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1. Introduction

A foundational problem in the theory of risk exchange is the problem of demand for insurance indemni-
fication. Specifically, an insurance buyer, or decision maker (DM), faces a random insurable loss, against
which she seeks coverage through the purchase of an insurance policy. The insurance pricing functional
is assumed to be known by the DM, and to be given by the certainty equivalent of the insurer’s utility.
Although this is a classical problem, it has traditionally been confined to the accustomed framework of
Expected-Utility Theory (EUT), going back to the pioneering work of Arrow (1963, 1971) and Mossin
(1968). Arrow (1963) shows the optimality of deductible insurance (a zero indemnification below a fixed
threshold of loss, and a linear indemnification above) in an EUT framework, when the DM is risk-averse,
the insurer is risk-neutral, and the two parties have the same beliefs about the underlying loss probability
distribution. We refer to Gollier (2013) and Schlesinger (2000) for surveys of the rather large literature on
optimal insurance with EU preferences.

Ambiguity in Insurance Demand. The vast majority of this literature remains within the confines
of the classical EUT. Yet, ever since the major challenges to the foundations of EUT that the work of
Allais (1953) and Ellsberg (1961) has put forward, decision theory has been pulling away from parts of
the axiomatic foundations of EUT, in favour of non-EU models that can rationalize behavior depicted
by Allais (1953) and Ellsberg (1961), as well as other cognitive biases that are not captured by EUT.
Arguably, one of the most important achievements of the modern theory of choice under uncertainty is the
remarkable development spurred by the work of Ellsberg (1961), in the study of what came to be known as
ambiguity, or model uncertainty. Two main approaches to the rationalization of attitudes toward ambiguity
have been explored in the literature on axiomatic decision theory: the non-additive prior approach, and
the multiple additive priors approach. These two approaches do intersect, but they are not equivalent.
The first category is based on the seminal contributions of Yaari (1987) (Dual Theory, or DT), Quiggin
(1982) (Rank-Dependent Expected-Utility, or RDEU), and Schmeidler (1989) (Choquet-Expected Utility,
or CEU), which encompasses the previous two models. The second category was initiated by Gilboa and
Schmeidler (1989) (Maxmin-Expected Utility, or MEU) and further refined by Ghirardato et al. (2004) (the
α-maxmin model), Klibanoff et al. (2005) (the KMM model), and Amarante (2009) who provides a unifying
framework. Additionally, it is important to note that while MEU and RDEU have a nonempty intersection
(e.g., when the distortion function in RDEU is convex), they are vastly different models. In fact, few MEU
models can be mapped to a RDEU model (see, e.g., Amarante (2014) for a detailed explanation of this
point).

While the literature on non-EU preferences in risk-sharing or optimal insurance design problems is
considerably thinner than the literature on risk-sharing with EU preferences, behavioral preferences, and
ambiguity in particular play an increasing role in this literature. Yet, Machina (2013) points out that
the robustness of standard optimal insurance results under situations of ambiguity is still very much an
open question, despite a growing literature on the topic. For instance, Bernard et al. (2015) and Xu
et al. (2018) study RDEU preferences of the DM and risk-neutral EU preferences of the insurer, and
they derive optimal insurance indemnities. Ghossoub (2019b) extends the analysis to account for more
general premium principles. Recently, Xu (2021) reconsiders the problem of optimal insurance under RDEU
preferences for the DM and risk-neutral EU preferences of the insurer and provides a novel characterization
of optimal indemnities using an ODE approach. Also within the first category of ambiguity representation
as a non-additive prior, Jeleva (2000) considers the case of a DM who is a CEU-maximizer.

In the second category of ambiguity representation as a collection of additive priors and an aggregation
rule, Alary et al. (2013) and Gollier (2014) consider the case of an ambiguity-averse DM, in the sense of
KMM. However, they consider a finite state space and restrict the set of priors to have a given parametric
form. More recently, Jiang et al. (2020) study a variant of KMM preferences applied to distortion risk
measures with a finite set of priors. Under such preferences for the DM, and using an expected-value
premium principle, the authors derive an implicit characterization of optimal indemnity functions.
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Despite its appeal, for its ability to provide a separation of the effect of ambiguity aversion from that
of risk aversion, as well as for its capability to define the notion of ambiguity neutrality, the KMM model,
as a model of ambiguity with multiple priors, is arguably not as intuitive or popular as the MEU model
of Gilboa and Schmeidler (1989). The MEU model gives rise to decision-making problems that can be
embedded into to a larger class of model uncertainty problems, which lie at the core of the theory of
distributionally robust optimization (DRO). In this framework, a decision-making problem is often modelled
via a maxmin formulation: the agent is uncertain about the underlying model (prior), and therefore
formulates an objective function using a collection of (additive) priors, also referred to as the ambiguity
set. The agent then aims to maximize the objective under the worst-case model (e.g., Ben-Tal et al. (2009)).
However, the intuitiveness and wide popularity of the MEU model notwithstanding, there has surprisingly
been no study of optimal insurance contracting when the DM is an MEU-maximizer, to the best of our
knowledge. This paper fills this void. Specifically, we extend the classical setup and results in two ways:
(i) the DM is endowed with MEU preferences with a set C of priors; and (ii) the insurer is not necessarily
risk-neutral (that is, the premium principle is not necessarily an expected-value premium principle). The
main objective of this paper is to determine the shape of the optimal insurance indemnity when the DM
is sensitive to ambiguity and behaves according to MEU.

This Paper’s Contribution. In the literature on optimal insurance contracting, a popular assumption is
the no-sabotage condition, typically imposed as an ex ante condition of feasibility of insurance indemnities.
This condition stipulates that the insured (ceded) risk and the retained risk are comonotonic (they are
both nondecreasing functions of the underlying loss). Under the no-sabotage condition, the DM has no
incentive to under-report the underlying loss, nor does the DM have an incentive to create incremental
losses. This condition is also sometimes referred to as incentive compatibility, or a condition that avoids ex
post moral hazard; and it is further studied by Huberman et al. (1983) and Carlier and Dana (2003)1. In
this paper, we characterize optimal insurance contracts under MEU, both with and without the no-sabotage
condition. In doing so, this paper sheds light on the consequences of the no-sabotage assumption on the
construction of optimal insurance indemnities, in the presence of belief heterogeneity as well as multiple
priors for the DM. Furthermore, while the literature on optimal insurance with non-standard preferences
assumes risk-neutrality of the insurer, we provide a more general treatment and allow for risk-aversion of
the insurer not only of the insured. We do this both with and without the no-sabotage condition.

Our main results are the following. First, we examine in Section 3 the general case in which the
insurer is a risk-averse EU-maximizer, and the DM is an MEU-maximizer with a concave utility function,
displaying decreasing marginal utility of wealth. Following the vast majority of the literature, we provide an
implicit characterization of optimal indemnity functions, both with and without the no-sabotage condition
on feasible indemnities2. Optimal indemnity functions can be formulated as a solution to an ordinary
differential equation, which can then be easily solved numerically in practice. The implicit characterization
of optimal indemnities is then used to provide closed-form solutions when the relation between the DM’s
and insurer’s beliefs is specified. For instance, when the ambiguity set of DM consists of all models that
are absolutely continuous with respect to the insurer’s belief such that the corresponding Radon-Nikodým
derivative is an increasing function as in Furman and Zitikis (2008a, 2008b, 2009), we characterize the
shape of optimal contracts in an explicit way (see Example 4.4). The main technique proposed to solve
the problem consists of two main steps. First, the constrained optimization problem is reformulated as a
minimax problem, for which Sion’s Minimax Theorem can be applied to obtain the existence of the worst-
case measure P ˚ in the ambiguity set C. The Minimax Theorem is an important result and a standard tool
that is frequently employed in the robust optimization and distributionally robust optimization literature
(see, for example, Žáčková (1966), or Ben-Tal and Nemirovski (1998), or Shapiro and Kleywegt (2002)).
In the framework of optimal insurance design, the Minimax Theorem is used in Cheung et al. (2019) to
obtain the structure of the optimal insurance contract that minimizes a coherent risk measure and under
the premium budget constraint. Here, the minimax reformulation of the original problem results from
the Kusuoka representation of the coherent risk measures. In the presence of model uncertainty, Jiang
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et al. (2020) adopt the same result to derive an analytical form of the optimal insurance contract under
distortion risk measures. In the context of MEU, the Minimax Theorem is further used in Xu et al. (2018)
to prove the existence of Lagrange multiplier that binds the budget constraint. Similarly to Cheung et al.
(2019), the structure of the worst-case P ˚ P C is derived numerically, by specifying the structure of the
ambiguity set. In the second step, once the worst-case measure P ˚ is obtained, the problem falls into the
literature on belief heterogeneity in insurance contracting, to which we contribute significantly, as discussed
below. The saddle point approach is also considered in the work of Birghila and Pflug (2019), where the
insured’s ambiguity set is a convex hull of a finite number of models that are within some ϵ-distance of
a reference/baseline model. The distance between distributions is measured by the Wasserstein distance
on the positive real line, with a distorted underlying metric. The saddle point, i.e., the optimal insurance
contract and the worst-case distribution, is obtained using a numerical approach.

Additionally, by specifying the structure of the DM’s ambiguity set C, we are able to obtain explicitly
the worst-case probability measure for the problem analyzed in Section 3. In particular, we examine the
special case in which the DM’s set of priors forms a neighborhood around the insurer’s probability measure.
In a general setting in which both participants are risk-averse, we define C to be a Rényi ambiguity set. In a
discretized framework, we use a successive convex programming algorithm to solve the ordinary differential
equation obtained in Section 3. We then assess the influence of the ambiguity set on the optimal value. In
particular, we show numerically that a larger ambiguity set yields a lower certainty equivalent of final wealth
for the DM, but increases the willingness-to-pay for insurance. Moreover, the impact of the no-sabotage
condition on the feasible set of insurance indemnities is illustrated.

Second, as a special case of the above setting, we examine in Section 4 the situation in which the insurer
is risk-neutral, and hence the premium principle is an expected-value premium principle, as is commonly
assumed in the literature (e.g., Bernard et al. (2015), Xu et al. (2018), and Xu (2021)). In this case,
we provide an explicit, closed-form characterization of optimal indemnity functions in the absence of the
no-sabotage condition, and an implicit characterization in the presence of the no-sabotage condition. In
particular, by doing so, we provide in both cases (with and without the no-sabotage condition) a crisp
depiction of the effect of heterogeneity in beliefs between the two parties, showing how the singularity in
beliefs leads to an optimal indemnity function that involves full insurance on an event to which the insurer
assigns zero probability, but not the DM. This an important and intuitive feature of our optimal contracts
in this case. Similarly to Section 3, we conclude this section with a numerical example. When the DM is
risk-averse, C is a Wasserstein ambiguity set, and the insurer is risk-neutral, we are able to characterize the
saddle point of the problem in Section 4. In this case, the optimal indemnity is a deductible contract, and
the worst-case measure P ˚ dominates the insurer’s probability measure in the sense of first-order stochastic
dominance.

As an application of the results obtained in Section 4, one can also examine the situation in which both
parties display constant marginal utility of wealth, that is, their utility functions are linear. In that case,
it is straightforward to show that if the no-sabotage condition is imposed, then layer insurance is optimal.
In the absence of the no-sabotage condition, the optimal indemnity makes use of a partition of the state
space in three sets as in Theorem (3.4), providing no insurance for events in the first set, full insurance
for events in the second set, and proportional insurance for events in the third set. Moreover, Artzner et
al. (1999) and Delbaen (2002) show that the class of MEU preferences with linear utility is related to the
class of coherent risk measures. Therefore, our analysis can be used to derive optimal insurance contracts
when the DM is endowed with a general coherent risk measure.

Other Related Literature. Broadly speaking, this paper contributes to the literature focusing on in-
corporating behavioral models of decision-making into the literature on optimal insurance design. While
our main focus is on ambiguity-sensitive preferences, it is important to note that other behavioral models
of decision-making have been gaining popularity in the theory of insurance demand. For instance, Cheung
et al. (2015) study disappointment theory (e.g., Bell (1985), Loomes and Sugden (1986), and Gul (1991)),
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while Chi and Zhuang (2020) study the effects of regret theory (e.g., Bell (1982) and Loomes and Sugden
(1982)). Both settings accommodate for a deductible and partial insurance of losses above the deductible
as an optimal indemnity function.

By explicitly incorporating model uncertainty into the problem formulation via a set of priors C, the
present paper also falls within the DRO framework. In this perspective, insurance contracts can be seen as
saddle points of a DRO problem. The benefit of this technique is twofold. First, the worst-case approach
ensures that the optimal decision is not sensitive to possible model misspecification. Second, in many
situations, there exist tractable reformulations or algorithms to solve these distributionally robust models,
even when the corresponding non-ambiguous problem (that is, when there is a unique prior) cannot be
efficiently solved. The idea of incorporating multiple models in the decision-making process dates back to
the fundamental work of Scarf (1958) in the inventory management applications. He considers a robust
formulation of the newsvendor problem, where the optimal strategy is constructed over all possible demand
functions with known mean and variance. This initial idea is further developed in the work of Ben-Tal
et al. (2009) and Bertsimas and Sim (2004), among others. A key concept in DRO is the structure of
the set of priors, known here as the ambiguity set. Clearly, the choice of the ambiguity set C influences
the worst-case model, and thus the optimal decision, while it also facilitates a tractable reformulation and
efficient algorithm implementation. The existing literature has focused so far on two types of ambiguity
sets: those built using the moment-based approach (e.g., Delage and Ye (2010), Scarf (1958), and Zymler
et al. (2013)), and those built using the statistical distance-based approach (such as the Kullback-Leibler
divergence in Calafiore and El Ghaoui (2006), the L1-ball in Thiele (2008), or the Wasserstein distance
in Esfahani and Kuhn (2018)). Each such choice comes with useful structural properties, but also with
shortcomings that need to be dealt with. Ultimately, it is the available set of observations and the type of
application that would dictate a suitable choice of ambiguity set C.

Furthermore, this paper also contributes to the literature on heterogeneity in beliefs between the DM and
the insurer. When the DM does not perceive any ambiguity in the assessment of uncertainty, and thereby
behaves as an EU-maximizer, the set C of priors is a singleton, that is, C “ tP u, for some probability
measure P distinct from the insurer’s probability measure Q, and potentially exhibiting some singularity
with Q. Heterogeneity in beliefs has been studied recently in the context of optimal (re)insurance by
Ghossoub (2019a), Boonen and Ghossoub (2019, 2021), Chi (2019), and Yu and Fang (2020). All of these
studies focus on unambiguous subjective preferences on the side of the DM (that is, a unique subjective
prior on the state space), but they differ in the formulation of the objective function that is optimized. As
a special case in which the set of priors is a singleton, our results provide a unifying treatment of optimal
insurance with belief heterogeneity, and extend the existing results in this literature in several ways, as we
make no assumption on how the beliefs diverge, and we allow for risk-aversion of the insurer, which is not
done in the literature. First, while the majority of the existing literature imposes some assumptions on the
way the beliefs of the policyholder and the insurer (the measures P and Q, respectively) can diverge (e.g.,
a monotone likelihood ratio, a monotone hazard ratio, or some other assumption), we do not make any
such assumption. We allow the measures to truly diverge in any way, and to exhibit singularity. Second,
while the existing literature only considers the case of a risk-neutral insurer (a linear utility function v), we
do consider the effect of risk-aversion of the insurer on the optimal indemnity. We also consider the case
of risk-neutrality. Third, when it comes to the choice of the set of ex ante admissible indemnity functions,
the existing literature either consider the case of no-sabotage indemnity functions (the set Î in eq. (2.3))
or the set of general nonnegative indemnity functions that do not exceed the loss (the set I in eq. (2.2)),
but not both. We do consider both cases, thereby illustrating the impact of the no-sabotage assumption
on the structure of optima.

The rest of the paper is organized as follows. Section 2 presents the setup of our problem together
with the necessary background. In Section 3, we consider the case in which both the insurer and DM have
concave utility functions, and the DM is an MEU-maximizer. We characterize optimal indemnity functions
both in the presence and absence of the no-sabotage condition. The corresponding worst-case measures
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are obtained numerically, by imposing a specific structure of the ambiguity set C. Section 4 considers the
particular case of a risk-neutral insurer, and provides some illustrating examples. Section 5 concludes the
paper. Some definitions and technical proofs are provided in Appendices A to C.

2. Setup and preliminaries

Let S be a nonempty collection of states of the world, and equip S with a σ-algebra G of events. A DM
is facing an insurable state-contingent loss represented by a random variable X on the measurable space
pS,Gq, with values in the interval r0,M s, for some M P R`. We denote by Σ the sub-σ-algebra σtXu of G
on S generated by the random variable X.

Let B pΣq denote the vector space of all bounded, R-valued, and Σ-measurable functions on pS,Σq, and
let B` pΣq be its positive cone. When endowed with the supnorm }.}sup, B pΣq is a Banach space (e.g.,
Dunford and Schwartz (1958, IV.5.1)). By Doob’s Measurability Theorem (e.g., Aliprantis and Border
(2006, Theorem 4.41)), for any Y P B pΣq there exists a bounded, Borel-measurable map I : R Ñ R such
that Y “ I ˝ X. Moreover, Y P B` pΣq if and only if the function I is nonnegative.

Definition 2.1. Two functions Y1, Y2 P B pΣq are said to be comonotonic (resp., anti-comonotonic) if
”

Y1 psq ´ Y1
`

s1
˘

ı”

Y2 psq ´ Y2
`

s1
˘

ı

ě 0 (resp., ď 0), for all s, s1 P S.

For instance any Y P B pΣq is comonotonic and anti-comonotonic with any c P R. Moreover, if Y1, Y2 P

B pΣq, and if Y2 is of the form Y2 “ I ˝ Y1, for some Borel-measurable function I, then Y2 is comonotonic
(resp., anti-comonotonic) with Y1 if and only if the function I is nondecreasing (resp., nonincreasing).

Let ba pΣq denote the linear space of all bounded finitely additive set functions on Σ, endowed with the
usual mixing operations. When endowed with the total variation norm }.}v, ba pΣq is a Banach space. By
a classical result (e.g., Dunford and Schwartz (1958, IV.5.1)), pba pΣq , }.}vq is isometrically isomorphic to
the norm-dual of B pΣq, via the duality ăϕ, λą “

ş

ϕ dλ, @λ P ba pΣq , @ϕ P B pΣq. Consequently, we can
endow ba pΣq with the weak˚ topology σ pba pΣq , B pΣqq.

Let ca pΣq denote the collection of all countably additive elements of ba pΣq, and let ca` pΣq denote its
positive cone. Then ca pΣq is a }.}v-closed linear subspace of ba pΣq. Hence, ca pΣq is }.}v-complete, i.e.
pca pΣq , }.}vq is a Banach space. Denote by

ca`
1 pΣq :“

!

µ P ca` pΣq : µpSq “ 1
)

the collection of probability measures on pS,Σq. We shall endow ca`
1 pΣq with the weak˚ topology inherited

from ba pΣq.

For any Y P BpΣq and P P ca`
1 pΣq, let FY,P ptq :“ P

`

ts P S : Y psq ď tu
˘

denote the cumulative

distribution function (CDF) of Y with respect to the probability measure P , and let F´1
Y,P ptq denote the

left-continuous inverse of the FY,P (i.e., the quantile function of Y ), defined by

F´1
Y,P ptq :“ inf

␣

z P R : FY,P pzq ě t
(

, @t P r0, 1s .

2.1. The DM’s and the Insurer’s Preferences. The DM can purchase insurance against the random
loss X in a perfectly competitive insurance market, for a premium set by the insurer. In return for the
premium payment, the DM is promised an indemnification against the realizations of X. An indemnity
function is a random variable Y “ IpXq on pS,Σq, for some bounded, Borel-measurable map I : XpSq Ñ R,
which pays off the amount IpXpsqq P R in state of world s P S, corresponding to a realization Xpsq of X.
That is, we can identify the set of indemnity functions with a subset of B pΣq. For each indemnity function
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Y P B pΣq, we define the corresponding retention function by R :“ X ´ Y P B pΣq. As the name suggests,
R is the retained loss after insurance indemnification.

The DM has a preference relation over insurance indemnification functions (or over wealth profiles) that
admits an MEU representation V MEU : BpΣq Ñ R as in Gilboa and Schmeidler (1989), of the form

(2.1) V MEUpZq :“ min
µPC

ż

upZq dµ, @ Z P B pΣq ,

where u : R Ñ R is a concave utility function, and C is a (unique) weak˚-compact and convex subset
of ba`

1 pΣq. Moreover, we assume that the DM’s preferences satisfy the Arrow-Villegas Monotone Conti-
nuity axiom as in Chateauneuf et al. (2005), so that C Ă ca`

1 pΣq, i.e., all priors are countably additive.
Additionally, the DM’s utility function u satisfies the following assumption.

Assumption 1. The utility function u : R ÝÑ R is strictly increasing, concave and continuously differen-
tiable.

Let W0 P R` be the DM’s initial wealth. After purchasing insurance coverage for a premium Π0 ą 0,
the DM’s terminal wealth is a random variable W P BpΣq given by

W :“ W0 ´ X ` Y ´ Π0.

The insurer’s preference over B pΣq admits an EU representation V Ins : BpΣq Ñ R of the form

V InspZq :“

ż

vpZq dQ, @ Z P B pΣq ,

for a utility function v : R Ñ R satisfying Assumption 1 and a probability measure Q P ca`
1 pΣq.

The insurer has an initial wealth W Ins
0 , and faces an administration cost, often called an indemnification

cost, associated with the handling of an indemnity payment. As customary in the literature (e.g., Bernard
et al. (2015) and Xu et al. (2018)), we assume that for a given indemnity function Y “ I ˝ X, this
indemnification cost is a proportional cost of the form ρY , for a given safety loading factor ρ ě 0 specified
exogenously and a priori. Hence, the insurer’s terminal wealth is the random variable W Ins P B pΣq given
by

W Ins :“ W Ins
0 ´ p1 ` ρqY ` Π0.

2.2. Admissible Indemnity Functions. In Arrow (1963)’s original formulation of the optimal insurance
problem under EUT, an ex ante condition of feasibility of indemnity schedules is the requirement that these
be nonnegative and no larger than the realization of the loss in each state of the world. This is often referred
to as the indemnity principle, and it translates into the requirement that an admissible set of indemnities
be restricted to those Y P BpΣq that satisfy 0 ď Y ď X. We shall denote this set of indemnity functions
by I:
(2.2) I :“

!

Y “ I ˝ X P B`pΣq : 0 ď Ipxq ď x, @x P r0,M s

)

.

A desirable property of optimal indemnities is that an indemnity function Y “ I ˝X and the correspond-
ing retention function R “ X ´Y be both nondecreasing functions of the loss X, that is both comonotonic
with X (and hence Y and R are comonotonic). Indeed, if Y fails to be comonotonic with X, then the DM
has an incentive to under-report the loss; whereas if R fails to be comonotonic with X, then the DM has an
incentive to create additional damage. These situations of ex post moral hazard are not desirable, and one
often seeks additional ex ante conditions that would rule out such behavior from the DM. In the setting
of Arrow (1963), the optimal indemnity is a deductible contract of the form Y “ max pX ´ d, 0q, for some
d P R`. For such contracts, both the indemnity and retention functions are comonotonic with the loss, and
optimal indemnities are de facto immune to the kind of ex post moral hazard described above. However,
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outside of EUT, optimality of deductible contracts does not always hold, and optimal indemnities might
suffer from the aforementioned type of moral hazard, as in Bernard et al. (2015).

In order to rule out ex post moral hazard that might arise from a misreporting of the loss by the DM,
an additional condition is often imposed ex ante on the set of feasible indemnity schedules (as in Xu et al.
(2018)). Such a condition is called the no-sabotage condition, and it stipulates that admissible indemnity
functions and the corresponding retention functions be comonotonic, hence resulting in the feasibility set
Î given by:

Î :“
!

Ŷ P I : Ŷ and R̂ “ X ´ Ŷ are comonotonic
)

.

Since Y P I is of the form Y “ I ˝ X, with 0 ď Ipxq ď x for all x P r0,M s, we can write Î as

(2.3) Î “

!

Ŷ “ Î ˝ X P B`pΣq : Îp0q “ 0, 0 ď Îpx1q ´ Îpx2q ď x1 ´ x2,@ 0 ď x2 ď x1 ď M
)

.

The no-sabotage condition is also sometimes referred to as incentive compatibility by Xu et al. (2018), and
it is further studied by Huberman et al. (1983) and Carlier and Dana (2003). The latter discuss various
classes of ex ante admissible contracts, as well as their implications of optimal indemnities.

Remark 2.2. Let Cr0,M s denote the set of all continuous functions on r0,M s (and hence bounded),

equipped with the supnorm } ¨ }sup. Note that Î is a uniformly bounded subset of Cr0,M s consisting of

Lipschitz-continuous functions r0,M s Ñ r0,M s, with common Lipschitz constant K “ 1. Therefore, Î
is equicontinuous, and hence compact by the Arzelà-Ascoli Theorem (e.g., Dunford and Schwartz (1958,
Theorem IV.6.7)).

In this paper, we will characterize optimal indemnity functions, both with and without the no-sabotage
condition, in order to examine the impact of such an ex ante requirement on feasible indemnity schedules.
This will first be done in the general setting of an MEU-maximizing DM with a concave utility and an EU-
maximizing insurer with concave utility (Section 3), and then in a setting where the insurer is risk-neutral
(hence uses an expected-value premium principle).

3. Optimal Indemnity Functions

In this section, we investigate the DM’s problem of demand for insurance indemnification, when the DM
is ambiguity-sensitive and has preferences admitting an MEU representation of the form given in eq. (2.1),
whereas the insurer is a risk-averse EU-maximizer with a concave utility function v. We first examine in
Section 3.1 the class I of indemnities that are nonnegative and cannot exceed the loss X (as defined in
eq. (2.2)), and we provide in Theorem 3.2 a closed-form characterization of the optimal indemnity in this

case. We then consider in Section 3.2 the class Î of indemnities that are such that both indemnity and
retention functions are nondecreasing functions of the loss (as defined in eq. (2.3)). In that case, Theorem
3.4 provides an implicit characterization of the optimal indemnity function.

The DM chooses a premium π and an indemnity function Y to maximize her MEU preferences. Such
a problem can be solved in two steps. In the first step, an optimal indemnification Y ˚ is determined, for
a fixed premium π. In the second step, the optimal premium π˚ is determined. The second step is a
one-dimensional optimization problem, and this paper focuses on the first step. That is, we determine the
optimal indemnity for a fixed premium π “ Π0, as is done in Bernard et al. (2015) and Xu et al. (2018).

Let F denote the set of admissible indemnity functions, which could be either the set I defined in
eq. (2.2), or the set Î Ă I defined in eq. (2.3). For a given insurance premium Π0 ą 0 and a compact and
convex set C of probability measures, the optimal indemnity function is obtained as the solution of the
problem
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(P )

$

&

%

sup
Y PF

inf
PPC

EP rupW0 ´ X ` Y ´ Π0qs

s.t. EQrvpW Ins
0 ´ p1 ` ρqY ` Π0qs ě vpW Ins

0 q,

where ρ ě 0 is a given safety loading factor. The constraint in (P ) is interpreted as the insurer’s partic-
ipation constraint.3 Observe that EP rupW0 ´ X ` Y ´ Π0qs ď upW0 ´ Π0q, for all P P C and all I P F ,
and thus Problem (P ) is finite. If EQrvpW Ins

0 ´ p1 ` ρqX ` Π0qs ě vpW Ins
0 q, then we can eliminate the

constraint in Problem (P ), and the optimal indemnity is Y ˚ “ X, Q-a.s. In the following, we assume
EQrvpW Ins

0 ´ p1 ` ρqX ` Π0qs ă vpW Ins
0 q.

Remark 3.1. By the Lebesgue Decomposition Theorem, for any P P C there are finite nonnegative
countably additive measures Pac and Ps on pS,Σq such that P “ Pac ` Ps, where Pac ! Q and Ps K Q.
Hence, for each P P C, there exists some AP P Σ and hP : S Ñ r0,8q such that QpSzAP q “ PspAP q “ 0
and hP “ dPac{dQ. In particular, since hP is Σ-measurable, there exists a nonnegative Borel measurable
function ξP : R` Ñ R` such that hP “ ξP ˝ X.

3.1. Without the No-Sabotage Condition. The solution pY ˚, P ˚q to Problem (P ), when F “ I is
given in the following result.

Theorem 3.2. Suppose that the utility functions u and v satisfy Assumption 1 and are, in addition, strictly
concave with lim

xÑ´8
u1pxq “ lim

xÑ´8
v1pxq “ `8 and lim

xÑ`8
u1pxq “ lim

xÑ`8
v1pxq “ 0.4 Let F “ I as defined in

eq. (2.2) be the set of admissible indemnity functions. Then there exists P ˚ P C such that Y ˚ P I is optimal
for Problem (P ) if and only if is of the form:

(3.1) Y ˚ “ rY ˚1AzAh˚
` Yh˚1Ah˚ ` X1SzA,

where

(a) A P Σ is such that P ˚ “ P ˚
ac ` P ˚

s , with P ˚
s pAq “ QpSzAq “ 0;

(b) h˚ : S Ñ r0,8q is such that h˚ “ dP ˚
ac{dQ;

(c) Ah˚ :“ ts P A : h˚psq “ 0u;

(d) rY ˚ and Yh˚ are of the form:

Case 1. If λ˚ ą 0, then Yh˚ “ 0 and rY ˚ “ max r0,min pX,Y ˚
0 qs, where Y ˚

0 solves

u1pW0 ´ Xpsq ` Y psq ´ Π0qh˚psq ´ λ˚p1 ` ρqv1pW Ins
0 ´ p1 ` ρqY psq ` Π0q “ 0, @s P AzAh˚ ;

Case 2. If λ˚ “ 0, then rY ˚ “ X and Yh˚ solves

EQrvpW Ins
0 ´ p1 ` ρqY 1Ah˚ ` Π0qs “ vpW Ins

0 q ´ EQrvpW Ins
0 ´ p1 ` ρqX1AzAh˚

` Π0qs;

(e) λ˚ P R` defined (d) is such that λ˚
`

EQrvpW Ins
0 ´ p1 ` ρqY ˚ ` Π0qs ´ vpW Ins

0 q
˘

“ 0.

Proof. Define the set I0 :“
␣

Y P I : EQrvpW Ins
0 ´p1`ρqY `Π0qs ě vpW Ins

0 q
(

. Observe that for Y1, Y2 P I0
and α P p0, 1q, we have rY :“ αY1 ` p1 ´ αqY2 P I and

EQrvpW Ins
0 ´p1`ρqrY `Π0qs ě αEQrvpW Ins

0 ´p1`ρqY1`Π0qs`p1´αqEQrvpW Ins
0 ´p1`ρqY2`Π0qs ě vpW Ins

0 q,

and thus the set I0 is convex. The objective function EP rupW0 ´X `Y ´Π0qs of (P ) is concave in Y P I0
and continuous in Y with respect to supnorm } ¨ }sup. Moreover, EP rupW0 ´ X ` Y ´ Π0qs is linear in P
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and continuous in P P C in the weak˚ topology. The set I0 is convex and the set C is convex and weak˚-
compact. Therefore, Problem (P ) satisfies the conditions of Sion’s Minimax Theorem (see Appendix A.1),
and hence there exists a saddle point pY ˚, P ˚q P I0 ˆ C such that

sup
Y PI0

inf
PPC

EP rupW0 ´ X ` Y ´ Π0qs “ sup
Y PI0

min
PPC

EP rupW0 ´ X ` Y ´ Π0qs

“ min
PPC

sup
Y PI0

EP rupW0 ´ X ` Y ´ Π0qs

“ EP˚rupW0 ´ X ` Y ˚ ´ Π0qs.

For P ˚ P C, to characterize the optimal indemnity Y ˚, we focus on the following inner problem:

(3.2)
sup
Y PI

EP˚rupW0 ´ X ` Y ´ Π0qs

s.t. EQrvpW Ins
0 ´ p1 ` ρqY ` Π0qs ě vpW Ins

0 q.

Problem (3.2) is a convex optimization problem, since the constraint can be equivalently written as
EQrv1pW Ins

0 ´ p1 ` ρqY ` Π0qs ď v1pW Ins
0 q, where v1 :“ ´v is a convex utility function. For P ˚ P C, let

A :“ AP˚ and h˚ :“ hP˚ be as in Remark 3.1, and consider the following two problems:

sup
Y PI

"
ż

SzA
upW0 ´ X ` Y ´ Π0qdP ˚

s : 0 ď Y 1SzA ď X1SzA,

ż

SzA
vpW Ins

0 ´ p1 ` ρqY ` Π0q dQ “ 0

*

.

(3.3)

(3.4) sup
Y PI

"
ż

A
upW0 ´ X ` Y ´ Π0qh˚ dQ :

ż

vpW Ins
0 ´ p1 ` ρqY ` Π0q dQ ě vpW Ins

0 q

*

.

Observe that Y :“ X is a feasible solution for Problem (3.3) and it holds that
ż

SzA
upW0 ´ X ` Y ´ Π0qdP ˚

s “ upW0 ´ Π0qP ˚
s pSzAq ě

ż

SzA
upW0 ´ X ` Y ´ Π0qdP ˚

s ,

for any feasible solution Y for Problem (3.3). Hence Y “ X is optimal for (3.3).

Now, let Y ˚
1 P I be an optimal solution for Problem (3.4). We claim that Y ˚ :“ Y ˚

1 1A ` X1SzA is
optimal for Problem (3.2). To see this, we remark that

ż

S
vpW Ins

0 ´ p1 ` ρqY ˚ ` Π0q dQ “

ż

A
vpW Ins

0 ´ p1 ` ρqY ˚
1 ` Π0q dQ ě vpW Ins

0 q,

where the last inequality follows from the feasibility of Y ˚
1 for (3.4). Hence Y ˚ is feasible for Problem (3.2).

The optimality of Y ˚ is then derived similarly to Ghossoub (2019a, Lemma C.6).

Next, we focus on the optimal indemnity Y ˚
1 that solves Problem (3.4). The associated Lagrange function

is

LpY1, λq “

ż

A

“

upW0 ´ Xpsq ` Y1psq ´ Π0qh˚psq ` λvpW Ins
0 ´ p1 ` ρqY1psq ` Π0q

‰

dQpsq ´ λvpW Ins
0 q,

where λ P R` is the Lagrange multiplier. As the domain I of Y1 is convex, and LpY1, λq is both concave
and continuous in Y1 with respect to supnorm } ¨ }sup, as well as linear in λ, strong duality holds, i.e.,

valpLq :“ sup
Y1PI

inf
λPR`

LpY1, λq “ inf
λPR`

sup
Y1PI

LpY1, λq,

where the optimal value valpLq of Problem (3.4) is finite, since (P ) is finite. Moreover, by Sion’s Minimax
Theorem, pY1, λq is a saddle point of (3.4).
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For a fixed λ P R`, a necessary and sufficient condition for Y ˚
1 P I to be the optimal solution of

Problem (3.4) is

(3.5) lim
θÑ0`

L1pp1 ´ θqY ˚
1 ` θY1q ď 0, @Y1 P I.

By direct computation, (3.5) becomes

(3.6)

ż

A
ru1pW0 ´ X ` Y ˚

1 ´ Π0qh˚ ´ λp1 ` ρqv1pW Ins
0 ´ p1 ` ρqY ˚

1 ` Π0qspY1 ´ Y ˚
1 q dQ ď 0, @Y1 P I.

Define the following sets, depending on Lagrange multiplier λ:
$

’

’

&

’

’

%

A`
λ :“ ts P A : u1pW0 ´ Xpsq ` Y ˚

1 psq ´ Π0qh˚psq ´ λp1 ` ρqv1pW Ins
0 ´ p1 ` ρqY ˚

1 psq ` Π0q ą 0u,

A0
λ :“ ts P A : u1pW0 ´ Xpsq ` Y ˚

1 psq ´ Π0qh˚psq ´ λp1 ` ρqv1pW Ins
0 ´ p1 ` ρqY ˚

1 psq ` Π0q “ 0u,

A´
λ :“ ts P A : u1pW0 ´ Xpsq ` Y ˚

1 psq ´ Π0qh˚psq ´ λp1 ` ρqv1pW Ins
0 ´ p1 ` ρqY ˚

1 psq ` Π0q ă 0u.

First, observe that on A`
λ and A´

λ , condition (3.6) holds for all Y1 P I only if

(3.7) Y ˚
1 1A`

λ
“ X1A`

λ
and Y ˚

1 1A´
λ

“ 0.

Next, define the set Ah˚ :“ ts P A : h˚psq “ 0u. To obtain the structure of Y ˚
1 in (3.4), we distinguish the

following cases, depending on λ.

Case 3.2.1. If λ ą 0, then Ah˚ Ď A´
λ and thus Y ˚

1 1Ah˚ “ 0. On A0
λ, Y

˚
1 satisfies the following condition:

(3.8) u1pW0 ´ Xpsq ` Y1psq ´ Π0qh˚psq ´ λp1 ` ρqv1pW Ins
0 ´ p1 ` ρqY1psq ` Π0q “ 0.

Let Y ˚
0 be the solution of (3.8). In the view of (3.7), Y ˚

1 is thus Y ˚
1 1AzAh˚

“ max r0,min pX,Y ˚
0 qs 1AzAh˚

,
which depends on the state of the world only through h˚ and X.

Case 3.2.2. If λ “ 0, then Ah˚ “ A0
λ and u1pW0 ´ Xpsq ` Y ˚

1 psq ´ Π0qh˚psq ą 0, for all s P AzAh˚ . Thus
Y ˚
1 1A “ Y 1Ah˚ ` X1AzAh˚

, for any feasible Y P I.

The indemnity Y ˚
1,λ :“ Y ˚

1 , depending on λ, is the optimal solution of Problem (3.4) if there exists

some λ˚ ě 0 such that EQrvpW Ins
0 ´ p1 ` ρqY ˚

1,λ˚ ` Π0qs “ vpW Ins
0 q. To see this, define the constant

λ :“
valpLq ` ε

vpW Ins
0 ` Π0q ´ vpW Ins

0 q
P R`, for some large ε ą

ˇ

ˇupW0 ´ M ´ Π0q
ˇ

ˇ. Then for any λ ą λ, we obtain

sup
Y1,λPI

LpY1,λ, λq ě Lp0, λq “

ż

A
upW0 ´ X ´ Π0qh˚dQ ` λ

ˆ
ż

A
vpW Ins

0 ` Π0qdQ ´ vpW Ins
0 q

˙

ě upW0 ´ M ´ Π0qP ˚
acpAq ` λ

`

vpW Ins
0 ` Π0q ´ vpW Ins

0 q
˘

“ upW0 ´ M ´ Π0qP ˚
acpAq ` valpLq ` ε ą valpLq,

where the second inequality follows from the monotonicity of the utility u. Therefore, for all λ ą λ,
supY1,λPI LpY1,λ, λq ą valpLq and thus,

inf
λěλ

sup
Y1,λPI

LpY1,λ, λq ą valpLq “ inf
λě0

sup
Y1,λPI

LpY1,λ, λq.

Hence the feasible set of λ reduces to the compact interval r0, λs.

Now, for λ P r0, λs, let valpL;λq :“ supY PI LpY, λq be the optimal value as a function of λ. We claim
that valpL;λq is convex in λ: let θ P p0, 1q and λ1, λ2 P r0, λs and consider the following:

valpL; θλ1 ` p1 ´ θqλ2q “ sup
Y PI

LpY, θλ1 ` p1 ´ θqλ2q “ sup
Y PI

θLpY, λ1q ` p1 ´ θqLpY, λ2q

ď θ sup
Y PI

LpY, λ1q ` p1 ´ θq sup
Y PI

LpY, λ2q,
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where for the second inequality we use the fact that LpY, λq is linear in λ, for any given Y . Thus we obtain:

sup
Y1,λPI

min
λPr0,λs

LpY1,λ, λq “ sup
Y1,λPI

LpY1,λ˚ , λ˚q “ LpY ˚
1,λ˚ , λ˚q “ inf

λPr0,λs

valpL;λq “ valpLq,

where λ˚pEQrvpW Ins
0 ´ p1 ` ρqY ˚

1,λ˚ ` Π0qs ´ vpW Ins
0 qq “ 0.

Therefore, Y ˚
1 is an optimal solution to (3.1) if and only if Y ˚

1 is of the form Y ˚
1 “ rY ˚1AzAh˚

`Yh˚1Ah˚ ,

where rY ˚ and Yh˚ are defined in Case (3.2.1) and (3.2.2), respectively. To see this, let Y1 P I be a feasible
solution for (3.1) and consider the following:

LpY ˚
1 , λ

˚q ´ LpY1, λ
˚q “

ż

A
rupW0 ´ X ` Y ˚

1 ´ Π0qh˚ ` λ˚vpW Ins
0 ´ p1 ` ρqY ˚

1 ` Π0qsdQ

´

ż

A
rupW0 ´ X ` Y1 ´ Π0qh˚ ` λ˚vpW Ins

0 ´ p1 ` ρqY1 ` Π0qsdQ

“

ż

A
rupW0 ´ X ` Y ˚

1 ´ Π0q ´ upW0 ´ X ` Y1 ´ Π0qsh˚dQ

´ λ˚

ż

A
rvpW Ins

0 ´ p1 ` ρqY ˚
1 ` Π0q ´ vpW Ins

0 ´ p1 ` ρqY1 ` Π0qsdQ

ě

ż

A

`

u1pW0 ´ X ` Y ˚
1 ´ Π0qh˚ ´ λ˚v1pW Ins

0 ´ p1 ` ρqY ˚
1 ` Π0q

˘

pY ˚
1 ´ Y1qdQ

“

ż

A`

λ˚

`

u1pW0 ´ Π0qh˚ ´ λ˚v1pW Ins
0 ´ p1 ` ρqX ` Π0q

˘

pX ´ Y1qdQ

`

ż

A´

λ˚

`

u1pW0 ´ X ´ Π0qh˚ ´ λ˚v1pW Ins
0 ` Π0q

˘

p´Y1qdQ ě 0,

(3.9)

where the third inequality uses the first-order Taylor approximation for a concave function. □

Note that the optimal indemnity Y ˚ in eq. (3.1) provides full insurance over the event SzA, whenever
the DM’s worst-case measure P ˚ is such that P ˚pSzAq ‰ 0. Note also that on the event A, Y ˚ satisfies an
ordinary differential equation for which an analytical expression is difficult to provide in general. However,
for particular choices of C, we can obtain numerically the structure of Y ˚, as well as P ˚ (see Example 3.6).

3.2. With the No-Sabotage Condition. Next we analyze the case when the set F of Problem (P ) is
restricted to the set of indemnities satisfying the no-sabotage condition. In this case the feasibility set
becomes:

(3.10) Î0 :“
!

Ŷ P Î : EQrvpW Ins
0 ´ p1 ` ρqŶ ` Π0qs ě vpW Ins

0 q

)

.

Remark 3.3. Since Î is a compact subset of the space pCr0,M s, } ¨ }supq (see Remark 2.2), and Î0 is a

closed subset of Î, it follows that Î0 is compact.

Theorem 3.4. Suppose that the utility functions u and v satisfy Assumption 1. Let F “ Î as defined in
eq. (2.3) be the set of admissible indemnity functions. Then there exists P ˚ P C such that Ŷ ˚ P Î is optimal
solution of Problem (P ) if and only if it is Q-a.s. of the form

Ŷ ˚ “ Ŷ ˚
1 1A ` X1SzA,

where
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(a) A P Σ is such that P ˚ “ P ˚
ac ` P ˚

s , with P ˚
s pAq “ QpSzAq “ 0;

(b) h˚ : S Ñ r0,8q is such that h˚ “ dP ˚
ac{dQ;

(c) ξ˚ : R` Ñ R` is a Borel measurable function such that h˚ “ ξ˚ ˝ X;

(d) Ŷ ˚
1 “ Î˚ ˝ X, where Î˚pxq “

ż x

0
pÎ˚q1ptq dt, @x P r0,M s and

pÎ˚
q

1
ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, if

ż

rt,MsXXpAq

pu1
pW0 ´ x ` Î˚

pxq ´ Π0qξ˚
pxq ´ λ˚

p1 ` ρqv1
pW Ins

0 ´ p1 ` ρqÎ˚
pxq ` Π0qq dFX,Qpxq ă 0,

κptq, if

ż

rt,MsXXpAq

pu1
pW0 ´ x ` Î˚

pxq ´ Π0qξ˚
pxq ´ λ˚

p1 ` ρqv1
pW Ins

0 ´ p1 ` ρqÎ˚
pxq ` Π0qq dFX,Qpxq “ 0,

1, if

ż

rt,MsXXpAq

pu1
pW0 ´ x ` Î˚

pxq ´ Π0qξ˚
pxq ´ λ˚

p1 ` ρqv1
pW Ins

0 ´ p1 ` ρqÎ˚
pxq ` Π0qq dFX,Qpxq ą 0,

for some Lebesgue measurable and r0, 1s-valued function κ;

(e) λ˚ P R` is such that λ˚
`

EQrvpW Ins
0 ´ p1 ` ρqŶ ˚ ` Π0qs ´ vpW Ins

0 q
˘

“ 0.

Proof. Similarly to Theorem 3.2, there exists a saddle point pŶ ˚, P ˚q P Î0 ˆ C such that

sup
Ŷ PÎ0

inf
PPC

EP rupW0 ´ X ` Ŷ ´ Π0qs “ min
PPC

max
Ŷ PÎ0

EP rupW0 ´ X ` Ŷ ´ Π0qs

“ EP˚rupW0 ´ X ` Ŷ ˚ ´ Π0qs

(3.11)

where Î0 given in eq. (3.10) is compact (see Remark 3.3). For P ˚ P C, the inner optimization problem
in (3.11) becomes:

sup
Ŷ PÎ

ż

A
upW0 ´ X ` Ŷ ´ Π0qh˚ dQ `

ż

SzA
upW0 ´ X ` Ŷ ´ Π0q dP ˚

s

s.t.

ż

A
vpW Ins

0 ´ p1 ` ρqŶ ` Π0q dQ ě vpW Ins
0 q,

where A :“ AP˚ and h˚ :“ hP˚ , depending on P ˚, are defined in Remark 3.1. Similar to Theorem 3.2, the
optimal indemnity function Ŷ ˚ can be obtained as Ŷ ˚ “ Ŷ ˚

1 1A ` X1SzA, where Ŷ ˚
1 solves Problem (3.12)

below.

(3.12) sup
Ŷ1PÎ

"
ż

upW0 ´ X ` Ŷ1 ´ Π0qh˚ dQ :

ż

vpW Ins
0 ´ p1 ` ρqŶ1 ` Π0q dQ ě vpW Ins

0 q

*

.

The Lagrange function of Problem (3.12) is

LpŶ1, λq “

ż

A

“

upW0 ´ X ` Ŷ1 ´ Π0qh˚ ` λvpW Ins
0 ´ p1 ` ρqŶ1 ` Π0q

‰

dQ ´ λvpW Ins
0 q,

where λ P R` is the Lagrange multiplier. The domain Î of Ŷ1 is convex, and LpŶ1, λq is concave in Ŷ1,
continuous in Y1 with respect to supnorm } ¨}sup, and linear in λ. Thus the strong duality holds. Therefore,

for fixed λ P R`, a necessary and sufficient condition for Ŷ ˚
1 P I to be the optimal solution of Problem (3.12)

is

(3.13) lim
θÑ0`

L1pp1 ´ θqŶ ˚
1 ` θŶ1q ď 0, @ Ŷ1 P Î.
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Since QpSzAq “ 0, we can extend the domain of the integral above in (3.13) over r0,M s. By direct

computation, (3.13) becomes: for all Ŷ1 “ ÎpXq P Î,
(3.14)
ż M

0

”

u1pW0 ´ t ` Î˚ptq ´ Π0qξ˚ptq ´ λp1 ` ρqv1pW Ins
0 ´ p1 ` ρqÎ˚ptq ` Π0q

ı ´

Îptq ´ Î˚ptq
¯

dQ˝X´1ptq ď 0.

As any Ŷ1 “ ÎpXq P Î is absolutely continuous, it is almost everywhere differentiable on r0,M s, and
hence (3.14) becomes

0 ě

ż M

0

ż t

0
pu1pW0 ´ t ´ Î˚ptq ´ Π0qξ˚ptq ´ λp1 ` ρqv1pW Ins

0 ´ p1 ` ρqÎ˚ptq ` Π0qqˆ

ˆ pÎ 1pxq ´ pÎ˚q1pxqq dx dQ ˝ X´1ptq

“

ż M

0

ż M

x
pu1pW0 ´ t ´ Î˚ptq ´ Π0qξ˚ptq ´ λp1 ` ρqv1pW Ins

0 ´ p1 ` ρqÎ˚ptq ` Π0qq dQ ˝ X´1ptqˆ

ˆ pÎ 1pxq ´ pÎ˚q1pxqq dx,

for all Ŷ1 “ ÎpXq P Î; hence Ŷ ˚
1 “ Î˚pXq is of the form:

pÎ˚q1pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, if

ż

rx,MsXXpAq

τptq dQ ˝ X´1ptq ă 0,

κpxq, if

ż

rx,MsXXpAq

τptq dQ ˝ X´1ptq “ 0,

1, if

ż

rx,MsXXpAq

τptq dQ ˝ X´1ptq ą 0,

where τpxq :“ u1pW0 ´x` Î˚pxq´Π0qξ˚pxq´λ˚p1`ρqv1pW Ins
0 ´p1`ρqÎ˚pxq`Π0q and κ is some Lebesgue

measurable and r0, 1s-valued function. The existence of the Lagrange multiplier λ˚ P R` that guarantees

the existence of the solution Ŷ ˚
1 follows similar to Theorem 3.2.

Thus Ŷ ˚
1 “ Î˚pXq P Î is an optimal solution of (3.12) if and only if Ŷ ˚

1 is of the form (d). To see this,

let Ŷ1 P Î be a feasible solution of (3.12) and, similar to (3.9) in Theorem (3.2), we have:

LpŶ ˚
1 , λ

˚q ´ LpŶ1, λ
˚q ě

ż M

0

ż M

x
τptqdQ ˝ X´1ptqppÎ˚

1 q1pxq ´ Î 1
1pxqqdx

“

ż

XpA`

λ˚ q

ż

rx,MsXXpAq

τptqdQ ˝ X´1ptqppÎ˚
1 q1pxq ´ Î 1

1pxqqdx

`

ż

XpA0
λ˚ q

ż

rx,MsXXpAq

τptqdQ ˝ X´1ptqppÎ˚
1 q1pxq ´ Î 1

1pxqqdx

`

ż

XpA´

λ˚ q

ż

rx,MsXXpAq

τptqdQ ˝ X´1ptqppÎ˚
1 q1pxq ´ Î 1

1pxqqdx

“

ż

XpA`

λ˚ q

ż

rx,MsXXpAq

τptqdQ ˝ X´1ptqp1 ´ Î 1
1pxqqdx

`

ż

XpA´

λ˚ q

ż

rx,MsXXpAq

τptqdQ ˝ X´1ptqp´Î 1
1pxqqdx ě 0,

where XpA`
λ˚q “ tx P r0,M s X XpAq :

ş

rx,MsXXpA`

λ˚ q
τptqdQ ˝ X´1ptq ą 0u and XpA0

λ˚q and XpA´
λ˚q are

defined similarly. □

Theorem 3.4 above provides a general characterization of the optimal solution of Problem (P ), when

the set of admissible indemnity functions is given by Î. The exact structure of the optimal indemnity Ŷ ˚
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may be difficult to interpret, due to its implicit form. However, under the (more common) assumption of

risk-neutrality of the insurer, closed-form solutions for Ŷ ˚ can be obtained, as seen in the Section 4.

3.3. Numerical Example. This section presents a numerical example that illustrates the structure of the
optimal indemnity Ŷ ˚, as well as the worst-case distribution P ˚, obtained in Section 3, when the ambiguity
set C is constructed as a specific neighbourhood around a reference/ baseline distribution. Throughout this
analysis, we assume that the underlying space S is a Polish space, equipped with its Borel sigma-algebra.

As before, X is a nonnegative random variable representing the insurable loss, whose true distribution
may be unknown. The insurer’s belief Q P ca`

1 pΣq regarding the loss X can be the empirical distribution,
derived from experts’ opinion or estimated using standard statistical tools. The DM’s ambiguity regarding
the realizations of X is described by a δ-neighbourhood around Q defined as:

(3.15) Cδ :“ tP P ca`
1 pΣq : dpP,Qq ď δu,

where d : ca`
1 pΣqˆca`

1 pΣq Ñ R` is some discrepancy measure between probability measures P and Q, and
δ ą 0 is a tolerance level/ambiguity radius. The mapping d satisfies dpP,Qq “ 0 if and only if P “ Q. It is
worth mentioning that the worst-case distribution P ˚ depends not only on the choice of d, but also on the
ambiguity radius δ. In general, the size of Cδ is connected to the amount of observations available: if δ is
close to zero, the impact of ambiguity is negligible; while large values of δ indicate high levels of ambiguity.
The question of how to optimally choose the ambiguity radius is an ongoing stream of research in robust
optimization. One possible approach is to interpret δ as the degree of ambiguity about the reference model
and thus argues that this choice depends on the risk preferences of market participants (e.g., Breuer and
Csiszár (2016); Wozabal (2012)). In Example 3.6, we follow this approach and solve Problem (P ) for
different levels of ambiguity. This allows us to analyze the impact of ambiguity on the optimal indemnity
Ŷ ˚ and the worst-case distribution P ˚.

The following observation characterizes the change in the DM’s expected utility, as a function of the
ambiguity radius δ. This dynamic is later illustrated in Figure 3 in Example 3.6.

Remark 3.5. For a fixed premium Π0 ą 0, let Î0 (defined in eq. (3.10)) be the feasible set of indemnities
in Theorem 3.4. Moreover, for a discrepancy measure d and some ambiguity radii δ1 ď δ2, let Cδ1 and Cδ2
be the corresponding ambiguity sets, as defined in eq. (3.15). Let pŶ ˚

1 , P
˚
1 q and pŶ ˚

2 , P
˚
2 q be the saddle

points of Problems (P ), for Cδ1 and Cδ2 , respectively. It holds that
EP˚

2
rupW0 ´ X ` Ŷ ˚

2 ` Π0qs ď EP˚
1

rupW0 ´ X ` Ŷ ˚
2 ` Π0qs ď EP˚

1
rupW0 ´ X ` Ŷ ˚

1 ` Π0qs,

where the first inequality follows from Cδ1 Ď Cδ2 , as δ1 ď δ2. Hence, for increasing values of δ, the optimal
DM’s expected utility decreases.

Example 3.6 (Rényi ambiguity set). For this example we focus on Problem (P ), when the admissible set

of indemnities is F “ Î as defined in eq. (2.3). Let DM’s ambiguity set Cδ be given by

CDα
δ :“ tP ! Q : DαpP }Qq ď δu ,

where Dα is the Rényi divergence of order α between P and Q, i.e.,

DαpP }Qq :“
1

α ´ 1
logEQ

„ˆ

dP

dQ

˙αȷ

.

We observe that for every α ą 1, DαpP }Qq “ 0 if and only if P “ Q. When α Ñ 1, Dα is the well-known
Kullback-Leibler divergence. Moreover, since S is a Polish space, for any ambiguity radius δ P r0,8q and

degree α ě 1 the set CDα
δ is a convex and compact in the topology of weak convergence (e.g., Van Erven

and Harremos (2014, Theorem 20)). For more on the properties of the divergence Dα, we refer to Rényi
(1961) and Liese and Vajda (1987).
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To illustrate our results, we follow the existing literature and consider a discretely distributed loss X.
For a sample of size n, we assume without loss of generality that x1 ď ¨ ¨ ¨ ď xn, and we denote this
n-sample by x “ rx1, . . . , xnsJ. For our example, a random sample x of size n “ 100 is drawn from a
truncated exponential distribution with mean parameter µ “ 20, and with an upper bound M “ W0 ´Π0.

Moreover, the insurer’s belief pQ is the empirical distribution of the sample x. Let pq “ rpq1, . . . , pqnsJ be the

insurer’s probability mass function (pmf), where pqi :“ pQpX “ xiq, pqi ě 0, i “ 1, . . . , n, 1J
pq “ 1.

Let ŷ “ rŷ1, . . . , ŷnsJ P Rn
` be the indemnification function corresponding to the loss x. Following the

approach in Asimit et al. (2017), the feasibility constraints 0 ď ŷi ď xi and 0 ď ŷi ´ ŷi´1 ď xi ´ xi´1,
for i “ 1, . . . , n, are represented by 0 ď ŷ ď x and 0 ď An´1ŷ ď An´1x, where for i “ 1, . . . , n ´ 1, the
matrix Ai P Rpn´1qˆn is defined as follows:

(3.16) Ai :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‚

´1 1 0 0 . . . . . . . . . 0
0 ´1 1 0 . . . . . . . . . 0

. . .
. . .

. . .
. . .

. . .

. . . . . . . . . 0 ´1 1 0 . . . Ð i-th row.

. . . . . . . . . 0 0 0 0 . . .
. . .

. . .
. . .

. . .
. . .

Moreover, p “ rp1, . . . , pnsJ P r0, 1sn belongs to CDα
δ if it satisfies the following conditions:

(i) is a pmf: 1Jp “ 1;
(ii) is absolutely continuous with respect to pq: if D i P t1, . . . , nu such that pqi “ 0, then pi “ 0.
(iii) lies in a Rényi ambiguity set around pq:

pα ¨ pq 1´α “

n
ÿ

i“1

pαi pq 1´α
i ď δ,

where δ :“ exppδpα ´ 1qq.

To simplify the notation, let D :“ tp P r0, 1sn : pi “ 0 if pqi “ 0, i “ 1, . . . , nu. With the above representa-
tions for the variables ŷ and p, Problem (P ) can be formulated as follows:

(Pn)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

max min
ŷPRn

` pPD

n
ÿ

i“1

upW0 ´ xi ` ŷi ´ Π0qpi

s.t. 0 ď An´1ŷ ď An´1x,

0 ď ŷ ď x,
n
ÿ

i“1

´vpW Ins
0 ´ p1 ` θqŷi ` Π0qpqi ď ´vpW Ins

0 q,

pα ¨ pq 1´α ď δ,

1Jp “ 1.

Observe that Problem (Pn) is a convex optimization problem, as the objective function is concave in ŷi
and linear in pi, for i “ 1, . . . , n, while the constraints are convex in ŷi and pi, for any α ą 1. Problem (Pn) is
solved via successive convex programming (SCP – see Pflug and Picher (2014)). The idea is to approximate

the infinite dimensional ambiguity set CDα
δ by a finitely generated set Ppmq :“ tpq,pp1q, . . . ,ppmqu, obtained

iteratively from solving the inner problem in (Pn). The algorithm starts with m “ 0, Ppmq :“ Pp0q “ tpqu,
and solves the outer problem:
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(Pn
outer)

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

max min
ŷPRn

` pPPpmq

n
ÿ

i“1

upW0 ´ xi ` ŷi ´ Π0qpi

s.t. 0 ď An´1ŷ ď An´1x,

0 ď ŷ ď x,
n
ÿ

i“1

´vpW Ins
0 ´ p1 ` θqŷi ` Π0qpqi ď ´vpW Ins

0 q.

The solution ŷpmq :“ ŷp1q acts as input for the inner problem:

(Pn
inner)

$

’

’

’

’

&

’

’

’

’

%

min
pPD

n
ÿ

i“1

upW0 ´ xi ` ŷi ´ Π0qpi

s.t. pα ¨ pq 1´α ď δ,

1Jp “ 1.

The new ppm`1q :“ pp1q is added to the discrete set, i.e., Ppm`1q “ Ppmq Y tppm`1qu, m “ m ` 1, and

the outer Problem (Pn
outer) is solved using the updated Ppmq. The algorithm stops when no new model is

found. The convergence of the algorithm is proven in Pflug and Picher (2014). For completeness, a sketch
of the proof of this result in our setting is presented in Appendix C.

To obtain an explicit solution, suppose that the DM’s initial wealth is W0 “ 200, the insurance premium
is Π0 “ 10, the safety loading is ρ “ 0.2, and the DM’s utility is given by upxq “ x1{3. The insurers’ initial

wealth is W Ins
0 “ 400, and the utility is vpxq “ x1{5. For the ambiguity set CDα

δ , we choose the ambiguity
radius δ “ 0.7 and the order of Rényi divergence α “ 3. Figure 1 shows the optimal indemnity ŷ˚ (left)
and the worst-case distribution FX,P˚ , corresponding to p˚ (right).
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Figure 1. Left: the optimal indemnity ŷ˚ as function of x. Right: the DM’s optimal
distribution FX,P˚ (red) compared to insurers’ belief F

X, pQ
(black).

We also solve Problem (Pn) for the same ambiguity set CDα
δ , when the feasibility set is F “ I as defined

in eq. (2.2). This implies that the constraint 0 ď An´1ŷ ď An´1x is removed from the optimization
Problem (Pn). Figure 2 illustrates the difference between the optimal indemnities corresponding to I and

Î.
We next investigate the decrease in optimal expected utility, when the ambiguity set increases. Certainty

equivalence is used to quantify the impact of ambiguity radii on the optimal value of Problem (Pn). For
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Figure 2. Optimal indemnities y˚ and ŷ˚ for Problem (Pn) when the feasibility sets are

I and Î, respectively.

each δ, let pŷ˚,p˚q be an optimal solution of (Pn) and define the certainty equivalents CE1 and CE2 as
follows:

$

’

&

’

%

inf
PPCDα

δ

EP rupW0 ´ x ` CE1pδqqs “ sup
ŷPÎ

inf
PPCDα

δ

EP rupW0 ´ x ` ŷ ´ Π0qs,

upCE2pδqq “ sup
ŷPÎ

inf
PPCDα

δ

EP rupW0 ´ x ` ŷ ´ Π0qs,

where P is the probability measure corresponding to p. The constant CE1 quantifies the marginal benefit of
the optimal insurance contract, which we interpret as the willingness-to-pay for insurance. Moreover, CE2

measures the certainty equivalent of DM’s final wealth position. Figure 3 displays the changes in certainty
equivalents for increased values of ambiguity radius. The left figure shows that a larger ambiguity radius
yields a higher marginal benefit of the optimal insurance contract. This implies that the DM has a higher
willingness-to-pay for the optimal insurance contract if the ambiguity set gets larger. On the other hand,
the certainty equivalent of the final wealth position decreases when the ambiguity set gets larger because
the DM is more ambiguity-averse (Figure 3 (right)).

0 0.2 0.4 0.6 0.8 1 1.2
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 0.2 0.4 0.6 0.8 1 1.2
164

166

168

170

172

174

Figure 3. Left: certainty equivalent CE1 as function of the ambiguity radius δ. Right:
certainty equivalent CE2 as function of the ambiguity radius δ.
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Figure 4 (left) provides a closer look at the optimal indemnities ŷ˚, when the ambiguity set CDα
δ becomes

wider. Figure 4 (right) shows the worst-case distribution FX,P˚ for several values of δ. For increasing values
of the ambiguity radius, it can be observed that each FX,P˚ dominates all the previous distributions in the
first stochastic order.
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Figure 4. Left: optimal indemnities ŷ˚ P Î of Problem (Pn) for several values of δ. Right:
the corresponding worst-case probability distributions FX,P˚ for several values of δ.

4. The case of a Risk-Neutral Insurer

In this section, we examine the case of a risk-neutral insurer, that is, when the utility function v is
linear, and we characterize the optimal indemnity both without and with the no-sabotage condition. In
the former case, we obtain a closed-form characterization of the optimal indemnity (Proposition 4.1),
whereas in the latter case, the optimal indemnity is determined implicitly (Proposition 4.3). The results
are illustrated in Example 4.4 for a specific ambiguity set C, and closed-form solutions are obtained. We
conclude the section with a concrete example, to illustrate the structure of the optimal indemnity function,
when the DM’s ambiguity set is a Wasserstein ball centered around the insurer’s belief Q. By specifying the
ambiguity set C, the optimal measures P ˚ in Proposition 4.1 and Proposition 4.3 are obtained numerically.

Specifically, we study Problem (P ) under the assumption of risk neutrality of insurer:

(P1)

#

sup
Y PF

inf
PPC

EP rupW0 ´ X ` Y ´ Π0qs

s.t. p1 ` ρqEQrY s ď Π0.

If p1 ` ρqEQrXs ď Π0, then we can eliminate the constraint in Problem (P1), as the insurance pre-
mium is large. In this case, the optimal indemnity is Y ˚ “ X, Q-a.s. In the following, we assume that
p1 ` ρqEQrXs ą Π0.

4.1. Without the No-Sabotage Condition.

Proposition 4.1. Suppose that the utility function u satisfies Assumption 1 and is, in addition, strictly
concave and such that lim

xÑ´8
u1pxq “ `8 and lim

xÑ`8
u1pxq “ 0. Let F “ I as defined in eq. (2.2) be the

set of admissible indemnity functions. Then there exists P ˚ P C such that an optimal solution Y ˚ P I of
Problem (P1) is of the form:

(4.1) Y ˚ “ pX ´ R˚q1AzAh˚
` pX ´ Rh˚q1Ah˚ ` X1SzA,

where
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(a) A P Σ is such that P ˚ “ P ˚
ac ` P ˚

s , with P ˚
s pAq “ QpSzAq “ 0;

(b) h˚ : S Ñ r0,8q is such that h˚ “ dP ˚
ac{dQ;

(c) Ah˚ :“ ts P A : h˚psq “ 0u;

(d) R˚ and Rh˚ are given by:

Case 1. If p1 ` ρqEQrX1SzAh˚
s ą Π0, then R˚ “ max

„

0,min

ˆ

X,W0 ´ Π0 ´ pu1q´1

ˆ

λ˚

h˚

˙˙ȷ

1AzAh˚
and

Rh˚ “ X1Ah˚ , Q-a.s., where λ˚ P R` is such that p1 ` ρqEQrY ˚s “ Π0;

Case 2. If p1` ρqEQrX1SzAh˚
s ď Π0, then R˚ “ 0, Q-a.s. and Rh˚ “ cX1Ah˚ , where c P p0, 1s is defined

as c :“
EQrXs ´ p1 ` ρq´1Π0

EQrX1Ah˚ s
.

The above result is a special case of Theorem 3.2.

Remark 4.2. In the setting of Proposition 4.1, Case (2), an important special case is when h˚ ” 0, i.e.,
P ˚ K Q, where P ˚ is the worst-case measure that attains the infimum in (P1). Thus the optimal indemnity

function is Y ˚ “ pX ´ Rh˚q1A ` X1SzA, where Rh˚ P I satisfies
ş

ARh˚psq dQpsq “ rΠ0. A possible choice
for R˚

h is shown in Proposition 4.1.

4.2. With the No-Sabotage Condition. The following result characterizes the optimal indemnity Y ˚,
when the no-sabotage condition is enforced.

Proposition 4.3. Suppose that the utility function u satisfies Assumption 1 and let F “ Î as defined
in eq. (2.3) be the set of admissible indemnity functions. Then there exists P ˚ P C such that the optimal

solution of Problem (P1) is Ŷ ˚ P Î, Q-a.s. and is of the form

Ŷ ˚ “ pX ´ R̂˚q1A ` X1SzA,

where

(a) A P Σ is such that P ˚ “ P ˚
ac ` P ˚

s , with P ˚
s pAq “ QpSzAq “ 0;

(b) h˚ : S Ñ r0,8q is such that h˚ “ dP ˚
ac{dQ;

(c) ξ˚ : R` Ñ R` is a Borel measurable function such that h˚ “ ξ˚ ˝ X;

(d) R̂˚ “ r̂˚ ˝ X, where r̂˚pxq “

ż x

0
pr̂˚q1ptq dt, @x P r0,M s and

pr̂˚q1ptq “

$

’

&

’

%

0, if
ş

rt,MsXXpAq
pu1pW0 ´ r̂˚pxq ´ Π0qξ˚pxq ´ λ˚q dQ ˝ X´1pxq ą 0,

κptq, if
ş

rt,MsXXpAq
pu1pW0 ´ r̂˚pxq ´ Π0qξ˚pxq ´ λ˚q dQ ˝ X´1pxq “ 0,

1, if
ş

rt,MsXXpAq
pu1pW0 ´ r̂˚pxq ´ Π0qξ˚pxq ´ λ˚q dQ ˝ X´1pxq ă 0,

for some Lebesgue measurable and r0, 1s-valued function κ;

(e) λ˚ P R` is such that p1 ` ρqEQrŶ ˚s “ Π0.

Proposition 4.3 is a particular case of Theorem 3.4 when the insurer’s utility v is linear.
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4.3. Example. The following example analyzes the structure of the optimal Y ˚ and Ŷ ˚ in Proposi-
tions (4.1) and (4.3), respectively, when all probability measures P in C are absolutely continuous with
respect to Q, with a particular structure of the Radon-Nikodým derivatives. This is done both with and
without the no-sabotage condition. Specifically, we assume that each P P C is such that P ! Q with

(4.2)
dP

dQ
“

wpXq
ş

wpXqdQ
,

for some nonnegative and increasing weight function w satisfying
ş

wpXqdQ ą 0. Such measure transfor-
mations have a long tradition in insurance pricing, dating back to the Esscher transform (e.g., Bühlmann
(1980)), in which the function w takes the form wpxq “ ebx, for a given b P p0,`8q. More generally,
Furman and Zitikis (2008a, 2008b, 2009) discuss the general class of weighted premium principles where
pricing is done via measure transformations as in eq. (4.2).

Suppose that the utility function u satisfies Assumption 1, and assume that insurer’s probability measure
Q has a continuous CDF over r0,M s.

Example 4.4. Let the DM’s ambiguity set C be defined as follows:

CW :“

"

P P ca`
1 pΣq :

dP

dQ
“

wpXq
ş

wpXqdQ
, w P W

*

,

where W Ă L1
`

R,BpRq, Q ˝ X´1
˘

is a collection of nonnegative increasing weight functions, such that
ş

wpXqdQ ą 0 for all w P W. Appendix B provides conditions under which the set CW is convex and
weak˚-compact.

First we analyze the case when the feasible set of indemnities is F “ I, as defined in eq. (2.2). By
definition of CW , any optimal P ˚ is absolutely continuous with respect to Q. Moreover, by monotonicity
of h˚ “ dP ˚{dQ “ ξ˚pXq, there exists some a ě 0 such that ξ˚pxq “ 0, for x P r0, as and ξ˚pxq ą 0, for
x ą a, i.e., the set Ah˚ in Proposition 4.1 is precisely Ah˚ “ X´1pr0, asq.

If p1 ` ρq EQrX1SzAh˚
s “ p1 ` ρq

ż M

a
x dQ ˝X´1 pxq ą Π0, the optimal indemnity Y ˚ “ I˚pXq in (4.1)

is such that

I˚pxq “ max

„

0,min

ˆ

x, x ´ W0 ` Π0 ` pu1q´1

ˆ

λ˚

ξ˚

˙˙ȷ

1ra,Ms,

where λ˚ P R` is such that p1 ` ρqEQrY ˚s “ Π0.

If p1 ` ρq EQrX1SzAh˚
s “ p1 ` ρq

ż M

a
x dQ ˝ X´1 pxq ď Π0, then (4.1) becomes

I˚pxq “

#

p1 ´ cqx, if x ď a,

x, if x ą a,

where the constant c P p0, 1s is chosen as in Proposition 4.1.

Next, let F “ Î, as defined in eq. (2.3). Following the setting of Proposition 4.3, the utility function u
need not to be strictly concave, but only concave. According to Proposition 4.3, the optimal retention can
be equivalently written as

pr̂˚q1ptq “

$

’

&

’

%

0, if
şM
t pλ˚ ´ u1pW0 ´ r̂˚pxq ´ Π0qξ˚pxqq dFX,Qpxq ă 0,

κptq, if
şM
t pλ˚ ´ u1pW0 ´ r̂˚pxq ´ Π0qξ˚pxqq dFX,Qpxq “ 0,

1, if
şM
t pλ˚ ´ u1pW0 ´ r̂˚pxq ´ Π0qξ˚pxqq dFX,Qpxq ą 0.

Observe that the function φ : r0,M s Ñ R, φpxq :“ ´u1pW0´ r̂˚pxq´Π0qξ˚pxq is a continuous, decreasing
function. We distinguish the following cases:
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Case 1. If ´λ˚ ă φpMq, then
şM
t pφpxq ` λ˚q dFX,Qpxq ą 0, for all t P r0,M s, and thus pr̂˚q1 ” 1.

Case 2. If ´λ˚ ą φp0q, then
şM
t pφpxq ` λ˚q dFX,Qpxq ă 0, for all t P r0,M s, and thus pr̂˚q1 ” 0.

Case 3. If ´λ˚ P rφpMq, φp0qs, then there exists some d P p0,Mq such that φpxq ` λ˚ ě 0, for all x ď d

and φpxq ` λ˚ ă 0, for all x ą d. This implies that for all t ą d,
şM
t pφpxq ` λ˚q dFX,Qpxq ă 0, and thus

pr̂˚q1ptq “ 0, for t P pd,M s. Moreover, for t1 ă t2 ď d, it holds that
ż d

t1

pφpxq `λ˚q dFX,Qpxq `

ż M

d
pφpxq `λ˚q dFX,Qpxq ě

ż d

t2

pφpxq `λ˚q dFX,Qpxq `

ż M

d
pφpxq `λ˚q dFX,Qpxq.

Therefore, there exists some d˚ ě 0 such that for all t ě d˚,
ż M

t
pφpxq ` λ˚q dFX,Qpxq ă 0.

Hence, pr̂˚q1ptq “ 1 for all t ă d˚, and pr̂˚q1ptq “ 0, for all t ą d˚. In this case, r̂˚ptq “ minpt, d˚q and

thus Î˚ptq “ maxpt ´ d˚, 0q.

4.4. Numerical Example. In this section, we examine the structure of the saddle point pŶ ˚, P ˚q in the

setting of Problem (P1), when the insurer is risk-neutral, the admissible set of indemnities is F “ Î as
defined in eq. (2.3) and the DM’s ambiguity set C is a Wasserstein ball around Q, the insurer’s belief.
Similar to Section 3.3, we assume S is a Polish space and X is a nonnegative random variable, with
unknown true distribution. However, compared to the approach in Example 3.6 of selecting the ambiguity
radius δ, we follow this time a data-driven approach to obtain δ. It consists of estimating δ either by

evaluating the discrepancy between the empirical model pPn and the calibrated model, or using measure

concentration inequalities to target a certain confidence level β P p0, 1q, i.e., PpdpP ˚, pPnq ď δq ě 1 ´ β
(see Esfahani and Kuhn (2018, Theorem 3.4 and the discussion afterwards), Blanchet et al. (2020, Section
5.1)). We investigate the former method in Example 4.5, when the ambiguity set is constructed using the
Wasserstein metric.

Example 4.5 (Wasserstein ambiguity set). In this example, the DM’s ambiguity about the realizations of
X is characterized by the ambiguity set Cδ given by

CW1
δ :“ tP P ca`

1 pΣq : W1

`

P ˝ X´1, Q ˝ X´1
˘

ď δu,

where W1 is the Wasserstein distance on R, with the L1-norm being the underlying metric (e.g., Vallender
(1974)):

W1

`

P ˝ X´1, Q ˝ X´1
˘

:“

ż

R

ˇ

ˇFX,P pxq ´ FX,Qpxq
ˇ

ˇ dx “

ż 1

0

ˇ

ˇF´1
X,P ptq ´ F´1

X,Qptq
ˇ

ˇ dt.

The Wasserstein distance is a metric satisfyingW1

`

P ˝ X´1, Q ˝ X´1
˘

“ 0 if and only if P ˝X´1 “ Q˝X´1

(e.g., Villani (2008, Ex 6.3 p. 94). This induces a metric on CW1
δ , such that CW1

δ is convex and weak˚-
compact. See Villani (2008) for further properties of the Wasserstein distance. By a slight abuse of
notation, we write W1 pP,Qq instead of W1

`

P ˝ X´1, Q ˝ X´1
˘

.

Let Q be the insurer’s belief regarding the loss X. In this example, we assume that FX,Q is a truncated
Generalized Pareto distribution with an upper bound M , with shape and scale parameters 0.3 and 5,
respectively. Next, we simulate from the distribution FX,Q, and obtain the empirical distribution. We
then construct a piecewise linear approximation F

X, pQ
of this empirical distribution, with given knots

tx1, . . . , xnu, where the partition 0 “ x1 ă ¨ ¨ ¨ ă xn “ M is chosen arbitrarily, but kept fixed all throughout.

That is, F
X, pQ

is given by a system
␣

rxi, xi`1s, rF
X, pQ

pxiq, FX, pQ
pxi`1qs

(n´1

i“1
. Note that by construction,

F
X, pQ

pxnq “ 1. The corresponding density pq “ rpq1, . . . , pqn´1sJ is piecewise constant on each interval
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rxi, xi`1s, for i “ 1, . . . , n ´ 1. More precisely, pqi is the slope of the line passing through the points

pxi, FX, pQ
pxiqq and pxi`1, FX, pQ

pxi`1qq, i.e., pqi “
F
X, pQ

pxi`1q ´ F
X, pQ

pxiq

xi`1 ´ xi
, for i “ 1, . . . , n ´ 1.

This representation of pQ allows us to compute the Wasserstein distance between FX,P and F
X, pQ

, and

thus to characterize the alternative distributions via the system
␣

FX,P px1q, . . . , FX,P pxnq
(

, for the same
segments rxi, xi`1s, i “ 1, . . . , n ´ 1. For two such distributions, the Wasserstein distance is the sum of
the areas of the trapezoids with corners

␣

F
X, pQ

pxiq, FX, pQ
pxi`1q, FX,P pxiq, FX,P pxi`1q

(

formed by FX,P and

F
X, pQ

(see the shaded area in Figure 5), i.e.,

(4.3) W1pP, pQq “
1

2

n´1
ÿ

i“1

pxi`1 ´ xiqϕ
´

FX,P pxiq ´ F
X, pQ

pxiq, FX,P pxi`1q ´ F
X, pQ

pxi`1q

¯

,

where the function ϕ : r´1, 1s2 Ñ R` defined below is convex in each component (e.g., Pflug et al. (2017)):

ϕpa, bq “

$

&

%

|a| ` |b|, if ab ě 0,

a2 ` b2

|a| ` |b|
, otherwise.

x1 x2 x3 · · · xn

1

F
X,Q̂

FX,P

Figure 5. Computation of Wasserstein distance between piecewise linear probability dis-
tributions F

X, pQ
and FX,P .

The alternative measure P is represented by an pn ´ 1q-dimensional vector p “ rp1, . . . , pn´1sJ, where
pi P r0, 1s is the constant forming the piecewise constant density of FX,P . More precisely, the alternative
CDF FX,P will be linear on each interval rxi, xi`1s, and will differ from F

X, pQ
only in the cumulative

probabilities FX,P pxiq. Thus, pi will be the slope of the line passing through the points pxi, FX,P pxiqq and
pxi`1, FX,P pxi`1qq. The representation of FX,P is shown in Figure 5. Therefore, the variable p must satisfy

pJAn´1x “ 1, where An´1 P Rpn´1qˆn is defined in eq. (3.16). Using the matrix Ai, for i “ 1, . . . , n ´ 1,
FX,P can also be represented via FX,P pxiq “ pJAix.

Next, to identify the optimal Ŷ ˚, we follow the equivalent formulation of Problem (P1) and describe

the decision variable in terms of retention function R̂. First, note that since the feasible set of indemnity
functions is assumed to be F “ Î, it follows that R̂ “ r̂ ˝X where r̂ is a 1-Lipschitz, and hence continuous
function. We further assume that r̂ is linear between the segments rxi, xi`1s, and thus piecewise linear and

of the form r̂pxq “ aix ` bi, for xi ď x ď xi`1, i “ 1, . . . , n ´ 1. Since r̂ P Î, it follows that ai P r0, 1s and
bi P r´xi, 0s, for i “ 1, . . . , n ´ 1.

The error introduced by solving (P1) in terms of pQ instead of Q can be used to estimate the ambiguity
radius δ. The estimator δ “ δn depends on the number of piecewise linear segments, and thus it is informed
by the data. In particular, we propose to approximate δn as

δn :“
ˇ

ˇE
pQ
rXs ´ EQrXs

ˇ

ˇ ď W1p pQ,Qq.
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The inequality becomes an equality if F
X, pQ

dominates FX,Q in the first stochastic order.

With the above representations for p and r̂, Problem (P1) is then approximated by the following problem:

(Pn
1 ) F

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

max min
aPr0,1sn,
bPr´x,0s

pPr0,1sn´1

n´1
ÿ

i“1

ż xi`1

xi

upW0 ´ x ` aix ` bi ´ Π0qdx pi

s.t. 0 ď aixi ` bi ď xi, i “ 1, . . . , n ´ 1,

aixi`1 ` bi “ ai`1xi`1 ` bi`1, i “ 1, . . . , n ´ 2,

n´1
ÿ

i“1

ż xi`1

xi

px ´ aix ` biqdx qi ď
Π0

1 ` ρ
,

W1pP, pQq ď δn, FX,P pxiq “ pJAix, i “ 1, . . . , n,

pJAn´1x “ 1,

where W1pP, pQq is computed as in eq. (4.3) and a “ ra1, . . . , an´1sJ and b “ rb1, . . . , bn´1sJ. The first
two constraints in (Pn

1 ) specify that the retention function r̂ is continuous and linear between the segments
rxi, xi`1s, i “ 1, . . . , n ´ 1. The objective function in (Pn

1 ) is concave in a and b and linear in p, while the
constraints are convex in p and linear in a and b. Similar to Example 3.6, Problem (Pn

1 ) is solved in a
step-wise manner, by splitting the initial problem into an inner and outer problem.

For the implementation, we resume the input for (Pn
1 ): the DM’s initial wealth is W0 “ 250 and the

utility is upxq “ p1´expp´γxqq{γ, for γ “ 0.03, while the premium Π0 “ 4 and the safety loading is ρ “ 0.2.
For n “ 200, we simulate from the distribution FX,Q, and construct the piecewise linear approximation
F
X, pQ

of the empirical distribution on the partition 0 “ x1 ă x2 ă ¨ ¨ ¨ ă xn “ M “ W0 ´ Π0 “ 246. The

CDF F
X, pQ

will play the role of the baseline distribution in Problem (Pn
1 ). Finally, the ambiguity radius

δn is estimated to be approximately 0.3. Figure 6 shows one of the saddle points of Problem (Pn
1 ): the

optimal ŷ˚ is piecewise-linear, while the corresponding FX,P˚ dominates F
X, pQ

in the first stochastic order.
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Figure 6. Left: the optimal indemnity ŷ˚ “ x ´ r̂˚ as function of x. Right: the DM’s
optimal distribution FX,P˚ (red) compared to insurers’ belief F

X, pQ
(black). Here, for sake

of presentation, we only display values of x below 50.

Next, we study a problem related to Problem (Pn
1 ), in which retention function r is required only to be

bounded by x, i.e. r P I, where F “ I as defined in eq. (2.2). It implies that a P Rn in (Pn
1 ). In Figure 7

(left) we display the difference between the optimal retention functions of Problem (Pn
1 ), for the sets I and

Î, respectively, and we also display a zoomed-in perspective for small values of x. Figure 7 (right) provides
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the corresponding indemnities y˚ and ŷ˚, respectively. In the absence of the no-sabotage condition (the
blue lines in Figure 7), the indemnity y˚ can be decreasing with respect to the loss x on some parts of its
domain (see the blue line in Figure 7 (left)).
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Figure 7. Left: optimal retention functions r˚ and r̂˚ for Problem (Pn
1 ) when the feasibility

sets are I and Î, respectively, with a zoomed-in perspective for small values of the underlying
loss x. Right: the corresponding indemnities y˚ “ x ´ r˚ and ŷ˚ “ x ´ r̂˚.

5. Conclusion

The impact of ambiguity on insurance markets in general, and insurance contracting in particular, is by
now well-documented. One of the most popular and intuitive ways to model sensitivity of preferences to
ambiguity is the Maxmin-Expected Utility (MEU) model of Gilboa and Schmeidler (1989). Nonetheless,
to the best of our knowledge, none of the theoretical studies of risk sharing in insurance markets in the
presence of ambiguity have examined the case in which the decision maker (DM) is an MEU-maximizer.
This paper fills this void. Specifically, we extend the classical setup and results in two ways: (i) the DM is
endowed with MEU preferences; and (ii) the insurer is an Expected-Utility-maximizer who is not necessarily
risk-neutral (that is, the premium principle is not necessarily an expected-value premium principle). The
main objective of this paper is then to determine the shape of the optimal insurance indemnity in that
case.

We characterize optimal indemnity functions both with and without the customary ex ante no-sabotage
requirement on feasible indemnities, and for both concave and linear utility functions for the two agents.
The no-sabotage condition is shown to play a key role in determining the shape of optimal indemnity
functions. An equally important factor in characterizing optimal indemnities is the singularity in beliefs
between the two agents. We subsequently examine several illustrative examples, and we provide numerical
studies for the case of a Wasserstein and a Rényi ambiguity set. Specifically, we provide a successive
convex programming algorithm to compute optimal insurance indemnities in a discretized framework. The
Wasserstein and Rényi distances are two popular metrics to construct probability ambiguity sets. We show
in numerical examples that a larger ambiguity set yields a lower certainty equivalent of final wealth, but
increases the willingness-to-pay for insurance. As a by-product of our analysis, we provide a comprehensive
and unifying treatment of optimal insurance design under subjective expected-utility theory in the presence
of belief heterogeneity, thereby extending many result in the related literature.

An interesting direction for future research would be to give the policyholder the possibility of partially
hedging her loss exposure, through some hedging instrument that would act as an uninsurable background
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risk. Specifically, the policyholder initially faces an insurable loss random variable X and is able to partially
hedge her loss exposure through another random variable Z. For a given hedging investment decision, the
latter can be interpreted as a background risk, which might be correlated with X. Optimal insurance design
in the presence of a background risk has been examined in expected-utility theory by Dana and Scarsini
(2007) (without the no-sabotage condition) and Chi and Wei (2020) (with the no-sabotage condition).
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Appendix A. A Useful Tool

A.1. Sion’s Minimax Theorem.

Theorem A.1 (Sion (1958)). Let X and Y be convex, compact spaces, and f a function on X ˆ Y. If
x ÞÑ fpx, yq is quasi-convex and lower semi-continuous, for all y P Y and y ÞÑ fpx, yq is quasi-concave and
upper semi-continuous, for all x P X, then

min
xPX

max
yPY

fpx, yq “ max
yPY

min
xPX

fpx, yq.

If the assumption about the compactness of X is dropped, then

inf
xPX

max
yPY

fpx, yq “ max
yPY

inf
xPX

fpx, yq.

If the assumption about the compactness of Y is dropped, then

min
xPX

sup
yPY

fpx, yq “ sup
yPY

min
xPX

fpx, yq.

Appendix B. Convexity and Compactness of CW in Example 4.4

Lemma B.1. For a fixed Q P ca`
1 pΣq, let CW be the set defined as follows:

(B.1) CW :“

"

P P ca`
1 pΣq :

dP

dQ
“

wpXq
ş

wpXqdQ
, w P W

*

,

where W Ă L1
`

R,BpRq, Q ˝ X´1
˘

is a collection of nonnegative increasing weight functions, such that
ş

wpXqdQ ą 0, for all w P W. Then the following hold:

(i) If W is a convex cone, then CW is convex.

(ii) If CW is uniformly absolutely continuous with respect to some µ P ca`pΣq, then CW is weak˚-
compact.

Proof. (i) is easy to verify. To show (ii), first note that CW is norm-bounded. Since CW is also uniformly
absolutely continuous with respect to µ P ca`pΣq, it follows from Dunford and Schwartz (1958, Theorem
IV.9.2) that CW is weakly sequentially compact, and hence weak˚-compact, by Maccheroni and Marinacci
(2001, Theorem 1). □

Remark B.2. In Lemma B.1, if CW is countable, that is, is of the form
"

Pn P ca`
1 pΣq : n P N,

dPn

dQ
“

wpXq
ş

wpXqdQ
, w P W

*

,

and if lim
nÑ`8

PnpAq exists for each A P Σ, then the requirement of uniform absolute continuity of CW is

superfluous by the Vitali-Hahn-Saks Theorem (Dunford & Schwartz, 1958, Theorem III.7.2).

Proposition B.3. If W is order bounded in the Banach lattice L1
`

R,BpRq, Q ˝ X´1
˘

, with a constant

upper bound and a nonnegative lower bound having nonzero L1-norm, then CW is uniformly absolutely
continuous with respect to Q.



Proof. Suppose that W is order bounded in L1
`

R,BpRq, Q ˝ X´1
˘

, with a constant upper bound and

a nonnegative lower bound having nonzero L1-norm. Then there exists f P L1
`

`

R,BpRq, Q ˝ X´1
˘

and

M P R`, such that M ă `8, }f}1 “
ş

f dQ ˝ X´1 ą 0, and f ď w ď M , for each w P W. Consequently,
for each P P CW ,

dP

dQ
ď

M

}f}1
ă `8.

Hence, for each P P CW and each A P Σ,

P pAq “

ż

A
dP ď

M

}f}1
QpAq.

Consequently, for each ε ą 0, letting δ :“ }f}1
M ε ą 0, it follows that for each A P Σ and each P P CW ,

QpAq ă δ ùñ P pAq ă
M

}f}1
δ “ ε.

Hence, CW is uniformly absolutely continuous with respect to Q. □

Appendix C. Convergence of the Algorithm in Examples 3.6 and 4.5

The convergence of the SCP algorithm in Examples 3.6 and 4.5 is proven in Pflug and Picher (2014,
Proposition B.6).

Proposition C.1. Every cluster point Ŷ ˚ of the iteration:

Ŷ pm`1q P argmax
Ŷ PÎ0

min
P piqPPpmq

upŶ , P piqq,(C.1)

P pm`1q P argmin
PPCδ

upŶ pm`1q, P q(C.2)

is a solution of Problem (P ).

ENDNOTES

1We refer to Carlier and Dana (2003) for a discussion of various notions of ex ante admissible contracts.
2For instance, under the no-sabotage condition, feasible indemnities are Lipschitz-continuous and hence absolutely contin-

uous. Optimal indemnities are then characterized in implicit form through their derivative, that is, the so-called “marginal
indemnification function” (MIF), as in Assa (2015). The vast majority of the literature on optimal insurance with the no-
sabotage condition uses the MIF semi-implicit characterization of the optimal solution (see Xu et al. (2018) or Zhuang et al.
(2016), for example).

3All of this paper’s results can be derived for any participation constraint of the form EQrvpW Ins
0 ´ p1 ` ρqY ` Π0qs ě k,

with k ď vpW Ins
0 ` Π0q. To maintain a direct economic interpretation, we choose throughout the paper k “ vpW Ins

0 q, i.e., the
insurer’s reservation utility.

4The limit conditions on u and v are the customary Inada (1963) conditions, often encountered in the literature.
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Žáčková, J. (1966). On minimax solutions of stochastic linear programming problems. Časopis pro
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