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Abstract

This paper presents a model of a multi-divisional firm to share the joint yet uncertain

and fixed cost of running a central operational unit. A firm aims at allocating this cost ex

ante, subject to constraints imposed by the asymmetric and limited liabilities of the different

divisions. We study solutions that are made up of a vector of ex ante payments which are

allocated in absence of costs, and a remaining solution that is contingent on the cost. Under

a mild continuity condition we find different classes of egalitarian solutions. The class of

egalitarian proportional solutions is characterized by dependency on the disutility of the total

cost instead of details of the distribution. In this class, there is a unique proportional solution

which systematically minimizes the maximal transfer. A fundamentally different egalitarian

solution is the stochastic egalitarian constrained equal costs solution. It is characterized

using a local symmetry property which states that incremental costs should be distributed

equally among those divisions with sufficient liability. This egalitarian solution has a smaller

largest transfer than any egalitarian proportional solution. We conclude by showing how

our results generalize when egalitarianism is replaced by a more general fairness property.

Keywords: stochastic cost allocation, egalitarian solution, rationing, constrained equal awards
rule, proportional rule.
JEL Classification: C79, D31, D81, M41.

1 Introduction

Consider a multi-divisional firm with a central service unit - to which each of n divisions have
equal access. Running this shared facility is costly and the divisions are charged for the full and
uncertain cost. We will focus on cost allocation, and study for ex ante contracts that the firm
may use to share the ex post realized cost. The firm puts upper bounds on the liability of a
division, just as long as the total of maximal liabilities is enough to cover the costs arising in the
worst-case scenario. The maximal liabilities of the divisions may be the result from exogenous
risk capital allocations within the firm, and are limiting the divisions’ capacity to bear risk (see,
e.g., Myers and Read, 2001).

We assume that it is up to a benevolent manager to allocate the random cost, which is con-
sidered a social bad, among the divisions. We propagate an allocation of the total cost that
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reconciles the possible asymmetric way in which the divisions can be ultimately be held respon-
sible for upon realization of the cost. In this paper we take egalitarianism as the fundamental
principle that should govern the allocation, which means that ideally the realizations of the cost
are shared equally by the divisions. However, this is not necessarily feasible in case liabilities are
different and the realized cost is in this respect high enough. In such scenarios the divisions with
high liabilities may have to contribute more than those with low liabilities. Despite the fact that
the divisions cannot be treated equally in those cases, we will cherish the idea of cost allocations
that are symmetric functions of the liability profiles.

We pose the question whether symmetric ex ante solutions exist according to which all agents
face the same ex ante disutility level, even if this requires asymmetric solutions to realized
instances of the constrained cost allocation problem. In order to make sense of intercomparison
of the agents, we will assume that all have the same beliefs regarding the underlying probability
distribution, and assume that all try to minimize an expected cost with possible subjective but
homogeneous probabilities. We interpret this expected cost as disutility. Using the same disutility
function for the collective of agents makes the concept of egalitarianism straightforward.

In case the liabilities are not high enough to be able to bear the share of 1/n of the realized
cost, solutions may demand higher contributions from those agents with the higher liabilities.
When such solutions are egalitarian, these agents will be compensated by those with low liabilities
in case of a low realized cost. This compensation scheme via transfers is such that all agents are
assured to be exposed, ex ante, to the same disutility.

One particularly interesting class of solutions is when allocations for these constrained cost

allocation problems are obtained by solving a rationing problem by a rationing rule. A rationing
problem describes the situation in which we allocate a given amount (often referred to as estate)
among a group of agents when the available amount is not enough to satisfy all their claims. A
rationing rule calculates shares for agents such that 1) no agent gets more than his/her claim,
and 2) all get a non-negative share.1 With the realized cost as estate and the profile of liabilities
as claims, each constrained cost allocation problem is the natural counterpart of a rationing
problem. In fact, the constrained cost allocation problem generalizes the rationing problem to
allow for a stochastic cost. Then, each rationing rule can be taken to define a cost allocation
solution. We show that each rationing rule that is continuous in the “claims” component can
be used to define an egalitarian solution. In particular, included are many solutions that are
symmetric as function of the profile of liabilities, meaning that agents are regarded equal and
possible asymmetries between the proposed allocations should be motivated by the differences
in liability. We discuss two special subclasses of solutions therein, one that is generated by
proportional rules and the other is based on the constrained equal awards rationing rule.

Characteristic of the proportional solutions is that all satisfy an invariance property regarding
the underlying distribution of the total cost; as long as the disutility of the total cost is the
same, the cost allocation solution is the same. We prove that egalitarian solutions with this
Invariance to total Disutility Preserving Preferences (IDPP) property are in fact proportional
solutions. The egalitarian solution that we get using the constrained equal awards rationing
rule as generator is denoted as the stochastic egalitarian constrained equal costs (seec) solution.
The solution is characterized as the unique egalitarian solution with the Local Symmetry (LS)
property, according to which marginal increases of the realized cost affect the agent’s marginal
contribution in the same way – for those agents whose liabilities are still not met.

Our aim is to allocate equal cost shares whenever this is feasible. In case the liabilities are
high enough so that we can allocate the share of 1/n of the realized cost, we propose this as the
final settlement of the cost allocation problem. We will refer to this property as Symmetry un-

1For rationing problems in practice and rationing rules see, e.g., O’Neill (1982), Aumann and Maschler (1985),
or the overviews of Moulin (2002), and Thomson (2003, 2015).
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der Sufficient Liability (SSL). A particular proportional solution is introduced as an egalitarian
proportional solution with the SSL property. Additionally, we show that this proportional solu-
tion systematically minimizes the maximal transfers within the class of egalitarian proportional
solutions. More precisely, the vector of transfers generated by this solution Lorenz-dominates
all others used by the egalitarian proportional solutions. Nevertheless, we show that seec also
satisfies SSL and also that it uses a (weakly) lower maximal transfer than does any egalitarian
proportional solution. In particular this means that the vector of transfers according to seec is
not dominated by the vector of transfers corresponding to any proportional solution. We discuss
the egalitarian solution underpinned by the constrained equal losses rationing rule as an example
of a solution that does not even satisfy SSL, despite the fact that the underlying rationing rule
is credited egalitarian properties in the rationing framework.

Whereas egalitarian solutions play a central role in this paper, this does not exclude mean-
ingful deviations from the egalitarian allocation. We finalize this paper by showing that the
strict interpretation of egalitarianism may be relaxed, and that much of the reasoning through-
out the paper can be used to allocate the total cost such that the disutility of agents are desired
proportions of the total disutility. Then this more general set-up bridges the gap between the
theory of allocating a random cost and a social norm. It is the social norm that governs the fixed
proportions of the total disutility ex ante, subject to ex post feasibility defined by the individual
liabilities. And those social norms exogenous to the model may require other proportions in
which the disutility of the total cost is shared ex ante, leading to alternative concepts of fair-

ness. Deviations from pure egalitarianism may be motivated by non-symmetric initially received
contributions to bare the total cost. Our fairness constraint is akin to the financial fairness
condition in risk-sharing (Pazdera et al., 2017). This more general idea of extending a pure
egalitarian setup to fairness only requires a slight adaptation of our original model formulation.
In addition, the fair solutions inherit the very same structure of the pure egalitarianism that is
elemental to the standard cost allocation solutions like seec; basically, the solutions only make a
correction of the transfers at zero cost. The concept of fairness was originally introduced for risk
exchanges by Bühlmann and Jewell (1979). Bühlmann and Jewell (1979) and also Pazdera et
al. (2017) consider the case of risk-sharing, where the agents have initial stochastic endowments
to be shared, and the focus is on the induced incentives for agents to participate or not. In this
paper we concentrate on the fundamentally different problem of allocating the stochastic cost of
a public good.

Habis and Herings (2013) and Ertemel and Kumar (2018) also study stochastic rationing
problems, but where both the estate and the claims are considered stochastic. Like us, the
authors concentrate on ex ante solutions, but with a focus on notions of stability and enhancing
cooperation. Kıbrıs and Kıbrıs (2013), Karagözoğlu (2014) and Boonen (2017) study investment
problems with an endogenous and stochastic estate, which are seen as bankruptcy problems
in case of default and that are solved as such. Instead of investing with risk of a defaulting
counterparty, we concentrate in this paper on a public good of which the cost needs to be
allocated under liability constraints. Hougaard and Moulin (2018) study a problem of sharing
the cost of a stochastic network, where the focus is on determining cost shares ex ante such that
these equal the expectation over the random realization of the network of the shares ex post.
Xue (2018) and Long et al. (2019) study cost-sharing without liability constraints, but with
uncertain claims on a divisible commodity. Their objectives focus on maximizing social welfare
functions based on notions of waste and deficit.

The rest of this paper is organized as follows. Section 2 specifies the model, and Section
3 provides our construction of egalitarian solutions and transfers. The ordering of transfers
is studied in Section 4. Sections 5 and 6 are devoted to defining and characterizing of our
solutions based on the proportional and constrained equal awards rules. Section 7 compares
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these solutions based on a ranking of the transfers. Section 8 provides a generalization of the
concept of egalitarianism to the case where we first exogenously allocate the disutility of the total
cost in the desired ratio to the agents. Section 9 provides a remark in which we explain how our
solution concept can be generalized to situations where egalitarian solutions do not exist, i.e.,
where some of the agents have too low liabilities to take a fair share of the risk. Finally, Section
10 concludes. All proofs are delegated to the appendix.

2 The constrained cost allocation model and solutions

2.1 Mathematical notation

In this paper we will focus on a fixed and finite set of agents N = {1, 2, . . . , n} for some n ∈ N.
Two special vectors will be used frequently: e ∈ RN is the vector with ei = 1 for all i ∈ N , and
0 ∈ RN is the zero vector with 0i = 0 for all i ∈ N . By RN

+ we mean the set of all vectors in
RN with non-negative coordinates, RN

++ is the subset of the vectors with positive coordinates.
For two vectors x, y ∈ RN we will understand x ≤ y element-wise, which means xi ≤ yi for all
i ∈ N . For x ∈ RN and S ⊆ N we define x(S) :=

∑

i∈S xi and xS := {xi}i∈S ∈ RS .

2.2 The constrained cost allocation problem

Agents aim to share the cost of a risky project. The cost of the project, denoted by C, is a
bounded, non-negative random variable on a fixed probability space (Ω,F ,P), where Ω is the
state space, F is the σ-algebra, and P is a probability measure. We assume that the image of C
equals [0, c], where c > 0 is a fixed constant and thus the highest possible realization of C. We
denoted by L∞ the class of all bounded random variables on (Ω,F ,P).

We consider an ordered pair (C,L) ∈ L∞ × IRN
++, where C is the random cost that has to

be allocated to the agents in N under liability constraints, and L is a vector of liabilities. We
assume that the allocation for an agent i is at most equal to its liability Li > 0. This liability of
an agent is the maximal obligation to contribute. Moreover, (C,L) satisfies:

Admissibility: L(N) ≥ c.

Admissibility implies that whatever the realization of the project will turn out to be, the collec-
tive of agents can afford it. Throughout this paper, we assume without loss of generality that L
is an ordered vector, i.e.,

L1 ≤ · · · ≤ Ln.

Let Q be a probability measure on (Ω,F). Below we interpret Q as a subjective probability
measure by which agents value ex ante the disutility of a random variable. Random variables in
L∞ represent random costs that are allocated to an agent, from which the agent incurs disutility.
Throughout this paper, we will only consider random variables X ∈ L∞ such that the ordered
pair (C,X) ∈ (L∞)2 is comonotonic.2 Each agent wants to minimize his disutility V (X), where
V is such that

V (X) = EQ[X ], for all X ∈ L∞ such that (C,X) is comonotonic. (1)

So, V summarizes the ex ante preferences of an agent over random variables. We assume that
Q(C ≤ c) is strictly increasing in c on [0, c̄], so that C has full support on [0, c̄]. The set of all

2The ordered pair (Y, Z) ∈ (L∞)2 is comonotonic if there exists a non-decreasing function h such that

(Y, Z)
d
=(Y, h(Y )).
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such preferences V is denoted V . For instance, the function V can be a representation of the
expectation or of dual utility (Yaari, 1987).3 If V is represented by dual utility, then

V (X) =

∫ ∞

0

gV (1 − FX(x)) dx +

∫ 0

−∞

[1− gV (1− FX(x))] dx, for all X ∈ L∞,

for a left-continuous and strictly increasing function gV : [0, 1] → [0, 1] with gV (0) = 0 and
gV (1) = 1, where FX is the cumulative density function (CDF) of X . Then, Q(X ≤ x) =
1 − gV (1 − FX(x)) for all x ∈ IR. Also, V can represent the preferences of De Giorgi and Post
(2008), that are given by

V (X) = (1− α)EP[X ] + αV̂ (X), (2)

with α ∈ [0, 1] and V̂ a representation of dual utility. Then, the subjective probability measure

of V is given by Q(X ≤ x) = (1 − α)P(X ≤ x) + αQ̂(X ≤ x) for all x ∈ IR, where Q̂ is the
subjective probability measure of V̂ . If α = 0, all agents are risk-neutral and aim to minimize
the expected value of X .

We emphasize that we do not assume heterogeneous beliefs or heterogeneous preferences for
the agents; the same V ∈ V is used by the collective of agents. In case of heterogeneous preferences
we would need to compare interpersonal risk aversion, which can be considered problematic in
several aspects. First of all, there is a complicating factor that there is no way to assure that
agents will reveal their true preferences. For instance, Anthropelos and Karatzas (2017) show
that agents would have an incentive to misrepresent their true risk aversion if it is self-reported.
But even if we would know the true preferences, the problem of ambiguity involved in making
such intercomparison is intrinsically hard to overcome, see Young (1990). This motivates the use
of a “representative agent" model where the agents are assumed to have the same preferences.

We will call the ordered tuple (C,L, V ) ∈ L∞×RN
++×V a constrained cost allocation problem

if (C,L) is admissible and (C,L, V ) satisfies the following condition:

V -sufficiency: L ≥ 1
n
V (C) e.

This means that the liabilities are such that in principle each agent can take a fair share of the
random cost, as measured by V . The set of all such constrained cost allocation problems is
denoted by P .

2.3 Solutions

For each realized cost allocation problem (c, L) that is a combination of a realization c ∈ [0, c] of
C and liability vector L ∈ RN

++, the set of feasible cost allocations is given by:

A(c, L) :=
{

x ∈ IRN : x(N) = c, x ≤ L
}

.

This set A(c, L) is a finite dimensional bounded space, and as the intersection of a finite number
of closed half-spaces it is a (non-empty) convex polytope. In the sequel we will see that there
is no lack of feasible cost allocations, which justifies our focus on cost allocation solutions to be
defined below.

For each (C,L, V ) ∈ P , a cost allocation solution ψ maps every c ∈ [0, c̄] into A(c, L). So
ψ defines a cost allocation for each realization of the total cost, and ψ(C,L, V )(c) ∈ A(c, L) for

3Disutility that is represented as dual utility is alternatively defined as a distortion risk measure (Wang, 1996;
Wang et al, 1997).
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c ∈ [0, c] stands for the cost allocation solution for the realization c of random variable C. Note
that this implies for all (C,L, V ) ∈ P that

ψ (C,L, V ) (c) ≤ L and
∑

i∈N

ψi (C,L, V ) (c) = c, for all c ∈ [0, c]. (3)

Denote by Z the set of all cost allocation solutions (or, in short, solutions). At this point it is
essential to realize that the only restriction on ψ(C,L, V )(0) is that it is contained in A(0, L),
and it is not necessarily equal to the zero vector. If non-zero, the cost allocation when C = 0 is
negative for one or more agents and positive for one or more of the others. Negative cost alloca-
tions are possible in order to allow for compensations between agents. The standard literature
on distributive justice is more restrictive in this sense, and allows for non-negative shares only.

Below we will discuss several classes of solutions, which all satisfy the following weak mono-
tonicity property – which we think is compelling for any solution:

Comonotonicity: c 7→ ψi(C,L, V )(c) is non-decreasing on [0, c̄] for all i ∈ N .

Comonotonicity expresses the idea that if the total cost C increases, no agent should benefit
by paying less. So, it can be considered a weak property assuring that no agent benefits if the
total cost increases. Note that this assumption implies that X = ψi(C,L, V ) is comonotonic with
C, and is therefore considered admissible as a random variable in (1). The property comonotonic-
ity is closely related to the property resource monotonicity in the literature on (deterministic)
rationing rules (Chun, 1999).

Consider the set Z0 ⊂ Z of all comonotonic solutions ψ that are zero-normalized in the sense
that ψ(C,L, V )(0) = 0 for all (C,L, V ) ∈ P . It is trivial but instructive to see that any solution
ψ can be written as the sum of the solution at 0 cost and a zero-normalized solution ψ0 ∈ Z0,
as follows

ψ(C,L, V )(c) = ψ(C,L, V )(0) + (ψ(C,L, V )(c)− ψ(C,L, V )(0))

= ψ(C,L, V )(0) + ψ0(C,L, V )(c),

for all c ∈ [0, c].
This paper focuses foremost on the class of solutions in Z that we will refer to as standard,

i.e., those ψ ∈ Z for which the corresponding ψ0 ∈ Z0 can be written as

ψ0(C,L, V )(c) = f(c, L, t, V (C)), for all c ∈ [0, c], (4)

where t = ψ(C,L, V )(0) ∈ A(0, L) and f(c, L, t, V (C)) ≤ L − t for all problems (C,L, V ) ∈ P .
Let Zs ⊂ Z be the set of all standard solutions. Then solutions in Zs capture the idea that
asymmetries derived from the liabilities can be neutralized with respect to the preferences using
a profile of ex ante transfers t; after realization of the total cost the ex post cost allocation may
still be influenced by V but only through t and V (C). Note that the upper bound on f is meant
to keep feasibility.

Example 1 The class of proportional solutions Zp ⊂ Zs consists of all solutions ψα given by

ψα(C,L, V )(c) = t+ α(L, t, V (C)) · c, for all c ∈ [0, c], (5)

where t ∈ A(0, L) and α(L, t, V (C)) ∈ RN
+ is a vector such that

∑

i∈N αi(L, t, V (C)) = 1 and
α(L, t, V (C)) ≤ (L− t)/c̄. So, a proportional solution conveys the idea that within each problem
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(C,L, V ) ∈ P the cost is allocated to the agents in a fixed ratio. For the sake of exposition we
will slightly abuse our notation and simplify α(L, t, V (C)) to α, when no confusion arises. ▽

Mathematically speaking, each realized cost sharing problem (c, L) is a rationing problem in
the sense of O’Neill (1982), Moulin (2002) and Thomson (2003, 2015) – only the interpretation
is different. Formally, a rationing problem is an ordered pair (c, L) ∈ R := IR+ × IRN

++ such that
L(N) ≥ c, so that Li is interpreted as the justified claim of agent i on the amount of (a now
desirable) good c. A rationing rule is a mapping r : R → IRN

+ such that for each (c, L) ∈ R we
have

0 ≤ r (c, L) ≤ L and
∑

i∈N

ri (c, L) = c.

While the cost sharing and rationing model have diametrically different interpretations, the
mathematical formulations of a rationing model and a realized cost allocation problem are similar.
The only differences between both formulations are the non-negativity constraints in rationing
problems. The set of feasible cost allocations A(c, L) is a superset of the set of allocations in a
rationing problem. Thus, we may take any rationing rule as a tool to select a cost allocation in
our model. In this way any rationing rule induces a cost allocation solution. Moreover, each zero-
normalized solution ψ0 can be seen as a rationing rule by which for each realization of cost c the
ordered pair (c, L) is assigned a cost allocation ψ0(C,L, V )(c) = ψ(C,L, V )(c)−ψ(C,L, V )(0) ≤
L− t, where t = ψ(C,L, V )(0). It then can be argued that this rationing rule should take L− t
as the vector of liabilities, instead of L. The liabilities in the model serve the goal of specifying
the extent to which agents may be exposed to the total cost, and after having made the ex ante

payment of t the room left for cost allocations is set at the vector L− t.
Let Zr ⊂ Zs be the set of solutions ψ that agree with this idea so that it can be written as

ψ(C,L, V )(c) = t+ ϕV (C)(c, L− t), for all c ∈ [0, c], (6)

where t = ψ(C,L, V )(0) ∈ A(0, L) and ϕV (C) is rationing rule – and that rationing rule may
depend on V (C). Note that while ϕV (C) is a rationing rule, the interpretation of ϕV (C) is that
it constitutes a cost allocation solution.

Example 2 The class of proportional rationing solutions Zpr ⊂ Zp∩Zr consists of all solutions
ψα ∈ Zp based on ϕp related to the proportional rationing rule rp(c, L) := L/L(N) · c, so that4

ψα(C,L, V )(c) = t+ α c = t+ ϕp(c, L− t) = t+
L− t

L(N)
c, for all c ∈ [0, c],

where t ∈ A(0, L). Note that any such solution is feasible due to α = (L− t)/L(N) ≤ (L− t)/c̄.
There is only one proportional solution when L(N) = c̄, which is the proportional rationing
solution. Since in that situation, for fixed t ∈ A(0, L), the only proportion α in (5) that we can
chose is α = (L− t)/L(N). ▽
Example 3 Define cost allocations by ϕec such that ϕec(c, L) = min {λ(c), Li} for i ∈ N , where
λ(c) solves

∑

i∈N

min {λ(c), Li} = c.

Then ϕec is based on the constrained equal awards rationing rule (see Aumann and Maschler,
1985). The class of constrained equal costs solutions Zcec ⊂ Zr consists of solutions ψ such that

ψ(C,L, V )(c) = t+ ϕec(c, L− t), for all c ∈ [0, c],

where t ∈ A(0, L). ▽
4Here, dividing a vector by a positive scalar is understood element-wise.
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Example 4 Define cost allocations by ϕdec (c, L) := L− ϕec(L(N)− c, L). Then ϕdec is based
on the constrained equal losses rationing rule (see Aumann and Maschler, 1985) which is the
dual of the constrained equal awards rationing rule. Then a dual constrained equal costs solution
ψ ∈ Zr can be written as

ψ(C,L, V )(c) = t+ ϕdec(c, L− t), for all c ∈ [0, c],

where t ∈ A(0, L). ▽

3 Egalitarian solutions and transfers

The central issue addressed in this paper is the question how to deal with situations where in-
dividual liabilities are too skewed to be able to see to a pure egalitarian solution for all realized
costs ex post, but that at least ex ante the asymmetric random cost allocation is equally preferred
by all the agents. The leading property is the following. We will call a solution egalitarian if
the agents with homogeneous preferences in V all are subjected to the same disutility, for all
problems in P . Formally:

Egalitarianism: ψ is called egalitarian if V (ψi (C,L, V )) = V (ψj (C,L, V )) for all i, j ∈ N
and all (C,L, V ) ∈ P .

This means that the advocated notion of egalitarianism agrees with the Dutta and Ray (1989)
interpretation. We will see how the vectors of transfers t = ψ(C,L, V )(0) play a key role in
fine-tuning basic solutions to egalitarian solutions. And, particularly, we will need the possibility
of negative cost allocations to accomplish this. Note, however, that comonotonicity implies that
if ψ(C,L, V )(0) is the zero vector, then allocations are all non-negative (and so in line with the
standard literature). In Section 8, the concept of egalitarianism is generalized to the case where
we asymmetrically allocate proportions of the disutility of the total cost to the agents. From (1)
we get that if ψ satisfies comonotonicity, then for i ∈ N

V (ψi(C,L, V )) = EQ[ψi(C,L, V )].

Therefore, any egalitarian and comonotonic solution satisfies

V (ψi (C,L, V )) = 1
n
V (C) , i ∈ N. (7)

This can be taken as additional argument to restrict the attention to V -sufficient constrained
cost allocation problems. Note that admissibility and V -sufficiency are obviously necessary for
an egalitarian and comonotonic solution to exist.

The subclasses of Zr introduced in Examples 2-4 are parameterized by the transfers t when
the realized total cost is zero. The following theorem shows that a mild condition on the rationing
method underpinning a standard solution assures existence of a vector t so that the corresponding
solution is egalitarian.

Theorem 1 Consider ψ ∈ Zr and corresponding ϕV (C) such that ψ(C,L, V )(c) := t+ϕV (C)(c, L−
t) for some t ∈ A(0, L) and all (C,L, V ) ∈ P. If x 7→ ϕV (C)(c, x) is continuous for all c ∈ [0, c̄],
then t = t(C,L, V ) ∈ A(0, L) may be chosen such that ψ is egalitarian.

Theorem 1 provides a condition on ϕV (C) under which there exist vectors of transfers such
that the disutility of agents is the same. However, there may be multiple vectors of transfers.
For each of the members of the previously discussed classes of proportional solutions there exist
unique vectors of transfers that make the solutions egalitarian, as we will show now.
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Theorem 2 The solution ψα ∈ Zp given by ψα(C,L, V )(c) = t + α c for all c ∈ [0, c̄] and

t ∈ A(0, L) is egalitarian if and only if

t = V (C)( 1
n
e− α) and α ≤ L− 1

n
V (C) e

c̄− V (C)
.

Corollary 1 The unique egalitarian solution in Zpr is given by the egalitarian proportional rule

ψep(C,L, V ) := t+ ϕp(C,L − t) with

t =
( 1
n
L(N) e− L)V (C)

L(N)− V (C)
.

Where for the proportional solutions the transfers can be explicitly found, this is not true for
the egalitarian solutions based on either ϕec or ϕdec. Still, we have uniqueness of the transfers
for the egalitarian solution based on ϕec.

Theorem 3 There is a unique egalitarian solution in Zcec.

We define the stochastic egalitarian constrained equal costs (seec) solution by ψseec(C,L, V ) :=
t+ ϕec(C,L − t), where t ∈ A(0, L) is chosen such that ψseec is egalitarian.

Example 5 In this example, we describe two solutions ψ that we will characterize in this paper.
Let V (C) = EP[C], N = {1, 2, 3}, C ∼ Un(0, 10), and L = (2, 3, 8). So, V (C) = 5. It is easily
verified that the problem (C,L, V ) satisfies admissibility and V -sufficiency.

ψ
e
p

i
(C
,L
,V

)(
c)

→

c→-1

1

2

3

4

5

6

-2

0

5 10

Figure 1: Graphical illustration of the egalitarian proportional solution ψep(C,L, V )(c) = t +
ϕp(c, L− t) corresponding to Example 5. The dotted line represents ψep

1 (C,L, V )(·), the dashed
line ψep

2 (C,L, V )(·) and the solid line ψep

3 (C,L, V )(·).

From Corollary 1, we compute a unique vector of transfers t ≈ (1.46, 0.83,−2.29) for the egali-
tarian solution ψep(C,L, V ). Moreover, we derive a unique vector of transfers t ≈ (0.51,−0.13,−0.38)

9



for the egalitarian solution ψseec, defined in Theorem 3. The solutions ψep(C,L, V ) and ψseec(C,L, V )
are displayed in Figures 1 and 2. The solution ψep(C,L, V ) is linear, and the solution ψseec(C,L, V )
is piecewise linear such that marginal contributions due to cost increase are equally shared among
the agents whose liabilities are not fully attained. We see that the transfers of ψseec(C,L, V )
are closer to 0 than the transfers of ψep(C,L, V ). This is the topic of that we study further in
Section 7.

ψ
s
e
e
c

i
(C
,L
,V

)(
c)

→

c→-1

1

2

3

4

5

0

4.47 7.75 10

Figure 2: Graphical illustration of the egalitarian solution ψseec(C,L, V )(c) = t + ϕec(c, L − t)
corresponding to Example 5. The dotted line represents ψseec

1 (C,L, V )(·), the dashed line
ψseec

2 (C,L, V )(·) and the solid line ψseec

3 (C,L, V )(·). Here, the “cut-off” points where the con-
secutive agents become tight are given by approximately (4.47, 7.75, 10).

▽

4 Ranking of transfers

Basically, Theorem 1 says that problems arising in ex post cost allocation due to heterogeneity
in liabilities can be repaired using fixed ex ante payments, so that the resulting solution is still
egalitarian. The idea is that agents who have low liabilities could reimburse the others when they
can. This may be accomplished by letting them contributing more at low realized cost levels,
and in particular by assigning to these agents higher transfers when the cost is zero. Below it
is shown that this reversion of the ordering of transfers relative to liabilities holds for standard
solutions in Zr if the standard solution uses an order preserving component ϕV (C) in (6):

Order preserving (OP): ϕ
V (C)
i (·, L) ≤ ϕ

V (C)
j (·, L) whenever Li ≤ Lj.

5

This property is tantamount to the property discussed by Aumann and Maschler (1985) for
rationing methods – or, here in the framework with costs rather than awards, for mappings

5Note that if ϕV (C) is order preserving, then it also satisfies the weaker and well-known property of equal

treatment : Li = Lj =⇒ ϕ
V (C)
i

(·, L) = ϕ
V (C)
j

(·, L).
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ϕV (C) that are based on a rationing rule. The following result shows a reversion of the ordering
of transfers relative to liabilities if ϕV (C) satisfies OP.

Theorem 4 Consider ψ ∈ Zr as in (6) with order preserving ϕV (C), and assume that x 7→
ϕV (C)(c, x) is continuous for all c. Then for all (C,L, V ) ∈ P we may choose a vector of

transfers t = ψ(C,L, V )(0) such that ψ is egalitarian and Li ≤ Lj =⇒ ti ≥ tj for all i, j ∈ N .

Note that the proportional solutions with ϕV (C)(c, L) = αc preserve ordering if αi ≤ αj ⇔
Li ≤ Lj. Also, both ϕec and ϕdec are order preserving.

5 Characterization of proportional solutions Z
p

In this section, we characterize proportional solutions. The characterization is based on the
following property:

Invariance to total Disutility Preserving Preferences (IDPP): for all (C,L, V ), (C,L, V ∗) ∈
P , if V ∗(C) = V (C) then ψ(C,L, V ∗) = ψ(C,L, V ).

The property IDPP states that for all V ∈ V with the same value V (C), the corresponding
solution is the same. This property implies that solutions depend on V only via V (C). Our next
result shows that this property characterizes the class of proportional solutions.

Theorem 5 An egalitarian ψ ∈ Zs satisfies IDPP if and only if ψ = ψα ∈ Zp with

ψ(C,L, V )(0) = V (C)( 1
n
e− α), and α ≤ L− 1

n
V (C) e

c̄− V (C)
.

6 Characterization of constrained egalitarian solutions Zcec

We impose the following condition on solutions ψ:

Local Symmetry (LS): for all (C,L, V ) ∈ P , i, j ∈ N and c ∈ [0, c], we have

ψi (C,L, V ) (c) < Li, ψj (C,L, V ) (c) < Lj =⇒ ∂
∂c
ψi (C,L, V ) (c) = ∂

∂c
ψj (C,L, V ) (c).

A solution is locally symmetric if the marginal increases of the cost are accounted for by
agents in a similar fashion – as long as the liability constraints are not met. The property LS
states that, ex post, an additional unit in the cost is shared equally among the agents who can
afford it. So, LS is a property that ensures ex post egalitarianism among marginal cost changes.6

Clearly, a solution ψ ∈ Z satisfying LS is comonotonic. In fact, we will show next that such
ψ belongs to the class of constrained equal costs solutions.

Theorem 6 Solution ψ ∈ Z has the property LS if and only if ψ ∈ Zcec, i.e., we have

ψ (C,L, V ) (c) = t+ ϕec (c, L− t) , for all c ∈ [0, c],

for all (C,L, V ) ∈ P and t = ψ(C,L, V )(0) ∈ A(0, L).

6Instead of considering marginal costs, it is easy to see that all results will still remain valid with a notion
of local symmetry that takes care of non-infinitesimal increases of the cost. Rather than working with difference
quotients, we prefer to stick to the present formulation for the sake of the exposition.
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The fact that we may decompose any solution with the property LS in this fashion pins down
a solution if we select transfers. The following is a direct consequence of Theorem 3 and Theorem
6.

Theorem 7 There is a unique egalitarian ψ ∈ Z which satisfies LS, and that is ψ = ψseec.

Remark: In Koster and Boonen (2014), we provide an alternative characterization of ψseec

based on properties stemming from the rationing literature. It relies on properties mimicking
homonymous properties for rationing rules as there are the ideas of consistency, a secured lower
bound, and the composition up property. These properties for rationing rules are translated to
the stochastic context, where the transfers are already paid up-front. Consistency is a general
idea that tells us how a solution behaves over problems with different agent sets (see, e.g.,
Moulin, 2000; Thomson, 2003). The secured lower bound provides a minimal allocation, and
is introduced by Moreno-Ternero and Villar (2004) and popularized by, e.g., Dominguez and
Thomson (2006). The property composition up states that, given an increase of cost, new cost
shares can be allocated from the information of the earlier cost shares alone. This property (and
its dual) were introduced by Moulin (1987) and Young (1988). The characterization in Koster
and Boonen (2014) relies then on the result of Yeh (2008) for rationing problems.

7 Minimizing the use of transfers and symmetry under suf-

ficient liability

This paper focuses on solutions of allocating a stochastic cost when asymmetries between lia-
bilities cause problems. Our intention is to share the stochastic cost equally if this is feasible.
Under sufficient liability, we propose the symmetric solution:

Symmetry under Sufficient Liability (SSL): L ≥ 1
n
c̄ e =⇒ ψ(C,L, V )(c) = 1

n
c e for

all c ∈ [0, c̄].

If every element of the liability vector L is large, then the property SSL requires that the allo-
cated stochastic cost is always the same for all agents. In other words, if 1

n
c e ∈ A(c, L) holds

for all c ∈ [0, c̄], then ψ(C,L, V )(c) = 1
n
c e. This condition is satisfied by ψseec. However, SSL

does not need to hold for proportional solutions, as one may show that SSL is not satisfied by
the solutions in Zpr.

Example 6 Consider the proportional solution ψp which is the egalitarian solution in Zp such
that

α =
ϕec(c̄, L)− 1

n
V (C)e

c̄− V (C)
. (8)

Since ϕec(c̄, L) ≤ L, it holds that α satisfies the condition in Theorem 5, so that egalitarianism
implies

t = ψp(C,L, V )(0) = V (C)( 1
n
e− α).

Also we have α ≥ 0. To see this, suppose that ϕec

i (c̄, L) = min{Li, λ(c̄)} < 1
n
V (C) for some i.

Then by V -sufficiency we must have λ(c̄) < 1
n
V (C), so that

∑

j∈N

ϕec

j (c̄, L) ≤ nλ(c̄) < V (C) ≤ c̄,

12



which provides the desired contradiction. Obviously ψp satisfies SSL, since L ≥ 1
n
c̄ e implies

ϕec(c̄, L) = 1
n
c̄ e, so that α = 1

n
e and t = 0. The proportional rationing solution does not

satisfy SSL. ▽

Consider two transfer vectors x, y ∈ RN that are ordered in descending order. Then we say
that x Lorenz-dominates y if

∑i
k=1 xk ≤

∑i
k=1 yk for all i = 1, . . . , n, and we will write x �L y

in that case. For any t ∈ A(0, L), it holds that 0 �L t. So, this criterion aims to select transfers
that are “closest” to the zero vector.

Theorem 8 Consider an egalitarian ψα ∈ Zp and (C,L, V ) ∈ P. Then if αi ≤ αj ⇔ Li ≤ Lj,

we have ψp(C,L, V )(0) �L ψ
α(C,L, V )(0) for all (C,L, V ) ∈ P.

This means that among the set of transfers generated by the egalitarian proportional solutions,
the one corresponding to ψp has the minimal largest transfer, and given the set of all minimizing
this largest transfers it minimizes the second largest transfer and so on. However, compared to
the proportional solution ψp, the standard egalitarian solution ψseec calculates smaller largest
transfers.

Theorem 9 For all (C,L, V ) ∈ P, it holds ψseec

1 (C,L, V )(0) ≤ ψp

1(C,L, V )(0).

Note that by Theorem 4 and the fact that ϕec satisfies OP, the transfer of Agent 1 is the
largest among the elements of the transfer vector ψseec(C,L, V )(0). So, the intuition is that
ψseec is better equipped for minimization of the largest transfer than ψp, and thus than any
egalitarian proportional solution due to Theorem 8. Whether this comparison is systematic in
the sense that ψseec(C,L, V )(0) �L ψ

p(C,L, V )(0) will be left as an open problem.

Example 7 We return to the problem (C,L, V ) of Example 5, but now we study a solution as
in Example 4. Our aim of this example is to show that the use of egalitarian dual constrained
equal costs solutions may yield a very dispersed transfer vector. We consider the unique vector of
transfers such that ψseerc(C,L, V )(c) := t+ϕdec(c, L− t) is egalitarian. We call this solution the
stochastic egalitarian constrained equal remaining costs solution. The unique vector of transfers
is given by t ≈ (1.67, 1.67,−3.33). Then, we get ψseerc

1 (C,L, V )(c) = ψseerc

2 (C,L, V )(c) = 1.67
and ψseerc

3 (C,L, V )(c) = −3.33 + c for all c ∈ [0, 10]. This solution is such that Agents 1 and 2
pay only their deterministic transfers, and do not bear any risk. All risk due to the total cost C
is borne by Agent 3. This solution is displayed in Figure 3. Note that the transfers are not close
to the zero vector 0. In general, the solution ψseerc(C,L, V ) is piecewise linear.

It is straightforward to check that the solution ψseerc(C,L, V ) does not satisfy SSL. Moreover,
note that the solution ψseec(C,L, V ) is be insensitive to choices of L3, as long as L3 ≥ 5. The
solution ψseerc(C,L, V ) does not satisfy this property. In fact, it is very sensitive to choices of
L3 such that 5 ≤ L3 ≤ 8. For these reasons, we do not discuss this solution any further. ▽

8 Non-egalitarian solutions

In this section, we study an adaptation of the egalitarianism. We define the following property
for a vector a ∈ IRN

+ such that a(N) = 1 and L ≥ aV (C):

a-fairness: V (ψi (C,L, V )) = aiV (C) for all i ∈ N .

The property a-fairness is inspired by a desire to allocate the total cost C in a non-egalitarian
manner. Here, the vector a is exogenously given, and assigns a proportion of the disutility of
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Figure 3: Graphical illustration of the egalitarian solution ψseerc(C,L, V )(c) = t + ϕdec(c, L −
t) corresponding to Example 7. The dash-dotted line represents ψseerc

1 (C,L, V )(·) =
ψseerc

2 (C,L, V )(·), and the solid line ψseerc

3 (C,L, V )(·).

the total cost V (C) to the agents. For instance, a may be inspired by non-symmetric up-front
contributions that the agents received to bear the stochastic cost C.

The property a-fairness is inspired by Pazdera et al. (2017), who study the related concept
of financial fairness in risk-sharing. For this financial fairness approach, there is a given pricing
measure and agents aim to share risk such that the price of the allocated risk is equal to the
price of initial wealth. In the setting of this paper, the disutility function V is an expectation,
and can alternatively be interpreted as a pricing functional. Moreover, the value of ai can be
interpreted as the price of initial wealth of agent i.

Suppose we first allocate the amount δi := (ai− 1
n
)V (C) to every agent i ∈ N . The remaining

constrained cost allocation problem is given by
(

Ĉ, L̂, V
)

∈ P , where

Ĉ = C −
∑

i∈N

δi = C,

L̂ = L− δ.
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Then, a-fairness of the solution ψ(C,L, V ) is equivalent to V -egalitarianism of the solution

ψ̂(Ĉ, L̂, V ), where ψ(C,L, V ) = δ+ ψ̂(Ĉ, L̂, V ). Moreover, V -sufficiency of (Ĉ, L̂, V ) is equivalent
to L ≥ aV (C) for the original problem (C,L, V ). Hence, all results from Sections 3, 5, and 6 can
be readily modified so that solutions are a-fair instead of V -egalitarian. For instance, Theorem
7 yields directly the following result.

Corollary 2 On the class of all cost allocation problems (C,L, V ) ∈ L∞×RN
++×V and a ∈ IRN

+

such that a(N) = 1, (C,L) is admissible and L ≥ aV (C), there is a unique a-fair solution ψ that

satisfies LS, and that is ψ = ψa which is defined by

ψa (C,L, V ) (c) := t+ ϕec (c, L− t) , for all c ∈ [0, c], (9)

where t ∈ A(0, L) is a unique vector of transfers such that (9) is a-fair.

9 Generalization to liability profiles that are not V -sufficient

If the problem (C,L, V ) is admissible but not V -sufficient, then it holds that

L1 <
1
n
V (C).

In particular we have to conclude that egalitarian solutions do not exist. As the project might
be beneficial for all parties, and all parties are needed to support the project, we consider an
alternative solution. We want the solution to be as egalitarian as possible. For instance, we
can lexicographic minimize the vector V (ψi(C,L, V )), i ∈ N . Then, we erase Agent 1 that is
not V -sufficient from the constrained cost allocation problem. Agent 1 pays the transfer t = L1

regardless of the realization of C. Consider the reduced constrained cost allocation problem
(

C̃, L̃, V
)

, where

C̃ = C − L1,

L̃ = L{2,3,...,n}.

Clearly, this problem is again admissible, but is it V -sufficient? If not, i.e., if L2 <
1

n−1V (C−L1),
remove Agent 2 in the same way for the new problem and continue. If the reduced problem
becomes V -sufficient, then apply the solution to the reduced constrained cost allocation problem.
Note that the cost C̃ may have negative realizations, but are bounded from below by −L1. Then,
it is easy to show that our results of this paper still hold true.

Hence, the idea is that where we are limited in our choices, we propose to adopt the idea of
egalitarianism under participation constraints as in Dutta and Ray (1989).

10 Conclusion

This paper studies optimal cost allocation under liability constraints. The problem is a gener-
alization of a rationing problem, where there is a stochastic estate that we here interpret as a
cost. We aim to share a stochastic cost in an ex ante egalitarian way, which is defined in terms
of an expectation or dual utility. We show two conditions which are necessary and sufficient to
have existence of egalitarian solutions. First, all cost levels can be accounted for. Second, the
individual agent’s liability equals at least a fair share of the disutility of the total cost. Since
there is typically not a unique egalitarian solution, we characterize specific egalitarian solutions
by means of properties. The solutions that we propose are analogous to the proportional and
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constrained equal awards rules within a rationing context. Within these classes of solutions, we
introduce zero-sum transfers that are paid/received before the realization of the stochastic cost is
known; this vector is the solution if the realized cost is zero. There is a unique vector of transfers
to guarantee egalitarianism for a class of solutions that is intrinsically connected to continuous
rationing methods.

The class of standard proportional solutions is characterized by the property that the solutions
may depend only on the disutility of the total cost. Within this class we identify a particular
proportion vector that is consistent with the idea that when transfers are not necessary, the
solution will do without these. A stronger result is that this solution determines a Lorenz-
dominant vector of transfers within the class of egalitarian standard proportional solutions.
Then we considered another class of solutions, based on the egalitarian rationing solution known
as the constrained equal awards rule. Especially we characterize the seec solution which is
the unique egalitarian solution in this class that can be considered locally egalitarian as well
by using any possibility to share marginal costs equally among the agents. In particular, this
solution uses transfers such that the largest transfer is smaller than the largest transfer used with
any proportional solution.

We generalize our results with the concept of fairness, which is a condition that generalizes
the concept of egalitarianism to allow for, a priori, asymmetries between the agents. Finally, if
egalitarianism is not possible, we conclude this paper by providing a method that adopts the
idea of egalitarianism under participation constraints of Dutta and Ray (1989).

We conclude this section with a suggestion for further research. We would like to extend the
study of this paper to the setting where the preferences are given by a maximization of expected
utility. If individuals minimize an expected cost, it can be shown that any cost allocation is
Pareto-optimal. For expected utilities, however, a notion of Pareto-optimality is relevant. For
strictly concave utility functions, we do not expect multiple cost allocations that are both egal-
itarian and Pareto-optimal, and so further characterizations based on the properties Invariance
to total Disutility Preserving Preferences (IDPP) or Local Symmetry (LS) are redundant.
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A Proofs

Proof of Theorem 1: First of all, we will show existence of a vector t with the desired property,
by application of egalitarianism:

V (ψ(C,L, V )) = 1
n
V (C) e ⇔ t+ V (ϕV (C)(C,L− t)) = 1

n
V (C) e

⇔ t = 1
n
V (C)e− V (ϕV (C)(C,L − t))

⇔ L− t = L− 1
n
V (C) e+ V (ϕV (C)(C,L− t)).

Define F : ∆ → ∆ by F (x) = L − 1
n
V (C) e + V (ϕV (C)(C, x)), where ∆ := {y ∈ RN

+ : y(N) =
L(N), y ≥ L− 1

n
V (C)e} is compact and convex. Note that V (ψ(C,L, V )) = 1

n
V (C) e if and only

if F (L− t) = L− t, so that for the given combination (C,L, V ) we find a desired corresponding
vector of transfers through fixed points of F . The function F is continuous on ∆ by continuity of
ϕV (C). Then the existence of a fixed point x∗ of F follows by Brouwer’s Fixed Point Theorem.
So the vector of transfers we are looking for is given by t∗ = L − x∗. Notice that L − t∗ ≥ 0,
since we have

t∗ = L− x∗ ≤ L− (L − 1
n
V (C) e) = 1

n
V (C) e,

and (C,L, V ) ∈ P satisfies V -sufficiency. Note that indeed t∗ depends on (C,L, V ). �

Proof of Theorem 2: The vector of transfers t can explicitly be found using egalitarianism, since

V (t+ αC) = 1
n
V (C) e ⇔ t+ αV (C) = 1

n
V (C) ⇔ t = V (C)( 1

n
e− α)

Since α ≥ 0, α(N) = 1 and V -sufficiency, it holds that t ∈ A(0, L). Only we need to have that
α c ≤ L− t for all c ∈ [0, c̄], so that a sufficient and necessary condition on α is that

α c̄ ≤ L− V (C)( 1
n
e− α) ⇔ α ≤ L− 1

n
V (C) e

c̄− V (C)
.

�

Proof of Theorem 3: By Theorem 1, it suffices to show that the fixed point of the mapping F is
unique. Recall x = L− t, where t = ψseec(C,L, V )(0). Suppose that there are two fixed points,
x̃ and x̄, so that x̃ 6= x̄. Take the smallest index i such that x̃i 6= x̄i. Since x̃(N) = x̄(N), we
have without loss of generality that x̃i < x̄i for i < n. Since x̃ and x̄ are ordered as a result of
Theorem 4, we have, with x̃+i =

∑

j<i x̃j + (n− i+ 1)x̃i,

ϕec

i (c, x̃) =

{

ϕec

i (c, x̄) if c ≤ x̃+i ,
x̃i if c > x̃+i ,

and therefore

ϕec

i (c, x̄)− ϕec

i (c, x̃) =

{

0 if c ≤ x̃+i ,

min
{

c−x̃
+

i

n−i+1 , x̄i − x̃i

}

if c > x̃+i .

Thus, Q(ϕec

i (C, x̄) − ϕec

i (C, x̃) < x̄i − x̃i) ≥ Q(C ≤ x̃+i ). Moreover, Q(C ≤ x̃+i ) = 0 holds only
if x̃+i = 0, since Q has a positive density on [0, c̄]. In that case also x̃i = 0 so that t̃i = Li,
V (t̃i + ϕec

i (C, x̃)) = Li, and Q(ϕec

i (C, x̄)− ϕec

i (C, x̃) < x̄i) = Q(C < (n− i − 1)x̄i) > 0.
Thus, Q(ϕec

i (C, x̄)− ϕec

i (C, x̃) < x̄i − x̃i) > 0 and so

V (ϕec

i (C, x̄)− ϕec

i (C, x̃)) < x̄i − x̃i = (Li − t̄i)− (Li − t̃i) = t̃i − t̄i.
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But then this leads to contradiction with egalitarianism as

V (t̄i + ϕec

i (C, x̄)) = t̄i + V (ϕec

i (C, x̄))

< t̄i + (t̃i − t̄i) + V (ϕec

i (C, x̃)) = t̃i + V (ϕec

i (C, x̃)).

�

Proof of Theorem 4: Consider again the mapping F that we used in the proof of Theorem 1,
but now restricted to ∆∗ := {y ∈ RN

+ : y1 ≤ y2 ≤ · · · ≤ yn, y(N) = L(N), y ≥ L − 1
n
V (C)e},

which is compact and convex, and we have F (∆∗) ⊆ ∆∗. Then – again by using Brouwer’s Fixed
Point Theorem – there is at least one fixed point for F , say x∗. If Li ≤ Lj (or i < j), then

(L − t∗)i = x∗i ≤ x∗j = (L − t∗)j so that by OP we have ϕ
V (C)
i (c, L − t∗) ≤ ϕ

V (C)
j (c, L − t∗).

Consequently

t∗i = 1
n
V (C)− V (ϕ

V (C)
i (c, L− t∗)) ≥ 1

n
V (C)− V (ϕ

V (C)
j (c, L− t∗)) = t∗j .

�

We continue with an intermediary result that we need in the proofs of Theorems 5 and 6.

Lemma 1 If ψ ∈ Z satisfies comonotonicity, then the mapping c→ ψi (C,L, V ) (c) is Lipschitz-

continuous.

Proof of Lemma 1: We will show that ‖ψ (C,L, V ) (c1)− ψ (C,L, V ) (c2)‖ ≤ √
n |c1 − c2| for all

c1, c2 ∈ [0, c̄] . First recall that for fixed L and c1, c2 ∈ [0, c̄] , c1 < c2, we have ψ (C,L, V ) (c1) ≤
ψ (C,L, V ) (c2). Moreover, since ψ ∈ Z, it holds that
∑

j∈N ψj (C,L, V ) (c1) = c1 and
∑

j∈N ψj (C,L, V ) (c2) = c2, so that for any choice of i ∈ N we
have

ψi (C,L, V ) (c2)− ψi (C,L, V ) (c1) +
∑

j 6=i

(ψj (C,L, V ) (c2)− ψj (C,L, V )) (c1) = c2 − c1.

Now, suppose ψi (C,L, V ) (c2)− ψi (C,L, V ) (c1) > c2 − c1. Then,
∑

j 6=i (ψj (C,L, V ) (c2)− ψj (C,L, V ) (c1)) < 0, and there must be k ∈ N with ψk (C,L, V ) (c2)−
ψk (C,L, V ) (c1) < 0, which contradicts with the assumption that ψ satisfies comonotonicity. So
we have ψi (C,L, V ) (c2)− ψi (C,L, V ) (c1) ≤ c2 − c1 for all i ∈ N.

Then,

‖ψ (C,L, V ) (c1)− ψ (C,L, V ) (c2)‖2 =
∑

i∈N

(ψi (C,L, V ) (c2)− ψi (C,L, V ) (c1))
2

≤
∑

i∈N

(c2 − c1)
2
= n (c2 − c1)

2
,

which proves our claim by taking the square-root on both sides. �

Proof of Theorem 5: The “if” part is easy, as it basically follows from Theorem 2. So now we will
turn to the “only if” part. Since ψ is standard, we may write ψ(C,L, V )(c) = t+ f(c, L, t, V (C))
with t = ψ(C,L, V )(0). Suppose ψ is egalitarian and take a V as in (1) with a cumulative
distribution function F (c) = Q(C ≤ c). Since Q has a positive density on [0, c̄], F is strictly
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increasing on [0, c̄]. Below we will construct V ∗ ∈ V with V ∗(C) = V (C), so that in turn IDPP
implies ψ(C,L, V ) = ψ(C,L, V ∗). Especially we have t = ψ(C,L, V )(0) = ψ(C,L, V ∗)(0) so that
for all i:

V ∗(fi(C,L, t, V
∗(C))) = 1

n
V ∗(C)− ti =

1
n
V (C) − ti = V (fi(C,L, t, V (C))). (10)

We will now show that an agent should then pay a proportion of the realized cost, that is fixed for
all realizations. Assume an agent i who does not pay a fixed proportion of the realized cost after
transfers. We will point out that in that case we may construct V ∗ with V ∗(C) = V (C) but such
that (10) is not satisfied, and we have the desired contradiction. For the sake of the exposition
we will write fi(c, L, t, V (C)) as z(c). Since c 7→ z(c) is non-decreasing, it is Lipschitz-continuous
due to Lemma 1, and hence differentiable almost everywhere. Since Agent i does not pay a fixed
share of the realized cost after transfers, there must be c1 and c2 such that z′(c1) exists, and

• z′(c1) >
z(c2)− z(c1)

c2 − c1
, or

• z′(c1) <
z(c2)− z(c1)

c2 − c1
.

We will show a proof for the second case only, as a proof for the first case follows the same lines.
So, assume that for small ε > 0 and c ∈ (c1, c1 + ε) we have

z(c)− z(c1)

c− c1
<
z(c2)− z(c1)

c2 − c1
. (11)

We will show that for those cases we may shift some probability mass from Q to Q∆, and obtain
in this way a new distribution under which the disutility of the total cost for i increases whilst
V ∆(C) := EQ∆ [C] = EQ[C] = V (C). We will point out how to construct V ∗ from here, yielding
the desired conflict with the assumption of an egalitarian solution.
The distribution Q∆ is constructed by removing mass ∆F (ε) := F (c1+ε)−F (c1) on the interval
[c1, c1+ε] and replace it by point masses on c1 and c2. In order to keep the disutility as measured
by (1) of the total cost under the redistribution constant, determine δ(ε) ∈ (0, 1) such that

δ(ε)∆F (ε)c1 + (1 − δ(ε))∆F (ε)c2 +

∫ c2

c1+ε

c dF (c) =

∫ c2

c1

c dF (c). (12)

Then the cumulative distribution function F∆ for Q∆ is specified by

F∆(c) = Q∆(C ≤ c) =







F (c) c < c1 or c ≥ c2,
F (c1) + δ(ε)∆F (ε) c ∈ [c1, c1 + ε],
F (c)− (1− δ(ε))∆F (ε) c ∈ (c1 + ε, c2),

and define V ∆(X) = EQ∆ [X ] for any X ∈ L∞ that is comonotonic with C. By construction in
(12), we obtain V ∆(C) = V (C) and

V (z(C)) =

∫ c̄

0

z(c) dF (c),

V ∆(z(C)) =

∫ c1

0

z(c) dF (c) +

∫ c̄

c2

z(c) dF (c)

+δ(ε)∆F (ε)z(c1) +

∫ c2

c1+ε

z(c) dF (c) + (1− δ(ε))∆F (ε)z(c2).
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It holds

V ∆(z(C)) − V (z(C)) = −δ(ε)∆F (ε)(z(c2)− z(c1)) + ∆F (ε)z(c2)−
∫ c1+ε

c1

z(c) dF (c)

= −δ(ε)∆F (ε)(z(c2)− z(c1)) +

∫ c1+ε

c1

(z(c2)− z(c)) dF (c).

Note that from equation (12) we get

δ(ε)∆F (ε) =
1

c2 − c1

∫ c1+ε

c1

(c2 − c) dF (c)

and thus

V ∆(z(C))− V (z(C)) = −
∫ c1+ε

c1

(c2 − c) dF (c) · z(c2)− z(c1)

c2 − c1
+

∫ c1+ε

c1

(z(c2)− z(c)) dF (c)

= −
∫ c1+ε

c1

((c2 − c1) + (c1 − c)) dF (c) · z(c2)− z(c1)

c2 − c1

+

∫ c1+ε

c1

((z(c2)− z(c1)) + (z(c1)− z(c))) dF (c)

= −∆F (ε)(c2 − c1)
z(c2)− z(c1)

c2 − c1
+

∫ c1+ε

c1

(c− c1) dF (c) ·
z(c2)− z(c1)

c2 − c1

+∆F (ε)(z(c2)− z(c1))−
∫ c1+ε

c1

(z(c)− z(c1)) dF (c)

=

∫ c1+ε

c1

(c− c1) ·
z(c2)− z(c1)

c2 − c1
dF (c)−

∫ c1+ε

c1

(z(c)− z(c1)) dF (c)

>

∫ c1+ε

c1

(c− c1) ·
z(c)− z(c1)

c− c1
dF (c)−

∫ c1+ε

c1

(z(c)− z(c1)) dF (c) = 0.

Note that Q∆ does not have a positive density on [0, c̄], so that V ∆ /∈ V . Similar as in
(2), we now mix the two densities of Q∆ and Q. For small enough λ ∈ (0, 1), we define
Q∗(C ≤ c) := (1 − λ)Q∆(C ≤ c) + λQ(C ≤ c) for all c ∈ [0, c̄]. Then, Q∗ has a positive density
on [0, c̄]. Thus, it holds for the corresponding admissible preference V ∗(·) = (1−λ)V ∆(·)+λV (·)
that V ∗ ∈ V . Moreover, we have V ∗(C) = V (C) and V ∗(z(C)) > V (z(C)). This is the desired
contradiction with (10). �

Proof of Theorem 6: Let (C,L, V ) ∈ P . Since solution ψ ∈ Z is comonotonic, the mapping c 7→
ψ (C,L, V ) (c) is Lipschitz-continuous due to Lemma 1, and this mapping is therefore absolutely
continuous. This implies

ψ (C,L, V ) (c)− ψ (C,L, V ) (0) =

∫ c

0

∂

∂s
ψ (C,L, V ) (s)ds for all c ∈ [0, c] . (13)

Fix ψ (C,L, V ) (0), and let k : N → N be a bijection such that

k (i) ≤ k (j) ⇔ Lk(i) − ψk(i) (C,L, V ) (0) ≤ Lk(j) − ψk(j) (C,L, V ) (0).

Define iteratively constants c0, c1, c2, . . . , cn ∈ [0, c̄ ] by c0 := 0,

c1 := n
(

Lk(1) − ψk(1) (C,L, V ) (0)
)

,
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ℓ ≥ 2 : cℓ := cℓ−1 + (n− ℓ+ 1)

(

Lk(ℓ) − ψk(ℓ) (C,L, V ) (0)−
ℓ−1
∑

r=1

cr − cr−1

n− r + 1

)

.

By construction, it holds c0 ≤ c1 ≤ · · · ≤ cn. Then, by LS, we can write (13) for c ∈ [cℓ−1, cℓ] as

ψk(i) (C,L, V ) (c) =























ψk(i) (C,L, V ) (0) +

i
∑

r=1

cr − cr−1

n− r + 1
if k (i) < ℓ,

ψk(i) (C,L, V ) (0) +
ℓ−1
∑

r=1

cr − cr−1

n− r + 1
+

c− cℓ−1

n− ℓ+ 1
if k (i) ≥ ℓ,

where ℓ = 1, . . . , n. Note that for r ∈ {1, 2, . . . , n} we have

cr ∧ c− cr−1 ∧ c =







0 if c ≤ cr−1,
c− cr−1 if c ∈ (cr−1, cr),
cr − cr−1 if c ≥ cr,

where cr ∧ c := min{cr, c}. So, for the random cost C with realization c ∈ [0, c], we get

ψk(i) (C,L, V ) (c) =

(

ψk(i) (C,L, V ) (0) +
i
∑

r=1

cr ∧ c− cr−1 ∧ c
n− r + 1

)

∧ Lk(i)

= ψk(i) (C,L, V ) (0) +

(

i
∑

r=1

cr ∧ c− cr−1 ∧ c
n− r + 1

)

∧
(

Lk(i) − ψk(i) (C,L, V ) (0)
)

= ψk(i) (C,L, V ) (0) + ϕec

k(i) (c, L− ψ (C,L, V ) (0)) .

Hence, ψ (C,L, V ) (c) = t+ ϕec (c, L− t) for t = ψ (C,L, V ) (0). This completes the proof. �

Proof of Theorem 8: If L ≥ 1
n
c̄ e, then ϕec(c̄, L) = 1

n
c̄ e so that α = 1

n
e and ψp(C,L, V )(0) = 0.

Clearly, in A(0, L) the Lorenz dominant element is 0. Now assume that not L ≥ 1
n
c̄ e. Then

pick i ∈ N so that

∑

k<i

Lk + (n− i+ 1)Li ≤ c̄ ≤
∑

k≤i

Lk + (n− i)Li+1,

which exists due to admissibility. Then

ϕec

j (c̄, L) =







Lj if j ≤ i,

1
n−i

(c̄−∑k≤i Lk) if j > i.

Since ψα is egalitarian, by Theorem 5 it must hold that

α ≤ L− 1
n
V (C) e

c̄− V (C)

which means that for j ≤ i

αj ≤
ϕec

j (c̄, L)− 1
n
V (C)

c̄− V (C)

22



so that

ψp

j (C,L, V )(0) = V (C)

(

1
n
−
ϕec

j (c̄, L)− 1
n
V (C)

c̄− V (C)

)

≤ V (C)
(

1
n
− αj

)

= ψα
j (C,L, V )(0),

and thus we have for all k = 1, . . . , i that

k
∑

j=1

ψp

j (C,L, V )(0) ≤
k
∑

j=1

ψα
j (C,L, V )(0).

Now suppose that there exists an ℓ > i such that

ℓ
∑

j=1

ψp

j (C,L, V )(0) >

ℓ
∑

j=1

ψα
j (C,L, V )(0).

Assume without loss of generality that ℓ is the smallest number with this property, so that
1 < ℓ < n and ψα

ℓ (C,L, V )(0) < ψp

ℓ (C,L, V )(0). Since we assumed that α is ordered in the
same way as L, it holds α1c ≤ α2c ≤ · · · ≤ αnc for all c ∈ [0, c̄]. Suppose ψα

j (C,L, V )(0) <
ψα
ℓ (C,L, V )(0) for j ≥ ℓ, then ψα

j (C,L, V )(0) + αjc < ψα
ℓ (C,L, V )(0) + αℓc for all c ∈ [0, c̄],

and so V (ψα
j (C,L, V )(0) + αjC) < V (ψα

ℓ (C,L, V )(0) + αℓC), which is a contradiction with
egalitarianism. Thus, it holds for j ≥ ℓ that

ψα
j (C,L, V )(0) ≤ ψα

ℓ (C,L, V )(0) < ψp

ℓ (C,L, V )(0) = ψp

j (C,L, V )(0),

where the equality follows from the fact that ϕec satisfies OP. But then this leads to a contra-
diction, since

0 =

n
∑

j=1

ψα
j (C,L, V )(0) =

∑

j≤ℓ

ψα
j (C,L, V )(0) +

∑

j>ℓ

ψα
j (C,L, V )(0)

<
∑

j≤ℓ

ψp

j (C,L, V )(0) +
∑

j>ℓ

ψp

ℓ (C,L, V )(0) = 0.

This means that ℓ cannot exist, and that for all k = 1, . . . , n we have

k
∑

j=1

ψp

j (C,L, V )(0) ≤
k
∑

j=1

ψα
j (C,L, V )(0),

which concludes the proof. �

Proof of Theorem 9: Let (C,L, V ) ∈ P . Suppose that ψseec

1 (C,L, V )(0) > ψp

1(C,L, V )(0). If
L1 ≥ 1

n
c̄, then by SSL that ψseec

1 (C,L, V )(0) = ψp

1(C,L, V )(0) = 0, which is a contradiction.

Assume L1 <
1
n
c̄. By LS, we have that ∂

∂c
ψseec

1 (C,L, V )(c) ≥ 1
n

whenever ψseec

1 (C,L, V )(c) <
L1. Moreover,

∂

∂c
ψp

1(C,L, V )(c) = α1 =
ϕec

1 (c̄, L)− 1
n
V (C)

c̄− V (C)

=
L1 − 1

n
V (C)

c̄− V (C)
<

1
n
c̄− 1

n
V (C)

c̄− V (C)
=

1

n
,

for all c ∈ [0, c̄], and ψp

1(C,L, V )(c) < L1 for all c ∈ [0, c̄). Thus, ψseec

1 (C,L, V )(c) > ψp

1(C,L, V )(c)
for all c ∈ [0, c̄). Thus, since V (C) < c, we have V (ψseec

1 (C,L, V )) > V (ψp

1(C,L, V )), which is a
contradiction with egalitarianism of ψseec and ψp. �
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