P Cn, the
indemnity structure I˚pν1, . . . , νnq solves

(3.1) min
IP~I

#

ρIN pXq ´
ÿ

iPN
ρIN pIipXqq `

ÿ

iPN
πνi pIipXqq

+

,

and pν˚1 , . . . , ν
˚
nq is a NE for the reduced game formed by fixing the insurer’s strategy I˚. That is,

there does not exist i P N and ν̃ P C such that

(3.2) ρipI
˚
i pν̃, ν

˚
´iqpXqq ´ π

ν̃pI˚i pν̃, ν
˚
´iqpXqq ă ρipI

˚
i pν

˚
1 , . . . , ν

˚
nqpXqq ´ π

ν˚i pI˚i pν
˚
1 , . . . , ν

˚
nqpXqq .

We will see from the result of Proposition 3.3 that Problem (3.1) always has a solution. Therefore,
by Proposition 3.1, to characterize an SPNE, we will:

(1) Find Nash Equilibria in the subgames where the insurer selects reinsurance. That is, for any
pricing capacities pν1, . . . , νnq P Cn, we will determine the optimal strategy I˚ of the insurer.
This reduces to a demand problem for the insurer, and we can characterize solutions via the
MIF approach, as in Boonen and Ghossoub [7]. This is outlined in Subsection 3.1.

(2) For the selected indemnity strategy I˚, we will find Nash Equilibria for the simultaneous
selection of pricing capacities. We provide sufficient conditions in Subsection 3.2.
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Remark 3.2. In the special case when n “ 1, we have only one reinsurer. Then Proposition 3.1
implies that a strategy pν˚1 , I

˚q is an SPNE if and only if (3.1) and (3.2) hold. The condition for the
reduced game (3.1) simplifies to

I˚pν˚1 q “ min
IP~I

!

ρIN pXq ´ ρIN pIpXqq ` π
ν˚1 pIpXqq

)

.

Furthermore, the second condition (3.2) implies that

ρ1pI
˚pν˚1 qpXqq ´ π

ν˚1 pI˚pν˚1 qpXqq “ min
ν̃PC

 

ρ1pI
˚pν̃qpXqq ´ πν̃pI˚pν̃qpXqq

(

.

It follows directly from the definition of Stackelberg equilibria (e.g., Definition 2.7 of Boonen and
Ghossoub [8]) that every Stackelberg equilibrium is an SPNE. Therefore, it is natural to interpret the
SPNE in our model as a generalization of the Stackelberg setting to multiple reinsurers. We elaborate
on this special case in Subsection 4.1.1.

3.1. Backward Induction Step One – An Optimal Reinsurance Problem. In the first
step of the backwards induction, we solve Problem (3.1) given any fixed strategy of the reinsur-
ers pν1, . . . , νnq P Cn. A characterization is given in the following proposition, which can be found in
Boonen and Ghossoub [7]. We provide a slightly condensed proof in Appendix A.1.

Proposition 3.3. Define the capacity

νpX ą zq :“ min
jPN

νjpX ą zq ,

and define the set

(3.3) Nz :“ ti P N : νipX ą zq “ νpX ą zqu .

The selection of indemnities ~I˚ “ pI˚1 , . . . , I
˚
nq is optimal for Problem (3.1) if and only if for each

i P N and all x P R`, there exists r0, 1s-valued measurable functions h, hi such that for almost all
z P R`,

I˚i pxq “

ż x

0
γ˚i pzq dz ,

γ˚i pzq “ hipzq1tiPNzu ,
ÿ

iPN
γ˚i pzq “ 1tgpPpXązqqąνpXązqu ` hpzq1tgpPpXązqq“νpXązqu .

We see that Proposition 3.3 gives a full characterization of optimal solutions to Problem (3.1).
However, optimal indemnities are not unique in general: from the statement of Proposition 3.3, there
is some flexibility in choosing the functions hi when i P Nz. That is, the insurer has many decisions
that are optimal in the sense of Problem (3.1) when they are indifferent between their choice of
reinsurer. We narrow the set of optimal solutions by imposing the following condition.

Definition 3.4. For each z P R`, let Nz be as defined in (3.3). An optimal indemnity ~I˚ distributes
generously if for almost all z P R`, we have:

(1) If gpPpX ą zqq “ νpX ą zq, and there exist j P Nz such that τjpX ą zq ă gpPpX ą zqq, then
ÿ

iPN
γ˚i pzq “ 1 .
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(2) If i P Nz and either:

‚ there exist k P Nzztiu such that τkpX ą zq ă τipX ą zq; or,

‚ gpPpX ą zqq “ νpX ą zq and gpPpX ą zqq ă τipX ą zq,

then
γ˚i pzq “ 0 .

Recall from (2.13) and (2.14) the conventions τ0 “ g ˝ P and ν0 “ g ˝ P. Additionally, we may
define γ˚0 such that for all z P R`,

(3.4) γ˚0 pzq :“ 1´
ÿ

iPN
γ˚i pzq .

Under these conventions, Definition 3.4 can be stated more succinctly. An optimal indemnity ~I˚

distributes generously if for almost all z P R` and all i P N Y t0u we have have γ˚i pzq “ 0 if both of
the following conditions hold:

‚ νipX ą zq “ minjPNYt0utνjpX ą zqu; and,

‚ there exist k P pN Y t0uqztiu such that νkpX ą zq “ νipX ą zq but τkpX ą zq ă τipX ą zq.

These conditions state that when the insurer is indifferent between reinsurers, it chooses the
reinsurer that has the most to gain from the contract. This is interpreted as an act of good faith
– it is in the insurer’s best interest to maintain good business relationships with its counterparties.
For a fixed set of pricing capacities pν1, . . . , νnq, we denote the set of generously distributed optimal
indemnities in the sense of Definition 3.4 by Ipν1, . . . , νnq. In the following, we assume that the
insurer always selects an optimal indemnity that distributes generously. We denote the set of such
strategies by

(3.5) ℵ :“
!

I P pCnq~I : Ipν1, . . . , νnq P Ipν1, . . . , νnq, @ pν1, . . . , νnq P Cn
)

.

In Section 3.2, we address the decision problem for the reinsurers, while fixing the insurer’s strategy
I P ℵ. In doing so, we show that generous distribution is sufficient to guarantee the existence of an
SPNE.

Remark 3.5. The notion of generous distribution outlined in Definition 3.4 is, to the best of our
knowledge, a new concept. However, we note that a similar assumption has been applied in the
Stackelberg setting by Cheung et al. [16]. They assume that the marginal indemnity function hpzq ” 1
in order to reduce the set of optimal insurer strategies to a singleton. It can be verified that in the
Stackelberg case, their assumption is stronger than ours, in the sense that hpzq ” 1 implies generous
distribution, but that the converse does not hold.

Remark 3.6. Note that the set ℵ is in general a strict subset of the optimal solutions given by
Proposition 3.3. Hence, maximizing coverage and generous distribution are not necessary conditions
for the existence of SPNE, since there may exist SPNEs when the insurer chooses a strategy in the
solution set of Proposition 3.3 but not in ℵ.
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3.2. Backward Induction Step Two – The Reinsurers’ Strategies. We now exhibit a char-
acterization of SPNEs by completing the second step of the backward induction in Proposition 3.1.
We begin by fixing an optimal strategy for the insurer I˚ P ℵ. Then, we characterize capacities
pν˚1 , . . . , ν

˚
nq such that there does not exist ν̂ that satisfies, for some i P N ,

ρipI
˚
i pν̂, ν

˚
´iqpXqq ´ π

ν̂pI˚i pν̂, ν
˚
´iqpXqq ă ρipI

˚
i pν

˚
1 , . . . , ν

˚
nqpXqq ´ π

νipI˚i pν
˚
1 , . . . , ν

˚
nqpXqq .

We show that capacities satisfying certain conditions constitute an SPNE strategy. These conditions
are closely related to the second-lowest true preferences of all n`1 agents in the reinsurance market
model. The second-lowest preferences are suggested by Boonen et al. [10] as an upper bound on
premium principles that are coalitionally stable. In this paper, SPNEs can be interpreted as an
alternate notion of stability, in which the second-lowest preferences again play an important role.

Definition 3.7. Let τ̄ be constructed as the pointwise second-lowest function of the set of capacities
tτ0, . . . , τnu. Hence, for all z P R`, there exist i, j P N Y t0u such that i ‰ j, τ̄pX ą zq “ τjpX ą zq,
τipX ą zq ď τjpX ą zq, and τkpX ą zq ě τjpX ą zq for all k ‰ i, j. We refer to τ̄ as the
second-lowest true preferences.

Definition 3.8. For each z P R`, let Nz be as defined in (3.3). Define the class of reinsurer strategies
ג Ď Cn as the set of all pν1, . . . , νnq such that for almost all z P R`:

(a) We have

(3.6) min
jPN

νjpX ą zq “ τ̄pX ą zq .

(b) There exist i, k P N Y t0u, i ‰ k such that

(3.7) min
jPN

νjpX ą zq “ νipX ą zq “ νkpX ą zq .

Recall from (2.14) that we use the convention ν0 “ g ˝ P.

(c) We have

(3.8) Tz ‰ ∅ ùñ Tz XNz ‰ ∅,
where

Tz :“

"

i P N : τipX ą zq “ min
jPNYt0u

τjpX ą zq

*

.

That is, Tz are the indices in N that minimize τjpX ą zq for j P N Y t0u.

The first condition states that the lowest price for the loss layer X ą z is equal to the second-
lowest true preferences τ̄ . The second condition guarantees that there are always at least two agents
charging this price. Finally, the third condition states that out of the reinsurers who have the lowest
true preferences, at least one is posting the price based on τ̄ .

We now provide the first main result of this paper: if I˚ P ℵ and pν˚1 , . . . , ν
˚
nq P ,ג then the strategy

pν˚1 , . . . , ν
˚
n, I

˚q is an SPNE. We begin with the following two results, whose proofs can be found in
Appendix A.1. Proposition 3.9 states that any such strategy pν˚1 , . . . , ν

˚
n, I

˚q achieves the same risk
for each reinsurer. The following result, Proposition 3.10, completes the second step of backward
induction, by showing that every reinsurer strategy pν˚1 , . . . , ν

˚
nq P ג satisfies (3.2).
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Proposition 3.9. Let I˚ P ℵ and pν˚1 , . . . , ν
˚
nq P .ג Then for all i P N ,

ρipI
˚
i pXq ´ πiq “

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz ,

where
Zi :“ tz P R` : τipX ą zq ă τ̄pX ą zqu .

Proposition 3.10. Let ν̂ P C be any pricing capacity, and let I˚ P ℵ and pν˚1 , . . . , ν
˚
nq P .ג Then for

each i P N , we have

ρipI
˚
i pν̂, ν

˚
´iqpXqq ´ π

ν̂pI˚i pν̂, ν
˚
´iqpXqq ě ρipI

˚
i pν

˚
1 , . . . , ν

˚
nqpXqq ´ π

ν˚i pI˚i pν
˚
1 , . . . , ν

˚
nqpXqq .

That is, when the strategies pν˚1 , . . . , ν
˚
nq are chosen by the reinsurers, no reinsurer has an incentive

to deviate.

As a direct corollary of Propositions 3.1, 3.3, and 3.10, we obtain the following.

Theorem 3.11. Let I˚ P ℵ and pν˚1 , . . . , ν
˚
nq P .ג Then the strategy pν˚1 , . . . , ν

˚
n, I

˚q is an SPNE.

We provide a few examples of such strategies in the following subsection. Note that while Theorem
3.11 provides sufficient conditions for a strategy to be an SPNE, these conditions are not necessary.
An example of an SPNE not characterized by Theorem 3.11 is provided in Appendix B.1.

3.2.1. Some Examples of SPNEs Characterized by Theorem 3.11. We now provide explicit construc-
tions of reinsurer strategies pν˚1 , . . . , ν

˚
nq P .ג This results in an SPNE when combined with any

insurer strategy I˚ P ℵ, as a consequence of Theorem 3.11. First, recall that

Tz :“

"

i P N : τipX ą zq “ min
jPNYt0u

τjpX ą zq

*

.

Definition 3.12. For each i P N , define ν˚i by

ν˚i pX ą zq :“

#

τ̄pX ą zq, i P Tz
τipX ą zq otherwise

.

In the strategy, the reinsurer with the lowest true preferences for every layer X ą z chooses the
second-lowest true preferences as their premium principle. Otherwise, the reinsurer quotes a price
consistent with its underlying risk measure. The following result shows that this strategy is an SPNE,
and its proof is given in Appendix A.1.

Proposition 3.13. The capacities pν˚1 , . . . , ν
˚
nq given in Definition 3.12 are in .ג

Therefore by Theorem 3.11, for any I˚ P ℵ, the strategy pν˚1 , . . . , ν
˚
n, I

˚q is an SPNE. By increasing
prices to match the preferences of their nearest competitors, reinsurers are able to profit if they are
able to correctly identify the heterogeneous beliefs of the agents in the market. Note that in this
case, each reinsurer quotes prices that is at least as high as their true preferences. However, this is
not necessary for all SPNEs, as shown by the following example.

Remark 3.14. It follows easily from the definition of ג that pτ̄ , τ̄ , . . . , τ̄q P .ג
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Again by Theorem 3.11, for any I˚ P ℵ, pτ̄ , τ̄ , . . . , τ̄ , I˚q is an SPNE. This shows that there exists a
pricing mechanism that every reinsurer can adopt for the market to achieve stability. That is, there
is no incentive for any reinsurer to deviate from the pricing capacity τ̄ , if every other reinsurer is also
using the same premium principle.

However, this requires some reinsurers to quote prices that are below their true risk preference.
The reinsurers do not experience a loss, since even when their price is too low, the insurer cedes this
portion of the risk to another reinsurer. This perhaps places too much hope in the insurer’s strategy,
which is assumed to distribute generously. Nevertheless, the special form of this SPNE is worth
mentioning, and further emphasizes the important role of the “second-lowest” pricing capacity τ̄ .

This example is also an illustration of the wide range of pricing capacities that can yield an SPNE.
On the levels X ą z that the reinsurer does not expect to receive any business, pricing can be fairly
arbitrary. In this sense, ג is a non-trivial class that allows for many different selections of pricing
capacities.

4. Welfare Analysis of SPNEs

It is clear that every strategy pν1, . . . , νn, Iq in this economic game determines a unique premium
principle for each reinsurer and a unique indemnity structure demanded by the insurer. This therefore
determines the premia that the insurer pays to each reinsurer, which determines the allocation of
wealth (or risk) to each agent. In this section, we examine efficiency properties of the contracts
induced by SPNEs. We consider both individual rationality (IR) and PE.

Definition 4.1. An allocation is a pair p~I, ~πq P ~I ˆ Rn, where ~I denotes the structure of the
indemnities and π denotes the vector of premia paid by the insurer. The resulting risk measures
under this allocation are

ρIN

˜

X ´
ÿ

iPN
IipXq ` πi

¸

and ρipIipXq ´ πiq, @i P N .

We say that an allocation p~I, ~πq results from (or is induced by) a strategy pν1, . . . , νn, Iq if for all

i P N , Ii “ Iipν1, . . . , νnq and πi “ πνii pIipXqq “

ż

IipXq dνi.

4.1. Individual Rationality of SPNEs.

Definition 4.2. An allocation p~I, ~πq P ~I ˆ Rn is IR if

ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πi

¸

ď ρIN pXq and ρipIipXq ´ πiq ď ρip0q “ 0, @i P N .

That is, the allocation p~I, ~πq is not worse than the status quo for any agent – hence, the insurer and
all reinsurers are willing to participate with these transactions. Note that if an allocation is IR, then
each premium is non-negative, since by translation invariance the condition ρipIipXq´πiq ď ρip0q “ 0
yields

πi ě ρipIipXqq,

and by monotonicity ρipIipXqq ě 0 since IipXq ě 0 and τi is non-negative. We show that for every
I˚ P ℵ and pν˚1 , . . . , ν

˚
nq P ,ג the strategy pν˚1 , . . . , ν

˚
n, I

˚q induces an IR allocation. The result follows
readily from Proposition 3.9 and the following lemma.
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Lemma 4.3. Suppose I˚ P ℵ and pν˚1 , . . . , ν
˚
nq P .ג Then

ρIN

˜

X ´
ÿ

iPN

I˚i pXq `
ÿ

iPN
πν

˚
i pI˚i pXqq

¸

“

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

τ̄pX ą zq dz ,

where
ZIN :“ tz P R` : gpPpX ą zqq ă τ̄pX ą zqu .

Theorem 4.4. Suppose I˚ P ℵ and pν˚1 , . . . , ν
˚
nq P .ג Then the strategy pν˚1 , . . . , ν

˚
n, I

˚q induces an
IR allocation.

Proof. By Lemma 4.3,

ρIN

˜

X ´
ÿ

iPN

I˚i pXq `
ÿ

iPN
πνipI˚i pXqq

¸

“

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

τ̄pX ą zq dz

ď

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

gpPpX ą zqq dz

“

ż 8

0
gpPpX ą zqq dz “ ρIN pXq .

Also, by Proposition 3.9, we have for each i P N ,

ρipI
˚
i pXq ´ πiq “

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz ď

ż

Zi

0 dz “ 0.

�

4.1.1. Market Competition and the Insurer’s Welfare. Within the literature on Stackelberg equilibria
(i.e., n “ 1), solutions to the Stackelberg problem imply that the insurer has no incentive to purchase
insurance – that is, the insurer is indifferent between reinsurance and the status quo. This argument
is emphasized in Boonen and Ghossoub [8], which concludes that the Stackelberg setting is prob-
lematic in problems of optimal reinsurance. It is also straightforward to confirm that the optimal
indemnification proposed in Cheung et al. [16] does not provide a welfare gain for the insurer. The
following result shows that in our setting, the same conclusion applies: if there is only one reinsurer,
then the insurer does not improve upon the status quo.

Proposition 4.5. Let n “ 1, and suppose I˚ P ℵ and ν˚1 P .ג Then

ρIN

´

X ´ I1pXq ` π
ν˚1 pI1pXqq

¯

“ ρIN pXq .

However, as the number of reinsurers increases, the resulting risk measure for the insurer decreases,
with the decrease being strict under some mild conditions. This result is intuitive from an economic
perspective: increased competition in the market lowers prices and benefits the consumer. Hence,
by extending the Stackelberg model to include multiple reinsurers, we address an apparent weakness
of the Stackelberg setting by capturing value for the insurer.

Fix a value of n, and suppose that the pn ` 1q-st reinsurer has preferences given by the capacity
gn`1 ˝ Qn`1 :“ τn`1. We wish to compare the SPNEs in the market with n reinsurers to that with
n`1 reinsurers. Let ℵn and ℵn`1 denote the sets of generously distributing optimal strategies for the
market with n and n ` 1 reinsurers, respectively. Similarly, let nג and n`1ג be the sets of reinsurer
strategies satisfying the properties of Definition 3.8 for the market with n and n` 1 reinsurers,
respectively.
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Proposition 4.6. Let I˚,n P ℵn, I˚,n`1 P ℵn`1, pν˚,n1 , . . . , ν˚,nn q P ,nג and pν˚,n`1
1 , . . . , ν˚,n`1

n`1 q P .n`1ג

We use the convention that pI˚,n1 , . . . , I˚,nn q :“ I˚,npν˚,n1 , . . . , ν˚,nn q, and similarly for n` 1. Then

ρIN

˜

X ´
n`1
ÿ

i“1

I˚,n`1
i pXq `

n`1
ÿ

i“1

πν
˚,n`1
i pI˚,n`1

i pXqq

¸

ď ρIN

˜

X ´
n
ÿ

i“1

I˚,ni pXq `
n
ÿ

i“1

πν
˚,n
i pI˚,ni pXqq

¸

.

That is, when a reinsurer is added to the market, the welfare of the insurer can only increase.

We can see that the inequality of Proposition 4.6 can be strict when, for example, τ̄n`1 ă τ̄n.
Hence, when a reinsurer joins the market by offering a cheaper or differentiated product, the insurer
can realize a strict welfare gain. This point is explicitly demonstrated by a numerical example in
Subsection 4.4.

4.2. Pareto Efficiency of SPNEs. We now show that allocations that result from the SPNE
characterized in Section 3 are PE. In this section, we use the conventions ρ0 “ ρIN and I0pXq “
X ´

ř

iPN IipXq as defined in (2.11) and (2.12). As a direct consequence, X “
řn
i“0 IipXq. Recall

that by Assumption 2.4, I0 P I.

Definition 4.7. An allocation p~I, ~πq P ~I ˆ Rn is PE if there does not exist another allocation

pĨ , π̃q P ~I ˆ Rn such that

ρIN

˜

X ´
ÿ

iPN
ĨipXq `

ÿ

iPN
π̃i

¸

ď ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πi

¸

,

ρipĨipXq ´ π̃iq ď ρipIipXq ´ πiq, i P N ,

with at least one of these inequalities being strict.

It is well-known that when all risk measures are translation invariant, PE is related to the inf-
convolution (e.g., Asimit and Boonen [3]). For the sake of completeness, we provide a proof in
Appendix A.2.

Definition 4.8. The inf-convolution of risk measures ρi, i P N Y t0u with respect to a random
variable X is defined as

ln
i“0 ρipXq :“ inf

#

n
ÿ

i“0

ρipIipXqq, I P ~I

+

.

Proposition 4.9. An allocation p~I, ~πq is PE if and only if
řn
i“0 ρipIipXqq “ ln

i“0 ρipXq.

In our case, we can obtain an explicit characterization of the indemnities structures that attain
the inf-convolution.

Proposition 4.10. For each z P R`, let

Lz :“ ti P N Y t0u : τipX ą zq “ min
jPNYt0u

tτjpX ą zquu,

and LCz :“ pN Yt0uqzLz. For each i P N Yt0u, let γi take values in r0, 1s such that for almost every
z,

ÿ

iPLz

γipzq “ 1,
ÿ

iPLC
z

γipzq “ 0 ,
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and define Iipzq :“

ż z

0
γipzq dz. Then

n
ÿ

i“0

ρipIipXqq “ ln
i“0 ρipXq .

That is, ~I achieves the inf-convolution. Furthermore, any indemnity schedule that achieves the inf-
convolution is of this form.

We now provide the main result of this section: the SPNEs from Theorem 3.11 induce PE al-
locations. First, we show that for any I˚ P ℵ, the reinsurer strategy pτ̄ , . . . , τ̄q given in Remark
3.14 induces a PE allocation. We then extend this result to all reinsurer strategies in ג by applying
Proposition 3.9 and Lemma 4.3.

Lemma 4.11. The strategy pτ̄ , τ̄ , . . . , τ̄ , I˚q from Remark 3.14 induces an IR and PE allocation.

That is, p~I˚, ~π˚q is IR and PE in the sense of Definitions 4.2 and 4.7, where ~I˚ is an element of
Ipτ̄ , τ̄ , . . . , τ̄q and π˚i “ ρτ̄ pI˚i pXqq.

Theorem 4.12. Let I˚ P ℵ and pν˚1 , . . . , ν
˚
nq P .ג Then the strategy pν˚1 , . . . , ν

˚
n, I

˚q induces an IR
and PE allocation.

As a direct corollary of Theorem 4.12, we obtain the following.

Corollary 4.13. The strategy pν˚1 , . . . , ν
˚
n, I

˚q with I˚ P ℵ and ν˚1 , . . . , ν
˚
n as in Definition 3.12 is IR

and PE.

4.3. Decentralization of Pareto-Efficient Allocations via an SPNE. We now provide a partial

converse to Theorem 4.12. That is, given a PE allocation p~I˚, ~π˚q, we show that this can be generated
by an SPNE as characterized in Theorem 3.11.

However, by Proposition 3.9 and Lemma 4.3, we see that every allocation induced by such an
SPNE has the same resulting risk measure for each agent. Therefore, we must first impose the
following assumption on the allocations.

Assumption 4.14. The allocation p~I˚, ~π˚q satisfies

ρipI
˚
i pXq ´ π

˚
i q “

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz ,

ρIN

˜

X ´
ÿ

iPN
I˚i pXq `

ÿ

iPN
π˚i

¸

“

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

τ̄pX ą zq dz .

We show that if p~I˚, ~π˚q is an allocation satisfying Assumption 4.14, then it is induced by the choice
of reinsurer strategies pν˚1 , . . . , ν

˚
nq given in Definition 3.12. This result follows from the following

propositions.

Proposition 4.15. Let p~I˚, ~π˚q be an allocation satisfying Assumption 4.14, and pν˚1 , . . . , ν
˚
nq be as

in Definition 3.12. Then for each i P N ,

π˚i “

ż

I˚i pXq dν
˚
i .
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Proposition 4.16. Let p~I˚, ~π˚q be an allocation satisfying Assumption 4.14, and pν˚1 , . . . , ν
˚
nq be the

insurer strategies from Definition 3.12. Then the indemnity profile ~I˚ is optimal in the sense of

Proposition 3.3. That is, the profile ~I˚ solves

min
IP~I

#

ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πν

˚
i pIipXqq

¸+

.

Proposition 4.17. Let p~I˚, ~π˚q be an allocation satisfying Assumption 4.14. Then for any choice of

reinsurer strategies pν˚1 , . . . , ν
˚
nq P ,ג the indemnities ~I˚ distribute generously the sense of Definition

3.4.

Theorem 4.18. Suppose p~I˚, ~π˚q is an allocation satisfying Assumption 4.14. Then this allocation
results from an SPNE with capacities pν˚1 , . . . , ν

˚
nq as given in Definition 3.12. That is, there exists

an I˚ P ℵ such that ~I˚ “ I˚pν˚1 , . . . , ν
˚
nq, and for all i P N ,

π˚i “

ż

I˚i pXq dν
˚
i .

Proof. By Propositions 4.16 and 4.17, we see that ~I˚ is optimal and distributes generously, if reinsurer
strategies are fixed to be those in Definition 3.12. Hence, there exists a strategy I˚ P ℵ such that
~I˚ “ I˚pν˚1 , . . . , ν

˚
nq. The rest follows directly from Proposition 4.15. �

4.4. A Numerical Example. We now illustrate our main results with a numerical example, where
the insurer is subject to a risk X distributed according to a censored exponential distribution. By
applying Theorem 3.11, we explicitly characterize an SPNE in this market. We also show that in this
SPNE, each agent realizes a strict welfare gain, which implies that each agent has an incentive to
participate in this contract. This illustrates the result of Proposition 4.6, by showing that introducing
competition on the supply side benefits the insurer. Furthermore, by Theorems 4.4 and 4.12, the
allocation resulting from the SPNE is IR and PE.

We assume that the insurer’s beliefs of the risk X are represented by the survival function

PpX ą zq “

#

expp´β0 ¨ zq , 0 ď z ď 5 ,

0 , z ě 5 .

Here, we take β0 “ 2.5. We assume that there are two reinsurers in the market: i.e. n “ 2. For
i “ 1, 2, let

QipX ą zq “

#

expp´βi ¨ zq , 0 ď z ď 5 ,

0 , z ě 5 ,

with β1 “ 2 and β2 “ 1.7. These different parameters are due to the heterogeneity in beliefs among
agents: while the reinsurers agree with the insurer that X is distributed according to a censored
exponential distribution and that this distribution is censored at 5, they differ in their belief of the
parameter of the distribution.

We also assume that each agent measures risk according to the Tail Value-at-Risk (TVaR). That
is, we have

gptq “ min

"

t

1´ α0
, 1

*

, giptq “ min

"

t

1´ αi
, 1

*

, i “ 1, 2,
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where α0 “ 0.99, α1 “ 0.95 and α2 “ 0.90.

By the results of Section 3, we are primarily interested in the distorted subjective survival prob-
abilities τipX ą zq. These probabilities for τi (where i “ 0, 1, 2) are displayed in Figure 1a. The
second-lowest capacity τ̄ , as given in Definition 3.7, is displayed in Figure 1b.

Let ν˚1 , ν
˚
2 be as in Definition 3.12. Then, the indemnity structure for an optimal insurer strategy

I˚ P ℵ is shown in Figure 2. It can be seen that the indemnity function for reinsurer i is strictly
increasing only if τipX ą zq “ minj“0,1,2 τjpX ą zq.

Based on the reinsurers’ strategies ν˚1 * and ν˚2 , numerical calculation yields the following premia:

π˚1 pI
˚
1 pXqq “ πν

˚
1 pI˚1 pXqq “ 1.4433 and π˚2 pI

˚
2 pXqq “ 0.5450.

The risk measures for the agents resulting from these strategies are,

ρIN

˜

X ´
2
ÿ

i“1

I˚i pXq `
2
ÿ

i“1

π˚i

¸

“ 2.001, ρ1pI
˚
1 pXq ´ π

˚
1 q “ ´0.0065, ρ2pI

˚
2 pXq ´ π

˚
2 q “ ´0.0725.

From the calculations, it is evident that ρIN pXq « 2.2419, indicating that the insurer realizes a
strict welfare gain from this allocation. Additionally, the initial risk of both reinsurers is 0, whereas
the risk of both reinsurers are negative under the SPNE contracts. Therefore, both reinsurers also
decrease their risk as a result of this allocation.

(a) Distorted survival probabilities τ . (b) Second-lowest true preferences τ̄ .

Figure 1. Survival functions of true preferences.

5. Conclusion

In this paper, we provide a novel reinsurance market mechanism with multiple reinsurers, in
which the reinsurers have the first-mover advantage. We assume distortion risk measure preferences
for each agent and allow for heterogeneity in beliefs. Premium principles are nonlinear and are taken
as Choquet expectations with respect to general capacities. Within this general setup, we argue that
the notion of a Subgame Perfect Nash Equilibrium (SPNE) is the appropriate solution concept. Our
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Figure 2. Optimal indemnity structure ~I˚.

main results characterize SPNEs, identify their properties, and provide a welfare analysis of resulting
equilibrium allocations.

We first provide sufficient conditions which lead to an SPNE in Theorem 3.11. By applying
backward induction, we isolate the decision problem of the insurer and the decision problem of the
reinsurers. The former is addressed by applying the so-called marginal indemnification function
approach to the case of heterogeneous beliefs, as done in Boonen and Ghossoub [7]. The latter is
addressed by constructing strategies satisfying the conditions of Definition 3.8. In these equilibria, the
insurer faces prices induced by the second-lowest true preferences as measured by distorted subjective
survival probabilities.

Additionally, we examine the Pareto efficiency properties of contracts resulting from SPNEs in
Section 4. Since market equilibria are not efficient in general, we separately analyze the welfare of
each agent. In Theorem 4.12, we demonstrate that such equilibria result in Pareto-efficient contracts
in our market model Conversely, we show in Theorem 4.18 that certain efficient allocations can be
decentralized: that is, they can be induced by market forces. Since we identify market equilibria
before considering efficiency, we do not need to assume that the agents in the market cooperate with
each other, or that there exists a central planner influencing decisions.

Finally, our setting and results could be extended in several potential directions. For example, we
consider a market with only one (representative) insurer, whereas typically multiple insurers, with
heterogeneous risk preferences and risk exposures, participate in reinsurance markets. Moreover,
reinsurers often operate with a background risk arising from other operational and financial decisions
(e.g., Dana and Scarsini [17], Balbás et al. [5]). Another interesting extension would be to examine
the effect of information asymmetry between the insurer and the reinsurer. For instance, in markets
with multiple insurers with hidden types, a reinsurer can offer a menu of different premia to the
insurers. We refer to Liang et al. [22] for a recent discussion of this topic.
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Appendix A. Proofs of Main Results

A.1. Characterization of SPNEs.

Proof. Suppose first that the strategy pν˚1 , . . . , ν
˚
n, I

˚q was found through backward induction. Then
it satisfies condition (2) of Definition 2.6. It remains to check that this is an NE. For the sake of

contradiction, suppose pν˚1 , . . . , ν
˚
n, I

˚q is not an NE. By (3.1), there does not exist a strategy Ĩ such
that

ρIN pXq´
ÿ

iPN
ρIN

´

Ĩipν
˚
1 , . . . , ν

˚
nqpXq

¯

`
ÿ

iPN
πν

˚
i pĨipν

˚
1 , . . . , ν

˚
nqpXqq

ă ρIN pXq ´
ÿ

iPN
ρIN pI

˚
i pν

˚
1 , . . . , ν

˚
nqpXqq `

ÿ

iPN
πνipI˚i pν

˚
1 , . . . , ν

˚
nqpXqq .

Furthermore, by (3.2), there does not exist i P N and ν̃ P C such that

ρipI
˚
i pν̃, ν

˚
´iqpXqq ´ π

ν̃pI˚i pν̃, ν
˚
´iqpXqq ă ρipI

˚
i pν

˚
1 , . . . , ν

˚
nqpXqq ´ π

ν˚i pI˚i pν
˚
1 , . . . , ν

˚
nqpXqq .

Therefore, pν˚1 , . . . , ν
˚
n, I

˚q is an NE.

Conversely, suppose that pν˚1 , . . . , ν
˚
n, I

˚q is an SPNE. Then by condition (2) of Definition 2.6,
for any choice of capacities pν1, . . . , νnq P Cn, the indemnity structure I˚pν1, . . . , νnq solves (3.1). It
remains to show that pν˚1 , . . . , ν

˚
nq is a Nash Equilibrium in the reduced game. Since the strategy

pν˚1 , . . . , ν
˚
n, I

˚q is an NE, there does not exist i P N and ν̃ P C such that

ρipI
˚
i pν̃, ν

˚
´iqpXqq ´ π

ν̃pI˚i pν̃, ν
˚
´iqpXqq ă ρipI

˚
i pν

˚
1 , . . . , ν

˚
nqpXqq ´ π

νipI˚i pν
˚
1 , . . . , ν

˚
nqpXqq .

Hence, pν˚1 , . . . , ν
˚
nq is an NE for the reduced game formed by fixing I˚, which completes the proof. �

Proof of Proposition 3.3. First we check feasibility. Suppose pI˚1 , . . . , I
˚
nq is of the given form –

then I˚i “
şx
0 γ

˚
i pzq dz where 0 ď γ˚i ď 1. Then for all z, pI˚i q

1pzq “ γ˚i pzq ě 0. Furthermore,
ř

iPN pI
˚
i q
1pzq “

ř

iPN γ˚i pzq ď 1. Hence, pI˚1 , . . . , I
˚
nq is a feasible choice of indemnities.

Let ~I “ pI1, . . . , Inq be any feasible indemnity, and write Iipxq “

ż x

0
γipzq dz. Then,

ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πνipIipXqq

¸

“ ρIN

˜

X ´
ÿ

iPN
IipXq

¸

`
ÿ

iPN
πνipIipXqq

“ ρIN pXq ´ ρIN

˜

ÿ

iPN
IipXq

¸

`
ÿ

iPN
πνipIipXqq

“ ρIN pXq ´
ÿ

iPN
ρIN pIipXqq `

ÿ

iPN
πνipIipXqq

“ ρIN pXq `
ÿ

iPN

ż 8

0
pνipX ą zq ´ gpPpX ą zqqqγipzq dz

“ ρIN pXq `

ż 8

0

ÿ

iPN
pνipX ą zq ´ gpPpX ą zqqqγipzq dz .

where the second equality follows from comonotonic additivity of ρIN . First we show that pI˚1 , . . . , I
˚
nq

solves Problem (3.1). We have

ρIN

˜

X ´
ÿ

iPN
I˚i pXq `

ÿ

iPN
πνipI˚i pXqq

¸

“ ρIN pXq `

ż 8

0

ÿ

iPN
pνipX ą zq ´ gpPpX ą zqqqγ˚i pzq dz

Electronic copy available at: https://ssrn.com/abstract=4538484



EQUILIBRIA AND EFFICIENCY IN A REINSURANCE MARKET 21

“ ρIN pXq `

ż 8

0

ÿ

iPNz

pνipX ą zq ´ gpPpX ą zqqqγ˚i pzq dz

“ ρIN pXq `

ż 8

0

ÿ

iPNz

pνpX ą zq ´ gpPpX ą zqqqγ˚i pzq dz

“ ρIN pXq `

ż 8

0
pνpX ą zq ´ gpPpX ą zqqq

ÿ

iPNz

hipzq dz

“ ρIN pXq `

ż

A
pνpX ą zq ´ gpPpX ą zqqq dz ,

where we define
A :“ tz P R` : gpPpX ą zqq ą νpX ą zqu .

Then we have

ρIN pXq `

ż

A
pνpX ą zq ´ gpPpX ą zqqq dz

ď ρIN pXq `

ż

A
pνpX ą zq ´ gpPpX ą zqqq

ÿ

iPN
γipzq dz(A.1)

ď ρIN pXq `

ż

A
pνpX ą zq ´ gpPpX ą zqqq

ÿ

iPN
γipzq dz(A.2)

`

ż

AC
pνpX ą zq ´ gpPpX ą zqqq

ÿ

iPN
γipzq dz

“ ρIN pXq `

ż 1

0
pνpX ą zq ´ gpPpX ą zqqq

ÿ

iPN
γipzq dz

ď ρIN pXq `

ż 1

0

ÿ

iPN
pνipX ą zq ´ gpPpX ą zqqqγipzq dz(A.3)

“ ρIN

˜

X ´
ÿ

iPN
ĨipXq `

ÿ

iPN
πνipĨipXqq

¸

,

and hence pI˚1 , . . . , I
˚
nq is optimal. We now show the converse. Suppose that pI1, . . . , Inq is an

allocation that does not satisfy the above form. Then there are three possibilities:

i) There exists a set A1 of positive measure such that for each z P A1,

γipzq ą 0 for at least one i R Nz .

ii) There exists a set A2 of positive measure such that for each z P A2,
ÿ

iPN
γipzq ă 1, gpPpX ą tqq ą νpX ą zq .

Note that A2 Ď A.

iii) There exists a set A3 of positive measure such that for each z P A3,
ÿ

iPN
γipzq ą 0, gpPpX ą tqq ă νpX ą zq .

Note that A3 Ď AC .
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Suppose that we are in the first case. Then for each z P A1, we have
ÿ

iPN
νpX ą zqγipzq ă

ÿ

iPN
νipX ą zqγipzq .

Hence,
ż

A1

ÿ

iPN
pνpX ą zq ´ gpPpX ą zqqqγipzq dz ă

ż

A1

ÿ

iPN
pνipX ą zq ´ gpPpX ą zqqqγipzq dz ,

where this inequality is strict. Also, since ν ď νi for all i, we have
ż

AC
1

ÿ

iPN
pνpX ą zq ´ gpPpX ą zqqqγipzq dz ď

ż

AC
1

ÿ

iPN
pνipX ą zq ´ gpPpX ą zqqqγipzq dz ,

where AC
1 “ R`zA1. Adding these inequalities gives

ż 8

0

ÿ

iPN
pνpX ą zq ´ gpPpX ą zqqqγipzq dz ă

ż 8

0

ÿ

iPN
pνipX ą zq ´ gpPpX ą zqqqγipzq dz ,

and so inequality (A.3) is strict. Therefore, pI1, . . . , Inq is not optimal.

The remaining two cases are similar. Suppose that (ii) is true. Then for each z P A2, we have

νpX ą zq ´ gpPpX ą zqq ă pνpX ą zq ´ gpPpX ą zqqq
ÿ

iPN
γipzq .

Hence,
ż

A2

νpX ą zq ´ gpPpX ą zqq dz ă

ż

A2

pνpX ą zq ´ gpPpX ą zqqq
ÿ

iPN
γipzq dz .

Also, since gpPpX ą zqq ą νpX ą zq on A, and
ř

iPN γipzq dz ě 0, we have
ż

AzA2

νpX ą zq ´ gpPpX ą zqq dz ď

ż

AzA2

pνpX ą zq ´ gpPpX ą zqqq
ÿ

iPN
γipzq dz .

Adding these inequalities gives
ż

A
νpX ą zq ´ gpPpX ą zqq dz ă

ż

A
pνpX ą zq ´ gpPpX ą zqqq

ÿ

iPN
γipzq dz ,

and so inequality (A.1) is strict. Hence, pI1, . . . , Inq is not optimal.

Finally, suppose that (iii) is true. Then for each z P A3, we have

pνpX ą zq ´ gpPpX ą zqqq
ÿ

iPN
γipzq ą 0 ,

so
ż

A3

pνpX ą zq ´ gpPpX ą zqqq
ÿ

iPN
γipzq dz ą 0 .

Also, since gpPpX ą zqq ď νpX ą zq on AC and
ř

iPN γipzq ě 0,
ż

ACzA3

pνpX ą zq ´ gpPpX ą zqqq
ÿ

iPN
γipzq dz ą 0 .

Adding these inequalities gives
ż

AC

pνpX ą zq ´ gpPpX ą zqqq
ÿ

iPN
γipzq dz ą 0 ,

and therefore inequality (A.2) is strict. Thus, pI1, . . . , Inq is not optimal. �
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Proof of Proposition 3.9. Let i P N and I˚ P ℵ. First, we have

ρipI
˚
i pXq ´ πiq “

ż 8

0
τipX ą zqγ˚i pzq dz ´

ż 8

0
ν˚i pX ą zqγ˚i pzq dz

“

ż 8

0
pτipX ą zq ´ ν˚i pX ą zqqγ˚i pzq dz .

Let

A1 “ tz : γ˚i pzq “ 1u and A2 “ tz : γ˚i pzq P p0, 1qu,

so that
ż 8

0
pτipX ą zq´ν˚i pX ą zqqγ˚i pzq dz “

ż

A1

τipX ą zq´ν˚i pX ą zq dz`

ż

A2

pτipX ą zq´ν˚i pX ą zqqγ˚i pzq dz.

We first show that for almost all z P A2, τipX ą zq “ ν˚i pX ą zq, so the second integral vanishes.
We then identify the first integral with

ş8

0 pτipX ą zq ´ ν˚i pX ą zqqγ˚i pzq dz as desired. Note that on
A1 YA2, we have gpPpX ą zqq ě νpX ą zq.

Suppose that z P A2, and z satisfies (3.6) and (3.8). Since
řn
j“0 γ

˚
j pzq “ 1, there must exist

k P pN Y t0uqztiu for which γ˚k pzq P p0, 1q. This implies that ν˚i pX ą zq “ ν˚k pX ą zq “ νpX ą

zq “ τ̄pX ą zq by (3.6), where we use the convention that ν˚0 “ g ˝ P. Since the indemnity
distributes generously in the sense of Definition 3.4, there does not exist any j P N Y t0u such that
ν˚j pX ą zq “ mintgpPpX ą zq, νpX ą zqu “ νpX ą zq and τjpX ą zq ă τipX ą zq. Therefore,

it must be true that τkpX ą zq ě τipX ą zq. A symmetric argument by switching the indices i, k
implies τkpX ą zq ď τipX ą zq. Hence, τkpX ą zq “ τipX ą zq for any k with γ˚k pzq P p0, 1q.

It remains to show that τ̄pX ą zq “ τipX ą zq, which combined with the above, imply that
τipX ą zq “ ν˚i pX ą zq. Since τipX ą zq “ τkpX ą zq, it suffices to show that τipX ą zq “
τkpX ą zq “ minjPN τjpX ą zq. To this end, note that γ˚i pzq ą 0 implies gpPpX ą zqq ě τ̄pX ą zq.
Hence, we must have gpPpX ą zqq ě minjPN τjpX ą zq, which implies that Tz ‰ ∅. Therefore
(3.8) implies that there exists a k1 P Tz X Nz: that is, τk1pX ą zq “ minjPN τjpX ą zq and
ν˚k1pX ą zq “ τ̄pX ą zq “ ν˚i pX ą zq.

Assume for the sake of contradiction that τipX ą zq ą minjPN τjpX ą zq. Then since τk1 “
minjPN τjpX ą zq ă τipX ą zq and ν˚k1pX ą zq “ τ̄pX ą zq, generous distribution implies that
γ˚i pzq “ 0, a contradiction. Hence, τipX ą zq “ minjPN τjpX ą zq, and so τ̄pX ą zq “ τipX ą zq “
τkpX ą zq as desired. Since τ̄pX ą zq “ ν˚i pX ą zq by the above, we have τipX ą zq “ ν˚i pX ą zq
for almost all z P A2, which implies that the integral

ş

A2
pτipX ą zq ´ ν˚i pX ą zqqγ˚i pzq dz vanishes.

Consider now the first integral
ş

A1
τipX ą zq ´ ν˚i pX ą zq dz. Let z P A1, and suppose z satisfies

(3.6) and (3.8). Since γ˚i pzq “ 1, we must have i P Nz, so ν˚i pX ą zq “ νpX ą zq “ τ̄pX ą zq by
(3.6). Hence, we have

ż

A1

τipX ą zq ´ ν˚i pX ą zq dz “

ż

A1

τipX ą zq ´ τ̄pX ą zq dz .

Note that on A1, we must have τipX ą zq ď ν˚i pX ą zq “ τ̄pX ą zq. Suppose for the sake of
contradiction that τipX ą zq ą ν˚i pX ą zq. Since γ˚i pzq “ 1, we have gpPpX ą zqq ě τ̄pX ą zq,
so there must exist some reinsurer k P N such that τkpX ą zq “ minjPNYt0u τjpX ą zq. Then

k P Tz, so there exist k1 P Tz X Nz by (3.8). Therefore τk1pX ą zq ď τ̄pX ą zq ă τipX ą zq, and
ν˚k1pX ą zq “ τ̄pX ą zq “ ν˚i pX ą zq. However, since the indemnity distributes generously, this
implies γ˚i pzq “ 0, which contradicts z P A1.
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Therefore τipX ą zq ď ν˚i pX ą zq, so the integrand is non-zero only when τipX ą zq ă ν˚i pX ą

zq “ τ̄pX ą zq. Let A3 :“ tz P R` : τipX ą zq ă ν˚i pX ą zqu. Then the above simplifies to
ż

A1

τipX ą zq ´ τ̄pX ą zq dz “

ż

A1XA3

τipX ą zq ´ τ̄pX ą zq dz `

ż

A1zA3

τipX ą zq ´ τ̄pX ą zq dz

“

ż

A1XA3

τipX ą zq ´ τ̄pX ą zq dz `

ż

A1zA3

0 dz

“

ż

A1XA3

τipX ą zq ´ τ̄pX ą zq dz .

For z P A1 X A3, we have τipX ą zq ă ν˚i pX ą zq “ τ̄pX ą zq, so A1 X A3 Ď Zi. We
now show that Zi Ď A1. Let z P Zi, and suppose for the sake of contradiction that γ˚i pzq ă 1.
Then since

řn
j“0 γ

˚
j pzq “ 1, we must have γ˚k pzq ą 0 for some k P pN Y t0uqztiu, which implies

ν˚k pX ą zq “ τ̄pX ą zq. However, since z P Zi, we have τipX ą zq ă τ̄pX ą zq, which implies that
Tz “ tiu. Then by (3.8), i P Nz, so ν˚i pX ą zq “ τ̄pX ą zq “ ν˚k pX ą zq. Since the indemnity
distributes generously and τipX ą zq ă τkpX ą zq, γ˚k pzq “ 0, which is a contradiction – hence,
Zi Ď A1. Putting the above together, we have

ż

A1

τipX ą zq ´ τ̄pX ą zq dz

“

ż

A1XA3

τipX ą zq ´ τ̄pX ą zq dz

“

ż

A1XA3

τipX ą zq ´ τ̄pX ą zq dz `

ż

ZiXpA1zA3q

0 dz

“

ż

A1XA3

τipX ą zq ´ τ̄pX ą zq dz `

ż

ZiXpA1zA3q

τipX ą zq ´ τ̄pX ą zq dz

“

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz ,

which completes the proof. �

Proof of Proposition 3.10. Let i P N . For notational convenience, we define γ̂i such that for each
x P R`, we have I˚i pν̂, ν

˚
´iqpxq “

şx
0 γ̂ipzq dz. We now fix the pricing capacities pν̂, ν˚´iq, and use

our previous notation as introduced in Proposition 3.3. For example, Nz is the set of indices that
minimize over the set tν̂pX ą zq, ν˚j pX ą zqu, for j P N ztiu. Then we can write

ρipI
˚
i pν̂, ν

˚
´iqpXqq ´ π

ν̂pI˚i pν̂, ν
˚
´iqpXqq “

ż 8

0
pτipX ą zq ´ ν̂pX ą zqqγ̂ipzq dz.

On the other hand, by Proposition 3.9, we have that

ρipI
˚
i pν

˚
1 , . . . , ν

˚
nqpXqq ´ π

νipI˚i pν
˚
1 , . . . , ν

˚
nqpXqq “

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz ,

where
Zi :“ tz P R` : τipX ą zq ă τ̄pX ą zqu .

We first show that for all z P Zi, pτipX ą zq ´ ν̂pX ą zqqγ̂ipzq ě τipX ą zq ´ τ̄pX ą zq. Then for
all z P ZC

i , we show that pτipX ą zq ´ ν̂pX ą zqqγ̂ipzq ě 0. Combining these equations yields the
desired relation.
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(1) First, suppose that z P Zi. Then τipX ą zq ă τ̄pX ą zq, and we can distinguish three cases.

(a) ν̂pX ą zq ą τ̄pX ą zq: In this case, by (3.7), there exist some k ‰ i, k P N Y t0u such
that ν˚k pX ą zq “ τ̄pX ą zq, where we use the convention ν˚0 pX ą zq :“ gpPpX ą zqq. If
there exists any such k ‰ 0, then i R Nz, so γ̂ipzq “ 0, so pτipX ą zq´ν̂pX ą zqqγ̂ipzq “ 0.
On the other hand, if the only k ‰ i such that ν˚k pX ą zq “ τ̄pX ą zq is k “ 0, then
ν˚0 pX ą zq ă ν˚j pX ą zq for all j ‰ i. This, along with the assumption ν̂pX ą zq ą

τ̄pX ą zq “ ν˚0 pX ą zq, implies that γ̂ipzq “ 0, so again pτipX ą zq´ν̂pX ą zqqγ̂ipzq “ 0.
Note that 0 ě τipX ą zq ´ τ̄pX ą zq on Zi.

(b) ν̂pX ą zq ă τ̄pX ą zq: Recall that we have τ̄pX ą zq “ minjPN ν˚j pX ą zq by (3.6).

Then by assumption, ν̂pX ą zq ă minj‰i ν
˚
j pX ą zq and ν̂pX ą zq ă gpPpX ą zqq, since

gpPpX ą zqq ě τ̄pX ą zq whenever τipX ą zq ă τ̄pX ą zq. This implies that Nz “ tiu
and

řn
j“1 γ̂jpzq “ 1. This implies γ̂jpzq “ 0 for j ‰ i, so it must be true that γ̂ipzq “ 1.

Hence,

pτipX ą zq ´ ν̂pX ą zqqγ̂ipzq “ τipX ą zq ´ ν̂pX ą zq ě τipX ą zq ´ τ̄pX ą zq .

(c) ν̂pX ą zq “ τ̄pX ą zq: In this case, note that τipX ą zq ´ τ̄pX ą zq ă 0, so τipX ą

zq ´ ν̂pX ą zq ă 0. Since γ̂ipzq ď 1,

pτipX ą zq ´ ν̂pX ą zqqγ̂ipzq ě pτipX ą zq ´ ν̂pX ą zqq ¨ 1 “ τipX ą zq ´ τ̄pX ą zq .

(2) Now, suppose that z P ZC
i . We distinguish two cases.

(a) ν̂pX ą zq ą τ̄pX ą zq: By the same logic as Case (1-a), we have pτipX ą zq ´ ν̂pX ą

zqqγ̂ipzq “ 0.

(b) ν̂pX ą zq ď τ̄pX ą zq: In this case, since z P ZC
i , τ̄pX ą zq ď τipX ą zq. Therefore,

pτipX ą zq ´ ν̂pX ą zqq γ̂ipzq ě 0 .

Hence, we have

ρi
`

I˚i pν̂, ν
˚
´iqpXq

˘

´ πν̂
`

I˚i pν̂, ν
˚
´iqpXq

˘

“

ż 8

0
pτipX ą zq ´ ν̂pX ą zqqγ̂ipzq dz

“

ż

Zi

pτipX ą zq ´ ν̂pX ą zqqγ̂ipzq dz

`

ż

ZC
i

pτipX ą zq ´ ν̂pX ą zqqγ̂ipzq dz

ě

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz `

ż

ZC
i

0 dz

“

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz

“ ρipI
˚
i pν

˚
1 , . . . , ν

˚
nqpXqq ´ π

ν˚i pI˚i pν
˚
1 , . . . , ν

˚
nqpXqq ,

as desired. �
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Proof of Proposition 3.13. We check properties (3.6), (3.7), and (3.8) respectively. First, let z P R`.
Then by definition of τ̄ , there exist i, j P N Y t0u, i ‰ j such that

τipX ą zq ď τjpX ą zq “ τ̄pX ą zq ď τkpX ą zq ,

for all k P N , k ‰ i, j. This implies that either i P Ñz, or i “ 0. In the first case, we have νpX ą

zq ď ν˚i pX ą zq “ τ̄pX ą zq. In the second case, j P Ñz, so νpX ą zq “ τ˚j pX ą zq “ τ̄pX ą zq.

Therefore νpX ą zq ď τ̄pX ą zq.

On the other hand, we have τ̄pX ą zq “ τjpX ą zq, and so for k ‰ i, j, k P N , τ̄pX ą zq ď
τkpX ą zq. Then we have τ̄pX ą zq “ ν˚j pX ą zq and τ̄pX ą zq ď ν˚k pX ą zq by definition of ν˚j , ν

˚
k .

If i ‰ 0, then ν˚i pX ą zq “ τ̄pX ą zq by the above. This gives τ̄pX ą zq ď ν˚l pX ą zq for all l P N .
That is, τ̄pX ą zq ď νpX ą zq. Therefore νpX ą zq “ τ̄pX ą zq as desired, so (3.6) holds.

Next, we check (3.7). Fix a z P R`. By definition of τ̄ , there exist i, j P N , i ‰ j such that
τ̄pX ą zq “ τjpX ą zq, τipX ą zq ď τjpX ą zq, and τkpX ą zq ě τjpX ą zq for all k ‰ i, j. Then
by construction of pν˚1 , . . . , ν

˚
nq, ν

˚
j pX ą zq “ τ̄pX ą zq “ τjpX ą zq, and τ̄ ď ν˚k pX ą zq for all

k ‰ i, j. Assume for the sake of contradiction that ν˚i pX ą zq ă τ̄pX ą zq. Then by definition of ν˚i ,
we must have ν˚i pX ą zq “ τipX ą zq, so τipX ą zq ď τkpX ą zq for all k ‰ i as above. But then

i P Ñz, so ν˚i pX ą zq “ τ̄pX ą zq – a contradiction. Therefore ν˚i pX ą zq “ τ̄pX ą zq “ ν˚j pX ą zq

as desired, so (3.7) holds.

Finally, we check (3.8). For each z P R`, if Tz ‰ ∅, take i P Tz. Then we have ν˚i pX ą zq “
τ̄pX ą zq “ minjPN ν˚j pX ą zq, so i P Nz. Hence, Tz XNz ‰ ∅, so (3.8) holds. �

A.2. Welfare Analysis of SPNEs.

Proof of Lemma 4.3. Note that for z P ZIN , we have
ř

iPN γ˚i pzq “ 0, and so γ˚i pzq “ 0 for all i P N .
Then we have

ρIN

˜

X ´
ÿ

iPN

I˚i pXq `
ÿ

iPN
πν

˚
i pI˚i pXqq

¸

“

ż 8

0

gpPpX ą zqq

˜

1´
ÿ

iPN
γ˚i pzq

¸

dz `
ÿ

iPN

ż 8

0

ν˚i pX ą zqγ˚i pzq dz .

Define the sets

Z“IN :“ tz P R` : gpPpX ą zqq “ τ̄pX ą zqu , Z`IN :“ tz P R` : gpPpX ą zqq ą τ̄pX ą zqu .

Since ~I˚ is optimal, the first term simplifies to
ż 8

0
gpPpX ą zqq

˜

1´
ÿ

iPN
γ˚i pzq

¸

dz “

ż

ZIN

gpPpX ą zqq dz `

ż

Z“IN
gpPpX ą zqqγ˚0 pzq dz

“

ż

ZIN

gpPpX ą zqq dz `

ż

Z“IN
τ̄pX ą zqγ˚0 pzq dz .

For second term, since γ˚i pzq ą 0 implies ν˚i pX ą zq “ τ̄pX ą zq, we have

ÿ

iPN

ż 8

0
ν˚i pX ą zqγ˚i pzq dz “

ÿ

iPN

ż

ZC
IN

ν˚i pX ą zqγ˚i pzq dz

“

ż

ZC
IN

ÿ

iPN
ν˚i pX ą zqγ˚i pzq dz “

ż

ZC
IN

τ̄pX ą zq
ÿ

iPN
γ˚i pzq dz

“

ż

Z“IN
τ̄pX ą zq

ÿ

iPN
γ˚i pzq dz `

ż

Z´IN
τ̄pX ą zq dz .
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Adding this to the above, we have
ż 8

0
gpPpX ą zqq

˜

1´
ÿ

iPN
γ˚i pzq

¸

dz `
ÿ

iPN

ż 8

0
ν˚i pX ą zqγ˚i pzq dz

“

ż

ZIN

gpPpX ą zqq dz `

ż

Z“IN
τ̄pX ą zqγ˚0 pzq dz

`

ż

Z“IN
τ̄pX ą zq

ÿ

iPN
γ˚i pzq dz `

ż

Z´IN
τ̄pX ą zq dz

“

ż

ZIN

gpPpX ą zqq dz `

ż

Z“IN
τ̄pX ą zq dz `

ż

Z´IN
τ̄pX ą zq dz

“

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

τ̄pX ą zq dz .

�

Proof of Proposition 4.5. Note that when n “ 1, if gpPpX ą zqq ě τ̄pX ą zq, then it must be true
that gpPpX ą zqq “ τ̄pX ą zq. Therefore by Lemma 4.3, we have

ρIN

´

X ´ I1pXq ` π
ν˚1 pI1pXqq

¯

“

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

τ̄pX ą zq dz

“

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

gpPpX ą zqq dz

“

ż 8

0
gpPpX ą zqq dz “ ρIN pXq .

�

Proof of Proposition 4.6. Let τ̄n be the second-lowest function of the set of capacities tτ0, . . . , τnu,
and let τ̄n`1 be the second-lowest function of tτ0, . . . , τn`1u. Define

Zn
IN :“ tz P R` : gpPpX ą zqq ă τ̄npX ą zqu ,

Zn`1
IN :“ tz P R` : gpPpX ą zqq ă τ̄n`1pX ą zqu .

Then τ̄n`1 ď τ̄n, and so Zn`1
IN Ď Zn

IN . By Lemma 4.3, we have

ρIN

˜

X ´
n
ÿ

i“1

I˚,ni pXq `
n
ÿ

i“1

πν
˚,n
i pI˚,ni pXqq

¸

“

ż

Zn
IN

gpPpX ą zqq dz `

ż

pZn
IN q

C

τ̄npX ą zq dz

“

ż

Zn`1
IN

gpPpX ą zqq dz `

ż

Zn
IN zZ

n`1
IN

gpPpX ą zqq dz `

ż

pZn
INq

C
τ̄npX ą zq dz

ě

ż

Zn`1
IN

gpPpX ą zqq dz `

ż

Zn
IN zZ

n`1
IN

τ̄n`1pX ą zq dz `

ż

pZn
INq

C
τ̄n`1pX ą zq dz

“

ż

Zn`1
IN

gpPpX ą zqq dz `

ż

pZn`1
IN q

C
τ̄n`1pX ą zq dz
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“ ρIN

˜

X ´
n`1
ÿ

i“1

I˚,n`1
i pXq `

n`1
ÿ

i“1

πν
˚,n`1
i pI˚,n`1

i pXqq

¸

.

�

Proof of Proposition 4.9. Let p~I, ~πq be an allocation, and suppose for the sake of contradiction that
řn
i“0 ρipIipXqq ą ln

i“0 ρipXq. Then there exist ~̃I P ~I such that
řn
i“0 ρipĨipXqq ă

řn
i“0 ρipIipXqq.

For i P N , define π̃i by
π̃i :“ ρipĨipXqq ´ ρipIipXqq ` πi .

Then we have

ρipIipXqq ´ πi “ ρipĨipXqq ´ ρipĨipXqq ` ρipIipXqq ´ πi “ ρipĨipXqq ´ π̃i.

On the other hand, we have

ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πi

¸

“ ρIN

˜

X ´
ÿ

iPN
IipXq

¸

`
ÿ

iPN
πi

“ ρIN

˜

X ´
ÿ

iPN
IipXq

¸

`
ÿ

iPN
π̃i ´

ÿ

iPN
ρipĨipXqq `

ÿ

iPN
ρipIipXqq

“

n
ÿ

i“0

ρipIipXqq `
ÿ

iPN
π̃i ´

ÿ

iPN
ρipĨipXqq

ą

n
ÿ

i“0

ρipĨipXqq `
ÿ

iPN
π̃i ´

ÿ

iPN
ρipĨipXqq

“ ρIN

˜

X ´
ÿ

iPN
ĨipXq

¸

`
ÿ

iPN
ρipĨipXqq `

ÿ

iPN
π̃i ´

ÿ

iPN
ρipĨipXqq

“ ρIN

˜

X ´
ÿ

iPN
ĨipXq

¸

`
ÿ

iPN
π̃i “ ρIN

˜

X ´
ÿ

iPN
ĨipXq `

ÿ

iPN
π̃i

¸

,

implying that the allocation pĨ , π̃q improves over p~I, ~πq, with a strict improvement for the insurer.

Hence, p~I, ~πq is not PE.

Conversely, if p~I, ~πq is not PE, then there exist an allocation
´

Ĩi, π̃
¯

such that

ρIN

˜

X ´
ÿ

iPN
ĨipXq `

ÿ

iPN
π̃i

¸

ď ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πi

¸

and ρipĨipXq´π̃iq ď ρipIipXq´πiq, @i P N ,

with at least one strict inequality. Summing these inequalities gives

ρIN

˜

X ´
ÿ

iPN
ĨipXq `

ÿ

iPN
π̃i

¸

`

n
ÿ

iPN
ρipĨipXq ´ π̃iq ă ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πi

¸

`

n
ÿ

iPN
ρipIipXq ´ πiq,

which, by translation invariance, yields

ρIN

˜

X ´
ÿ

iPN
ĨipXq

¸

`

n
ÿ

iPN
ρipĨipXqq ă ρIN

˜

X ´
ÿ

iPN
IipXq

¸

`
ÿ

iPN
ρipIipXqq,

and thus
n
ÿ

i“0

ρipĨipXqq ă
n
ÿ

i“0

ρipIipXqq .
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Therefore
řn
i“0 IipXq ą ln

i“0 ρipXq, and hence this allocation does not achieve the inf-convolution.
�

Proof of Proposition 4.10. First we check feasibility. We have
n
ÿ

i“0

Iipzq “
n
ÿ

i“0

ż z

0
γipzq dz “

ż z

0

n
ÿ

i“0

γipzq dz “

ż z

0
1 dz “ z .

Therefore
řn
i“0Xi “

řn
i“0 IipXq “ X. Also, since the derivative of Ii is non-negative, Ii is increasing,

and so Iipzq is comonotonic with X – hence, ~I P ~I, so it is feasible.

Next, we show that ~I achieves the inf-convolution. Let ~̃I be any other profile of indemnities in ~I.
We have

n
ÿ

i“0

ρipĨipzqq “
n
ÿ

i“0

ż 8

0
τipX ą zqĨ 1ipzq dz “

ż 8

0

n
ÿ

i“0

τipX ą zqĨ 1ipzq dz

ě

ż 8

0

n
ÿ

i“0

min
jPNYt0u

tτjpX ą zquĨ 1ipzq dz(A.4)

“

ż 8

0
min

jPNYt0u
tτjpX ą zqu

n
ÿ

i“0

Ĩ 1ipzq dz

“

ż 8

0
min

jPNYt0u
tτjpX ą zqu dz(A.5)

“

ż 8

0

»

– min
jPNYt0u

tτjpX ą zqu ¨ 1`
ÿ

iPLC
z

τipX ą zq ¨ 0

fi

fl dz

“

ż 8

0

»

– min
jPNYt0u

tτjpX ą zqu ¨
ÿ

iPLz

γipzq `
ÿ

iPLC
z

τipX ą zq ¨ γipzq

fi

fl dz

“

ż 8

0

»

–

ÿ

iPLz

min
jPNYt0u

tτjpX ą zqu ¨ γipzq `
ÿ

iPLC
z

τipX ą zq ¨ γipzq

fi

fl dz

“

ż 8

0

ÿ

iPLz

τipX ą zq ¨ γipzq `
ÿ

iPLC
z

τipX ą zq ¨ γipzq dz

“

ż 8

0

n
ÿ

i“0

τipX ą zqγipzq dz “
n
ÿ

i“0

ż 8

0
τipX ą zqγipzq dz “

n
ÿ

i“0

ρipIipzqq .

Therefore ~I attains the inf-convolution.

We now show the converse. Suppose that ~̃I is a feasible indemnity structure not of the specified
form: that is,

ř

iPLC
z
Ĩ 1ipzq ą 0 on a set A of positive measure. Then for every z in A, we have

n
ÿ

i“0

τipX ą zqĨ 1ipzq “
ÿ

iPLz

τipX ą zqĨ 1ipzq `
ÿ

iPLC
z

τipX ą zqĨ 1ipzq

“
ÿ

iPLz

min
jPNYt0u

tτjpX ą zquĨ 1ipzq `
ÿ

iPLC
z

τipX ą zqĨ 1ipzq
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ą
ÿ

iPLz

min
jPNYt0u

tτjpX ą zquĨ 1ipzq `
ÿ

iPLC
z

min
jPNYt0u

tτjpX ą zquĨ 1ipzq

“

n
ÿ

i“0

min
jPNYt0u

tτjpX ą zquĨ 1ipzq ,

where the strict inequality follows because Ĩ 1ipzq are not all zero. Taking the integral over the set A
gives

ż

A

n
ÿ

i“0

τipX ą zqĨ 1ipzq dz ą

ż

A

n
ÿ

i“0

min
jPNYt0u

tτjpX ą zquĨ 1ipzq dz ,

where the inequality is strict since A has positive measure. Therefore in this case, the inequality

(A.4) is strict, so ~̃I does not attain the inf-convolution. �

Proof of Lemma 4.11. Since I˚ P ℵ and pν˚1 , . . . , ν
˚
nq P ,ג we know that p~I˚, ~π˚q is IR by Theorem

4.4.

For PE, by Proposition 4.9, it suffices to show that the indemnities ~I˚ attain the inf-convolution.
We have seen in (A.5) that

ln
i“0 ρipXq “

ż 8

0
min

jPNYt0u
tτjpX ą zqu dz .

Therefore it suffices to show that
n
ÿ

i“0

ρipI
˚
i pXqq “

ż 8

0
min

jPNYt0u
tτjpX ą zqu dz .

First recall that I˚0 pxq “

ż x

0
γ˚0 pzq dz as defined in (3.4). Then we can write

n
ÿ

i“0

ρipI
˚
i pXqq “

n
ÿ

i“0

ż 8

0
τipX ą zqγ˚i pzq dz “

ż 8

0

n
ÿ

i“0

τipX ą zqγ˚i pzq dz .

We show that for all z P R`, we have
řn
i“0 τipX ą zqγ˚i pzq “ minjPNYt0utτjpX ą zqu. It suffices

to show that γ˚i pzq ą 0 implies that τipX ą zq “ minjPNYt0u τjpX ą zq. We consider two cases:

(1) i “ 0: Then γ˚0 pzq ą 0 implies that gpPpX ą zqq ď τ̄pX ą zq. If this inequality is strict,
then we automatically have gpPpX ą zqq “ minjPNYt0u τjpX ą zq. Otherwise, if gpPpX ą

zqq “ τ̄pX ą zq, then since every reinsurer is quoting the same price τ̄pX ą zq, generous
distribution implies that there does not exist k P N such that τkpX ą zq ă gpPpX ą zqq.
Therefore gpPpX ą zqq “ minjPNYt0u τjpX ą zq as desired.

(2) i P N : In this case, since every reinsurer is using the strategy τ̄ , there does not exist k P N
such that τkpX ą zq ă τipX ą zq, so τipX ą zq “ minjPN τjpX ą zq. It remains to show
that gpPpX ą zqq ě τipX ą zq.

To this end, note that γ˚i pzq ą 0 implies gpPpX ą zqq ě τ̄pX ą zq. Then there exist k1 P N
such that τk1pX ą zq ď τ̄pX ą zq ď gpPpX ą zqq, which implies that τipX ą zq ď gpPpX ą

zqq. Therefore τipX ą zq “ minjPNYt0u τjpX ą zq as desired.
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To conclude the proof, we see that since τipX ą zq “ minjPNYt0utτjpX ą zqu whenever γ˚i pzq ą 0,
we have

n
ÿ

i“0

τipX ą zqγ˚i pzq “
ÿ

iPN ,γ˚i pzqą0

τipX ą zqγ˚i pzq “
ÿ

iPN ,γ˚i pzqą0

min
jPNYt0u

tτjpX ą zquγ˚i pzq

“ min
jPNYt0u

tτjpX ą zqu
ÿ

iPN ,γ˚i pzqą0

γ˚i pzq “ min
jPNYt0u

tτjpX ą zqu .

Therefore
n
ÿ

i“0

ρipI
˚
i pXqq “

ż 8

0
min

jPNYt0u
tτjpX ą zqu dz .

�

Proof of Theorem 4.12. By Theorem 4.4, we know that pν˚1 , . . . , ν
˚
n, I

˚q induces an IR allocation. It
remains to show PE.

First, let pĪ˚1 , . . . , Ī
˚
nq :“ I˚pτ̄ , τ̄ , . . . , τ̄q. Then since I˚ P ℵ and pτ̄ , τ̄ , . . . , τ̄q P ,ג we have

ρipĪ
˚
i pXq ´ π

τ̄ pĪ˚i pXqqq “

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz,

ρIN

˜

X ´
ÿ

iPN

Ī˚i pXq `
ÿ

iPN
πτ̄ pĪ˚i pXqq

¸

“

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

τ̄pX ą zq dz ,

by Proposition 3.9 and Lemma 4.3. Summing these inequalities and applying Lemma 4.11, we have
ż

Zi

τipX ą zq ´ τ̄pX ą zq dz `

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

τ̄pX ą zq dz

“ ρIN

˜

X ´
ÿ

iPN
Ī˚i pXq `

ÿ

iPN
πτ̄ pĪ˚i pXqq

¸

`
ÿ

iPN
ρipĪ

˚
i pXq ´ π

τ̄ pĪ˚i pXqqq

“ ρIN

˜

X ´
ÿ

iPN
Ī˚i pXq

¸

`
ÿ

iPN
πτ̄ pĪ˚i pXqq `

ÿ

iPN
ρipĪ

˚
i pXqq ´

ÿ

iPN
πτ̄ pĪ˚i pXqq

“ ρIN

˜

X ´
ÿ

iPN
Ī˚i pXq

¸

`
ÿ

iPN
ρipĪ

˚
i pXqq “

n
ÿ

i“0

ρipĪ
˚
i pXqq

“

ż 8

0
min

jPNYt0u
tτjpX ą zqu dz “ ln

i“0 ρipXq .

Now suppose that I˚ P ℵ and pν˚1 , . . . , ν
˚
nq P .ג As before, we use the notation pI˚1 , . . . , I

˚
nq “

I˚pν˚1 , . . . , ν
˚
nq. By Proposition 3.9 and Lemma 4.3, we have

n
ÿ

i“0

ρipI
˚
i pXqq “ ρIN

˜

X ´
ÿ

iPN
I˚i pXq `

ÿ

iPN
πν

˚
i pI˚i pXqq

¸

`
ÿ

iPN
ρi

´

I˚i pXq ´ π
ν˚i pI˚i pXqq

¯

“

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz `

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

τ̄pX ą zq dz

“ ln
i“0 ρipXq ,

so the resulting allocation achieves the inf-convolution. Therefore by Proposition 4.9, the strategy
pν˚1 , . . . , ν

˚
n, I

˚q induces a PE allocation, as desired. �

Electronic copy available at: https://ssrn.com/abstract=4538484



32 MICHAEL B. ZHU, MARIO GHOSSOUB, AND TIM J. BOONEN

Proof of Proposition 4.15. Recall that Zi “ tz P R` : τipX ą zq ă τ̄pX ą zqu. Note that this
condition is equivalent to τipX ą zq ă τjpX ą zq for j P pN Y t0uqztiu – that is, τipX ą zq attains
the minimum minj τjpX ą zq uniquely. Then for all z P Zi, we have γ˚i pzq “ 1 by Proposition 4.10.
Now define

Z̄i :“ tz P R` : τipX ą zq “ min
j
τjpX ą zquzZi .

That is, Z̄i is the set over which τipX ą zq attains the minimum, but not uniquely. Note that on
this set, τipX ą zq “ τ̄ipX ą zq. By Proposition 4.10, we have that γ˚i pzq “ 0 on pZi Y Z̄iqC . By
Assumption 4.14, we have

ż

Zi

τipX ą zq ´ τ̄pX ą zq dz “ ρipI
˚
i pXq ´ π

˚
i q

“

ż 8

0
τipX ą zqγ˚i pzq dz ´ π

˚
i

“

ż

Zi

τipX ą zq ¨ 1 dz `

ż

Z̄i

τipX ą zqγ˚i pzq dz

`

ż

pZiYZ̄iq
C

τipX ą zq ¨ 0 dz ´ π˚i

“

ż

Zi

τipX ą zq dz `

ż

Z̄i

τipX ą zqγ˚i pzq dz ´ π
˚
i .

Subtracting
ş

Zi
τipX ą zq dz from both sides and rearranging yields

π˚i “

ż

Z̄i

τipX ą zqγ˚i pzq dz `

ż

Zi

τ̄pX ą zq dz

“

ż

Z̄i

τ̄pX ą zqγ˚i pzq dz `

ż

Zi

τ̄pX ą zq dz

“

ż

Z̄i

τ̄pX ą zqγ˚i pzq dz `

ż

Zi

τ̄pX ą zq ¨ 1 dz `

ż

pZiYZ̄iq
C

τipX ą zq ¨ 0 dz

“

ż 8

0
ν˚i pX ą zqγ˚i pzq dz “

ż

I˚i pXq dν
˚
i ,

as desired. �

Proof of Proposition 4.16. By Proposition 4.15 and Lemma 4.3, we have

ρIN

˜

X ´
ÿ

iPN
I˚i pXq `

ÿ

iPN
πν

˚
i pI˚i pXqq

¸

“ ρIN

˜

X ´
ÿ

iPN
I˚i pXq `

ÿ

iPN
π˚i

¸

“

ż

ZIN

gpPpX ą zqq dz `

ż

ZC
IN

τ̄pX ą zq dz

“ min
IP~I

#

ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πν

˚
i pIipXqq

¸+

.

�

Proof of Proposition 4.17. Suppose for the sake of contradiction that ~I˚ does not distribute gener-
ously. Then there exists a k P N Y t0u and a set of positive measure A such that for z P Z, we
have

γ˚k pzq ą 0 ,
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and there exists a k1 P pN Y t0uqztku such that

τk1pX ą zq ă τkpX ą zq .

Then
řn
i“0 γ

˚
i pzqτipX ą zq ą

řn
i“0 γ

˚
i pzqminjPNYt0u τjpX ą zq “ minjPNYt0u τjpX ą zq, so

n
ÿ

i“0

ρipI
˚
i pXqq “

n
ÿ

i“0

ż 8

0
τipX ą zqγ˚i pzq dz “

ż 8

0

n
ÿ

i“0

τipX ą zqγ˚i pzq dz

“

ż

A

n
ÿ

i“0

τipX ą zqγ˚i pzq dz `

ż

AC

n
ÿ

i“0

τipX ą zqγ˚i pzq dz

ą

ż

A
min

jPNYt0u
τjpX ą zq dz `

ż

AC

n
ÿ

i“0

τipX ą zqγ˚i pzq dz

ě

ż

A
min

jPNYt0u
τjpX ą zq dz `

ż

AC

n
ÿ

i“0

min
jPNYt0u

τjpX ą zqγ˚i pzq dz

ě

ż 8

0
min

jPNYt0u
τjpX ą zq dz “ ln

i“0 ρipXq .

Hence, ~I˚ does not achieve the inf-convolution, so ~I˚ is not PE by Proposition 4.9, which contradicts
our initial assumption. �

Appendix B. Additional Examples of Equilibria

B.1. An SPNE Not Characterized by Theorem 3.11. As an example of an SPNE that is not
characterized by Theorem 3.11, consider the following example for n “ 2. We construct an SPNE
such that the reinsurers’ strategy does not satisfy (3.6), and therefore not in .ג Suppose for all
z P R`, we have

τ1pX ą zq ă τ2pX ą zq ă gpPpX ą zqq .

Let I˚ P ℵ, and define ν1, ν2 by
ν1 “ ν2 “ τ1 .

Note that by construction, since τ̄ “ τ2 ą τ1 “ ν, this does not satisfy (3.6). We claim that
pν1, ν2, I

˚q is an SPNE. Indeed, for reinsurer 1, we have ρ1pI
˚
1 pXq´π

τ1pI˚1 pXqqq “ 0. It is impossible
for reinsurer 1 to profit, as quoting a higher price than their true preferences τ1 will result in being
undercut by reinsurer 2. On the other hand, since the insurer distributes generously, I˚2 pXq “ 0.
Hence, we have ρ2pI

˚
2 pXq ´ πτ1pI˚2 pXqqq “ 0 as well. It is impossible for reinsurer 2 to profit, as

quoting a higher price than their true preferences τ2 will result in being undercut by reinsurer 1.

However, by Remark 3.14, we see that ν˚1 “ ν˚2 “ τ̄ “ τ2 is also an SPNE, which charges a strictly
higher price for reinsurance. From the perspective of the reinsurers (in particular reinsurer 1), this
SPNE would be preferable.

B.2. A Remark on NE vs. SPNE. Throughout this paper, we focus on finding SPNEs, as opposed
to the perhaps more familiar notion of NE. It is clear from Definition 2.6 that all SPNEs are NEs.
However, we show in this section that the converse statement is not true, even within our model
where the game structure is not overly complicated.

Suppose that the strategy pν˚1 , . . . , ν
˚
n, I

˚q is an SPNE, as given in Theorem 3.11. We construct a
strategy as follows. Define by ν̂ P C a capacity such that:

(1) ν̂ ‰ ν˚i for all i P N ; and,
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(2) ν̂pX ą zq ą gpPpX ą zqq on a set of positive measure.

Now define by Î a strategy in p~IqCn
such that

Î : Cn Ñ ~I
pν̂, ν̂, . . . , ν̂q ÞÑ 0 ,

pν1, . . . , νnq ÞÑ I˚pν1, . . . , νnq, otherwise.

Under the strategy Î, the insurer refuses to do business with any reinsurer in the scenario that all
reinsurers quote the price ν̂. This is admittedly strange behaviour, which is indeed not optimal for
the insurer. Since ν̂pX ą zq ą gpPpX ą zqq on a set of positive measure, the insurer can benefit
from reinsurance that is priced via ν̂. Hence, 0 does not solve

min
IP~I

#

ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πν̂pIipXqq

¸+

,

so pν˚1 , . . . , ν
˚
n, Îq is not an SPNE.

However, we can see that pν˚1 , . . . , ν
˚
n, Îq is an NE. Let τ P C be any non-negative capacity, and

i P N . By Proposition 3.10, we have

ρipÎipτ, ν
˚
´iqpXqq ´ ρ

τ pÎipτ, ν
˚
´iqpXqq “ ρipI

˚
i pτ, ν´iqpXqq ´ ρ

τ pI˚i pτ, ν´iqpXqq

ě ρipI
˚
i pν

˚
1 , . . . , ν

˚
nqpXqq ´ π

ν˚i pI˚i pν
˚
1 , . . . , ν

˚
nqpXqq

“ ρipÎipν
˚
1 , . . . , ν

˚
nqpXqq ´ π

ν˚i pÎipν
˚
1 , . . . , ν

˚
nqpXqq .

Also, by construction, Îpν˚1 , . . . , ν
˚
nq P Ipν˚1 , . . . , ν˚nq, so it solves

min
IP~I

#

ρIN

˜

X ´
ÿ

iPN
IipXq `

ÿ

iPN
πν

˚
i pIipXqq

¸+

.

Hence, pν˚1 , . . . , ν
˚
n, Îq is an NE.

Although this is an NE, we see that the strategy of the insurer is not a reasonable one. One
possible interpretation is that the insurer’s sub-optimal behaviour when the pricing capacity is ν̂ is
a threat to the reinsurers, to dissuade them from actually choosing such a pricing rule. The notion
of SPNE can be seen as a refinement that eliminates this possibility. That is, we assume that the
insurer is unable or unwilling to issue such threats, or that the reinsurers correctly identify that the
insurer will never follow through with such threats.
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