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Abstract

Economic growth has been shown to be an important factor that ex-
plains changes in mortality probabilities. Economic growth is commonly
measured via the Gross National Product per capita (GDP), but this
paper argues that the Consumer Price Index (CPI) is a more natural
factor to explain mortality dynamics. It is namely the Consumer Price
Index that approximates the affordability of health care, food and hous-
ing. We augment the well-known Lee-Carter model with the observable
Consumer Price Index factor, and test this model using data from the
USA, Canada, Australia, and France. We show that the in-sample model
fit of our proposed model improves compared with the Lee-Carter model
(either augmented with the Gross National Product factor or not). We
also show that the out-of-sample forecasting performance of our proposed
model, as measured by the mean squared forecast error, is a considerable
improvement. Also, the Lee-Carter model augmented with both the Gross
National Product and Consumer Price Index factors performs even better
in-sample and out-of-sample.
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1 Introduction

Longevity risk modeling is of central importance in life insurance, and the mod-
eling and forecasting of mortality rates are central topics in actuarial science.
There is a lack of consensus in the literature on which model is best for mor-
tality rates. A central stochastic mortality risk model is proposed by Lee and
Carter (1992), and this is denoted as the by now well-known Lee-Carter model
(LC model). An increasing number of researchers have been trying to extend
the LC model to improve the accuracy of life expectancy predictions (e.g., Lee
and Miller, 2001; Booth et al., 2002; Renshaw and Haberman, 2016; De Jong
and Tickle, 2006; Plat, 2009; Lyu et al., 2021).

A key drawback of the LC model is that the future trend in mortality dynam-
ics is captured via a latent trend. This latent trend is obtained via a singular
value decomposition (SVD), and its forecasting is generally done via ARIMA
models. However, it is precisely this forecasting method that is difficult to jus-
tify. Since we do not explicitly know what the latent time trend represents, it
is hard to understand its future dynamics.

In the literature, researchers have concentrated on extending the LC model
and its related extensions to improve the model fit and forecast performance.
Hanewald (2011) finds a strong long-term relationship between the mortality
trend and the Gross Domestic Product per capita (GDP) and unemployment
rate. Niu and Melenberg (2014) then propose to augment the LC model with
the observable factor of economic growth, as measured by the GDP. They show
that this improves the model fit, and this is later extended to multiple popula-
tions by Boonen and Li (2017) and Cupido et al. (2020) who consider the first
principal components of GDP as common factors. Additionally, Seklecka et al.
(2019) propose to include an age-dependent factor given by correlation coeffi-
cient between GDP and mortality, and this factor is augmented to the mortality
model of O’Hare and Li (2012). Using mortality data of sub-populations in Italy,
Bozzo et al. (2021) show that it is the GDP level that is a key determinant of
mortality dynamics, and not the trend in GDP. They argue that Boonen and
Li (2017) may overestimate the effect of the economic crisis on mortality rates
because the data set used by Boonen and Li (2017) terminates in 2009 or 2010.

Luo and Xie (2020) show that life expectancy also depends on the level of a
country’s medical system and the purchasing power of citizens. The purchasing
power is an indication of the population’s ability to purchase food and other
goods for daily consumption. Moreover, we can use GDP to express the devel-
opment of the economy of a country, but we can alternatively use the consumer
price index (CPI) to measure a country’s economic stability and people’s con-
sumption level. Often, a disaster leads to a substantial increase in inflation
(such as currently after the COVID-19 pandemic).

We augment or replace the GDP factor in the model of Niu and Melenberg
(2014) by a CPI factor, and we will demonstrate that the model fit is improved
both in-sample and out-of-sample by doing so. Using data from USA, Canada,
Australia, and France, we first show that CPI is indeed strongly related to the
latent time trend in the LC model. Using the new normalization approach
introduced by Liu et al. (2019a,b), we provide a mortality model that includes
both the log GDP and log CPI, and moreover a latent factor. We show that
this model has the best in-sample goodness of fit compared with the Lee-Carter
model and the model of Niu and Melenberg (2014). We show the in-sample



goodness of fit via the R?, the adjusted R?, the Akaike Information Criterion
(AIC), and the Bayesian Information Criterion (BIC).

In mortality models with GDP or CPI, the long term dynamics are partially
captured by the observable factors. We propose a Vector Error Correction Model
(VECM) for the joint modeling of GDP and CPI, and we show that one lag is
generally optimal. We demonstrate that the Mean Squared Forecasting Error
(MSFE) is smallest for the mortality model with both the log GDP and the log
CPI. This paper provides evidence for how observable factors can improve the
forecasting of mortality dynamics, which is useful for actuaries and demogra-
phers. Moreover, we study the effect of structural breaks in the time-varying
factors, which was first proposed by Van Berkum et al. (2016). We find that
structural breaks in the time-series do not improve the forecasting performance
of our mortality models.

This paper is set out as follows. Section 2 studies the long-term relation-
ship between CPI and mortality. We will introduce the three mortality models
related to economic growth in Section 3. In Section 4, we study the perfor-
mance of the mortality models using data from the USA, Canada, Australia,
and France. Section 5 concludes. The appendix provides supplementary findings
on the model with structural breaks.

2 Lee-Carter model and CPI
2.1 LC Model

In this section, we first define the well-known Lee-Carter model (Lee and Carter,
1992). The mortality data is available for the years ¢ = tg,...,T and ages
T = xg,...,X, where T denotes the present. In a given sample, the death rate
is given by

Dm,t

Mz,t = FoR
x,t

(1)

where D, ; is the number of people at age x that are deceased in year ¢, and
E,; is called the exposure, which is the number of people at age x in year ¢.
The Lee-Carter (LC) model is defined as follows:

log(Mr,t) =0y + Bmﬂt + Exty (2)

with €, ; being errors with mean zero that are uncorrelated with ;. In the
classical LC model, the normalizations are given by

T X
D ki=0,Y Ba=1
t=to T=xq

However, Liu et al. (2019a,b) propose the following normalization:

X
> o =0, (3)

=0

Z ﬁm =1. (4)

T=X0



We decide to use the normalization in (3)-(4), because the restriction ZtT:tO Kt =
0 may lead to inference pitfalls (Leng and Peng, 2016), and Liu et al. (2019a,b)
show that this original normalization may lead to inconsistent estimators.
From (3)-(4), it directly follows that the estimated value of k; is equal to
Zf:xn log(M,). Moreover, we estimate a, and 3, via Ordinary Least Squares
(OLS) as in Liu et al. (2019b). For forecasting, we assume that x; has a unit
root as shown by Liu et al. (2019b), and follows a random walk with drift:

Kt =h~+ Ki—1 + G,y (5)

where (; being a white noise error term. Here, the parameter h represents the
expected first difference of k.

2.2 CPI and mortality dynamics

Niu and Melenberg (2014) show that GDP is an important macro-economic
factor that can help to model and forecast log death rates. In this paper, we
argue that CPI is a better indicator to measure a country’s economic situation
and the living standards of its citizens. We are interested in the effect of CPI
on log death rates and whether CPI will be a better factor than GDP to explain
the trend of future mortality dynamics. Furthermore, we will use both CPI and
GDP to estimate and forecast mortality. We define the two economic growth
factors as follows:

T
1
Ct = ].Og(CPIt) — m t/:g . log(CPIt/)7 and (6)
1 T
=1 DP) - — 1 DPy
Gy = log(GDP,) T to+1 t;:to og(GDPy), (7)

where the log refers to the natural logarithm. Here, the factors ¢; and G; repre-
sent the zero-normalized, time-t values of the log CPI and log GDP, respectively.

We use mortality data for females! in the countries USA, Canada, Australia,
and France, and this data set is available in the Human Mortality Database
(HMD). We have data for agesxz = 0, ..., 110 and time periods t = 1970, ..., 2018,
so that we denote xp = 0, X = 110, to = 1970, and T" = 2018. The data on
the CPI and GDP are obtained from the OECD database?:3. The GDP data
is corrected for inflation to the 2021 price level and under the 2021 purchasing
power parity (PPP).

11In this paper, we only study the female populations, but we get qualitative similar results
if we were to use the data for males or both sexes combined.

20ECD (2021), Inflation (CPI) (indicator). doi:10.1787/eee82ebe-en (accessed on June 4,
2022)

30OECD (2021), Gross domestic product (GDP) (indicator). doi: 10.1787/dc2f7aec-en
(Accessed on June 4, 2022)



Variable  Countries p-value (r <0) p-value (r <1)

USA 0.0449** 0.0456**
Canada 0.0041%** 0.5046

ct Australia  0.0090*** 0.7594
France 0.0133** 0.1060
USA 0.0010%** 0.0118**
Canada 0.0010*** 0.0010***

Gy Australia  0.0022*** 0.0822*
France 0.0132** 0.0438**

*** indicates p-value smaller than 0.01 ** indicates p-value smaller than 0.05,
and * indicates p-value smaller than 0.1.

Table 1: Johansen test for both ¢; and G} in relation with «; from the LC model
for all selected countries.

Countries p-value (r <0) p-value (r <1)

USA 0.0010%** 0.0011%**
Canada 0.0027*** 0.0929*
Australia  0.0011*** 0.0756*
France 0.0198** 0.0747*

*** indicates p-value smaller than 0.01 ** indicates p-value smaller than 0.05,

and * indicates p-value smaller than 0.1.

Table 2: Johansen test for the time series G; and ¢; for all selected countries.

Next, we test the long-run relationship between log CPI and mortality. To
do so, we use the Johansen cointegration test on k4 in the LC model and the
zero-normalized value of the log CPI (¢;), where the method to calculate r; is
given by Equation (2) and the p-values of the Johansen test are given in Table
1.

In Table 1, the null hypotheses of 7 < 0 and r < 1 state that there is no
cointegration and one cointegration vector exists, respectively. We find that all
outcomes support rejection of the null hypothesis of r < 0 under a 5% confidence
level. This means that we reject the hypothesis that there does not exist any
cointegration. Thus, we find that there exists a long-run relationship between c;
(from Equation (6)) and the log death rates. This inspires our central question
whether CPI can explain the mortality trend better than GDP and whether the
model with both factors can explain the mortality trend better than a model
with one factor.

Table 1 also confirms the findings of Niu and Melenberg (2014) that the
log GDP factor G, is cointegrated with the mortality trend x;, under a 1%
confidence level for USA, Canada and Australia, and under a 5% confidence
level for France. Thus, both the log GDP and log CPI are good candidates to
study their impact on mortality. Table 2 provides evidence that the factor c¢;
and Gy are also cointegrated, meaning that both factors may jointly pick up a
common economic growth trend.



3 Three mortality models

3.1 LC-GDP model

Niu and Melenberg (2014) use the GDP as a macro-economic risk factor to esti-
mate and forecast the log death rate; the LC-GDP model is the first stochastic
model of mortality with economic growth. The LC-GDP model is given by

log(Mw,t) =0y + /BZL’K‘t + P)’th + Ex,ts (8)

with €, being errors with mean zero that are uncorrelated with x; and Gy,
where M, ¢ is defined in (1) and Gy is defined in (7). We impose the normal-
ization constraints (3)-(4), and moreover cov(kt, G¢) = 0 and (ky,, ..., K1) # 0.
Here, the main contrast with the LC model is that the LC-GDP model consid-
ers (G; as a risk factor that drives the long-term trend in mortality dynamics
instead of the latent factor ;.

The normalization constraints cov(k¢, G¢) = 0 and (ky,,...,k7) 7# 0 are
based on Theorem 1 in Niu and Melenberg (2014). Without these constraints,
it follows that the model parameters are not identified. The proof of this iden-
tification statement in Niu and Melenberg (2014) follows from arguments in
Kuang et al. (2008a), Kuang et al. (2008b), and Nielsen and Nielsen (2014).
Moreover, Boonen and Li (2017) also provide a similar identification result.

Our estimation method is as follows. First, we estimate the parameter
v, via OLS, where v, is the coefficient of G;. Second, we estimate x; as
Zf:m (log(My ) — v5G¢), and then the parameters «, and 3, are estimated
via OLS as in the LC model, but we now use log(M, ;) — v, G; as the dependent
variable.* Note that since we use the normalization of Liu et al. (2019a,b) in
the LC-GDP model, the estimation in this second step is different compared
with Boonen and Li (2017).

3.2 LC-CPI model

In this subsection, we introduce our first new model of this paper: the LC-CPI
model. This model considers CPI as an observable risk factor that captures the
long-term trend of mortality, instead of GDP. The LC-CPI model is given as
follows:

log(M:c,t) =a; + ﬂx“t + TeCt + Ex ty (9)

with e, being errors with mean zero that are uncorrelated with x; and ¢, and
with normalization constraints (3)-(4), cov(ks, ¢t) = 0, and (kyy, ..., k1) # 0.
Here, M, is defined in (1). Compared with the LC model, we add the factor
¢ which is defined in (6).

Both the LC-GDP and the LC-CPI model are estimated in two steps. In
the LC-CPI model, the value of 7, is interpreted as the sensitivity of log(M, ;)
at age = to variations in c¢;. If we were to reverse the estimation steps, then
the constraint cov(ky,c;) = 0 is typically violated, and also we then implicitly

4Orthogonality of x; with G is imposed to enable the two-step estimation. Moreover, if
Kkt is not orthogonal to G¢, the first-step estimates of v, have no immediate interpretation as
the sensitivity of the log death rate at age x to variations in G¢. Similar arguments are used
for the LC-CPI and LC-GDP-CPI models, which are defined later in Sections 3.2 and 3.3.



impose the constraint Zf:mo 7, = 0. It is an undesirable constraint because it
implies that there exists some age groups that have an opposite sensitivity to
¢; than the other age groups.

3.3 LC-GDP-CPI model

In this subsection, we merge the LC-GDP and LC-CPI models and denote this
model as the LC-GDP-CPI model. It is defined as follows:

IOg(Mx,t) =a; + ﬂx”it + ’Y:cGt + TeCt + Exty (10)

with €, + being errors with mean zero that are uncorrelated with &, G and ¢;. In
this model, we consider both the variations of GDP and CPI that simultaneously
affect mortality rates. The LC-GDP-CPI model is the combination of the LC-
GDP model (Section 3.2) and the LC-CPI model (Section 3.3). We impose
the same normalization constraints as in the LC-GDP and LC-CPI models,
which are (3)-(4), (kt,.-.,kT) # 0, cov(ke, ;) = 0 and cov(ke, G¢) = 0. The
estimation technique is similar to the LC-GDP or LC-CPI model. We first apply
an OLS estimation of the parameters v, and 7,. Thereafter, we estimate x; as
Zf:ro (log(My.+) =72 Gt —Tyct), and the parameters a, and §; are estimated via
an OLS as in the LC model, but with log(M, ;) — .Gt — Txc; as the dependent
variable.

3.4 Modeling of time series

In this section, we specify the time-series models used for forecasting. We first
focus on the model for the macro-economic factors (¢;, G¢), and then we focus
on the model for x;, which is assumed to be orthogonal to the macro-economic
factors that are included in the particular mortality model.

We use the Augmented Dickey-Fuller (ADF) test and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test to test for stationarity of ¢; and Gy. The null hy-

Variable  Countries ADF test KPSS test
USA —3.2656***  1.0834***
Canada —3.8451***  1.1135***
“ Australia —3.8767**  1.1186™*
France —4.7172%**  1.0981***
USA —2.8735%**  1.1212***
G Canada —3.1375***  0.9945***
t Australia  —2.2861**  0.9883***
France —3.0475***  1.0537***

Notes: The critical values for the null hypothesis in the ADF test are -1.6115
for p < 0.1, -1.9468 for p < 0.05, and -2.6136 for p < 0.01. The critical values
for the null hypothesis in the KPSS test are 0.1190 for p < 0.1, 0.1460 for
p < 0.05, and 0.2160 for p < 0.01.

Table 3: Test statistics of the two unit root tests for ¢; and Gy.

pothesis in Table 3 is that the variable has no unit root in KPSS test and it



does have a unit root in ADF test. In other words, under the null hypotheses,
the variable is stationary in the KPSS test and it is not stationary in the ADF
test. Table 3 shows that both ¢; and G; reject the null hypotheses under a
5% confidence level in both the ADF and KPSS tests; this is a contradictory
conclusion. In such case, we chose to rely on the conclusion of the KPSS test,
because Kwiatkowski et al. (1992) argue that there exists a unit root in most
economic time series. Thus, GG; and ¢; both have a unit root.

For the LC-GDP and LC-CPI models, we prefer to use the same model
formulations as in Niu and Melenberg (2014) and Boonen and Li (2017), re-
spectively. We model and forecast the log GDP factor G; and the log CPI
factor ¢; with a unit root as random walks with drift, which coincides with the
time-series model in (5).

Next, we aim to select an appropriate time-series model for the log CPI
and log GDP factors (ct, Gt) in the LC-GDP-CPI model. Since ¢; and G
are both shown to have a unit root, we propose modeling y; := (¢¢, G¢) with
a VECM model (see, e.g., Agbonlahor, 2014). The VECM(p — 1) model for
Ay, =y — yr_1 is defined as follows:

p—1
Ay, =c+dt + AB'y; 4 +Z¢¢Ayt4 + Ut (11)
i=1

where d is the constant time-trend parameter, and A and B are parameters
that represent the adjustment speed and the cointegration matrix, respectively.
Moreover, v, is a Gaussian i.i.d. error term with zero mean.

By constructing a VECM model, we can account for the long-run relationship
between the log GDP and log CPI factors. In order to select the number of lags
in the VECM model of y;, we first use the VAR(p) model to find the optimal
number of lags p, and then we construct the VECM(p — 1) model. The VAR(p)
model is given by:

P P
Ct = )\c + Z ¢c,c7ict—i + Z ¢C,G7iGt—i + Ct717 (12)
i=1 i=1
P P
Gy =Ag+ Z G c,iCt—i + Z 0c.¢,iGi—i + (.2, (13)

i=1 i=1

where (. i N(0,%). Here, ¢, represents the coefficient for the lagged
dependent variable a € ¢, G and the lagged independent variable b € ¢, G at
lag i. We need to select the number of lags, i.e., select the value of p in (12)-
(13). To do so, we use the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC'), which are given by:

AIC = —2log(L) + 2k, (14)
BIC = —2log(L) + log(n) - k, (15)

where L is the maximum value of the likelihood function for the model assuming
Gaussianity and homoscedasticity over time of all error terms, & is the number of
estimated parameters in the model, and n is the size of the sample. The model
that is endowed with the lowest AIC or BIC is then subsequently selected as



the best model. We refer to Yang (2005) for an overview of the differences
between the AIC' and BIC values.

Countries Number of lags p AIC BIC
1 -382.44  -372.45
2 -409.31*%  -392.94*
USA 3 -398.73  -376.17
4 -384.29  -355.79
5 -376.82  -342.61
1 -366.21  -356.23
2 -408.03*  -391.65*
Canada 3 -393.47  -370.92
4 -376.07  -347.57
5 -358.91  -324.69
1 -349.30  -339.31
2 -375.26  -358.88*
Australia 3 -380.38*% -357.83
4 -368.42  -339.92
5 -365.24  -331.02
1 -367.26  -357.28
2 -419.14*%  -402.76*
France 3 -405.49 -382.94
4 -393.12  -364.62
5 -386.42  -352.20

* indicates the smallest value of AIC or BIC in that country.

Table 4: Model selection criteria AIC and BIC for the VAR (p) model of (¢, Gy),
where p is the number of lags.

As shown in Table 4, the AIC value is the smallest when there are two
lags (p = 2), except for Australia that has the smallest AIC value when p =
3. Moreover, the BIC value is smallest when p = 2 in all selected countries.
Therefore, we select p = 2 as the optimal number of lags in the VAR(p) model,
and thus we will use the VECM(1) model to estimate and forecast (c¢, Gt).

To select the distribution of x; in the LC-GDP, LC-CPI, and LC-GDP-CPI
models, we first perform the ADF and KPSS tests. The test statistics are shown
in Tables 5 and 6. We find that x; is non-stationary based on both the ADF
test and the KPSS test, and Ak; is stationary in most cases. We model k; as
an ARIMA (p,1,q) model, given by:

p q
ARy = Ak + sz’Alit—i + Z Yiei—j + (s (16)

i=1 j=1

where (; is a white noise error term. We select p and ¢ based on the AIC and
BIC model selection criteria.



Test Models USA Canada Australia  France

LC 4.3004 6.8392 4.5817 6.2588
ADF LC-GDP 0.0818 -0.7533 0.3277 -0.6591
test LC-CPI 0.1740 -0.4282 0.4086 0.0624

LC-GDP-CPI  0.1403 -0.7377 0.3509 -0.7435

LC 0.5565***  0.7852***  0.3567***  (0.1406*
KPSS LC-GDP 0.3955***  0.5488***  0.6770***  (0.9842***
test LC-CPI 0.6429***  1.0632***  1.0655"**  1.0756™**

LC-GDP-CPI  0.5618***  0.1710***  0.1643***  0.1481**

Notes: The critical values for the null hypothesis in the ADF test are -1.6115
for p < 0.1, -1.9468 for p < 0.05, and -2.6136 for p < 0.01. The critical values
for the null hypothesis in the KPSS test are 0.1190 for p < 0.1, 0.1460 for
p < 0.05, and 0.2160 for p < 0.01.

*p <01, *: p<0.05, ***: p <0.01.

Table 5: Test statistics for the unit root test for s;.

Test Models USA Canada Australia  France
LC -4.6912***  -3.4294***  -6.7462*** -5.1377***

ADF LC-GDP -6.5518***  _5.7238***  -9.9633***  -7.1384***

test LC-CPI -7.5109***  -6.2875***  -9.0265***  -5.7209***

LC-GDP-CPI  -7.2538*** -5.4602*** -9.6840*** -6.9622***

LC 0.0813 0.0733 0.0295 0.0460
KPSS LC-GDP 0.0653 0.1014 0.0202 0.1375*
test LC-CPI 0.0613 0.1668"* 0.0283 0.1971**

LC-GDP-CPI 0.0629 0.0884 0.0255 0.0905

Notes: The critical values for the null hypothesis in the ADF test are -1.6114
for p < 0.1, -1.9469 for p < 0.05, and -2.6148 for p < 0.01. The critical values
for the null hypothesis in the KPSS test are 0.1190 for p < 0.1, 0.1460 for
p < 0.05, and 0.2160 for p < 0.01.

1 p<0.1,*: p<0.05 ***: p<0.01.

Table 6: Test statistics for the unit root test for Ax;.

The model selection criteria AIC and BIC are shown in Table 7, and in case
of a conflicting model selection we chose to follow the recommendation according
to the BIC. We find that k; is best modelled as a random with a drift in the
USA in all mortality models. Moreover, for all mortality models, we choose the
ARIMA(2,1,2) model in Canada. In Australia, we select the ARIMA(0,1,1)
model for the LC-GDP and LC-GDP-CPI models and ARIMA(2,1,2) for the
LC-CPI model. Finally, in France, we select the ARIMA(1,1,2) model in the
LC-GDP model and the ARIMA(1, 1, 1) model in the LC-CPI and LC-GDP-CPI
models.

Model Countries AIC BIC
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USA (

Canada  (

LC-GDP Australia  (
(

France

USA (
Canada  (
Australia  (
France  (

LC-CPI

USA

(
LC-GDP-CPI Canada E
(

0,0

2,2
Australia (3,2
France 1,1

)

)

Table 7: The optimal number of lags of x; in the ARIMA(p,1,q) model.

4 Estimation and performance

In this section, we discuss the estimation and show the in-sample and out-of-
sample performance of all four mortality models that we study in this paper.

4.1 Estimation

With the normalization of Liu et al. (2019a,b), «, represents the deviations
from the average log death rate of log(M, ;) for each age .

We expect that the estimated parameters a, in the models including the
economic growth factors vary more than estimates of a, in the LC model,
because k; in the LC model is latent and selected as the optimal age-invariant
factor while the log CPI and the log GDP are observable age-invariant factors.
Indeed, the estimates of «, displayed in Figure 1, are in line with our intuition.

Furthermore, since the CPI is highly correlated to the GDP, we consider
that the estimates of a, in the LC-GDP model are similar as the ones in the
LC-CPI model, and Figures 1(b) and 1(c) verify this. Also, we expect that
the estimates of «, for the populations in the LC model, displayed in Figure
1(a), should be similar to those in the other models. For French children aged
between 0 and 17, this figure shows substantial differences compared to other
countries for the LC-GDP and LC-CPI models, whereas the difference in the
LC-GDP-CPI model is smaller (see Figure 1(d)).
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Figure 3: The estimates of x; in all selected countries based on the four mortality
models.

The parameter (3, represents the age-dependent sensitivity of log(M, ;) to
the latent factor x;, and we display the estimates of 3, in Figure 2. For the
LC model, the parameter 3, captures the sensitivity to a long-term time trend
of mortality dynamics. For the other mortality models, we do not find a clear
common pattern in the estimates of 5,. Due to our normalization (3)-(4) as in
Liu et al. (2019a,b), the estimate of k; is equal to the aggregate log death rate
in year t. Generally, the aggregate log death rates have a decreasing trend, and
this decreasing trend may at least partially be due to economic growth. The
estimates of x; in the LC-GDP model (Figure 3(b)), the LC-CPI model (Figure
3(c)) and the LC-GDP-CPI model (Figure 3(d)) do no longer display a strong
trend as in the LC model (Figure 3(a)). So, although ; is non-stationary (recall
Table 5), k; displays a weaker trend than the macro-economic factors that are
considered in the model. We interpret this as that the economic growth factors
are suitable to predict the decreasing trend in the mortality rates.

The parameters vy, and 7, represent the age-dependent impact to log(M, +)
of Gy and ¢y, respectively. Generally, when we consider a model including one
economic growth factor (the LC-GDP and LC-CPI model), the impact of the
economic growth factor on log death rates is negative and decreases as age
increases (see Figures 4(a) and 4(c)). In these two models, this indicates that
the economic growth factor always negatively influences mortality. For the LC-
GDP-CPI model, this impact is less clear. We see that ¢; often has a positive
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Figure 4: The estimates of ~y, and 7, for all selected countries based on all four
mortality models.

coefficient 7,. The net impact of CPI on log death rates can however still be
negative because GDP and CPI are positively correlated and the estimates of
v, are generally negative.

4.2 In-sample performance

We study the in-sample goodness of fit of our models. To do so, we first compute
the R? for every model. For a given model, this is given by

X —_—
B S 5L, (og(M,,) — log(M ,))?
X
S S (08(My ) — by Sty log (Mo )2

where log(M, ;) is the observed value of the log death rate at age « and year

R2 =1 s (17)

t, and lom +) gives the model-based estimated value of the log death rate at
age x and year t. The higher the value of R?, the better the goodness of fit.
Table 8 displays the values of R? for all four different mortality models and
the four selected countries. The LC-GDP-CPI model yields the largest value
of R?, and the LC-CPI model yields the second largest value in all countries,
except for the USA. Thus, the mortality models including CPI have a larger
goodness-of-fit than the LC-GDP model, providing some empirical evidence
that CPI is a better macro-economic factor to explain mortality dynamics than
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Model USA Canada Australia France

LC 0.8933  0.8691 0.8552 0.9397
LC-GDP 0.9067  0.8757  0.8671 0.9509
LC-CPI 0.9080  0.8802  0.8689 0.9516

LC-GDP-CPI 0.9344* 0.8832* 0.8745* 0.9531*

* indicates the maximal value of R? for that country among the four mortality
models.

Table 8: The R?, defined in (17), for all four mortality models and all four
selected countries.

GDP. Furthermore, Table 9 shows proportion of variance explained by the time-

Country  Parameters LC model LC-GDP model LC-CPI model

For 0.8933 0.0284 0.0368

G, 0.8782
UsA c 0.8712
Total 0.8933 0.9067 0.9080
For 0.8691 0.0199 0.0561

G, 0.8558
Canada c 0.8241
Total 0.8691 0.8757 0.8819
For 0.8552 0.0263 0.0789

. G, 0.8408
Australia o 0.7900
Total 0.8552 0.8671 0.8689
For 0.9397 0.0648 0.1887

France G, 0.8861
c 0.7630
Total 0.9397 0.9509 0.9516

Table 9: The proportion of variance explained by the time-varying factors in
the LC model, the LC-GDP model, and the LC-CPI model.

varying factors k;, Gy and ¢;. Both factors G; and ¢; substantially reduce
the goodness of fit of the latent factor x;. This is consistent with our above
consideration that economic growth factors can explain log(M, 1), and it verifies
that the economic growth factor is indeed correlated with the mortality trend.

It is well-known that the value of R? will go up when the models are nested.
The mortality models here are nested, as the LC model is a special case of all
other models and the LC-GDP and LC-CPI models are special cases of the LC-
GDP-CPI model. Therefore, it is expected that the LC-GDP-CPI model has the
largest R? value compared with other models. Therefore, we also consider the
adjusted R?, denoted by Rgdj, to determine the in-sample model performance.
The RZ,; is given by

n—1
n—k’

R%, =1—(1—-R?%

adj (18)
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where R? is defined in (17), n is the sample size, the value of k is the number
of independent variables in the model. Here, dej includes a penalty term for
the number of independent variables.

Model USA Canada Australia France

LC 0.8930  0.8688 0.8548 0.9396

LC-GDP 0.9063  0.8752 0.8666 0.9508

LC-CPI 0.9077 0.8799 0.8685 0.9515

LC-GDP-CPI 0.9340* 0.8826* 0.8739* 0.9530*
2

* indicates the maximal value of R- . in that country.

adj
Table 10: The Ridj based on the four mortality models in the four selected
countries.

Table 10 displays the values of RZdj for all selected countries, and we find
that Ridj yields the same conclusion as the values of R? in Table 8. The LC-
GDP-CPI model still has the best goodness of fit.

Besides Ridj, we also study the AIC and BIC values for model selection;

see (14)-(15) for the definition. Table 11 shows the AIC and BIC values for

Criteria Model USA Canada  Australia France
LC -15890  -13092  -11685 -15842

AIC LC-GDP -16541 -13316 -12012 -17353
LC-CPI -16665 -14025*%  -12292 -17419
LC-GDP-CPI  -18274* -14023 -12951%* -17428*
LC -15286  -12488  -11080 -15238

BIC LC-GDP -15633 -12408 -11104 -16445
LC-CPI -15757 -13117%  -11384 -16511%*

LC-GDP-CPI  -17063* -12812 -11739%* -16217
* indicates the minimal value of AIC or BIC in that country.

Table 11: The AIC and BIC values for the four mortality models in the four
selected countries.

all four mortality model and all selected countries. From this table, it follows
that the in-sample goodness-of-fit is the best for the LC-GDP-CPI model. The
LC-CPI model has the smallest AIC and BIC' in some cases, but the differences
between the LC-CPI and LC-GDP-CPI models are not large.

We next use the mean squared forecast error (MSFE) to study the out-of-
sample forecasting performance. We fit the mortality model on the data with
year t € {tg,...,u} for jump-off year u € {to,...,T — 1}. Then, we forecast

the mortality rates for the period v + 1,...,7T, and denote by logT]\/[\x#t) the
forecasted value of the log death rate. The MSFE is then given by:

T X
> ) (log(My) —log(M,,,))%,  (19)

t=u+1zx=x0

1
MSFE() = - X — 2o 7 1)

with u € {to,...,T — 1} the jump-off year, and where log(M, ;) is the observed

log death rate. In Table 12, u is equal to the year 2009, so that the forecasting
is evaluated based on the last 9 years in the sample.
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Model USA Canada Australia France

LC 0.0175  0.0314* 0.0375 0.0148
LC-GDP 0.0181  0.0342  0.0351 0.0211
LC-CPI 0.0158  0.0345  0.0338* 0.0185

LC-GDP-CPI 0.0125% 0.0332  0.0345 0.0127*

* indicates the minimal value of MSFE in that country compared with other
models.

Table 12: The MSFE for all selected countries based on the four different mor-
tality models with u = 2009, where MSFE is defined in Table 19.

The MSFE values in Table 12 indicate that the LC-GDP-CPI model per-
forms best in out-of-sample forecasting, and the LC-CPI model performs better
than the LC-GDP model in all selected countries, except in Canada. So, in-
cluding the CPI as one economic growth factor instead of the GDP reduces the
MSFE, and it can therefore improve the mortality forecasts.

Table 12 only considers the jump-off year u = 2009. We next consider mul-
tiple jump-off years, because we wish to obtain more evidence to check whether
the new models (LC-CPI and LC-GDP-CPI models) persistently perform bet-
ter than the LC and LC-GDP models. Therefore, we also fit the four mortality
models for all selected countries up to the jump-off years u € {2009, ...,2017}.
Then, we used data range from 1970 to year u to find the estimates of the
parameters, and then we used these estimates to forecast log(M, ;) for time ¢
between u+ 1 and 2018, and compute the MSFE. In this way, we assess whether
the forecasting accuracy is stable in the mortality models.

Figure 5 shows the value of MSFE based on different models and different
jump-off year in all selected countries. The LC-GDP-CPI model gives the min-
imal MSFE in all selected countries, Moreover, the model with one economic
growth factor cannot forecast mortality better than the LC model in Canada or
France. For France this poor performance may be due to the weak cointegration
relationship between ¢; and x; (recall Table 2), and it implies that one economic
growth factor is not enough to explain the mortality trend. On the other hand,
in most cases, the model including both the GDP and the CPI can effectively
reduce the forecasting error.

4.3 Structural breaks

In Section 3, we argue that a main trend in mortality is given by the macro-
economic factors, or x; in the LC model. We forecast these time-varying factors
via an ARIMA(p,1,q) or VECM model. This implies that the mortality dynam-
ics are non-stationary and there may be a non-linear mortality trend. However,
one may question whether structural breaks may occur in this trend. With
a structural break, the trend in the time-varying factors is assumed to be an
ARIM A(p, 1, q) model on subintervals of the time horizon. To test for struc-
tural breaks, we adopt the method of Van Berkum et al. (2016). This method
was inspired by the ideas of Zeileis et al. (2003) and Li et al. (2015).

For selecting the number of structural breaks and the break points them-
selves, Van Berkum et al. (2016) propose two methods. The first method is to
use an F-test as proposed by Bai and Perron (1998, 2003). The second method
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Figure 5: The comparison of MSFE in the four selected countries and based on
all four different mortality models.

is to select the one with the lowest BIC' value. We use the second method
because the estimator based on the optimal BIC' value is consistent with the
true number of break points (see Yao, 1988). Hence, we use the BIC value as
our main criterion, and the corresponding outcomes are shown in Table 13 in
Appendix A.

We next use the optimal break points, and determine the out-of-sample
forecast performance via the MSFE. It is clear that the MSFE values, given in
Figure 8 in Appendix A, in the models with break points are larger in most
cases than those in the models without structural breaks. Thus, since we want
to select the model with the best out-of-sample performance, we will no longer
consider the mortality models with structural breaks, and continue to focus on
the full-period sample for forecasting mortality.

5 Forecasting mortality

In this section, we provide the forecasts of our four mortality models in the
USA. We generate 10,000 Monte Carlo simulations, and forecast log(M, ;) at
age x = 85 and the period life expectancy (LE) at birth. The uncertainties
follow from the random projections of the time-dependent factors. The period
LE is defined by, e.g., Shkolnikov et al. (2011). Recall that the sample is from
1970 to 2018, and we forecast the two variables for 30 years with the forecasting
window from 2019 to 2048.

Figure 6 shows the forecasts of log(M, ;) for age 2 = 85 in USA under the
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Figure 6: Forecasting log(M, ) for x = 85 in the USA based on the four
mortality models.

four mortality models. For instance, the LC model yields an decreasing trend in
the forecasts of the log death rate, and the 95%-confidence interval (CI) reaches
the interval [—2.71,—3.03] at year 2048. All four mortality models, including
the ones with only one macro-economic factor, give an optimistic projection of
future mortality rates as they display a decreasing trend, but also show a small
jump upwards in the first period of the forecasting window. The LC-GDP-CPI
model is the most conservative model with the widest confidence intervals, and
yields only a small expected decrease in the log death rates of an 85-year old in
the forecasting window. Djeundje et al. (2022) show that many demographically
developed countries experienced lower mortality improvement rates after 2011,
and this is consistent with the LC-GDP-CPI model.

Figure 7 displays the period LE at birth in USA based on the four mortality
models. The solid line is the expected period LE and black dash line is the 95%-
CI. The LC model, LC-GDP model and LC-CPI model all yield an increasing
trend, and the period life expectancies reach around 84 at the end of forecasting
window. The LC-GDP-CPI model shows however a less optimistic period LE
than other three models, with less than 82 years in the year 2048, and this is
consistent with the findings of Figure 6.
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Figure 7: Period life expectancy (mean and 95%-confidence interval) in years
for the USA based on the four mortality models.

6 Conclusion

This paper studies the impact of CPI on mortality dynamics, and how CPI can
help to better predict future mortality. We use the log CPI as factor in mortality
models, as the CPI closely approximates the costs of living for individuals. Our
findings for the United States, Canada, Australia and France show that both
the in-sample and out-of-sample performance is better if one replaces the log
GDP in the model of Niu and Melenberg (2014) with log CPI.

The in-sample and out-of-sample performance are best for the mortality
model that includes both the log GDP and log CPI factors, and this is evidence
that economic growth helps us to model future trends in mortality. The in-
sample performance of this model is also better than the Lee-Carter model,
which uses one optimal but latent time trend. It is thus better to use the two
observable time trends of log GDP and log CPI.

In conclusion, this paper proposes a new factor of economic growth to in-
crease the accuracy of forecasting mortality. For further research, we suggest
a more granular approach to study the impact of the standard of living on
mortality dynamics.
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Appendices

A. Structural break outcomes

Computational Statistics €& Data Analy-

Model Countries Number of break points BIC Final break-point
USA 5 4.6942 1986
LC Canada 5 38.0183 1987
Australia 5 56.1860 1986
France 5 37.4615 1995
USA 4 -203.5872 2001
LC-GDP Canada 4 -199.4683 2005
Australia 4 -218.0377 1994
France 4 -215.6357 1990
USA 4 -227.1176 1997
LC-CPI Canada 4 -250.8454 1991
Australia 4 -232.3443 1991
France 4 -251.9535 1992
LC USA 1 -534.4544 1982
GD_P Canada 1 -525.3156 1996
CPI ) Australia 1 -463.6942 2004
France 1 -541.6455 1981

Table 13: The optimal number of break points with its BIC value and final
break point year for all models and selected countries.
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Figure 8: The comparison of MSFE in the four selected countries and based on
the four mortality models with structural breaks.
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