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Abstract

We model intergenerational risk sharing in closing funded pension plans. Specifically,
we consider a setting in which in each period, the pension fund’s investment and indexation
policy is the outcome of a bargaining process between representatives of the then living
generations. Because some generations might be under- or overrepresented in the board,
we use the asymmetric Nash bargaining solution to allow for differences in bargaining
powers. In a numerical study, we compare the welfare that the generations derive from
the outcome of this repeated bargaining to the welfare that they would derive if a social
planner’s optimal policy would instead be implemented. We find that as compared to
the social optimum, older generations benefit substantially from the repeated bargaining,
even if all generations are equally well-represented in the board. If older generations are
relatively over-represented, as is sometimes argued, these effects are attenuated.

JEL-codes: C78, D9, G23.
Keywords: cooperative bargaining, pension fund, intergenerational risk sharing.

1 Introduction

The combination of a severe financial crisis, unanticipated longevity shocks, and tighter reg-
ulation, has implied that many Defined Benefit (DB) pension funds have decided to change
their pension plans to (collective) defined contribution plans. Existing participants can then
no longer accrue new rights in the DB fund, new participants can no longer enter, and it needs
to be decided how the assets that were accumulated in the past are divided over the remaining
generations. In a DB fund, participants or generations typically do not “own” a share of the
assets, and so there is no objective way to divide the accumulated assets over the different
generations. Therefore, we model a setting in which the available assets stay in the DB fund,

∗The authors thank Muhammed Altuntas, Enrico Biffis, Roel Mehlkopf, Henk Norde, Bas Werker, and two
anonymous reviewers for useful comments. Moreover, the authors acknowledge SURFsara in Amsterdam for
access to LISA, a cluster computer system.

†Corresponding author: Email address: t.j.boonen@uva.nl, Amsterdam School of Economics, University of
Amsterdam.

‡Department of Accountancy and Department of Econometrics and OR, Tilburg University, CentER for
Economic Research and Netspar.

1



until full rundown. In each period it is decided whether and how accrued rights are indexed
or cut, and how the remaining assets are invested.

There is a substantial amount of literature that deals with optimal payout and investment
policies in collective pension funds or PAYG pension systems (see, e.g., Enders and Lapan,
1982; Gordon and Varian, 1988; Krueger and Kubler, 2002; Ball and Mankiw, 2007; Gollier,
2008; Cui et al., 2011). Our study differs from this literature in two ways. First, we consider a
closing fund, which implies that risk can no longer be shared with the “unborn” generations.
Second, whereas the existing literature typically takes a welfare perspective, we consider a
case where a pension fund board consisting of representatives of different generations needs
to decide on the payout and investment policies in each period. Because different genera-
tions have different horizons, they typically have different preferences regarding indexation
and investment policies (see, e.g., Merton, 1971; Merton and Samuelson, 1974; Blake, 1998;
Teulings and De Vries, 2006; Bovenberg et al., 2007; Hoevenaars and Ponds, 2008). Therefore,
the investment and payout policies that are jointly determined by representatives of different
generations will depend on how well each remaining generation is represented in the board.
To take this into account, we use the asymmetric Nash bargaining solution to model the
outcome of a bargaining process in which some generations may have more bargaining power
than others. We ensure time consistency by using a “period-by-period” approach in which
decisions are made for the current period only, while rationally anticipating future decisions.1

We assume that for each generation, continued participation until decease (or full run-down
of the assets) is mandatory, i.e., individuals do not have the option to leave the pension fund.2

Instead, their rights are represented by representatives in the pension fund’s board, and the
task of the board of a pension fund is to design a pension policy that is perceived as “fair” by
the participants of all generations.

In the first part of the paper, we present the model and derive the dynamic optimization
problems that need to be solved in order to determine the investment and indexation policies
that the pension board would take if, in every period, the representatives of the remaining
generations bargain over the policy that will be implemented in that period. We then compare
the investment and indexation policies that result from this repeated bargaining with the
outcome that a social planner who cares about aggregate social welfare would prefer, as in
Gollier (2008). We numerically analyze the welfare effects of the optimal policy for the different
generations under both approaches. We find that, as compared to the social optimum, the
elderly benefit substantially from bargaining. The result is robust to changes in the calibrated
parameter values.

This paper is set out as follows. In Section 2, we present the characteristics of the DB fund,
and discuss the setting that we consider. In Section 3, we model the pension fund’s optimal
investment and benefit policies as the outcome of a bargaining process by which the members
of the pension board weigh the utility that each generation derives from a particular strategy.

1It is well-known that in multi-period settings, the Nash bargaining solution is not time consistent for a
broad class of differential games (Haurie, 1976). The importance of time consistency is shown by Pelsser and
Stadje (2014) and Pelsser and Salahnejhad (2016).

2Ligon et al. (2002), Westerhout (2011) and Beetsma et al. (2012) show that when participation in risk
sharing pools is voluntary, this generally limits the possibility to share risk efficiently.
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In Section 4, we numerically analyze the welfare effects of the optimal policy for the different
generations. Finally, Section 5 concludes.

2 Model

In this section we first discuss the characteristics of the defined benefit (DB) fund that we
consider. We then discuss our approach to determine optimal draw down strategies for the
fund after it closes.

2.1 Characteristics of the DB fund

We let date t = 0 be the date at which the DB fund closes for new accruals and new par-
ticipants. We assume that every participant works (or has worked) for three periods and is
(or will be) in retirement in the one or two periods thereafter. Hence, on date zero there are
five generations in the pension fund: three generations with active workers and two retired
generations. Every generation is assigned a number from the set {0, 1, 2, 3, 4}. The generation
with number τ then corresponds with the generation that is in its second retirement period
at the beginning of period τ .

We introduce the following notation and assumptions:

• Participants in generation τ have entered the fund at the beginning of period τ − 4 and
only leave the fund due to decease.

• Participants die either at the end of their first retirement period or at the end of their
second retirement period.

• We allow for heterogeneous generations that may be different in size and life expectancy.
Within a generation, all individuals are homogeneous with respect to accrued pension
rights and survival rates. We use the following notation for generation τ ∈ {0, . . . , 4}:

– Nτ > 0: the number of participants in generation τ at the beginning of their first
retirement period, i.e., on date t = τ − 1.

– pτ ∈ (0, 1]: the deterministic fraction of participants in generation τ that are still
alive at the beginning of their second retirement period.

– L̃τ > 0: the accrued pension right for each participant belonging to generation
τ in the pension fund. These accrued rights serve as benchmark for the pension
payment that each participant in generation τ receives at the beginning of its first
retirement period, and, if alive, at the beginning of its second retirement period.
The actual payment can be different due to conditional indexation or cutting of
pension rights.

The participants in generation τ have accrued pension rights L̃τ during their active life prior
to date 0. The best-estimate value of the accrued pension rights is defined as the discounted
expected pension payments, where the discount rate equals the deterministic risk-free rate,
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rf . At the beginning of period 0, generation τ = 0 is in its last period of the retirement. All
other generations τ > 0 are either still active or in their first period of retirement. Hence, the
date-0 best-estimate value of the pension rights of an individual in generation τ ∈ {0, . . . , 4}
who is alive on date-0 is given by:

L̂τ = L̃τ

(1+rf )τ−1 + pτ ·
L̃τ

(1+rf )τ
if τ > 0,

= L̃τ , if τ = 0.

We let L0 denote the best-estimate value of the aggregate liabilities of all five generations on
date 0. On date t = 0, there are p0N0 participants in generation τ = 0, and Nτ participants
in generation τ for τ > 0. Therefore, it holds that:

L0 := p0 ·N0 · L̂0 +

4∑

τ=1

Nτ · L̂τ . (1)

The asset value of the pension fund at time t = 0, denoted by A0 > 0, is the aggregated value
of the risk-free and risky assets of the pension fund. Table 1 presents a schematic overview of
the balance sheet of the pension fund at time t = 0.

Assets Liabilities

risk-free assets benchmark liabilities L0

risky assets buffer

A0 L0+buffer

Table 1: Balance sheet of the pension fund.

2.2 Closing the DB fund

Because the DB fund closes on date t = 0, the participants no longer accrue new rights in
the DB fund. However, the fund continues to exist, and the generations collectively need
to agree on the investment and benefit policies until full run down of the assets. Shocks in
investment returns can be shared by all generations alive, and so the generations can benefit
from intergenerational risk sharing (Gollier, 2008; Goecke, 2013; Bonenkamp and Westerhout,
2014). Because the pension fund closes for new entrants, however, the degree of risk sharing
is limited. Specifically, risk can no longer be shared with “unborn” generations. Moreover,
different generations typically have different preferences regarding the indexation policy and
the investment policy of the fund (see, e.g., Teulings and De Vries, 2006; Bovenberg et al.,
2007). We model a case in which these decisions are made by the board of the pension
fund, which consists of representatives of each of the remaining generations. The board of a
pension fund has the task to offset the interests of all generations to determine a fair policy.
We assume that the benefits of strategies to the generations are determined by means of the
expected utility that each generation derives from it. We make the following assumptions.

• Assets can be invested in a risk-free asset with return rf , and in a risky asset with excess
return rt in period t. The excess returns are independently distributed over time, with
rt > −(1 + rf ) for all t.
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• Each participant uses a Von Neumann-Morgenstern expected utility function, u, which
is the same for all participants. Moreover, u : IR+ → IR ∪ {−∞} is strictly increasing
and concave.

3 The dynamic bargaining problem

In this section we model the bargaining process by which the remaining generations in the DB
fund decide on the investment and indexation policy, until the last generation has deceased.
We first define feasible strategies. Then, we determine the utility for each generation associated
with a given strategy. Finally, we use the Nash bargaining solution to model the outcome of
a bargaining process by the members of the pension fund board, which act as representatives
of the different generations.

3.1 Feasible strategies

At the beginning of periods t ∈ {0, 1, 2, 3}, the pension fund board needs to decide on the
pension benefits paid to participants who are in their first or their second period of retirement.
Moreover, it needs to decide on the investment strategy (i.e., the fraction of assets invested in
the risky asset) for period t. If it invests part of its assets in the risky asset, then the benchmark
accrued pension rights cannot be guaranteed. The accrued pension rights L̃τ , τ ∈ {0, . . . , 4}
can be increased by indexation, but we also do not exclude the possibility that accrued rights
are cut in case of low investment returns. Without loss of generality, we let the decision
variables at the beginning of period t depend only on the asset value at that time. This yields
the following definition.

Definition 1 A pension benefit strategy at the beginning of period t ∈ {0, . . . , 3} is a function
ft : IR → IR2 × [0, 1] that maps the asset value at time t into period t decisions, i.e.,

ft(At) = (bonus1t , bonus
2
t , αt) ∈ IR2 × [0, 1],

where

• At ∈ IR is the asset value at the beginning of period t,

• αt ∈ [0, 1] is the fraction of the assets invested in the risky asset in period t,

• bonus1t ∈ IR is the pension benefit payment, in addition to the accrued pension rights, to
each participant who is in his first period of retirement in period t,

• bonus2t ∈ IR is the pension benefit payment, in addition to the accrued pension rights, to
each participant who is in his second period of retirement in period t.

It remains to specify the strategy of the fund at the beginning of the last period. At the
beginning of period t = 4, only one generation is still alive (generation τ = 4), and that
generation starts it second (and last) retirement period. Hence, the only decision variable
at time t = 4 is bonus24, the bonus paid out to generation τ = 4 at the beginning of its
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last retirement period. Because there are no future generations, we assume that all available
assets at the beginning of period t = 4 are distributed to generation τ = 4, and the fund
closes. Because p4 ·N4 participant are still alive at the beginning of period t = 4, and because
the pension payment to each participant equals L̃4 + bonus24, the bonus paid out to each
participant of generation τ = 4 at the start of its last retirement period equals:

bonus24 = f∗
4 (A4) =

A4

p4 ·N4
− L̃4. (2)

The variables bonus1t and bonus2t represent payments in excess of the benchmark rights for
the two generations that are in retirement in period t, i.e., generations τ = t + 1, t. These
payments can be interpreted as indexation or cuts of accrued rights. The timing of these
additional pension payments is illustrated in Figure 1.

t = 0 1 2 3 4
τ =

bonus20 0 0 0 00:

1:

2:

3:

4:

bonus10 bonus21 0 0 0

0 bonus11 bonus22 0 0

0 0 bonus12 bonus23 0

0 0 0 bonus13 bonus24

Figure 1: Pension benefits in excess of the benchmark right L̃τ .

If the fund is overfunded, i.e., if A0 ≥ L0, accrued rights could in principle be guaranteed
by investing the amount L0 in the risk-free asset. The buffer could then be invested so as
to generate future indexation. This would ensure that bonus1t and bonus2t are nonnegative.
However, doing so would imply that the generations can only benefit from excess returns
from risky investments to a limited extent, because a large fraction of the assets needs to
be invested in the risk-free asset in order to guarantee the benchmark payments. Therefore,
generations may be willing to invest in the risky asset, even though this implies that their
promised pension right is not ensured anymore. Therefore, we allow that bonus1t and bonus2t
are negative.

We now determine feasibility of the strategy for period t ∈ {0, 1, 2, 3}, i.e., we determine
feasible values for ft(A), where A denotes the asset value on date t. A strategy ft(A) =
(bonus1t , bonus

2
t , αt) is feasible in period t ∈ {0, . . . , 3} iff: (i) individual pension payments are

nonnegative, and, (ii), the aggregate pension payments do not exceed the available assets. At
the beginning of period t, Nt+1 participants from generation τ = t + 1 are alive and start
their first retirement period. They each receive a pension payment equal to L̃t+1 + bonus1t .
Moreover, pt ·Nt participants in generation τ = t are alive and start their second retirement
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period. They each receive a pension payment equal to L̃t + bonus2t . Therefore, the set of
feasible values of ft(A), which we denote Ft(A), is given by

Ft(A) =
{
(bonus1t , bonus

2
t , αt) | L̃t+1 + bonus1t ≥ 0, L̃t + bonus2t ≥ 0,

Nt+1 · [L̃t+1 + bonus1t ] + pt ·Nt · [L̃t + bonus2t ] ≤ A
}
. (3)

Because bonus1t and bonus2t can be negative, the set Ft(A) is non-empty for any t ∈ {0, . . . , 4}
and A ≥ 0.

3.2 Utility

The pension benefit to an individual participant belonging to generation τ ∈ {0, . . . , 4} consists
of three components:

• The benchmark accrued pension rights in the DB fund, i.e., L̃τ .

• The (possibly negative) pension income from the DB fund in addition to L̃τ in the first
and the second retirement period, respectively, i.e., the payments bonus1τ−1 and bonus2τ .

• The (non-negative) retirement income from other sources, which we denote by I1τ and
I2τ for the first and the second retirement period, respectively.

We first consider the date-t expected utility of the generation that is in its last period of
retirement in period t ∈ {0, 1, 2, 3} (i.e., generation τ = t), as a function of the date t decision
variables. We denote this utility by Ut,t(bonus

1
t , bonus

2
t , αt). Here, the first subindex t refers

to time period t while the second subindex t refers to generation τ = t. Because generation
τ = t is in its last period of retirement in period t, it will consume its retirement income in
period t, which equals L̃t+bonus2t +I2t , and will be deceased afterwards. Therefore, the date-t
expected utility of participants belonging to generation τ = t equals

Ut,t(bonus
1
t , bonus

2
t , αt) = u

(
L̃t + bonus2t + I2t

)
, for t ∈ {0, . . . , 3}. (4)

For generation τ = t, the date-t utility does not depend on how period-t choices affect bonus
payments in future periods. In contrast, generations τ ∈ {t + 1, . . . , 4} have both retirement
periods forthcoming. Therefore, for these generations, the utility that they derive from the
date-t choices (bonus1t , bonus

2
t , αt) depends (in part or fully) on how these date-t choices affect

the bonus payments that occur in the two periods in which generation τ will be retired,
i.e., the bonus payments bonus1τ−1 and bonus2τ in future periods τ − 1 and τ . The probability
distribution of these future bonus payments depends also on the future decisions of the fund. In
principle, the five generations that are alive on date 0 could negotiate a complete investment
and benefit policy for the full rundown of the assets. However, this solution might not be
time consistent. Once some generations have died, the remaining generations may wish to
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renegotiate the policy for the remaining periods.3 Therefore, we consider the case where at
the beginning of period t, the generations that are still alive negotiate the investment and
benefit policies for that period only, i.e., they choose values for (bonus1t , bonus

2
t , αt), taking

into account that the investment and benefit policies for future periods will be renegotiated by
the generations that are then alive. We denote Ut,τ (bonus

1
t , bonus

2
t , αt|A,F

∗
t+1) for the date-t

utility that generation τ ∈ {t+1, . . . , 4} derives from date-t choices (bonus1t , bonus
2
t , αt), given

that the asset value on date t equals At = A, and given that generation τ rationally infers the
future strategies F ∗

t+1 = {f∗
t+1, . . . , f

∗
4 }. Then:

Ut,τ (bonus
1
t , bonus

2
t , αt|A,F

∗
t+1) = E

[
u
(
L̃τ + bonus1τ−1 + I1τ

)

+β · pτ · u
(
L̃τ + bonus2τ + I2τ

)∣∣∣At = A,F ∗
t+1

]
, (5)

where β denotes the time preference parameter.

At time t, the first and second retirement period bonus payments to generation τ > t, i.e., the
variables (bonus1τ−1, bonus

2
τ ) in the right-hand-side of (5), are random variables because they

depend jointly on asset returns and strategies in the periods until they retire. Specifically, given
the date-t decisions (bonus1t , bonus

2
t , αt), the probability distribution of (bonus1τ−1, bonus

2
τ ) for

generations τ > t follows recursively from the strategies

(bonus1s, bonus
2
s, αs) = f∗

s (As), for s ∈ {t+ 1, . . . , 3},

bonus24 = f∗
4 (A4),

combined with how these strategies affect the level of assets (As) available at the beginning
of every future period s ∈ {t+ 1, . . . , τ}. At the beginning future period s, the level of assets
increases with the return over the previous period, and decreases with payments made to
generations that are either in their first or their second retirement period. We assume that
these pension benefits are paid out at the beginning of the period. Then, the asset dynamics
are as follows:

At = A,

As+1 =
(
As −Ns+1 · [L̃s+1 + bonus1s]− ps ·Ns · [L̃s + bonus2s]

)

·(1 + rf + αs · rs), for s ∈ {t+ 1, . . . , 4}. (6)

Now, for any given date-t asset value At = A, date-t choices (bonus1t , bonus
2
t , αt), and, future

strategies F ∗
t+1 = {f∗

t+1, . . . , f
∗
4 }, the probability distribution of the bonus payments to gener-

ation τ in their first and second retirement period can be determined from (6), and the utility
associated with the date-t choices can then be determined from (5).

3We will use the (asymmetric) Nash bargaining solution to model the pension payments in excess of the
benchmark accrued rights as the outcome of a bargaining process between the generations. It is well-known
that the Nash bargaining solution is not time consistent for a broad class of differential games (Haurie, 1976).
The importance of time consistency is shown by Pelsser and Stadje (2014) and Pelsser and Salahnejhad (2016).
We ensure time consistency by using a “period-by-period” approach in which decisions are made for the current
period only, while rationally anticipating future decisions.
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3.3 The optimal strategies

Recall that the optimal strategy for period t = 4 is given by (2). Now suppose the optimal
strategies for periods {t + 1, . . . , 4} are given, i.e., F ∗

t+1 = (f∗
t+1, . . . , f

∗
4 ) is given. We then

determine the optimal strategy for period t as a function of the total available assets at the
beginning of period t, At = A. Because the generations continue to share risk after the
fund is closed, they need to agree on a policy. It is well-known that different generations
have different preferences regarding investment strategies. The extent to which a generation
will perceive a policy as sufficiently “fair” will depend on the extent to which they benefit
from the policy in utility terms, as compared to other generations. We use the asymmetric
Nash bargaining solution to model the pension fund board’s policy choices as the outcome
of a bargaining process between the generations that are represented in the board.4 The
(asymmetric) Nash bargaining solution trades off the utility gains of the generations. The
utility gain of a generation is measured as the difference between the utility derived from the
policy, and the so-called disagreement utility. Specifically, we denote

• dt,τ (A): the disagreement utility of generation τ . It represents the utility level below
which a generation would feel that the policy is so unfair that it no longer wishes to
continue to share risk with the other generations, i.e., the negotiations would fail. We
assume that the minimum required utility level is the expected utility that the generation
obtains when it receives its benchmark rights, corrected for the funding ratio in case of
underfunding, i.e.,

dt,τ (A) = u
(
δt(A) · L̃τ + I1τ

)
+ β · pτ · u

(
δt(A) · L̃τ + I2τ

)
, for τ > t (7)

dt,t(A) = u(δt(A) · L̃t + I2t ), (8)

where

δt(A) = min

{
A

Lt
, 1

}
, (9)

and where Lt denotes the date-t best-estimate value of the aggregate liabilities of the
pension fund. At the beginning of period t, there are pt ·Nt participants in generation
τ = t, and Nτ participants in generation τ , for τ ∈ {t + 1, . . . , 4}. Therefore, it holds
that:

Lt = pt ·Nt · L̃t +
4∑

τ=t+1

Nτ ·

[
L̃τ

(1 + rf)τ−t−1
+ pτ ·

L̃τ

(1 + rf )τ−t

]
. (10)

• ∆Ut,τ (bonus
1
t , bonus

2
t , αt|A,F

∗
t+1): the utility gains as compared to the disagreement

utility i.e.,

∆Ut,τ (bonus
1
t , bonus

2
t , αt|A,F

∗
t+1) = Ut,τ (bonus

1
t , bonus

2
t , αt|A,F

∗
t+1)− dt,τ (A). (11)

4The (asymmetric) Nash bargaining solution is originally characterized by Nash (1950) and Kalai (1977) by
means of properties. This characterization is based on a static setting, in which the goal is to allocate a vector
of goods. Rubinstein (1982) shows that in a bilateral non-cooperative game with perfectly patient players, the
equilibrium allocation converges to the symmetric Nash bargaining solution. Moreover, Van Damme (1986)
shows that the Nash bargaining solution constitutes the unique equilibrium if two firms have different opinions
about what is the appropriate solution concept to use for determining allocations.
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To ensure that all generations are willing to cooperate, the strategy chosen by the board in
period t, i.e., ft(A) = (bonus1t , bonus

2
t , αt), has to be individually rational in the sense that it

yields weakly higher utility than the disagreement utility for each generation that is alive in
period t, i.e.,

∆Ut,τ

(
ft(A)|A,F

∗
t+1

)
≥ 0, (12)

for all A > 0 and τ ∈ {t, . . . , 4}. We will say that F ∗
t+1 = {f∗

t+1, . . . , f
∗
4 } is individually rational

if and only if for all s ∈ {t + 1, . . . , 4}, f∗
s is individually rational given F ∗

s+1. The following
theorem shows that in each period, there exists a feasible and individually rational strategy.

Theorem 1 It holds that:

(i) Strategy f∗
4 : A → f∗

4 (A) from (2) is feasible and individually rational.

(ii) Let t ∈ {0, . . . , 3}. Then, for any F ∗
t+1 that is feasible and individually rational, there

exists a strategy ft : A → ft(A) that is feasible and individually rational given F ∗
t+1 =

{f∗
t+1, . . . , f

∗
4 }.

The proof of this theorem is delegated to Appendix A.

Now let F ∗
t+1 be feasible and individually rational. Then, among the set of period t strategies

that are feasible and individually rational given F ∗
t+1, the (asymmetric) γ-Nash bargaining so-

lution selects a strategy by trading off the utility gains of the different generations, taking into
account their bargaining powers. Specifically, the (asymmetric) γ-Nash bargaining solution
for period t satisfies:5

f∗
t (A) = argmax

∏4
τ=t

[
∆Ut,τ (bonus

1
t , bonus

2
t , αt|A,F

∗
t+1)

]γτ

s.t. (bonus1t , bonus
2
t , αt) ∈ Ft(A),

∆Ut,τ (bonus
1
t , bonus

2
t , αt|A,F

∗
t+1) ≥ 0, for all τ ≥ t,

(13)

where γτ > 0 denotes the relative bargaining power of generation τ , for τ ∈ {t, . . . , 4}.

If γτ = 1 for all τ ∈ {0, . . . , 4}, the γ-Nash bargaining solution corresponds with the symmetric
Nash bargaining solution of Nash (1950). However, it is possible that different generations have
different bargaining powers, e.g., due to a different size of their representation in the pension
fund board. If larger generations are better represented, one can let γ be an increasing function
of Nτ . For instance, if the bargaining power of a generation is proportional to its size, it holds
that γτ ∝ Nτ for τ ∈ {0, . . . , 4}.

The complete strategy of the pension fund board is given by

(bonus1s, bonus
2
s, αs) = f∗

s (As), for s ∈ {0, . . . , 3}, (14)

bonus24 = f∗
4 (A4), (15)

where the dynamics of the asset value follows from (6), with A0 = A.

5We note that ∆Ut,t(bonus
1
t , bonus

2
t , αt|A,F ∗

t+1) = ∆Ut,t(bonus
1
t , bonus

2
t , αt) because the date-t utility of

generation t does not depend on A and F ∗
t+1.
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Before proceeding to the numerical analysis, we note that in the setting that we consider the
extent to which generations can benefit from risk sharing is affected by limited commitment.
Existing literature (e.g., Ligon et al., 2002; Westerhout, 2011; Beetsma et al., 2012) has shown
that voluntary participation limits the extent to which parties can benefit from risk sharing.
Specifically, Beetsma et al. (2012) show that in situations with low funding ratios, younger
generations could be tempted to leave the funds, while in situations with high buffers older
generations may be better off by leaving the fund. Although in our setting generations cannot
leave the fund, there is limited commitment in the sense that if in a policy the utility for
a generation is lower than the disagreement utility, the negotiations break down. Hence,
although generations cannot leave the fund, the degree of risk sharing is limited because some
policies are “unacceptable” to some generations.

4 Numerical analysis

In this section, we numerically analyze the welfare effects of the γ-Nash bargaining solution.
We use backward induction with a linear interpolation function to determine the optimal
strategies, using (2), (6), and (13)-(15).6 As is common in the literature on optimal investing
over a life-cycle (see, e.g., Hansen and Singleton, 1983; Hubbard et al., 1995; Cocco et al.,
2005; Gollier, 2008), we assume a Constant Relative Risk Aversion (CRRA) utility function
given by:

u(x) =

{
x1−λ

1−λ
, if λ 6= 1,

log(x), if λ = 1,
(16)

for all x > 0, and u(0) = −∞ if λ ≥ 1, and u(0) = 0 otherwise. Here, λ > 0 is the parameter
of relative risk aversion.7

4.1 The approach

We will illustrate the effect of the bargaining powers, the survival probabilities, and the degree
of risk aversion, on the welfare that the different generations derive from the policy that
results from repeated bargaining (i.e., the policy given by (14)-(15)). We also compare this
policy with the policy that is optimal from the viewpoint of a social planner who cares about
the aggregate expected discounted utility of all generations. Following Gollier (2008), we
consider a social planner who determines the optimal pension fund policy by maximizing

6Due to the non-linear objective function, we cannot formulate and apply a Bellman equation. Therefore,
period t decisions are conditional on the pension fund’s decisions in all future periods.

7We note that the utility function takes negative values when λ > 1, which implies that the utility in case
of survival is lower (strictly negative) than the utility in case of decease (zero). Bommier et al. (2016) show
that with utility specifications of the form φ−1 (p · φ(u(c)) + (1− p) · φ(ud)) with φ(·) strictly concave, this
property is undesirable because it affects life-cycle consumption and investment decisions. However, in our case
φ(x) = x, and so the value of the utility in case of decease does not affect the optimal policy. In our setting,
replacing the utility function by ũ(c) = u(c) − u(cmin) for some cmin > 0 and setting ud = 0 suffices to ensure
that the utility in case of decease is lower than in case of survival and leads to the same optimal policies if cmin

is sufficiently small. In our case, this holds true for any cmin ≤ 1.
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the discounted aggregate expected utility of all participants. Specifically, the pension benefit
strategy corresponding to the social optimum is determined as follows:

max
∑3

t=1 ω
t ·Nt ·E

[
u
(
L̃t + bonus1t−1 + I1t−1

)
+ pt · β · u

(
L̃t + bonus2t + I2t

)]

+p0 ·N0 ·E
[
u
(
L̃0 + bonus20 + I20

)]

s.t. A0 = A and (6),
(bonus1t , bonus

2
t , αt) ∈ Ft(At), for all t ∈ {0, . . . , 3},

bonus24 = A4/(p4N4)− L̃4,

(17)

where A0 > 0 is the initial asset value, and ω ∈ (0, 1] a subjective discount factor. As the
objective function is formulated from the point of view of a social planner, we refer to the
solution as the first-best pension benefit policy. The approach in (17) differs from that in
Gollier (2008) in that we distinguish two retirement periods and allow for heterogeneity in the
size and survival rates of the different generations.

Both for the Nash bargaining solution, and for the first-best solution, we quantify the effects
of the policy by determining the mean and standard deviation of the cumulative indexation
in the first and in the second retirement period, respectively. The cumulative indexation is
defined as the percentage deviation of the first (second) retirement period DB income from
the benchmark payment, L̃τ , i.e.,

β1
τ = (L̃τ + bonus1τ−1)/L̃τ − 1, for τ ∈ {1, . . . , 4}, (18)

β2
τ = (L̃τ + bonus2τ )/L̃τ − 1, for τ ∈ {0, 1, . . . , 4}. (19)

Moreover, for each generation, we also determine the cumulative indexation corresponding to
the certainty equivalent pension income. The certainty equivalent pension income is defined
as the fixed income, L̄τ , that solves:

E[u(L̃τ + bonus1τ−1 + I2τ ) + β · pτ · u(L̃τ + bonus2τ + I2τ )]

= u(L̄τ + I1τ ) + β · pτ · u(L̄τ + I2τ ), (20)

for τ ∈ {1, . . . , 4}, and
u(L̃0 + bonus20 + I20 ) = u(L̄0 + I20 ).

The cumulative indexation corresponding to the certainty equivalent pension income, which
we will refer to as the certain equivalent cumulative indexation, is given by:

β̄τ = L̄τ/L̃τ − 1, for τ ∈ {0, . . . , 4}. (21)

4.2 Results for a benchmark case

In our benchmark case, we make the following assumptions:

• Retirement age and length of a period : We assume that a period corresponds to ten
years, and all participants retire at age 65. Hence, the youngest generation has age 35
on date t = 0.

12



• Risk free rate, asset return and subjective discount factor :

– The risk-free rate is 2% per year, and so rf = (1.02)10 − 1 ≈ 0.22.

– Both the subjective discount factor of the social planner and the subjective dis-
count factor of the pension fund participants equal 2% per year, and so ω = β =
(1.02)−10 ≈ 0.82.

– The excess return of the risky asset equals rt = rH = 50% per period with prob-
ability 0.5 and rt = rL = −25% per period with probability 0.5, independent and
identically distributed over time t.8

• Characteristics of the generations:

– The relative risk aversion parameter equals λ = 5.

– The size of generation τ ∈ {0, . . . , 4} at the beginning of their first retirement period
is Nτ = (1.008710)τ ≈ 1.09τ (see Beetsma and Bucciol, 2015).

– The relative bargaining power of generation τ is proportional to Nτ . Without loss
of generality, we set γτ = Nτ .

– The probability of being alive at the beginning of the second retirement period,
pτ , equals the best-estimate of the 10-year survival probability of a 65-year old
belonging to generation τ , estimated using the Lee and Carter (1992) model. The
resulting ages of the participants and survival probabilities are as follows:9

τ 0 1 2 3 4

Age 75 65 55 45 35
pτ 0.81 0.84 0.86 0.89 0.92

(22)

• Accrued rights and funding ratio: We assume that generations have accrued 1 unit of
pension rights during each active period. Moreover, generations that are not yet retired
at the time the fund closes will accrue one unit of pension income in every future active
period, i.e., L̃τ = min{4− (τ −1), 4}, and Iτ = 4− L̃τ . With rf ≈ 0.22, this implies that
the time-0 best estimate value of the liabilities equals L0 ≈ 20.02. In the benchmark
case, we let the initial asset value be such that the date-0 funding ratio is 120%, i.e.,
A0 = 1.2 · L0 ≈ 24.02.

The parameter values are summarized in Table 2.

We compare the pension benefits resulting from the γ-Nash bargaining solution to those of
the first-best solution. There are several reasons why the outcome of the bargaining process
can deviate from what a social planner would prefer. First, the social planner cares about
aggregate expected utility of the retirement income of all the generations. In contrast, when
pension board representatives bargain over the policy to be implemented, the outcome is

8Because a period corresponds to 10 years, rH corresponds to a yearly excess return of +4.14%, while rL
corresponds to a yearly excess return of −2.84%.

9We use data of Dutch males for the period from 1977 until 2009 from the Human Mortality Database.
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Symbol Description Calibration

rf Real risk-free rate 0.22
FR0 Funding ratio on date 0 120%

L̃τ Benchmark liabilities of generation τ min{4− (τ − 1), 4}

I1τ Other pension income of generation τ 4− L̃τ

I2τ Other pension income of generation τ 4− L̃τ

Nτ Size of generation τ 1.09τ

β Subjective individual discount factor 0.82
γτ Relative bargaining power of generation τ Nτ

ω Social planner parameter 0.82
λ Parameter of constant relative risk aversion 5

Table 2: Summary of the calibrated parameters in the benchmark case.

τ = 0 τ = 1 τ = 2 τ = 3 τ = 4

µ(β1
τ ) - 10.3% 16.7% 30.5% 72.2%

µ(β2
τ ) 20.3% 23.2% 34.4% 53.8% 80.2%

σ(β1
τ ) - 0 13.7% 22.7% 54.7%

σ(β2
τ ) 0 14.3% 22.4% 38.5% 63.5%

β̄τ 20.3% 14.1% 20.0% 31.8% 59.7%

τ = 0 τ = 1 τ = 2 τ = 3 τ = 4

µ(β1
τ ) - 5.7% 44.6% 70.0% 151.8%

µ(β2
τ ) 8.0% 7.5% 12.7% 25.2% 66.3%

σ(β1
τ ) - 0 13.9% 25.2% 58.1%

σ(β2
τ ) 0 9.6% 16.1% 29.2% 67.1%

β̄τ 8.0% 6.0% 24.9% 39.3% 87.2%

Table 3: The mean and standard deviation of first and second period cumulative indexation,
as well as the certain equivalent cumulative indexation. The top (bottom) panel corresponds
to the γ-Nash bargaining solution (first-best solution).
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determined by how many generations are still alive at the time the decisions need to be made.
As time passes by, there are fewer generations in the defined benefit fund, which affects the
outcome of the bargaining process. Second, in the bargaining process generations can block a
redistribution if it yields utility lower than their disagreement utility.

Table 3 displays the mean of first and second retirement period expected cumulative indexa-
tion, as well as the certain equivalent cumulative indexation, for the benchmark case. The top
panel presents results for the γ-Nash bargaining solution. The bottom panel presents results
for the first-best solution. The fraction of the assets that is invested in the risky asset is 37%
in each period in the γ-Nash bargaining solution, and 34% in each period in the first-best
solution. The table shows that for both solutions, the expected cumulative indexation in both
retirement periods is positive and increasing in τ for τ > 0. The latter effect occurs because
younger generations (higher τ) have a longer investment horizon, and so they can benefit more
from excess returns on risky investments. This in turn implies that also the risk (as measured
by the standard deviation of cumulative indexation) is higher for younger generations.

To investigate the welfare effects of the Nash bargaining solution, we compare the pension
benefits to the first-best pension benefits. Figure 2 shows that as compared to the first-best,
active generations in expectation receive higher cumulative indexation in the first retirement
period and lower expected cumulative indexation in the second retirement period. In Figure
3 we display the certain equivalent cumulative indexation (left panel) and the certain equiv-
alent total retirement income (right panel) under the two methods. The figure shows that
as compared to the first-best solution, active generations (τ ∈ {2, 3, 4}) receive lower certain
equivalent pension income in the γ-Nash bargaining solution, while retirees (τ ∈ {0, 1}) re-
ceive higher certain equivalent pension income. Stated differently, from a welfare perspective
retirees benefit from Nash bargaining while active participants are worse off.

4.3 Sensitivity analysis

In this section we analyze the effect of changes in the parameter values on the certain equivalent
pension benefits resulting from the Nash bargaining solution. We also show that the result
that older generations benefit from Nash bargaining (as compared to the first-best) is robust
to changes in parameter values. We consider the following alternative parameter values:10

• initial funding ratio: 100% and 140%.

• return on assets: we consider four alternative distributions, each with an “up” state
(rH) and a “down” state (rL) with equal probability. The excess returns in the two
states are chosen such that we have return distributions with the same mean as the
benchmark excess return but higher variance and lower variance, respectively; as well
as excess returns with the same variance, but higher and lower mean, respectively. The
distributions are displayed in Table 4.

10We have also performed a sensitivity analysis with regard to the survival probabilities of the generations.
We considered an upward and a downward shock of 20% per period to the mortality probabilities, i.e., p̂ down

τ =
1−(1−pτ ) ·0.8

τ , and p̂ up
τ = 1−(1−pτ ) ·1.2

τ , for all τ ∈ {0, . . . , 4}, with pτ as displayed in (22). The effects on
the optimal policies were very small. Moreover, the main qualitative conclusions hold true for these alternative
probabilities. Details are available from the authors upon request.
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Figure 2: The mean of first period (left panel) and second period (right panel) cumulative
indexation for the γ-Nash bargaining solution and for the first-best solution.
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Figure 3: The certain equivalent percentage cumulative indexation (β̄τ ∗ 100%, left panel)
and the certain equivalent total pension income ((1 + β̄τ )L̃τ + Iτ , right panel) for the γ-Nash
bargaining solution and for the first-best solution.
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rL rH E[Ri] σ(Ri)

R1 -50% 75% 12.5% 39%
R2 -12.5% 37.5% 12.5% 6.3%
R3 -12.5% 62.5% 25% 14%
R4 -35% 40% 2.5% 14%

Table 4: Alternative excess return distributions. The first (second) column displays the pe-
riodic excess return (i.e., over a period of 10 years) in the down (up) state. The last two
columns display the mean and the standard deviation of the return. The risk free rate is the
same as in the benchmark case.

• relative bargaining power of the generations: we consider as alternatives the case of equal
bargaining power for each generation, i.e., γτ = 1 for all τ ∈ {0, . . . , 4}, higher represen-
tation of older participants, γτ = (0.6)τ for all τ ∈ {0, . . . , 4}, and higher representation
of younger participants, γτ = (1.6)τ for all τ ∈ {0, . . . , 4}.

• risk aversion parameter λ: we consider λ ∈ {1, 3, 9}.

In Figure 4, we display the effects of these parameter changes on the certain equivalent cumu-
lative indexation under the γ-Nash bargaining solution. In each case, one parameter changes,
while all other parameters are set equal to the benchmark value.

The top panels display the effects of the funding ratio (left) and of the returns distribution
(right). As expected, the certain equivalents of all generations increase when: (i) the initial
funding ratio increases; or (ii) the mean of the asset return increases while the variance is
unchanged; or (iii) the variance of the asset return decreases while the mean is unchanged.
These effects are largest for the youngest generation. The bottom left panel shows the effect
of changes in the relative bargaining powers of the generations. As compared to the case
where γτ = 1 for all τ , letting γτ = 0.6τ (γτ = 1.6τ ) implies that the relative bargaining
power of generations τ ∈ {0, 1} increases (decreases) while the relative bargaining powers
of generations τ ∈ {3, 4} decreases (increases). A higher (lower) relative bargaining power
increases (decreases) expected pension benefits. Finally, the bottom right panel shows the
effect of the degree of risk aversion. A higher degree of risk aversion leads to more conservative
investment, i.e., a lower fraction of the assets is invested in the risky asset in each period.11

As can be seen in the bottom right panel, this in turn implies that the certain equivalent
income decreases for all generations. As was the case for the initial funding ratio and the
asset returns, the effect is largest for the youngest generation.

We conclude with a sensitivity analysis for the difference in certain equivalent total pension
income between the γ-Nash bargaining solution and the firs-best solution. Figure 3 showed
that in the benchmark case, retirees benefit from the Nash bargaining solution as compared
to the social optimum, while active participants are worse off. Figure 5 displays the per-
centage difference between the certain equivalent pension income under the Nash bargaining

11For instance in the first period, the fraction invested in the risky asset equals α = 100%, 64%, 37%, 24% for
constant relative risk aversion parameter λ = 1, 3, 5, 9.
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Figure 4: Sensitivity analysis for the certain equivalent percentage cumulative indexation
(β̄τ ∗ 100%) under the γ-Nash bargaining solution. In each case, one parameter changes,
while all other parameters are set equal to the benchmark value. Top left panel: effect of the
initial funding ratio; top right panel: effect of returns distribution; bottom left panel: effect
of relative bargaining powers; bottom right panel: effect of degree of risk aversion.
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Figure 5: Sensitivity analysis for the percentage difference in certain equivalent total pension
income between the γ-Nash bargaining solution and the first-best solution. In each case, one
parameter changes, while all other parameters are set equal to the benchmark value. Top left
panel: effect of the initial funding ratio; top right panel: effect of returns distribution; bottom
left panel: effect of relative bargaining powers; bottom right panel: effect of degree of risk
aversion.

solution and the certain equivalent pension income under the first-best solution. A positive
(negative) value indicates that the generation benefits (loses) from bargaining as compared to
the first-best. The figure shows that the result that retirees benefit from the Nash bargaining
solution (as compared to the social optimum) while active participants are worse off, is robust
to changes in the initial funding ratio (top left panel), asset returns (top right panel) and
the degree of risk aversion (bottom right panel). The bottom left panel shows that if older
generations are relatively over-represented (γ = 0.6τ ), as is sometimes argued, these effects
are attenuated. If the per capita bargaining power of the active participants is sufficiently
high (γ = 1.6τ ), the differences become small.
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Finally, we note that our results also illustrate the potential impact of limited commitment on
risk sharing. Consider, for example, the case where the funding ratio on date zero is 100 per-
cent. In this case, retired generations will break up the negotiations whenever the proposed
policy implies that their pension liabilities are cut. This occurs because the disagreement
utility in this case requires that the pension payment is at least equal to the nominal accrued
pension rights L̃τ .

12 In principle, it is possible to give each generation their nominal accrued
rights when the funding ratio is 100 percent. However, for future generations, receiving their
nominal accrued rights means a cut in pension benefits in real terms. Hence, from the per-
spective of a social planner, it may be optimal to impose a (small) cut on the pension rights
of current retirees so as to avoid large cuts (in real terms) for future retirees. In our results,
it is indeed the case that the socially optimal policy when the initial funding ratio is 100
percent involves a cut in pension rights for current retirees.13 This policy, although being
Pareto optimal, is excluded in the bargaining setting. Therefore, the limited commitment
that arises from the fact that parties can break up the negotiations if their utility is below the
disagreement utility can rule out socially desirable policies.

5 Conclusion

In this paper, we model intergenerational risk sharing in a closing funded pension plan as a
bargaining process between generations. Existing literature typically takes the viewpoint of
a social planner who aims to maximize aggregate welfare over all generations. In practice,
however, a pension fund’s investment and payout policies are typically determined by a pension
fund board consisting of representatives of different generations. We have analyzed decisions
that the pension fund board would take if, in each period, representatives of the then living
generations bargain over the policy that will be implemented. We use the asymmetric Nash
bargaining solution to characterize the investment and payout policies that will result from
repeated bargaining, allowing for the possibility that not all generations are equally well
represented. In a numerical study, we compare the welfare that different generations derive
from the outcome of this repeated bargaining to the welfare that they would derive if the social
planner’s optimal policy would instead be implemented. Our results suggest that when the
distribution of the remaining assets in a closing DB fund is determined via repeated bargaining
between the remaining generations, the oldest generations benefit substantially as compared
to the distribution of assets that a social planner would prefer. This goes at the expense of
younger generations. The result holds true even if younger generations have relatively high
bargaining power, and is attenuated if older generations are relatively over-represented, as is
sometimes argued. Moreover, we find that the restriction imposed by limited commitment
(i.e., via the disagreement utility) implies that some policies that are socially desirable may
be ruled out. To avoid these outcomes, regulators could consider to impose constraints on the
extent to which generations can block a policy that is socially desirable.

12If the funding ratio on date zero is 100 percent, it follows from (9) that δ0(A) = 1, and so the disagreement

utility for generation τ = 0 on date t = 0 equals d0,0(A) = u(L̃0).
13Under the FB solution, it holds that β̄τ < 0 for generation τ ∈ {0, 1} when the initial funding ratio is

100%. It follows from (21) that β̄τ < 0 represents a cut in pension rights for generation τ .
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We conclude by discussing an interesting direction for future research. Given the recent
increased trend in closing down DB funds, the analysis on this paper focused on a fund in
run-off. However, also for funds that are not in run-off, investment and benefit policies in
practice typically result from negotiations. An interesting issue in this case is that while the
“unborn” generations clearly are affected by the pension fund’s policy, their stakes may be
underrepresented when pension policies are negotiated between active and retired generations.
Future research could focus on how this affects the welfare of different generations.
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A Proof of Theorem 1

First, consider s = 4. It follows from (9) and (10) that

δ4(A) · L̃4 = min

{
A

L4
, 1

}
· L̃4 = min

{
A

p4N4
, L̃4

}
. (23)

Now let f4(·) = f∗
4 (·), with f∗

4 (·) as defined in (2). It follows from (4), (8), and (23) that

U4,4 (f
∗
4 (A)) = u

(
A

p4N4
+ I24

)
≥ u(δt(A) · L̃4 + I24 ) = d4,4(A).

Hence, strategy f∗
4 is feasible and individually rational.

Now let t ∈ {0, . . . , 3}, and suppose that F ∗
t+1 is feasible and individually rational. We will

show that there exists a strategy ft(·) that is feasible and individually rational. Let

ft(A) =
(
bonus1t , bonus

2
t , αt

)
=

(
(δt(A)− 1) · L̃t+1, (δt(A)− 1) · L̃t, 0

)
. (24)

We first show that the strategy is feasible, i.e., ft(A) ∈ Ft(A), for all A > 0. With this
strategy, the aggregate payment in period t equals

Nt+1 · [L̃t+1 + bonus1t ] + pt ·Nt · [L̃t + bonus2t ]

= δt(A) ·
[
Nt+1 · L̃t+1 + pt ·Nt · L̃t

]

≤ A,

where the inequality follows from the fact that δt(A) ≤ A/Lt and Lt ≥ Nt+1 · L̃t+1+pt ·Nt · L̃t.
Moreover, since δt(A) > 0 for all A > 0, we get L̃t+1 + bonus1t = δt(A) · L̃t+1 > 0 and
L̃t + bonus2t = δt(A) · L̃t > 0. Hence, ft(A) ∈ Ft(A).

We now show that the strategy is individually rational. It follows from (6) that the value of
the assets at the beginning of period t+ 1 are given by

At+1 = (1 + rf )
(
A− δt(A) · L̃

agg
t

)
, (25)

where L̃agg
t is the aggregate benchmark payment in period t, i.e.,

L̃agg
t = Nt+1 · L̃t+1 + pt ·Nt · L̃t.

Moreover, it follows from (10) that the best-estimate value of the liabilities at the beginning
of period t+ 1, equals

Lt+1 = (1 + rf )
(
Lt − L̃agg

t

)
,
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Combined, this implies that

At+1

Lt+1
=

(1 + rf )
(
A− δt(A) · L̃

agg
t

)

(1 + rf )
(
Lt − L̃agg

t

) ≥
A− A

Lt
· L̃agg

t

Lt − L̃agg
t

=
A

Lt
,

i.e., the funding ratio at the beginning of period t+ 1 is higher than the funding ratio at the
beginning of period t. With (9), this implies

δt+1(At+1) ≥ δt(A). (26)

and, moreover, At+1 > 0. We now show that (12) is satisfied for ft(A) defined in (24).

• Generation τ = t: it follows from (24) that the aggregate payment from the DB fund in
period t (benchmark + bonus) equals

L̃τ + bonus2t = L̃τ + (δt(A)− 1) · L̃t = δt(A) · L̃t.

Because generation τ = t receives its last payment in period t, it follows from (4) and
(8) that

Ut,t (ft(A)) = u
(
L̃t + bonus2t + I2t

)
= u

(
δt(A) · L̃t + I2t

)
= dt,t(A),

for all A > 0.

• Generation τ = t+ 1: this generation is in its first retirement period in period t, and it
follows from (24) that the aggregate payment from the DB fund in period t equals

L̃t+1 + bonus1t = L̃t+1 + (δt(A)− 1) · L̃t+1 = δt(A) · L̃t+1. (27)

Moreover, this generation is in its second retirement period in period t + 1, and the
aggregate payment from the DB fund in period t+ 1 equals

L̃t+1 + bonus2t+1,

where bonus2t+1 follows from

(
bonus1t+1, bonus

2
t+1, αt+1

)
= f∗

t+1(At+1),

with At+1 given by (25). Because the generation receives its last payment in period t+1,
it holds that

u
(
L̃t+1 + bonus2t+1 + I2t

)
= Ut+1,t+1

(
f∗
t+1(At+1)

)

≥ dt+1,t+1(At+1)

= u
(
δt+1(At+1) · L̃t+1 + I2t+1

)

≥ u
(
δt(A) · L̃t+1 + I2t+1

)
, (28)
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where the first inequality follows from the fact that (12) is satisfied for s = t + 1, and
the second inequality follows from (26). Combining (5), (27), and (28) yields

Ut,t+1

(
ft(A)|A,F

∗
t+1

)

= u
(
L̃t+1 + bonus1t + I1t+1

)
+ β · pt+1 · E

[
u
(
L̃t+1 + bonus2t+1 + I2t+1

)∣∣∣At = A,F ∗
t+1

]

≥ u
(
δt(A) · L̃t+1 + I1t+1

)
+ β · pt+1 · u

(
δt(A) · L̃t+1 + I2t+1

)
,

= dt,t+1(A),

for all A > 0.

• Generations τ > t + 1: for these generations, the first pension payment occurs at the
earliest in period t+ 1. Therefore,

Ut,τ

(
ft(A)|A,F

∗
t+1

)
= E

[
Ut+1,τ

(
f∗
t+1(At+1)|At+1, F

∗
t+2

)
|At = A,F ∗

t+1

]

≥ E
[
dt+1,τ (At+1)|At = A,F ∗

t+1

]

≥ E
[
dt,τ (A)|At = A,F ∗

t+1

]

= dt,τ (A),

for all A > 0, where the first inequality follows from the fact that (12) is satisfied for
s = t+ 1, and the second inequality follows from the fact that (7) and (26) imply that
dt+1,τ (At+1) ≥ dt,τ (A).
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