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Abstract

This paper studies a problem of optimal reinsurance design under asymmetric
information. The insurer adopts distortion risk measures to quantify his/her risk
position, and the reinsurer does not know the functional form of this distortion risk
measure. The risk-neutral reinsurer maximizes his/her net profit subject to indi-
vidual rationality and incentive compatibility constraints. The optimal reinsurance
menu is succinctly derived under the assumption that one type of insurer has a larger
willingness-to-pay than the other type of insurer for every risk. Some comparative
analysis are given as illustrations when the insurer adopts the Value-at-Risk (VaR)
or the Tail Value-at-Risk (TVaR) as preferences.
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1 Introduction

This paper presents an asymmetric information model in optimal reinsurance design. The
reinsurer is not be able to identify the risk preferences of the insurer. The literature on
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asymmetric information in insurance markets focusses on adverse selection, where the
underlying distribution of risk that is endowed by the insurer is unknown to the reinsurer.
In such markets, the insurers with more risky endowments are buying reinsurance. See, for
instance, Rothschild and Stiglitz (1976), Landsberger and Meilijson (1999), Young (2000),
Laffont and Martimort (2009), Chade and Schlee (2012), and Cheung et al. (2020). This
leads a selection of only high-risk insurers (lemons) buying reinsurance (cf. Akerlof, 1970),
and thus the reinsurer needs to charge a higher premium. This paper, on the other hand,
studies the situation where the underlying risk preferences of the insurer are unknown by
the reinsurer, and the distribution of the reinsurable loss of the insurer is known by the
reinsurer. The reinsurer faces a trade-off between high premium/low demand and low
premium/high demand. The reinsurer could offer a cheap contract to the insurer, and
let the insurer buy this contract no matter what his/her underlying risk preferences are,
or the reinsurer could offer an expensive contract to the insurer so that only the insurer
with a high willingness-to-pay is buying it. Geruso (2017) shows empirically that there is
substantial demand heterogeneity related to heterogeneity in risk preferences that is not
related to the underlying risk distribution.

A reinsurance contract (also called treaty) is a couple (π, f), where π is the premium
and f is the reinsurance indemnity function (coverage). The reinsurer presents the insurer
a menu of reinsurance policies, and the insurer chooses to buy either one of the policies
or not. The risk-neutral reinsurer maximizes the net profit, while taking into account
the demand of the insurer. Because the risk preferences of the insurer are unknown to
the reinsurer, the optimization problem is solved under the incentive compatibility and
individual rationality constraints. We assume that there are two types of the insurers,
and the risk preferences of both types are assumed to be a distortion risk measure. This
allows us to assume an ordering in the risk preferences; the type 1 insurer has a lower
willingness-to-pay than the type 2 insurer for every risk.

Distortion risk measures are equivalent to dual utility as introduced by Yaari (1987),
and have gained practitioner’s interest as the risk measures Value-at-Risk (VaR) and Tail
Value-at-Risk (TVaR, also known as expected shortfall) are special cases. The VaR is
used in, e.g., Solvency II regulations for insurers in the European Union, and the TVaR is
used in Basel III regulation for banks. Preferences given by a distortion risk measure are
therefore popular in the context of insurers and financial firms. Therefore, rather than
studying a principal-agent model with an insurer and a policyholder, our focus is on a
principal-agent model with one reinsurer and one insurer.

Studying distortion risk measures in optimal reinsurance contract theory gained sub-
stantial interest in the last decade, that started with Cui et al. (2013). We impose the
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assumption that indemnity functions are non-decreasing and 1-Lipschitz, which is also
called a no-sabotage condition (Carlier and Dana, 2003). This is motivated by ex post
moral hazard on the side of the ceding insurer, as it creates no incentives for the insurer
to report a lower loss, or to create additional (incremental) losses (see, e.g., Huberman
et al., 1983; Denuit and Vermandele, 1998). Under the no-sabotage condition, a Marginal
Indemnification Function (MIF) approach can be used to solve standard optimal reinsur-
ance problems (Assa, 2015; Zhuang et al., 2016). This generally yields to optimality of
layer-type reinsurance indemnities. We follow this approach, and reduce the optimiza-
tion problem to a problem of optimizing over marginal indemnification functions under
one remaining incentive compatibility condition. We show that the remaining incentive
compatibility constraint can be removed, and the problem is solved via a quantile opti-
mization approach. We provide solutions by characterizing the marginal indemnities in
closed-form.

In most optimal reinsurance design papers that take the perspective of the insurance
seller (reinsurer) (e.g., Amarante et al., 2015; Anthropelos and Boonen, 2020; Boonen
et al., 2018), the preferences of the insurance buyer (insurer) are common knowledge.
The reinsurer exploits this information, and prices a reinsurance contract such that the
insurer becomes indifferent between buying or not buying the proposed contract. With
asymmetric information, we show that this no longer holds, and the insurer may benefit
strictly from the transaction.

The paper that is closest to ours is Landsberger and Meilijson (1994). They study an
asymmetric information model, where the insurer is assumed to be a risk-averse, expected
utility maximizing agent. Then, when the reinsurer is assumed to be risk-neutral and the
types differ substantially in their attitude to heavy losses, they find that there is full
insurance. Moreover, Julien (2000) study an asymmetric information model with an
expected utility maximizing agent, and assumes that the reservation utility depends on
the underlying loss distribution of the insurer. This paper differs from Landsberger and
Meilijson (1994) and Julien (2000) by a focus on distortion risk measures for the insurer,
who does not need to be averse to mean-preserving spreads because we allow for non-
concave distortion functions. In contrast to Landsberger and Meilijson (1994) and Julien
(2000), we obtain a full description of the optimal reinsurance solutions. Another paper
that is close to our approach is Boonen et al. (2021), who study Bowley solutions under
asymmetric information. In Bowley solutions, the reinsurer discloses an entire pricing
functional to the insurer. Also, the insurer can select any indemnity function given such
a pricing functional. Such a pricing functional is assumed to be monotone, and the optimal
pricing functional may therefore be tedious to derive (Boonen et al., 2021). In this paper,
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the insurer is only presented with two different policies (π1, f1) and (π2, f2), and these
two contracts are strategically chosen by the reinsurer. Therefore, Bowley solutions are
different from the reinsurance contracts under asymmetric information that are obtained
in this paper.

The setting of this paper is also similar to the setting of Cheung et al. (2020), where
the key difference is the type of asymmetric information that is assumed. While Cheung
et al. (2020) assume asymmetric information with respect to the underlying distribution
of the loss of the insurer, our focus in this paper is on asymmetric information with
respect to the risk preferences of the insurer. Interestingly, and in contrast to Cheung
et al. (2020), we derive the optimal reinsurance menu in closed-form, and we find that
the optimal reinsurance indemnities have the form of “tranches”. This means that the
risk of the insurer is split into layers (tranches), and the layers are then either kept or
sold to the reinsurer. Such functional form is popular in reinsurance, as (truncated) stop-
loss contracts are special cases. Under symmetric information, tranches are generally not
optimal with expected utility (e.g., Raviv, 1979), and proportional reinsurance indemnities
are optimal with exponential expected utilities (Barrieu and El Karoui, 2005).

This paper is organized as follows. Section 2 states some preliminaries that are used
in Section 3, where we define the main reinsurance problem with asymmetric information
that we study in this paper. Section 4 provides the optimal solutions, that are separating
equilibrium reinsurance contracts. This section also studies the pooling equilibrium rein-
surance contracts, which are shown to be suboptimal. Section 5 provides two examples
with the VaR and the TVaR, and finally Section 6 concludes.

2 Preliminaries

The insurer is initially endowed with a bounded, non-negative random loss variable X,
which is realized at a given future reference time period. Its distribution function FX is
known by both the insurer and the reinsurer, while the risk preferences of the insurer are
unknown to the reinsurer in our study.

The insurer cedes the risk f(X) (the indemnity) to the reinsurer, and in return the
reinsurer receives a premium π ≥ 0 from the insurer. We assume that f ∈ F , with

F = {f : [0,M ]→ [0,M ]|f(0) = 0, 0 ≤ f(x)− f(y) ≤ x− y for 0 ≤ y ≤ x ≤M},

where M is the essential supremum of X. The purpose of restricting the admissible
set of indemnity functions to F is to avoid moral hazard; see for instance Huberman et
al. (1983), Denuit and Vermandele (1998), and many more recent papers. This moral
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hazard condition has a close relationship with the marketability of indemnities. More
specifically, Cheung et al. (2014) define the class of universally marketable indemnities to
ensure that the acceptability by policyholders is universal. They show that an indemnity
that is assumed to be non-decreasing a priori is universally marketable if and only if it is
a 1-Lipschitz function; see also the related discussions in Lo et al. (2021). The function
f ∈ F is non-decreasing and 1-Lipschitz and hence absolutely continuous. This implies
that f is almost everywhere differentiable on [0,M ]. Moreover, there exists a Lebesgue
integrable function h : [0,M ] 7→ [0, 1] such that

f(x) =

∫ x

0

h(z)dz, x ∈ [0,M ], (1)

where h is the slope of the indemnity function f . Assa (2015) and Zhuang et al. (2016)
call this function the Marginal Indemnification Function (MIF).

The insurer adopts a distortion risk measure to evaluate his/her risk position. A
distortion risk measure ρg of a non-negative random variable Z is given by

ρg(Z) =

∫ ∞
0

g(FZ(z))dz, (2)

whenever the integral exists, where FZ(z) := 1 − FZ(z) is the survival function of Z,
g ∈ Gd, and

Gd = {g : [0, 1]→ [0, 1]|g(0) = 0, g(1) = 1, g is non-decreasing and left-continuous}.

Two popular examples of a distortion risk measure are the VaR and the TVaR, which will
be explicitly defined in Section 5.

Distortion risk measures satisfy comonotonic additivity and translation invariance
(Schmeidler, 1986; Wang et al., 1997). A risk measure ρg is comonotonic additive when
ρg(Y ) + ρg(Z) for all comonotonic random variables Y, Z,1 and in particular this implies
ρg(X−f(X))+ρ(f(X)) = ρg(X) for all f ∈ F . A risk measure ρg is translation invariant
when ρg(Z + c) = ρg(Z) + c for all c ∈ R and all random variables Z. Since ρg is transla-
tion invariant, it holds that ρg(Y − ρg(Y )) = ρg(Y ) − ρg(Y ) = 0 = ρg(0) for all random
variables Y , and thus we can interpret ρg(Y ) as willingness-to-pay for loss Y . Moreover, if
g, g∗ ∈ Gd are such that g(t) ≥ g∗(t) for all t ∈ [0, 1], then it holds that ρg(Y ) ≥ ρg∗(Y ) for
all random variables Y , and thus the risk measure ρg exhibits a higher willingness-to-pay
for loss Y than risk measure ρg∗ .

1Random variables Y, Z are called comonotonic if there exists a non-decreasing function k such that
Y = k(Z).
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We note that a risk-reward trade-off, given by V(Z) = E[Z] + α(ρg(Z) − E[Z]) for
α ∈ [0, 1] and g ∈ Gd, can be written as a distortion risk measure: V(Z) = ρĝ(Z), with
ĝ(t) = (1 − α)t + αg(t). Here, ĝ ∈ Gd. The parameter α is then interpreted as a cost-
of-capital rate (Chi, 2012). See De Giorgi and Post (2008) for a further study of such
preferences.

3 Problem formulation

In this section, we formalize the principal-agent model with asymmetric information stud-
ied in this paper. Assume that the identity of the insurer is hidden information to the
reinsurer, but the reinsurer knows that the insurer adopts a distortion risk measure ρg1
with probability p, and adopts another distortion risk measure ρg2 with probability 1− p,
where g1, g2 ∈ Gd. The distribution of X is assumed to be the same for both types of
insurers.2

A reinsurance contract is equal to a pair (π, f), where π ≥ 0 is the premium and
f ∈ F is the indemnity function. We assume that the reinsurer has the monopoly in
the reinsurance market. The reinsurer offers a reinsurance menu that consists of two
reinsurance contracts to the insurer, and this menu is given by {(π1, f1); (π2, f2)}. This
menu is designed such that the insurer of type 1 weakly prefers to buy the reinsurance
contract (π1, f1) rather than the reinsurance contract (π2, f2), while the insurer of type 2
weakly prefers to buy the reinsurance contract (π2, f2) rather than the reinsurance contract
(π1, f1). Once the policy is chosen by the insurer, the reinsurer knows the risk preferences
of the insurer. In the optimal solution, πj is thus the premium charged from the j-th type
of the insurer, and fj is the corresponding indemnity function ceded to the reinsurer by
the j-th type of the insurer, j = 1, 2. The reinsurer is assumed to be risk-neutral, and
the objective for the reinsurer is thus to maximize its expected net profit:

P := E[(π1 − f1(X))1{i=1} + (π2 − f2(X))1{i=2}]

= p (π1 − E[f1(X)]) + (1− p) (π2 − E[f2(X)]) , (3)

where 1{i=j} is the indicator function that is one if the insurer has the j-th type and 0
otherwise, j = 1, 2. For the reinsurer, 1{i=1} is a Bernoulli random variable with success
probability p, which we assumed to be independent of X.

2For the sake of presentation, we assumed that the essential supremum M is finite, and thus that X is
bounded. However, all the results obtained in the paper still hold even if M =∞, but when we assume
ρg1(X) <∞, ρg2(X) <∞, and E[X] <∞.
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The fundamental Revelation Principle in mechanism design applies, and states that
we only need to consider incentive compatibility (IC) and individual rationality (IR).
In other words, we study the optimal reinsurance design where the reinsurer maximizes
(3) under IC and IR constraints. The IC constraint states that the reinsurer provides a
contract aiming at each type of insurers, and the type 1 insurer will not choose the menu
designed for type 2 insurer, and vice versa. The IR constraint ensures that the insurer is
not worse off through buying the designated reinsurance contract. The problem that we
study in this paper is formalized as follows.

Problem 3.1 Maximize the objective function

max
{(π1,f1);(π2,f2)}

p (π1 − E[f1(X)]) + (1− p) (π2 − E[f2(X)]) , (4)

subject to the following constraints: π1, π2 ≥ 0, f1, f2 ∈ F ,

IR1 : ρg1(X − f1(X) + π1) ≤ ρg1(X), (5a)

IR2 : ρg2(X − f2(X) + π2) ≤ ρg2(X), (5b)

IC1 : ρg1(X − f1(X) + π1) ≤ ρg1(X − f2(X) + π2), (5c)

IC2 : ρg2(X − f2(X) + π2) ≤ ρg2(X − f1(X) + π1). (5d)

We refer to the solution of Problem 3.1 as an optimal reinsurance menu or separating
equilibrium. As a standard assumption in asymmetric information models (cf. Landsberger
and Meilijson, 1999; Laffont and Martimort, 2009), we make the following assumptions:

(i) if IC1 holds with an equality, it is implicitly assumed that the type 1 insurer would
select contract (π1, f1);

(ii) when IC2 is an equality, the type 2 insurer would select contract (π2, f2).

Because of the comonotonic additivity and translational invariance of the distortion
risk measures, we can simplify the constraints (5a)-(5d) as follows:

IR1 : π1 ≤ ρg1(f1(X)), (6a)

IR2 : π2 ≤ ρg2(f2(X)), (6b)

IC1 : π1 + ρg1(f2(X)) ≤ π2 + ρg1(f1(X)), (6c)

IC2 : π2 + ρg2(f1(X)) ≤ π1 + ρg2(f2(X)). (6d)

Remark 3.1 We wish to emphasize that we do not study adverse selection. The two
types of insurers are endowed with the same reinsurable loss X; there is only asymmetric
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information with respect to the risk preferences of the insurer. Thus, there is no notion
of high or low risk types. The reinsurer prices insurance policies only based on the de-
mand: if the reinsurer believes that the insurer is endowed with a large function gi (a high
willingness-to-pay), then the reinsurer may charge a high premium.

Throughout the paper, we make the following assumption:

Assumption 1: g1(t) ≤ g2(t) for all t ∈ [0, 1].

It holds that ρg1(Y ) ≤ ρg2(Y ) for all non-negative random variables Y . This implies
that the type 1 insurer has a weakly smaller willingness-to-pay than the type 2 insurer
for every risk, and so this allows us to rank the two types of the insurer based on their
willingness-to-pay. For instance, Assumption 1 is satisfied if both types of the insurer
are endowed with a VaR measure, or if both types of the insurer are endowed with a
TVaR measure. This will be further studied in Section 5. First, we argue that the IR1
constraint is binding under this assumption. Suppose that, for the optimal reinsurance
menu {(π1, f1); (π2, f2)}, π1 < ρg1(f1(X)). For this case, let

c := ρg1(f1(X))− π1 > 0.

Then, from IC2 we get

ρg2(f2(X))− π2 ≥ ρg2(f1(X))− π1
≥ ρg1(f1(X))− π1 = c > 0,

where the second inequality is due to Assumption 1. Thus,

ρg2(f2(X)) ≥ π2 + c > π2.

Now, let us consider another reinsurance menu {(π̄1, f1); (π̄2, f2)}, where π̄1 = π1 + c

and π̄2 = π2 + c. The new menu {(π̄1, f1); (π̄2, f2)} also fulfills with the four constraints
(6a)-(6d), from which the reinsurer can make a profit strictly higher than the menu
{(π1, f1); (π2, f2)}. Hence, it must hold that π1 = ρg1(f1(X)), i.e., IR1 must be binding
under Assumption 1. With this observation, we have ρg2(f2(X))−π2 ≥ ρg2(f1(X))−π1 ≥
ρg1(f1(X)) − π1 = 0, meaning that IR2 holds naturally under IR1 and IC2. Note that
the objective function (4) is increasing in π2, from which it follows that IC2 must hold
with equality. With the help of these observations, Problem 3.1 can be simplified into
maximizing the objective function in (4) subject to the constraints

IR1′ : π1 = ρg1(f1(X)), (7a)
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IC1′ : ρg2(f2(X))− ρg2(f1(X)) ≥ ρg1(f2(X))− ρg1(f1(X)), (7b)

IC2′ : π2 − π1 = ρg2(f2(X))− ρg2(f1(X)). (7c)

Observe that the objective function in (4) can be written as the bivariate function of
the indemnity functions f1 and f2 by substituting the variables π1 and π2 from IR1′ (7a)
and IC2′ (7c). Then, Problem 3.1 reduces to the following problem.

Problem 3.2 Under Assumption 1, solve

max
{f1,f2}

p [ρg1(f1(X))− E[f1(X)]] + (1− p)[ρg1(f1(X))

+ρg2(f2(X))− ρg2(f1(X))− E[f2(X)]]

s.t. IC1′ : ρg2(f2(X))− ρg2(f1(X)) ≥ ρg1(f2(X))− ρg1(f1(X)).

(8)

From (1) and (2), we note that

ρg1(f1(X)) =

∫ M

0

g1(FX(z))h1(z)dz, ρg2(f1(X)) =

∫ M

0

g2(FX(z))h1(z)dz,

ρg1(f2(X)) =

∫ M

0

g1(FX(z))h2(z)dz, ρg2(f2(X)) =

∫ M

0

g2(FX(z))h2(z)dz,

E[f1(X)] =

∫ M

0

FX(z)h1(z)dz, E[f2(X)] =

∫ M

0

FX(z)h2(z)dz,

where h1 and h2 are the slopes or marginal indemnity functions (MIFs) of the indemnity
functions f1 and f2, respectively. In other words,

f1(x) =

∫ x

0

h1(z)dz and f2(x) =

∫ x

0

h2(z)dz, x ∈ [0,M ].

Then, the objective function (8) can be rewritten as∫ M

0

{
g1(FX(z))−

[
pFX(z) + (1− p)g2(FX(z))

]}
h1(z)dz

+ (1− p)
∫ M

0

[
g2(FX(z))− FX(z)

]
h2(z)dz.

In a similar manner, the IC1′ condition in Problem 3.2 can be equivalently written as∫ M

0

[
g2(FX(z))− g1(FX(z))

]
[h1(z)− h2(z)]dz ≤ 0. (9)

Hence, Problem 3.2 can be reformulated as follows.

Problem 3.3 Under Assumption 1, solve

max
{h1,h2}

∫M
0

{
g1(FX(z))−

[
pFX(z) + (1− p)g2(FX(z))

]}
h1(z)dz

+(1− p)
∫M
0

[
g2(FX(z))− FX(z)

]
h2(z)dz

s.t. IC1′ :
∫M
0

[
g2(FX(z))− g1(FX(z))

]
[h1(g1z)− h2(z)]dz ≤ 0.

(10)
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4 Main results

In this section, we first study the optimal reinsurance contracts. Thereafter, we study the
pooling equilibrium reinsurance contracts.

4.1 Optimal reinsurance contracts under asymmetric information

This subsection studies Problem 3.3, that yields the optimal reinsurance contracts. We
will show that condition IC1′ can be removed. First, we solve the problem without
considering the IC1′ condition, which is the following problem.

Problem 4.1 Under Assumption 1, solve

max
{h1,h2}

∫M
0

{
g1(FX(z))−

[
pFX(z) + (1− p)g2(FX(z))

]}
h1(z)dz

+(1− p)
∫M
0

[
g2(FX(z))− FX(z)

]
h2(z)dz.

(11)

Let

ψ1(t) := g1(t)− [pt+ (1− p)g2(t)] and ψ2(t) := (1− p)[g2(t)− t], t ∈ [0, 1],

and define

Aψ1 = {z ∈ [0,M ]|ψ1(FX(z)) > 0}, Bψ1 = {z ∈ [0,M ]|ψ1(FX(z)) = 0},

Cψ1 = {z ∈ [0,M ]|ψ1(FX(z)) < 0}, Aψ2 = {z ∈ [0,M ]|ψ2(FX(z)) > 0},

Bψ2 = {z ∈ [0,M ]|ψ2(FX(z)) = 0}, Cψ2 = {z ∈ [0,M ]|ψ2(FX(z)) < 0}.

The following lemma summaries the solution of Problem 4.1.

Lemma 4.2 The optimal values of h̃1 and h̃2 that solve Problem 4.1 are given, for z ∈
[0,M ] almost everywhere (a.e.), as follows:

h̃1(z) =


1 if z ∈ Aψ1 ,

a1(z) if z ∈ Bψ1 ,

0 if z ∈ Cψ1 ,

and h̃2(z) =


1 if z ∈ Aψ2 ,

a2(z) if z ∈ Bψ2 ,

0 if z ∈ Cψ2 ,

where a1 and a2 are any Lebesgue integrable functions between 0 and 1.

Proof. Note that (10) can be written as

max
{h1,h2}

∫ M

0

[
ψ1(F (z))h1(z) + ψ2(F (z))h2(z)dz

]
10



= max
h1

∫ M

0

ψ1(F (z))h1(z)dz + max
h2

∫ M

0

ψ2(F (z))h2(z)dz

=

∫ M

0

ψ1(F (z))h̃1(z)dz +

∫ M

0

ψ2(F (z))h̃2(z)dz,

where the last equality follows from Eq. (17) in Assa (2015) or Theorem 3.1 in Zhuang
et al. (2016).

The next lemma shows that the solutions to Problem 4.1 presented in Lemma 4.2
automatically fulfill with the constraint IC1′.

Lemma 4.3 Every solution to Problem 4.1 satisfies IC1′.

Proof. Let Assumption 1 hold. We show that any optimal MIF h̃1 and h̃2 in Lemma
4.2 is such that ∫ M

0

[
g2(FX(z))− g1(FX(z))

]
[h̃1(z)− h̃2(z)]dz ≤ 0. (12)

Let {h̃1, h̃2} be as in Lemma 4.2. By Assumption 1, it holds that g2(FX(z))−g1(FX(z)) ≥
0. We next identify the z ∈ [0,M ] for which it may hold that h̃1(z) − h̃2(z) > 0. Then,
we separate three cases:

• if z ∈ Cψ2 , then ψ2(FX(z)) < 0, or g2(FX(z)) < FX(z), or

g1(FX(z))− [pFX(z) + (1− p)g2(FX(z))] ≤ g2(FX(z))− [pFX(z) + (1− p)g2(FX(z))]

= p(g2(FX(z))− FX(z)) < 0,

and thus it holds z ∈ Cψ1 . Hence, Cψ2 ⊆ Cψ1 ;

• if z ∈ Bψ2 , then ψ2(FX(z)) = 0, or g2(FX(z)) = FX(z), or

g1(FX(z))− [pFX(z) + (1− p)g2(FX(z))] ≤ g2(FX(z))− [pFX(z) + (1− p)g2(FX(z))]

= p(g2(FX(z))− FX(z)) = 0,

and thus it holds z ∈ Bψ1 ∪ Cψ1 . Hence, Bψ2 ⊆ Bψ1 ∪ Cψ1 ;

• if z ∈ Aψ2 , then h̃2(z) = 1 ≥ h̃1(z).

Thus, h̃1(z) > h̃2(z) only happens for z ∈ Bψ1 ∩ Bψ2 . But, for z ∈ Bψ1 ∩ Bψ2 , it holds
g2(FX(z)) = FX(z) and g1(FX(z)) = pFX(z) + (1− p)g2(FX(z)), and thus g1(FX(z)) =

g2(FX(z)) = FX(z). Hence, for all z ∈ [0,M ],[
g2(FX(z))− g1(FX(z))

]
[h̃1(z)− h̃2(z)] ≤ 0,
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which implies condition IC1′.

From this result, we get that the solutions provided in Lemma 4.2 are indeed the
solutions to Problem 3.3. This is our main result, and is summarized in the following
theorem.

Theorem 4.4 The optimal values of h̃1 and h̃2 that solve Problem 3.3 are given, for
z ∈ [0,M ] a.e., as follows:

h̃1(z) =


1 if z ∈ Aψ1 ,

a1(z) if z ∈ Bψ1 ,

0 if z ∈ Cψ1 ,

and h̃2(z) =


1 if z ∈ Aψ2 ,

a2(z) if z ∈ Bψ2 ,

0 if z ∈ Cψ2 ,

where a1 and a2 are any Lebesgue integrable functions between 0 and 1.

Theorem 4.4 states all solutions to Problem 3.3. For instance, we find that there is a
unique solution to Problem 3.3 if and only if the Lebesgue measure of Bψ1 ∪ Bψ2 is zero.

Based on Theorem 4.4, the following statements can be made on the shape of the
optimal indemnity functions.

(i) If g2(t) < t for all t ∈ (0, 1), it must hold that ψ1(t) < 0 and ψ2(t) < 0 for t ∈ (0, 1)

since g1(t) ≤ g2(t) due to Assumption 1. For this case, we have Aψ1 = Bψ1 = ∅, and
the Lebesgue measures of Aψ2 and Bψ2 are 0, which implies that shut-down policies
are ceded by both types of insurers.

(ii) If g2(t) > t for all t ∈ (0, 1), it follows that ψ2(t) > 0 for t ∈ (0, 1), which means
that a full reinsurance treaty is ceded by the type 2 insurer. Furthermore,

(a) if g1(t) < t for all t ∈ (0, 1), we have ψ1(t) < 0 for all t ∈ (0, 1), indicating that
the shut-down policy is ceded by the type 1 insurer;

(b) if g1(t) > t for all t ∈ (0, 1), the optimal reinsurance indemnity depends on
the sign of the function ψ1(t) on t ∈ (0, 1), which can take various layer-
type functional forms. For instance, if there exist some t∗1 ∈ (0, 1) such that
ψ1(t) > 0 for t ∈ (t∗1, 1) and ψ1(t) < 0 for t ∈ (0, t∗1), then this leads to the
conclusion that a dual stop-loss reinsurance contract is ceded by the type 1
insurer.

(iii) If there exists some t∗2 ∈ (0, 1) such that g2(t) > t for t ∈ (t∗2, 1) and g2(t) < t for
t ∈ (0, t∗2), it implies that ψ2(t) > 0 for t ∈ (t∗2, 1). Then, a dual stop-loss treaty
is ceded by the type 2 insurer. Similar to the discussions in case (ii), a variety
of layer-type treaties can be optimally ceded by the type 1 insurer depending on

12



the sign of ψ1(t) on t ∈ (0, 1). We refer interested readers to Section 5 for a more
detailed treatment with the VaR and the TVaR.

Next, we discuss the net profit of the reinsurer in the optimal reinsurance menu,
where the net profit is defined in (3). To emphasize that this is the profit in a separating
equilibrium, we relabel it as PS. Using Theorem 4.4, the net profit is given by

PS =

∫
Aψ1

{
g1(FX(z))−

[
pFX(z) + (1− p)g2(FX(z))

]}
dz

+(1− p)
∫
Aψ2

[
g2(FX(z))− FX(z)

]
dz. (13)

Moreover, the welfare gain for the insurer of type 1 is WG1,S := ρg1(X) − (ρg1(X −
f1(X)) + π1) = ρg1(f1(X))− π1 = 0, where we use comonotonic additivity of ρg1 .3 More-
over, the welfare gain for the insurer of type 2 is given by

WG2,S := ρg2(X)− (ρg2(X − f2(X)) + π2)

= ρg2(f2(X))− π2
= ρg2(f2(X))− π1 − ρg2(f2(X)) + ρg2(f1(X))

= ρg2(f1(X))− ρg1(f1(X)) ≥ 0. (14)

We make the following observations:

• efficiency at the top: the optimal indemnities for the type 2 insurer coincide with
the optimal indemnities in absence of asymmetric information;

• The type 1 insurer is indifferent between buying reinsurance or not buying reinsur-
ance; the type 2 insurer may strictly benefit from buying reinsurance.

From Theorem 4.4, it follows that h̃1(z) > 0 only if z ∈ Aψ1 ∪ Bψ1 , and thus only if
g1(FX(z)) ≥ FX(z). Moreover, from IR1′ it follows that π1 = ρg1(f1(X)). Combining
these two observations yields π1 = ρg1(f1(X)) ≥ E[f1(X)]. Moreover, since the menu
{(π1, f1); (π1, f1)} is feasible to Problem 3.1, it must also hold that π2 ≥ E[f2(X)], because
otherwise the objective P in (3) is not maximized. This finding not only indicates that
the net profit of the reinsurer is non-negative, but also implies a non-negative risk loading
for the actuarial premium principle.

3While the welfare gains are related to the concept of net profit for the reinsurer, we here refrain from
using the terminology “net profit” in relation with risk measures. The welfare gain WG·,· represents the
willingness-to-pay for a reinsurance contract (π, f) since it holds by construction that ρg(X−f(X)+π+

WG·,·) = ρg(X).
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Recall that from IC2′ (7c) it follows that

π2 = π1 + ρg2(f2(X))− ρg2(f1(X))

= π1 +

∫ M

0

g2(F̄X(z))[h2(z)− h1(z)]dz.

Thus, if the marginal indemnity functions for the two types of insurers h2 and h1 are close
to each other, it is clear from the above expression that the premium π2 will be very close
to π1. Hence, if the indemnities f1 and f2 are similar, the corresponding prices are similar
as well. This excludes price discrimination.

In absence of asymmetric information, the reinsurer only offers the insurer a contract
that makes the insurer indifferent between buying and not buying reinsurance (e.g. Ama-
rante et al., 2015). Asymmetric information benefits the insurer if the insurer is of type
2, because the type 2 insurer can mimic to be of type 1, and appears to have a lower
willingness-to-pay. On the other hand, the type 1 insurer is still indifferent between buy-
ing insurance or not, because this type cannot claim to have a lower willingness-to-pay.
We shall highlight the above mentioned observations in Section 5.

4.2 Pooling equilibrium contracts

We again assume that Assumption 1 holds. Let us define the pooling equilibrium contracts
provided by the reinsurer. The reinsurer always provides the same contract (πP , fP )

regardless of the identity of the insurer. A pooling equilibrium is given by the reinsurance
contract (πP , fP ) that solves

max
(π,f)
{π − E[f(X)]} ,

subject to π ≥ 0, f ∈ F , and the following individual rationality conditions:

ρgi(X − f(X) + π) ≤ ρgi(X), i = 1, 2.

It is straightforward to see that the individual rationality condition for the type 1 insurer
is binding.

Define

Ap,1 = {z ∈ [0,M ]|g1(FX(z)) > FX(z)}, Bp,1 = {z ∈ [0,M ]|g1(FX(z)) = FX(z)},

Cp,1 = {z ∈ [0,M ]|g1(FX(z)) < FX(z)}.

Note that the conditions IR1 and IR2 jointly reduce to IR1, and thus πP = ρg1(fP (X)).
Then, the optimal indemnity function fP can be obtained by solving

max
fP∈F

{ρg1(fP (X))− E[fP (X)]} ,
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which is equivalent to solving

max
hP

∫ M

0

[
g1(FX(z))− FX(z)

]
hP (z)dz.

By Eq. (17) in Assa (2015) or the result of Theorem 3.1 in Zhuang et al. (2016), the
optimal MIF for fP can be derived as

h̃P (z) =


1 if z ∈ Ap,1,
aP (z) if z ∈ Bp,1,
0 if z ∈ Cp,1,

where aP is any Lebesgue integrable function between 0 and 1. Thus, the net profit
acquired by the reinsurer is given by

PP :=

∫
Ap,1

[
g1(FX(z))− FX(z)

]
dz. (15)

Obviously, it is easy to see that PP ≥ 0, meaning that the net profit acquired by the
reinsurer is non-negative. Moreover, the welfare gains of the type 1 and type 2 insurer are
given byWG1,P := ρg1(fP (X))−πP = 0 andWG2,P := ρg2(fP (X))−πP ≥ 0, respectively.

We next show that the pooling equilibrium optimal reinsurance contracts are never
better than the separating equilibrium reinsurance contracts.

Theorem 4.5 If Assumption 1 holds, then it holds that PS ≥ PP , where PS and PP are
defined in (13) and (15), respectively.

Proof. We readily verify that any reinsurance menu {(π, f); (π, f)} satisfying IR1 sat-
isfies IR2, IC1 and IC2 as well. Thus, for the pooling equilibrium reinsurance con-
tract (πP , fP ), the result is a direct consequence of the fact that the reinsurance menu
{(πP , fP ); (πP , fP )} is feasible in Problem 3.1. It follows from Theorem
4.5 that the competitive reinsurance market that we study in this paper may only have
a separating equilibrium and not a pooling equilibrium. The pooling equilibrium always
leads to a (weakly) lower net profit for the reinsurer than the net profit in a separating
equilibrium.

Remark 4.1 If g1(t) = g2(t) for all t ∈ [0, 1], then it holds that PP = PS. In this case, the
two types of insurers are identical, and it is optimal to offer the same insurance contract
to the types of insurers.
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5 Numerical studies

In this section, we present two examples to illustrate our findings developed in the previous
section. We shall discuss the optimal reinsurance menu when the insurer adopts the VaR
measure or the TVaR measure.

5.1 The insurer adopts a VaR measure

In this subsection, we provide an example that serves as an illustration of Theorem 4.4
when the insurer adopts two types of VaR measures.

Definition 5.1 The VaR of a non-negative random variable Z at a confidence level α ∈
(0, 1) is defined as

V aRα(Z) = inf{z ∈ R+ : P(Z ≤ z) ≥ α}.

The VaR is a distortion risk measure with distortion function g(t) = 1{1−α<t≤1} for t ∈
[0, 1], where 1A = 1 if A holds and 1A = 0 otherwise. If Z is a continuous random
variable, the VaR of Z coincides with the corresponding the quantile.

Let the type 1 and type 2 insurer both use a VaR. The distortion functions are given
by g1(t) = 1{1−α1<t≤1} and g2(t) = 1{1−α2<t≤1}, for t ∈ [0, 1] and 0 ≤ α1 ≤ α2 ≤ 1.
Clearly, we have g2(t) ≥ g1(t) for all t ∈ [0, 1], and thus Assumption 1 is satisfied. Also,
let p ∈ (0, 1).

Note that

ψ2(t) =


−(1− p)t if 0 < t ≤ 1− α2,

(1− p)(1− t) if 1− α2 < t < 1,

0 if t ∈ {0, 1}.

Thus, Aψ2 = {z ∈ [0,M ]|1 − α2 < FX(z) < 1}, Bψ2 = {z ∈ [0,M ]|FX(z) ∈ {0, 1}}, and
Cψ2 = {z ∈ [0,M ]|0 < FX(z) ≤ 1− α2}. Then, from Theorem 4.4 it follows that

h̃2(z) =


1 if z ∈ Aψ2 ,

a2(z) if z ∈ Bψ2 ,

0 if z ∈ Cψ2 .

Further, it can be easily calculated that f2(x) =
∫ x
0
h̃2(z)dz =

∫ x
0
1{z∈Aψ2}dz = min{x, F−1X (1−

α2)}, x ≥ 0, which is a dual stop-loss indemnity contract ceded by the type 2 insurer.
Moreover, it holds that:

ψ1(t) =


−pt if 0 < t ≤ 1− α2,

−(pt+ 1− p) if 1− α2 < t ≤ 1− α1,

p(1− t) if 1− α1 < t < 1,

0 if t ∈ {0, 1},
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from which we can obtain that Aψ1 = {z ∈ [0,M ]|1 − α1 < FX(z) < 1}, Bψ1 = {z ∈
[0,M ]|FX(z) ∈ {0, 1}}, and Cψ1 = {z ∈ [0,M ]|0 < FX(z) ≤ 1− α1}. Thus, the result of
Theorem 4.4 implies that

h̃1(z) =


1 if z ∈ Aψ1 ,

a1(z) if z ∈ Bψ1 ,

0 if z ∈ Cψ1 .

We get that f1(x) =
∫ x
0
h̃1(z)dz = min{x, F−1X (1 − α1)}, x ≥ 0, which is also a dual

stop-loss contract ceded by the type 1 insurer. Furthermore, the premium charged from
the type 1 insurer is

π1 = ρg1(f1(X)) = F
−1
X (1− α1),

and the premium charged from the type 2 insurer is

π2 = π1 + ρg2(f2(X))− ρg2(f1(X)) = F
−1
X (1− α2),

which follows from ρg1(f1(X)) = ρg2(f1(X)). The net profit of the reinsurer is given by

PS = p(F
−1
X (1−α1)−E[min{x, F−1X (1−α1)}])+(1−p)(F−1X (1−α2)−E[min{x, F−1X (1−α2)}]).

Assume that the loss variable X has an exponential distribution with mean 1.4 Then,
FX(z) = exp(−z). Moreover, let α1 = 0.95 and α2 = 0.99. We derive that f1(x) ≈
min{x, 3.00}, f2(x) ≈ min{x, 4.61}, π1 ≈ 3.00, π2 ≈ 4.61, and PS = 3.62 − 1.57p,
p ∈ (0, 1). This means that the type 2 insurer is also indifferent between buying or not
buying the reinsurance contract (π2, f2), i.e., WG2,S = 0. Moreover, the net profit of
the reinsurer is decreasing in the probability that the insurer is of type 1. Thus, dual
stop-loss treaties are provided for the insurer regardless of which type he/she belongs to.
Moreover, a higher cap is set for the type of insurer with the highest VaR-parameter, and
as a result more premium will be charged to that type.

Now, let us consider the pooling equilibrium reinsurance contract proposed in Subsec-
tion 4.2. In this case, it is easy to derive that Ap,1 = Aψ1 , Bp,1 = Bψ1 , and Cp,1 = Cψ1 ,
which yields fP (x) = f1(x) ≈ min{x, 3.00}, πP = π1 ≈ 3.00, and PP = πP − E[fP (X)] =

− ln(1 − α1) − α1 ≈ 2.05. Clearly, it follows that PP ≤ PS; indeed, they are equal when
p→ 1. Moreover, the welfare gains of the insurer types 1 and 2 in the pooling equilibrium
contract are given by WG1,P = 0 and WG2,P = ρg2(fP (X))− πP = 0.

4While we assumed boundedness of X, we here slightly abuse our notation by allowing for unbounded
risk.
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5.2 The insurer adopts a TVaR measure

Next, we present a numerical example when the insurer employs two types of distortion
functions corresponding to the TVaR measures.

Definition 5.2 The TVaR of a non-negative random variable Z at a confidence level
α ∈ (0, 1) is defined as

TV aRα(Z) =

∫ 1

α

V aRτ (Z)dτ.

The TVaR is a distortion risk measure with distortion function g(t) = min{t/(1−α), 1} for
t ∈ [0, 1]. If Z is a continuous random variable, then TV aRα(Z) = E[Z|Z ≥ V aRα(Z)].
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Figure 1: Net profit of the reinsurer in the optimal reinsurance menu, PS, as function of
p ∈ (0, 1), corresponding to Section 5.2.

Let the type 1 and type 2 insurer both use a TVaR measure. The distortion functions
are given by g1(t) = min{t/(1− α1), 1} and g2(t) = min{t/(1− α2), 1}, for t ∈ [0, 1] and
0 < α1 ≤ α2 < 1. We note that Assumption 1 is satisfied. Let p ∈ (0, 1).

We find that ψ2(t) = (1 − p)(min{t/(1 − α), 1} − t) > 0 for all t ∈ (0, 1), and
ψ2(0) = ψ2(1) = 0. Thus, Aψ2 = (0,M), Bψ2 = {0,M}, and Cψ2 = ∅. By Theorem 4.4,
we get that f2(x) = x, x ≥ 0, is optimal. In other words, full reinsurance is optimal for
the type 2 insurer.

Define p∗ =
1−α1

α2

1−α1
and t∗ = (1−p)(1−α1)

1−p(1−α1)
. To determine the indemnity f1, we get from

Theorem 4.4 that we need to determine the sign of ψ1(t) for t ∈ [0, 1]. It holds that

ψ1(t) = min{t/(1− α1), 1} − [pt+ (1− p) min{t/(1− α2), 1}].

We separate three different cases of the probability p, that is the probability that the
insurer is of type 1.
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(a) Case 1: 0 < p < p∗. For this case, it follows that

ψ1(t)


< 0 if 0 < t < t∗,

> 0 if t∗ < t < 1,

= 0 if t ∈ {0, t∗, 1},

which means that Aψ1 = {z ∈ [0,M ]|t∗ < FX(z) < 1}, Bψ1 = {z ∈ [0,M ]|FX(z) ∈
{0, t∗, 1}}, and Cψ1 = {z ∈ [0,M ]|0 < FX(z) < t∗}. From 0 < p < p∗ and α1 > 0,
we get that 1− α2 < t∗ < 1− α1.

According to Theorem 4.4, we have f1(x) =
∫ x
0
1{z∈Aψ1}dz = min{x, F−1X (t∗)},

x ≥ 0. Therefore, a dual stop-loss contract is optimal for the type 1 insurer, while
a full reinsurance policy is optimal for the type 2 insurer as mentioned above. Fur-
thermore, the corresponding premium charged by the reinsurer to the type 1 insurer
is given by

π1 = ρg1(f1(X)) =

∫ M

0

g1(FX(z))h̃1(z)dz =

∫
F (z)>t∗

g1(FX(z))dz

=

∫
1−α1<FX(z)≤1

dz +

∫
t∗<FX(z)≤1−α1

FX(z)

1− α1

dz

= F
−1
X (1− α1) +

1

1− α1

∫ F
−1
X (t∗)

F
−1
X (1−α1)

FX(z)dz.

The premium charged from the type 2 insurer is given by

π2 = π1 + ρg2(f2(X))− ρg2(f1(X))

= π1 +

∫ M

0

g2(FX(z))h̃2(z)dz −
∫ M

0

g2(FX(z))h̃1(z)dz

= π1 +

∫ M

0

g2(FX(z))dz −
∫
FX(z)>t∗

g2(FX(z))dz

= π1 +

∫
FX(z)≤t∗

g2(FX(z))dz

= π1 +

∫
FX(z)≤1−α2

FX(z)

1− α2

dz +

∫
1−α2<FX(z)≤t∗

dz

= π1 +
1

1− α2

∫ M

− ln(1−α2)/λ

FX(z)dz + (F
−1
X (1− α2)− F

−1
X (t∗).

Suppose again that the risk X has an exponential distribution with mean λ. Then,

π1 = − ln(1− α1)

λ
+

1− α1 − t∗

λ(1− α1)
= − ln(1− α1)

λ
− t∗

λ(1− α1)
+

1

λ
,
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π2 = π1 +
1

1− α2

∫ M

− ln(1−α2)/λ

e−λzdz +

∫ − ln(1−α2)/λ

− ln(t∗)/λ

dz

= π1 +
1

λ
+

ln
(

t∗

1−α2

)
λ

=
2 + ln

(
t∗

(1−α1)(1−α2)

)
λ

− t∗

λ(1− α1)
.

The welfare gain of the type 2 insurer is given by

WG2,S = ρg2(f2(X))− π2 =
1

λ
− ln(1− α2)

λ
− π2 =

t∗

λ(1− α1)
−

1 + ln
(

t∗

1−α1

)
λ

.

Finally, the net profit of the reinsurer from the menu {(π1, f1); (π2, f2)} is given by

PS = π1 −
p

λ
(1− t∗) +

1− p
λ

ln(t∗/(1− α2)).

Now, let λ = 1, α1 = 0.95 and α2 = 0.99. Then, we find p∗ = 0.81. Figure 1 displays
the plot of the net profit PS as function of the probability p that the insurer is of
type 1. The net profit of the reinsurer PS is decreasing in p ∈ (0, p∗). The welfare
gain obtained by the type 2 insurer through buying reinsurance is plotted in Figure
2, from which we know the type 2 insurer will definitely benefit from the reinsurance
menu since WG2,S > 0. It depends on the probability p via t∗. Taking p = 0.6 as
an example, we have f1(x) ≈ min{x, 3.88}, x ≥ 0, π1 ≈ 3.58, π2 ≈ 5.31, PS ≈ 3.29,
and WG2,S ≈ 0.30.
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Figure 2: Welfare gain of the type 2 insurer in the optimal reinsurance menu, WG2,S, as
function of p ∈ (0, 1), corresponding to Section 5.2.

(b) Case 2: p = p∗. It follows that ψ1(t) = 0, for t ∈ [0, 1 − α2], and ψ1(t) > 0, for
t ∈ (1 − α2, 1). For z ∈ Bψ1 , the function a1(z) can be chosen freely between 0
and 1, and we pick a1(z) = 0. Then, we have f1(x) = min{x, F−1X (1− α2)}, x ≥ 0.
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Now, if X is exponentially distributed with mean λ, then f1(x) = min{x,− ln(1 −
α2)/λ}, x ≥ 0, π1 = F

−1
X (1 − α1) − α1−α2

λ(1−α1)
, π2 = 2−ln(1−α1)

λ
− 1−α2

λ(1−α1)
, and PS =

− ln(1−α1)
λ
− α1−α2

λ(1−α1)
− pα2

λ
. Now, assume that λ = 1, α1 = 0.95, and α2 = 0.99. Thus,

p = p∗ = 0.81. For this case, we have f1(x) ≈ min{x, 4.61}, x ≥ 0, π1 ≈ 3.80,
π2 ≈ 4.80, PS ≈ 3.00, and the type 2 insurer’s benefit from the reinsurance menu is
WG2,S = ρg2(X)− π2 ≈ 0.81.

(c) Case 3: p∗ < p < 1. For this case, it can be seen that ψ1(t) > 0 for all t ∈ (0, 1).
Thus, f1(x) = x, x ≥ 0, that is, the same full reinsurance policy will be ceded by
the insurer no matter which type the insurer is. As a result, π1 = π2 = ρg1(X) and
PS = ρg1(X) − E[X]. Now, let X be exponentially distributed with mean 1, and,
moreover, let α1 = 0.95 and α2 = 0.99. We then have π1 = π2 ≈ 4.00 and PS ≈ 3.00

(see the red dashed line in Figure 1). The benefit obtained by the type 2 insurer
from the menu is given as WG2,S = ρg2(X) − π2 ≈ 1.61 (see the red line in Figure
2). It is interesting to note that the welfare gain acquired by the type 2 insurer for
p∗ < p < 1 is strictly larger than that for 0 < p ≤ p∗. If the reinsurer believes that it
is more likely to face a type 1 insurer (so if p is large), than the optimal reinsurance
contract aims to attract maximum welfare from the type 1 insurer, and thus the
type 2 insurer benefits more from the asymmetric information.

According to the three cases above, we know that a full reinsurance menu will be
provided to the insurer without considering his/her identity when the probability that
the insurer is of type 1 exceeds a threshold p∗; otherwise, a dual stop-loss treaty and a
full insurance treaty will be ceded by the two types of the insurer.

Next, we discuss the pooling equilibrium contract. We find that the pooling equi-
librium reinsurance contract is given by fP (x) = x, x ≥ 0, and πP = ρg1(X). Thus,
PP = ρg1(X) − E[fP (X)], WG1,P = 0, and WG2,P = ρg2(fP (X)) − πP . If we assume
again that X is exponentially distributed with mean 1, α1 = 0.95, and α2 = 0.99, then
fP (x) ≈ min{x, 3.00}, x ≥ 0, πP ≈ 4.00, PP ≈ 3.00, and WG2,P ≈ 1.61. This means
that the type 2 insurer strictly benefits from the pooling reinsurance contract. In fact, if
0 < p < p∗, then the welfare gain of the type 2 insurer is larger in the pooling equilibrium
than in the separating equilibrium. Moreover, the net profit of the reinsurer in the pooling
equilibrium contract is not larger than the net profit of the reinsurer in the separating
equilibrium contract.

Summary: to conclude this section, let us briefly summarize our findings. First,
we summarize the case where the insurer adopts a VaR measure. For the separating
equilibrium, both types of insurers buy (possibly different) dual stop-loss treaties, and
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pay their indifference premiums. This implies that the welfare gains for the types 1 and 2
insurers are both zero. The pooling equilibrium indemnity is also a dual stop-loss treaty.

Next, we summarize the case where the insurer adopts a TVaR measure. For the
separating equilibrium, the type 2 insurer buys full insurance, while the type 1 insurer
may buy a dual stop-loss or full insurance treaty. The type 2 insurer may strictly benefit
from buying reinsurance. The pooling equilibrium indemnity is a full insurance treaty.

6 Conclusion

We have studied a problem of optimal reinsurance design under asymmetric information
when the risk preferences of the insurer are unknown to the reinsurer. We propose a
framework in which the insurer adopts distortion risk measures and one type of insurer
has a larger willingness-to-pay than the other type of insurer for every risk. The optimal
reinsurance contract menu is derived in closed-form by maximizing the net profit of the
reinsurer under two individual rationality constraints and two incentive compatibility
constraints. We also presented two examples to illustrate the reinsurance menu when the
insurer uses the VaR or the TVaR. The present results can be easily generalized to the
case when the reinsurer minimizes a distortion risk measure as well.

Our results hold under Assumption 1, that states that one type of insurer has a larger
willingness-to-pay than the other type of insurer for every risk. Further investigation is
needed to find solutions of Problem 3.1 without Assumption 1.
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