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Abstract

This paper studies the optimal insurance design from the perspective of an insured when

there is possibility for the insurer to default on its promised indemnity. Default of the insurer

leads to limited liability, and the promised indemnity is only partially recovered in case of a

default. To alleviate the potential ex post moral hazard, an incentive compatibility condition is

added to restrict the permissible indemnity function. Assuming that the premium is determined

as a function of the expected coverage and under the mean-variance preference of the insured, we

derive the explicit structure of the optimal indemnity function through the marginal indemnity

function formulation of the problem. It is shown that the optimal indemnity function depends on

the first and second order expectations of the random recovery rate conditioned on the realized

insurable loss. The methodology and results in this paper complement the literature regarding

the optimal insurance subject to the default risk and provide new insights on problems of similar

types.
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1 Introduction

Insurance is an efficient and popular risk hedging tool. An insurance contract is usually composed

of an indemnity function and a premium, where the premium needs to be paid ex ante by the

insured to the insurer while the insurance indemnity is provided ex post from the insurer to the

insured. Traditional indemnity functions include, for example, the stop-loss and proportional func-

tions. Other forms of indemnity function are also possible and their optimality has been studied

since the seminal works of Borch (1960) and Arrow (1973). Under various objective functions and

premium principles and taking into account of more sophisticated economic factors, considerable

advancements have been achieved in the literature. We refer to Chi and Tan (2011); Chi (2012);

Cheung et al. (2019); Ghossoub (2019b); Boonen and Ghossoub (2019) for recent developments.

It is realistic that in addition to the insurable loss, the insured is also exposed to uninsurable

risk such as inflation or catastrophe risk. These risk classes are jointly denoted as background risk

and have received considerable attention since the work of Doherty and Schlesinger (1983). They

show that the presence of background risk may affect the insured’s demand of insurance, which is

particularly the case if the background risk is correlated with the insurable loss. Several directions of

introducing background risk in the optimal insurance problem have been proposed in the literature.

One direction is on additive background risk, where the insured’s total risk is the sum of insurable

risk and background risk. In this way, Gollier (1996) shows that when the uninsurable loss increases

with respect to the insurable loss, the optimal indemnity function is of disappearing deductible form.

Dana and Scarsini (2007) study the Pareto-optimal insurance contract in the presence of background

risk, where the qualitative properties of the optimal contract were derived under the assumption of

stochastic increasingness. Chi and Wei (2018) investigate the optimal insurance under background

risk and with higher order risk attitude. They also establish the optimality of the stop-loss insurance

under specific dependence structures between the insurable risk and background risk. An extension

is given by Chi and Wei (2020) for general dependence structures where the authors impose a

constraint to avoid the moral hazard and present a very general result for the optimal insurance.

Although the general solution to their model is implicit, many specific cases are analyzed and the

corresponding optimal indemnity functions are derived. The aforementioned studies are all within

the expected utility framework. Recently, Chi and Tan (2021) extend the study into the mean-

variance framework. Their methodology allows the derivation of the optimal indemnity function for

a very general dependence structure between the insurable risk and background risk.

The main focus of this paper is on multiplicative background risk. To gain a comprehensive

view of this type of problem, we refer the interested readers to Franke et al. (2006). Multiplicative

background risk may arise from the possibility of the insurer to default. The coverage is then the

product of the promised indemnity and some random variable distributed on [0, 1]. This type of

background risk is then interpreted as counterparty risk or default risk.

To model counterparty risk, there are roughly two streams in the literature. First, if there is

only one insured in the market, default of the insurer can be modelled explicitly as a function of
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the indemnity function. In this way, optimal indemnities are derived by Cai et al. (2014), and the

pricing is studied by Filipović et al. (2015). The latter study is extended by Boonen (2019) to

the case with multiple policyholders, but under the assumption of exchangeable multivariate risk.

Second, one assumes that the market with policyholders is “large”, so that individual insurance

transactions do not impact the likelihood of default. This assumption is imposed by Cummins

and Mahul (2003), Bernard and Ludkovski (2012), and Li and Li (2018), and in this paper we

also impose this assumption. Cummins and Mahul (2003) study the optimal insurance problem

when the insurer has a positive probability to default and the insured and insurer have divergent

beliefs about this probability. Their study is probably closest to Bernard and Ludkovski (2012),

who investigate the impact of counterparty risk on optimal insurance when the insurer’s default

probability depends on the loss incurred by the insured. The optimal indemnity function is derived

in an implicit way for the case where the insurer is risk neutral. Finally, Li and Li (2018) derive the

optimal indemnity function in a Pareto-optimal insurance problem when the loss and recovery rate

are negatively correlated for the cases where the information is symmetric and where the information

is asymmetric. All these papers focus primarily on expected utility preferences of the insured, while

our focus is on a mean-variance objective of the insured.

In this paper, we explicitly focus on the set of indemnity functions that are incentive compatible,

which plays key role in alleviating the ex post moral hazard. For example, if the slope of indemnity

function is larger than 1 at some point or the indemnity function has a discontinuous upward jump,

the insured would be incentivized to create an increase in the insurable loss. Such behavior is called

moral hazard. To remove the moral hazard issue, Ghossoub (2019a) introduces a state-verification

cost such that the insurer could verify the state of real world by paying to a third party some extra

cost. Another popular way to mitigate the moral hazard issue, as proposed by Huberman et al.

(1983), is by requiring both the insured and insurer to pay more when the loss becomes larger. This

is also named as the no-sabotage condition by Carlier and Dana (2003). Note that such condition

is also considered by Chi and Wei (2020) and Chi and Tan (2021) where the additive background

risk is the focus.

We summarize the main contributions of this paper as follows:

• First, to the authors’ best knowledge, this paper is the first one that studies the counterparty-

risk-based optimal insurance problem under mean-variance preferences of the insured and

the incentive-compatibility condition. Through the marginal indemnity function formulation

we present a general result which characterizes the optimal indemnity function implicitly to

the problem under counterparty risk within a mean-variance framework. It is shown that

the optimal indemnity function depends on the first and second order expectations of the

counterparty risk conditioned on the realized insurable loss.

• Second, without assuming any specific dependence structure between the counterparty risk

and the insurable loss, we derive the explicit structure of the optimal indemnity function

based on the element-wise minimizer to our problem under some mild assumptions on the
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counterparty risk. We point out that the problem in Chi and Tan (2021) could also be solved

using the marginal indemnity function approach, which provides an alternative approach to

study the additive background risk model within the mean-variance framework.

The rest of this paper is structured as follow. Section 2 sets up the problem. Section 3 first

characterizes the solution to the main problem in an implicit way, and then unveils the explicit

structure of the optimal indemnity function based on its implicit characterization. Section 4 studies

two special cases of the main problem. Section 5 presents some numerical examples illustrating the

main result of this paper. Section 6 concludes the paper and gives directions for future research.

All the proofs are delegated to Appendix A.

2 Problem formulation

We confine ourselves to a one-period economy. Suppose there is a decision maker (DM, also called

insured) who is faced with a non-negative, bounded random loss X whose support is [0,M ] (i.e.,

the set of numbers which have non-zero probability densities). The cumulative distribution function

and density function of X are given by F (x) and f(x) respectively. The DM would like to purchase

an insurance contract (I, π) where I is the indemnity function and π(I) is the premium principle

that is used by the insurer.

There exists counterparty risk in the sense that the insurer may fail to pay its promised indemnity

as per the contract at the end of period. We assume that the coverage received by the DM is given

by I(X) · Y , where Y is a random variable distributed over [0, 1] and may be correlated with X. In

this paper, we follow Cummins and Mahul (2003) and Bernard and Ludkovski (2012) by assuming

that the default event is exogenous in the sense that it is not affected by the DM’s transactions.

To avoid some trivial cases of the default event, we adopt the following assumption throughout the

paper.

Assumption 1. (i). P(Y = 1) < 1.

(ii). P(Y = 0|X = x) < 1 for all x ∈ [0,M ].

Assumption 1 (ii) states that regardless of the DM’s loss, the probability of that the insurer recovers

some partial liability (e.g., through selling its remaining assets) is positive. Under this setting, the

end-of-period loss of the DM is

L(I, π) = X − I(X) · Y + π(I). (2.1)

In insurance or reinsurance, some policies provide the DM an incentive to misreport the loss.

For example, a franchise deductible indemnity function, i.e. I(x) = x ·1[d,∞)(x) for some d ≥ 0, may

incentivize the DM to over-report the loss or create an increment in the loss; a truncated excess-

of-loss indemnity function, i.e. I(x) = (x − d1)+ · 1[0,d2](x) for some d2 ≥ d1 ≥ 0, may incentivize

the DM to under-report the loss if it exceeds d2. Such behavior is called ex post moral hazard and
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should be seriously treated. A popular way in the literature to handle this issue is to restrict the

indemnity functions to the following class:

I =
{
I : [0,M ] 7→ [0,M ]

∣∣∣ I(0) = 0, 0 ≤ I(x2)− I(x1) ≤ x2 − x1, ∀ 0 ≤ x1 ≤ x2 ≤M
}
.

The indemnity functions belonging to the set I are said to satisfy the incentive-compatibility or

no-sabotage condition (Huberman et al., 1983; Carlier and Dana, 2003). The advantages of limiting

the indemnity function to the class I are twofold. First, the indemnity function is always non-

decreasing, i.e. I ′(x) ≥ 0, and satisfies 0 ≤ I(x) ≤ x. That means, the indemnity is increasing with

respect to the loss and can never be negative nor exceed the loss x generated by the DM’s loss.

Second, one unit increment of loss cannot be compensated by more than one unit of indemnity. For

any I ∈ I, I(X) and X − I(X) are comonotonic with respect to the loss X. In particular, if the

insurable loss X increases, then both the indemnity I(X) and the retained loss X − I(X) increase.

For the premium, we assume that it is based on the coverage I(X) ·Y rather than the promised

indemnity I(X). We further assume that the premium is determined as a function of the expected

coverage:

π(I) = h(E[I(X) · Y ]), (2.2)

where h(·) is some differentiable function satisfying h(0) = 0 and h′(x) > 1 for x ≥ 0. A special

case of h is h(x) = (1 + θ)x with θ > 0, which leads to the expectation premium principle.

We follow Chi and Tan (2021) and study the optimal insurance problem within a mean-variance

framework. We focus on the following general problem with counterparty risk.

Problem 1 (Main problem).

min
I∈I

M
(
E[L(I, π)],Var(L(I, π))

)
where M(z1, z2) is increasing with respect to both z1 and z2.

Problem 1 accommodates a wide range of mean-variance problems. For example, if letM(z1, z2) =

z1 + B
2 z2 for some B ≥ 0, the traditional mean-variance criterion is recovered, where B measures

the DM’s aversion towards volatility.

We remark that the optimal indemnity function within the mean-variance framework for ad-

ditive background risk model has been derived by Chi and Tan (2021) through a constructive

approach with stochastic ordering techniques. The marginal indemnity function formulation, which

is obtained through the calculus of variations, not only helps us to solve the multiplicative back-

ground risk (or counterparty risk) model but also provides an alternative way to solve the additive

background risk model.
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3 Optimal indemnity function

Solving problem 1 usually takes a two-step procedure. In the first step we fix the mean (i.e., the

first argument of M(·, ·)) and minimize the variance (i.e., the second argument of M(·, ·)):

min
I∈I

Var(L(I, π)), s.t. E[L(I, π)] = c, (3.1)

where c is a constant. As problem (3.1) depends on c, we denote its solution by Ic. In the second

step, we search for the optimal c such that M(c,Var(L(Ic, π))) reaches its minimum. The second

step is a one-dimensional problem, and can be solved using standard techniques. The first step

plays a vital role as it identifies the optimal indemnity function with c as its parameter. In the

sequel, we focus on this first step, and thus on the problem (3.1).

Let ψ1(x) = E[Y |X = x] and ψ2(x) = E[Y 2|X = x]. Under Assumption 1, it follows that

ψ1(x) > 0 and ψ2(x) > 0 for all x ∈ [0,M ]. Apply the conditional variance formula to the objective

function of (3.1) gives

Var(L(I, π)) =E
[
Var(L(I, π)

∣∣X)
]

+ Var
(
E[L(I, π)

∣∣X]
)

=E[I(X)2 ·Var(Y
∣∣X)] + Var(X − I(X) · E[Y

∣∣X])

=E[I(X)2 · ψ2(X)]− E[I(X)2 · ψ1(X)2] + E
[
(X − I(X) · ψ1(X))2

]
−
(
E[X − I(X) · ψ1(X)]

)2
=E[I(X)2 · ψ2(X)]− E[I(X)2 · ψ1(X)2] + E[X2]− 2E[X · I(X) · ψ1(X)]

+ E[I(X)2 · ψ1(X)2]− E[X]2 + 2E[X] · E[I(X) · ψ1(X)]− E[I(X) · ψ1(X)]2

=E[I(X)2 · ψ2(X)]− 2E[X · I(X) · ψ1(X)] + Var(X)

+ 2E[X] · E[I(X) · ψ1(X)]− E[I(X) · ψ1(X)]2.

The constraint of (3.1) reduces to

E[X − I(X) · Y + π] = E[X]− E[I(X) · Y ] + π = c

=⇒ h(E[I(X) · Y ])− E[I(X) · Y ] = c− E[X]

=⇒ h(E[I(X) · ψ1(X)])− E[I(X) · ψ1(X)] = c− E[X].

Since
(
h(x)− x

)′
= h′(x)− 1 > 0 and h(0) = 0, for any c ≥ E[X], the equation h(x)−x = c−E[X]

has only one solution, which is denoted as x∗. Based on the above simplifications, problem (3.1)

reduces to
min
I∈I

E[I(X)2 · ψ2(X)]− 2E[X · I(X) · ψ1(X)]

s.t. E[I(X) · ψ1(X)] = x∗.
(3.2)

Solving problem (3.2) is equivalent to solving its Lagrangian dual problem:

min
I∈I

E[I(X)2 · ψ2(X)]− 2E[X · I(X) · ψ1(X)] + λ · E[I(X) · ψ1(X)] (3.3)

where λ ∈ R is the Lagrangian coefficient.

The following lemma characterizes the optimal indemnity function to problem (3.3). In this

lemma, 1A(t) is defined as the indicator function: 1A(t) = 1 if t ∈ A and 1A(t) = 0 otherwise.
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Lemma 3.1. Let Assumption 1 hold, and

L(t; I∗, λ) =

∫ M

t
ψ2(x) ·

(
I∗(x)− ψ1(x)

ψ2(x)
(x− λ

2
)

)
dFX(x).

Then, I∗(x) =
∫ x
0 η
∗(t)dt is an optimal solution to problem (3.3) if and only if

η∗(t) = 1Dλ(t) + ξ(t) · 1Eλ(t),

where

Dλ =
{
t : L(t; I∗, λ) < 0

}
, Eλ =

{
t : L(t; I∗, λ) = 0

}
,

and ξ(t) ∈ [0, 1] is such that I∗ ∈ I.

Lemma 3.1 characterizes the optimal marginal indemnity functions. However, the optimal in-

demnity functions given by Lemma 3.1 are implicit since I∗ also appears in L(t; I∗, λ). Nevertheless,

Lemma 3.1 provides insights about the explicit structure of I∗, which will be derived in detail in

the rest of this section. We remark that in deriving the above result, the calculus of variations plays

important role. In recent years, such technique has been widely applied to obtain an implicit char-

acterization of the optimal indemnity function under other preference functionals. See, for example,

Chi and Wei (2020) and Chi and Zhuang (2020).

For now, let λ be fixed and

φλ(x) =
ψ1(x)

ψ2(x)
(x− λ

2
).

It is easy to verify that φλ(x) is the element-wise minimizer to problem (3.3)1. The following

assumption is needed to proceed.

Assumption 2. The mapping x 7→ ψ1(x)
ψ2(x)

is continuously differentiable.

Under Assumption 2, φλ(x) is also continuously differentiable over [0,M ]. As such, the whole

domain [0,M ] could be partitioned as per the first order derivative of φλ(x) such that

[0,M ] =
m⋃
i=1

Si,ji , (3.4)

where

ji =


1, if φ′λ(x) ∈ (1,∞),

2, if φ′λ(x) ∈ [0, 1],

3, if φ′λ(x) ∈ (−∞, 0),

(3.5)

1The objective function of (3.3) could be written as∫ M

0

{
I(x)2ψ2(x) − 2x · I(x) · ψ1(x) + λI(x) · ψ1(x)

}
dF (x).

An element-wise minimizer Ĩ(x) is such that

Ĩ(x) = arg min
z∈R

Q(z) := z2ψ2(x) − 2x · z · ψ1(x) + λz · ψ1(x).

As Q(z) is a convex function, it is easy to derive from the first-order condition that Ĩ(x) = φλ(x) = ψ1(x)
ψ2(x)

(
x− λ

2

)
.
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and m is the smallest positive integer required for such a partition. Throughout the rest of this

paper, m is assumed to be finite. Under this partition rule, we have ji+1 6= ji and |ji+1 − ji| = 1

for i = 1, 2, . . . ,m − 1. Let xi−1 = inf
{
x : x ∈ Si,ji

}
for i = 1, 2, . . . ,m, we have 0 = x0 ≤ x1 ≤

· · · ≤ xm−1 ≤ xm = M . Intuitively, xi = sup
{
x : x ∈ Si,ji

}
for i = 1, 2, . . . ,m. These points

{xi}i=1,2,...,m−1 are referred to as the change points (see also Chi and Tan, 2021). Our goal is to

obtain the explicit structure of the optimal indemnity function over each piece Si,ji . For the ease

of presentation, the following layer-type indemnity function is defined:

I(a,b](x) = (x− a)+ − (x− b)+ where 0 ≤ a ≤ b ≤M.

The following theorem gives the optimal parametric indemnity function over each Si,ji for i =

1, 2, . . . ,m.

Theorem 3.1. Let Assumptions 1 and 2 hold. For problem (3.3), the optimal indemnity function

is given by I∗(x) such that, for x ∈ Sm,jm,

(1). if jm = 1, then I∗(x) = I∗(xm−1) + (x− γm,1)+ for some γm,1 ∈ [xm−1,M ],

(2). if jm = 2, then I∗(x) = min
{

max
{
φλ(x), I∗(xm−1)

}
, I∗(xm−1) + x− xm−1

}
,

(3). if jm = 3, then I∗(x) = I∗(xm−1) + I(xm−1,γm,3](x) for some γm,3 ∈ [xm−1,M ],

and for x ∈ Si,ji, i = 1, 2, . . . ,m− 1,

(4). if ji = 1, then I∗(x) = I∗(xi−1) + I(γi,1,γi,1+I∗(xi)−I∗(xi−1)](x) for some γi,1 ∈ [xi−1, xi],

(5). if ji = 2, then I∗(x) = min
{

max
{
φλ(x), I∗(xi) + x− xi, I∗(xi−1)

}
, I∗(xi−1) + x− xi−1, I∗(xi)

}
,

(6). if ji = 3, then I∗(x) = I∗(xi−1) + x − xi−1 − I(γi,3,γi,3+xi−xi−1−(I∗(xi)−I∗(xi−1))](x) for some

γi,3 ∈ [xi−1, xi].

An illustration of the optimal indemnity function I∗ is shown in Fig. 1, where the red line

denotes I∗ and the green dashed line denotes the element-wise minimizer φλ to problem (3.3). We

can see that φλ does not satisfy the incentive compatibility condition, so the optimal indemnity

function I∗ is obtained based on the slope of φλ. In Fig. 1, there are two change points, i.e. x1 and

x2, and the domain of loss is partitioned into three pieces. We obtain the parametric form of the

optimal indemnity function on each piece by using Theorem 3.1.

• Over [0, x1], φ
′
λ(x) < 0, so j1 = 3, and

I∗(x) = x− I(γ1,3,γ1,3+x1−I∗(x1)](x).

• Over [x1, x2], 0 ≤ φ′λ(x) ≤ 1, so j2 = 2, and

I∗(x) = min
{

max
{
φλ(x), I∗(x2) + x− x2, I∗(x1)

}
, I∗(x1) + x− x1, I∗(x2)

}
.
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Figure 1: An illustration of an indemnity function I∗ that solves problem (3.3), when m = 3, j1 = 3,

j2 = 2 and j3 = 1.

• Over [x2,M ], φ′λ(x) > 1, so j3 = 1, and

I∗(x) = I∗(x2) + (x− γ3,1)+.

Theorem 3.1 shows the applicability of Lemma 3.1 in practice and gives the explicit structure

of the optimal indemnity function. It reduces the dimension of the original optimization problem

from ∞ to at most 2m− 1 (i.e., I∗(xi) for i = 1, 2, . . . ,m− 1, γi,1 and γi,3 for i = 1, 2, . . . ,m, and

λ).

We remark that the partition (3.4) varies with respect to the Lagrangian coefficient λ, which is a

key parameter pertaining to the premium π. Therefore, if the number of change points (i.e., m− 1)

is large, numerically optimizing the parameters in Theorem 3.1 is still computationally expensive.

To slightly simplify the computation, the following proposition is given.

Proposition 3.1. Let Assumption 1 hold. If λ > 0, then for problem (3.3) the optimal indemnity

function over [0, λ2 ] is given by

I∗(x) = (x− d)+

for some d ∈ [0, λ2 ].

Proposition 3.1 shows that the optimal indemnity function is of the stop-loss form in a neighbor-

hood of 0 if λ > 0. To derive the general solution, only the interval [λ2 ,M ] needs to be partitioned

as per (3.4) and (3.5).

Remark 3.1. The marginal indemnity function approach applied in this paper is also applicable to

the additive-background-risk-based optimal insurance problem within the mean-variance framework.
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The only difference is that for the additive-background-risk-based problem the partition does not

rely on the Lagrangian coefficient. In Chi and Tan (2021), a constructive approach, together with

some stochastic ordering technique, was applied to identify the parametric form of the optimal

indemnity function on each piece of the domain, which yields different Lagrangian coefficients to be

optimized over different pieces. Through Theorem 3.1, we are able to show that at the optimum all

the Lagrangian coefficients in their result are equal, which is a supplementary finding to their study.

4 Two special dependence structures

In this section, we study two special cases of our problem, i.e. when the counterparty risk Y is

independent of X and when Y is a decreasing function of X. In both special cases, we will derive

a much simpler solution.

4.1 Y is independent of X

In this section, we study the indemnity function for the case where Y is independent of X. This

happens when the DM’s loss does not affect the solvency status of the insurer. In such a case,
ψ1(x)
ψ2(x)

= E[Y |X=x]
E[Y 2|X=x]

= E[Y ]
E[Y 2]

is a constant. Then φ′λ(x) = E[Y ]
E[Y 2]

> 1 for any x ∈ [0,M ]. This implies

that m = 1 and there is no change point. Applying Theorem 3.1 leads to the following corollary.

Corollary 4.1. If Y is independent of X, then the optimal indemnity function to Problem 1 is

given by

I∗(x) = (x− d)+

for some d ≥ 0.

The optimality of stop-loss indemnity function is also verified in the expected utility framework.

For example, Cummins and Mahul (2003) show the optimality of a stop-loss function in a situation

where the recovery rate can only take 1 or 0 and both the DM and insurer have the same belief about

the default probability. Bernard and Ludkovski (2012) extend the result of Cummins and Mahul

(2003) by considering a budget constraint, where the stop-loss function is proved to be optimal

again. In the above-mentioned works, the recovery rate does not need to be independent of the

insurable loss.

4.2 Y is a decreasing function of X

In the literature, the recovery rate Y is generally assumed to be negatively correlated with X (see

Bernard and Ludkovski (2012); Li and Li (2018)). This is intuitive, as a larger loss would make the

insurer more likely to default, which results in a smaller recovery rate. In this section, we analyze

a special case where Y is a decreasing function X, i.e. Y = g(X) where g is a decreasing function.2

To simplify our discussion, we focus on the following situation.

2In this paper, we do not distinguish between “decreasing” and “non-increasing” here.
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Assumption 3. (i) there exists an x1 ∈ [0,M ] such that g(x) = 1 for all x ∈ (0, x1], and

g(x) < 1 for all x ∈ (x1,M ];

(ii) g(M) > 0.

Assumption 3 (i) states that the insurer will not default when the DM’s loss is less than some

threshold. In the rare case where the realized loss is the largest, the insurer may default, but is able

to sell its remaining assets and recover part of the indemnity to the DM. This leads Assumption 3

(ii) to hold. Assumption 3 is for instance related to the model of Cai et al. (2014), when the insurer

sells an insurance contract to only one DM. In such case, default happens if and only if the insurable

loss exceeds a certain threshold.

Note that ψ1(x)
ψ2(x)

= E[g(X)|X=x]
E[g(X)2|X=x]

= g(x)
g(x)2

= 1
g(x) . Thus, under Assumption 3

φλ(x) =


x− λ

2
, x ∈ [0, x1],

x− λ
2

g(x)
, x ∈ (x1,M ].

For x > max
{
x1,

λ
2

}
, we have

φ′λ(x) =

(
x− λ

2

g(x)

)′
= − g

′(x)

g(x)2
(x− λ

2
) +

1

g(x)
≥ 1

g(x)
> 1.

Depending on the value of λ, we have the following two sub-cases.

• Case 1: λ ≤ 2x1

In this case, we have φ′λ(x) = 1 for x ∈ [0, x1] and φ′λ(x) > 1 for x ∈ (x1,M ]. Therefore, x1 is

the only change point. Applying Theorem 3.1 and Proposition 3.1 gives

I∗(x) = (min {x, d2} − d1)+ + (x− d3)+,

where 0 ≤ d1 ≤ λ
2 ≤ d2 ≤ x1 ≤ d2 ≤M .

• Case 2: λ > 2x1

In this case, as per Proposition 3.1, for any x ∈ [0, λ2 ] we have I∗(x) = (x − d1)+ for some

d1 ∈ [0, λ2 ]. For x ∈ (λ2 ,M ], applying Theorem 3.1 leads to I∗(x) = I∗(λ2 ) + (x−d2)+ for some

d2 ∈ [λ2 ,M ]. In conclusion, the optimal indemnity function for this case is given by

I∗(x) = (min

{
x,
λ

2

}
− d1)+ + (x− d2)+,

where 0 ≤ d1 ≤ λ
2 ≤ d2.

Note that the solutions for Case 1 and 2 are of similar formats. The above discussions are

summarized in the next corollary.
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Corollary 4.2. If Y is a decreasing function of X, under Assumption 3, the optimal indemnity

function to Problem 1 is given by

I∗(x) = (min {x, a2} − a1)+ + (x− a3)+,

where 0 ≤ a1 ≤ a2 ≤ a3 ≤M .

5 Numerical illustrations

In this section, we present a numerical example illustrating the main result of this paper. For the ease

of discussion, we assume that the DM uses the traditional mean-variance criterion: M(z1, z2) = z1+
B
2 z2. The premium is determined by the expectation premium principle, i.e. π(I) = (1+θ)E[I(X)Y ]

for some θ > 0. Moreover, we assume the following structure of Y |X = x to depict the dependence

between the recovery rate and loss:Y = 1, with probability p(x)

Y ∼ U(0, 1), with probability 1− p(x),
(5.1)

where x is the realization of X and U(0, 1) denotes the uniform distribution over [0, 1). In this

case, the random variable Y |Y < 1 is independent of X. Such structure is inspired by Bernard and

Ludkovski (2012), who study the case where Y takes one out of two values: Y ∈ {y0, 1} for some

y0 ∈ [0, 1]. As Y is usually negatively correlated with X, p(·) is usually a decreasing function. Then,

the larger the loss is, the smaller is the probability of full recovery. Moreover, for any increasing

function g, it holds that

E[g(Y )|X = x] = g(1)p(x) + (1− p(x))

∫ 1

0
g(y)dy =

∫ 1

0
g(y)dy + p(x)(g(1)−

∫ 1

0
g(y)dy),

which is decreasing with respect to x. This implies that Y is stochastically decreasing with respect

to X. For simplicity, we assume that p(x) is subject to exponential decay, i.e. p(x) = e−ax for some

a > 0.

Under these assumptions, we can easily get

ψ1(x) = E[Y |X = x] =
1

2
+

1

2
p(x), ψ2(x) = E[Y 2|X = x] =

1

3
+

2

3
p(x).

Furthermore, (
ψ1(x)

ψ2(x)

)′
=

3

2
· ae−ax

(1 + 2e−ax)2
> 0.

Therefore ψ1(x)
ψ2(x)

≥ ψ1(0)
ψ2(0)

= 1.

Based on the value of λ, we have the following cases.

• If λ > 0, applying Proposition 3.1 leads to

I∗(x) = (x− d1)+

12



on [0, λ2 ] for some d1 ∈ [0, λ2 ]. When x > λ
2 ,

φ′λ(x) =

(
ψ1(x)

ψ2(x)

)′
(x− λ

2
) +

ψ1(x)

ψ2(x)
> 1.

Applying Theorem 3.1 leads to

I∗(x) = I∗(
λ

2
) + (x− d2)+

for some d2 ≥ λ
2 .

• If λ ≤ 0, then since φ′λ(x) > 1 on [0,M ], applying Theorem 3.1 leads to

I∗(x) = (x− d3)+

over the whole domain, where d3 ∈ [0,M ].

Summarizing the above discussions leads to the general solution

I∗(x) = Ia1,a2,a3(x) :=
(
min {x, a2} − a1

)
+

+ (x− a3)+,

where 0 ≤ a1 ≤ a2 ≤ a3 ≤ M . Note that if a1 = a2 or a2 = a3, this solution reduces to a stop-loss

function. An illustrative I∗ is given by Fig. 2.

Figure 2: Illustrative I∗.

Under the traditional mean-variance criterion, our goal is to minimize

M(E[L(I, π)],Var(L(I, π)))

=E[X] + θE[I(X)Y ] +
B
2

{
E[(X − I(X)Y )2]−

(
E[X − I(X)Y ]

)2}
=E[X] + θE[I(X)ψ1(X)] +

B
2

{
Var(X)− 2E[XI(X)ψ1(X)] + E[I(X)2ψ2(X)]

+2E[X]E[I(X)ψ1(X)]− E[I(X)ψ1(X)]2
}
.
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With the optimal indemnity function Ia1,a2,a3 , the above problem reduces to

min
0≤a1≤a2≤a3≤M

θE[Ia1,a2,a3(X)ψ1(X)] +
B
2

{
E[I2a1,a2,a3(X)ψ2(X)] + 2E[X]E[Ia1,a2,a3(X)ψ1(X)]

−2E[XIa1,a2,a3(X)ψ1(X)]− E[Ia1,a2,a3(X)ψ1(X)]2
}
.

(5.2)

To optimize a1, a2 and a3, we use the “fmincon” or “patternsearch” function in MATLAB.

Under different loss distributions and volatility aversion parameters, the optimal a1, a2 and a3 are

presented in Tables 1 and 2.

µ = 250 µ = 500 µ = 750 µ = 1000

B = 0.001 (115.3, 334.2, 334.2) (218.3, 218.3, 223.9) (137.5, 137.5, 324.0) (120.0, 120.0, 416.9)

B = 0.005 (98.5, 342.1, 342.1) (208.8, 227.8, 227.8) (143.7, 143.7, 310.8) (116.4, 116.4, 404.5)

B = 0.01 (96.3, 342.4, 342.4) (206.9, 227.1, 227.1) (114.9, 114.9, 309.3) (116.8, 116.8, 402.9)

B = 0.02 (95.2, 342.5, 342.5) (205.7, 226.7, 226.7) (144.1, 144.1, 308.6) (114.9, 114.9, 402.2)

B = 0.04 (94.7, 342.8, 342.8) (205.6, 225.6, 225.6) (142.2, 142.2, 308.2) (115.2, 115.2, 401.5)

Table 1: The effects of the mean loss and B on (a1, a2, a3) for exponentially distributed loss, θ = 0.01

and a = 0.001.

θ = 0.01 θ = 0.02 θ = 0.05 θ = 0.1

a = 0.001 (208.8, 227.8, 227.8) (212.5, 226.2, 226.2) (221.6, 222.0, 223.4) (212.1, 212.1, 240.2)

a = 0.002 (203.7, 229.7, 229.7) (206.9, 227.9, 227.9) (216.0, 222.4, 222.4) (213.9, 213.9, 230.9)

a = 0.003 (192.8, 234.4, 234.4) (195.9, 233.9, 233.9) (205.6, 228.2, 228.2) (218.3, 220.9, 221.2)

a = 0.005 (176.5, 247.5, 247.5) (179.2, 242.8, 242.8) (187.6, 238.7, 238.7) (201.5, 232.7, 232.7)

a = 0.01 (158.8, 244.9, 244.9) (161.6, 243.0, 243.0) (170.2, 237.5, 237.5) (184.7, 241.2, 241.2)

Table 2: The effects of θ and a on (a1, a2, a3) for exponentially distributed loss with mean 500 and

B = 0.005.

Interestingly, in most of the cases in Tables 1 and 2, we get either a1 = a2 or a2 = a3. This

implies that the optimal indemnity function for the considered model settings are of the stop-loss

type. For the sensitivity of the retention point with respect to model parameters (e.g., the mean

loss, B, θ and a), we have the following observations.

• The retention point increases with respect to the mean loss. Usually a larger mean loss results

in a larger premium. The DM may choose to increase the retention point to keep the premium

affordable.
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• A larger volatility aversion level leads to a smaller retention point. This is as expected since a

smaller retention point implies that the DM cedes more risk to the insurer so that its retained

risk is subject to less uncertainty.

• A larger safety loading parameter leads to a larger retention point. Relatively speaking, a

larger safety loading parameter corresponds to a smaller volatility aversion level by looking

at problem (5.2). Then as per the second bullet point, a smaller volatility aversion level leads

to a larger retention point. From the perspective of premium, larger safety loading increases

the premium. So the DM increases the retention point to maintain the affordable premium.

• A larger a leads to a smaller retention point. It is straightforward that a larger a leads to

a smaller expected recovery rate, then the DM tends to cede out more risk to reduce the

uncertainty of its retained risk.

6 Conclusions and future research

In this paper, we re-visit the optimal insurance problem from an insured’s perspective under coun-

terparty risk but within a mean-variance framework. Compared with the existing literature on this

topic, the incentive compatibility is imposed in this paper to alleviate the possible ex post moral

hazard issue. We assume that the insured is informative of the risk. As such the premium is cal-

culated based on the coverage instead of the promised indemnity. Under incentive compatibility,

the problem could be re-formulated as the one in terms of the marginal indemnity function. By

applying the calculus of variations, the optimal marginal indemnity function, or the optimal indem-

nity function, could be characterized in an implicit manner. It is shown that the optimal indemnity

function depends on both the first and second order conditional expectations of the random recovery

rate. To make the implicit characterization applicable in practice, we deeply analyze the format of

representation and unveil the explicit structure of optimal indemnity function implied by it. Two

special cases are studied in detail: the case that the recovery rate is independent of the underlying

loss and the case that the recovery rate is a decreasing function of the insurable loss. For both

cases, we derive the optimal indemnity functions explicitly.

However, a major drawback of our main result is that the computation cost may be very high

if the number of change points is large. This situation may happen when the dependence structure

between the counterparty risk Y and the insurable risk X becomes rather complex. Future research

is needed to further reduce the complexity of the optimization.

Our study could be extended by replacing the mean-variance criterion with other preference

measures, such as expected utility or distortion risk measures. However, switching to the expected

utility framework would make the implicit characterization of the optimal indemnity function more

complicated, which brings non-trivial technical difficulties to the derivation of the explicit optimal

indemnity function. In view of this, we decide to leave such extension for future research.

Besides the specific cases studied in this paper, another realistic case is that the default of insurer
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is driven by a portfolio of policies, and the decision maker in this paper is one of the claimants.

In such a case, the recovery rate Y can be modelled via an ex post proportional bankruptcy rule

(Ibragimov et al., 2010; Boonen, 2019). The recovery rate Y then depends on the indemnity

functions of all policyholders. In this paper, we assume that Y is independent of the indemnity

function, and so we do not study this case. We leave this problem as a suggestion for future research.
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Appendix

A Proofs of the main results

A.1 Proof of Lemma 3.1

The function I ∈ I is 1-Lipschitz continuous, and thus admits the following integral representation

I(x) =

∫ x

0
η(t)dt, x ∈ [0,M ],

where η is called the marginal indemnity function (MIF) as per, for example, Assa (2015) and

Zhuang et al. (2016). It is easily seen that seeking an optimal I within I is equivalent to seeking

an optimal η within the class

Ĩ =
{
η : [0, 1] 7→ [0, 1]

∣∣∣ 0 ≤ η(x) ≤ 1 for any x ∈ [0,M ]
}
.

Denote by J(I) the objective function of problem (3.3). If I∗ is an optimal indemnity function,

then given any I ∈ I, we have εI∗ + (1 − ε)I ∈ I for any ε ∈ [0, 1]. The first and second order

derivatives of J(εI∗ + (1− ε)I) with respect to ε are

dJ(εI∗ + (1− ε)I)

ε
=2E[(εI∗(X) + (1− ε)I(X)) · (I∗(X)− I(X)) · ψ2(X)]

− 2E[X · (I∗(X)− I(X)) · ψ1(X)] + λ · E[(I∗(X)− I(X)) · ψ1(X)],

d2J(εI∗ + (1− ε)I)

dε2
= 2E[(I∗(X)− I(X))2 · ψ2(X)] ≥ 0.
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Therefore, J(εI∗ + (1− ε)I) is convex with respect to ε. It reaches its minimum at ε = 1, and thus

dJ(εI∗ + (1− ε)I)

dε

∣∣∣
ε=1
≤ 0

=⇒ 2E[I∗(X) ·
(
I∗(X)− I(X)

)
· ψ2(X)]− 2E[X · (I∗(X)− I(X)) · ψ1(X)]

+ λ · E[(I∗(X)− I(X)) · ψ1(X)] ≤ 0

=⇒ 2E[I∗(X)2ψ2(X)]− 2E[X · I∗(X) · ψ1(X)] + λE[I∗(X) · ψ1(X)]

≤ 2E[I∗(X) · I(X) · ψ2(X)]− 2E[X · I(X) · ψ1(X)] + λE[I(X) · ψ1(X)].

This implies

I∗ = arg min
I∈I

2E[I∗(X) · I(X) · ψ2(X)]− 2E[X · I(X) · ψ1(X)] + λE[I(X) · ψ1(X)].

Note that

2E[I∗(X) · I(X) · ψ2(X)]− 2E[X · I(X) · ψ1(X)] + λE[I(X) · ψ1(X)]

=

∫ M

0

(
2I∗(x)ψ2(x)− 2xψ1(x) + λψ1(x)

)
I(x)dF (x)

=

∫ M

0

(
2I∗(x)ψ2(x)− 2xψ1(x) + λψ1(x)

)(∫ x

0
η(t)dt

)
dF (x)

=

∫ M

0

{∫ M

t

(
2I∗(x)ψ2(x)− 2xψ1(x) + λψ1(x)

)
dF (x)

}
η(t)dt

=

∫ M

0

{∫ M

t
2ψ2(x)

(
I∗(x)− ψ1(x)

ψ2(x)
(x− λ

2
)

)
dF (x)

}
η(t)dt, (A.1)

where the third equation holds due to the Fubini’s theorem. Now let

L(t; I∗, λ) =

∫ M

t
ψ2(x)

(
I∗(x)− ψ1(x)

ψ2(x)
(x− λ

2
)

)
dF (x),

it is straightforward that (A.1) gets minimized if its integrand function 2L(t; I∗, λ)η(t) gets mini-

mized for each t ∈ [0,M ]. Since I ∈ I ⇐⇒ η ∈ Ĩ, we have

η∗(t) =


1, if L(t; I∗, λ) < 0,

ξ(t), if L(t; I∗, λ) = 0,

0, if L(t; I∗, λ) > 0,

where ξ(t) ∈ [0, 1] such that η∗ ∈ Ĩ. This ends the proof.

A.2 Proof of Theorem 3.1

To prove (1), we first show by contradiction that there does not exist a point t∗ ∈ Sm,jm such that

L(t∗; I∗, λ) > 0 and L′(t∗; I∗, λ) ≥ 0. Note that

L′(t; I∗, λ) = −ψ2(t)(I
∗(t)− φλ(t))f(t),
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and thus L′(t∗; I∗, λ) ≥ 0 is equivalent to I∗(t∗)− φλ(t∗) ≤ 0. Since φ′λ(x) > 1 over Sm,jm if jm = 1

and I∗′(x) is always bounded by 0 and 1, I∗′(t) − φ′λ(t) < 0. Therefore I∗(t) − φλ(t) ≤ 0 for all

t ∈ [t∗,M ], which implies that L′(t; I∗, λ) ≥ 0 over [t∗,M ]. However, this also implies that

L(t∗; I∗, λ) = L(M ; I∗, λ)−
∫ M

t∗
L′(x; I∗, λ)dx =

∫ M

t∗
−L′(x; I∗, λ)dx ≤ 0,

which contradicts with L(t∗; I∗, λ) > 0. Therefore, such t∗ does not exist. This implies that

L(t; I∗, λ) cannot up-cross the t-axis on Sm,jm . Furthermore, L(t; I∗, λ) = 0 cannot hold over any

sub-intervals of Sm,jm as otherwise

L′(t; I∗, λ) = 0 =⇒ I∗(x) = φλ(x)

over these sub-intervals. However, this contradicts with I∗′(x) ∈ [0, 1] since φ′λ(x) > 1. Now define

t0 = inf
{
t ∈ Sm,jm : L(t; I∗, λ) ≤ 0

}
, we have L(t; I∗, λ) > 0 for t ∈ [xm−1, t0) and L(t; I∗, λ) ≤ 0

for t ∈ [t0,M ]. As per Lemma 3.1, we get η∗(x) = 1[t0,M ](x). The optimal indemnity function over

Sm,jm in this case is given by

I∗(x) = I∗(xm−1) +

∫ x

xm−1

η∗(t)dt = I∗(xm−1) + (x− t0)+.

To prove (2), we show by contradiction that there does not exist points t∗, t∗∗ ∈ Sm,jm such that

L(t∗; I∗, λ) > 0 and L′(t∗; I∗, λ) ≥ 0,

L(t∗∗; I∗, λ) < 0 and L′(t∗∗; I∗, λ) ≤ 0.

If such t∗ exists, then from L′(t∗; I∗, λ) ≥ 0 we get I∗(t∗) − φλ(t∗) ≤ 0. since L(t∗; I∗, λ) > 0,

I∗′(t∗) = 0 as per Lemma 3.1. As such, I∗′(t∗)− φ′λ(t∗) ≤ 0. This implies that I∗(t)− φλ(t) ≤ 0 for

any t ∈ [t∗,M ]. Therefore L′(t; I∗, λ) ≥ 0 for any t ∈ [t∗,M ]. This leads to

L(t∗; I∗, λ) =

∫ M

t∗
−L′(x; I∗, λ)dx ≤ 0,

which contradicts with L(t∗; I∗, λ) > 0.

Similarly, if such t∗∗ exists, then from L(t∗∗; I∗, λ) ≤ 0 we get I∗(t∗∗) − φλ(t∗∗) ≥ 0. Since

L(t∗∗; I∗, λ) < 0, I∗′(t∗∗) = 1 as per Lemma 3.1. As such, I∗′(t∗∗)− φ′λ(t∗∗) ≥ 0. This implies that

I∗(t)− φλ(t) ≥ 0 for any t ∈ [t∗∗,M ]. Therefore L′(t; I∗, λ) ≤ 0 for any t ∈ [t∗∗,M ]. This leads to

L(t∗∗; I∗, λ) =

∫ M

t∗∗
−L′(x; I∗, λ)dx ≥ 0,

which contradicts with L(t∗∗; I∗, λ) < 0.

Based on the above findings, L(t; I∗, λ) cannot cross the t-axis on Sm,jm . Note that when

L(t; I∗, λ) = 0 over any sub-intervals of Sm,jm , we have I∗(x) = φλ(x) over those intervals. Now

define t1 = inf
{
t ∈ Sm,jm : L(t; I∗, λ) = 0

}
, then we have the following situations:
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(i). L(t; I∗, λ) > 0 over [xm−1, t1) and L(t; I∗, λ) = 0 over [t1,M ]. This leads to η∗(x) =

φ′λ(x)1[t1,M ](x).

(ii). L(t; I∗, λ) < 0 over [xm−1, t1) and L(t; I∗, λ) = 0 over [t1,M ]. This leads to η∗(x) =

1[xm−1,t1)(x) + φ′λ(x)1[t1,M ](x).

Applying the basic formula I∗(x) = I∗(xm−1) +
∫ x
xm−1

η∗(t)dt leads to the result in (2).

To prove (3), we can show similarly that does not exist a point t∗∗ ∈ Sm,jm such that L(t∗∗; I∗, λ) <

0 and L′(t∗∗; I∗, λ) ≤ 0. As such, L(t; I∗, λ) cannot down-cross the t-axis on Sm,jm . Furthermore,

L(t; I∗, λ) = 0 cannot hold on any sub-intervals of Sm,jm as otherwise I∗(x) = φλ(x) on those

intervals, which is a contradiction since I∗′(x) ∈ [0, 1] but φ′λ(x) < 0 in this case. Now define

t2 = inf
{
t ∈ Sm,jm : L(t; I∗, λ) ≥ 0

}
, we have L(t; I∗, λ) < 0 for t ∈ [xm−1, t2) and L(t; I∗, λ) ≥ 0

for t ∈ [t2,M ]. According to Lemma 3.1, we have η∗(x) = 1[xm−1,t2)(x), for which the corresponding

I∗ is given by (3).

To prove (4), we note that for any t ∈ [xi−1, xi]

L(t; I∗, λ) =

∫ xi

t
−L′(x; I∗, λ)dx+ L(xi; I

∗, λ),

where L′(t; I∗, λ) = −ψ2(t)(I
∗(t)−φλ(t))f(t). If ji = 1, then for any t ∈ [xi−1, xi], I

∗′(t)−φ′λ(t) < 0.

We next focus on the case where the root of I∗(t) = φλ(t) exists on (xi−1, xi). Other cases could

be studied in a similar way and are thus omitted.

Denote by tr1 the root of I∗(t) = φλ(t) on (xi−1, xi), then L′(t; I∗, λ) < 0 for t ∈ [xi−1, tr1) and

L′(t; I∗, λ) > 0 for t ∈ (tr1 , xi]. That means, L(t; I∗, λ) can cross the t-axis at most twice and on

(xi−1, tr1) and (tr1 , xi) respectively. Let

t2 = inf
{
t ∈ [xi−1, xi] : L(t; I∗, λ) ≤ 0

}
t3 = inf

{
t ∈ [t2, xi] : L(t; I∗, λ) ≥ 0

}
,

then L(t; I∗, λ) > 0 over [xi−1, t2), L(t; I∗, λ) < 0 over (t2, t3) and L(t; I∗, λ) > 0 over (t3, xi].

According to Lemma 3.1, we have η∗(x) = 1(t2,t3)(x). Applying the equation I∗(x) = I∗(xi−1) +∫ x
xi−1

η∗(t)dt leads to the result in (4).

To prove (5), we show by contradiction that there cannot exist two or more than two sub-

intervals of [xi−1, xi] such that L(t; I∗, λ) = 0. If there exist two sub-intervals, e.g. [a, b] and [c, d]

where xi−1 ≤ a < b < c ≤ xi, such that L(t; I∗, λ) = 0 for t ∈ [a, b] ∪ [c, d], then there must exist

a point t∗ or t∗∗ in (b, c) as described in the proof of (2). However, if t∗ exists, then similar to

the proof of (2) we get L′(t; I∗, λ) ≥ 0 over [t∗, xi]. As such L(t; I∗, λ) > 0 for t ∈ [t∗, xi], which

contradicts with L(t; I∗, λ) = 0 over [c, d] ⊆ [t∗, xi]. If t∗∗ exists, then similar to the proof of (2)

we get L′(t; I∗, λ) ≤ 0 over [t∗∗, xi]. As such L(t; I∗, λ) < 0 for t ∈ [t∗∗, xi], which also contradicts

with L(t; I∗, λ) = 0 over [c, d] ⊆ [t∗∗, xi]. Therefore, there exists at most one sub-interval, e.g.

[t4, t5] ⊆ [xi−1, xi], on which L(t; I∗, λ) = 0. We have four situations based on the sign of L(t; I∗, λ)

on [xi−1, t4) and (t5, xi]:
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(i). L(t; I∗, λ) > 0 over [xi−1, t4) and L(t; I∗, λ) > 0 over (t5, xi]. This leads to η∗(x) = φ′λ(x)1[t4,t5](x).

(ii). L(t; I∗, λ) < 0 over [xi−1, t4) and L(t; I∗, λ) > 0 over (t5, xi]. This leads to η∗(x) = 1[xi−1,t4)(x)+

φ′λ(x)1[t4,t5](x).

(iii). L(t; I∗, λ) > 0 over [xi−1, t4) and L(t; I∗, λ) < 0 over (t5, xi]. This leads to η∗(x) = φ′λ(x)1[t4,t5](x)+

1(t5,xi](x).

(iv). L(t; I∗, λ) < 0 over [xi−1, t4) and L(t; I∗, λ) < 0 over (t5, xi]. This leads to η∗(x) = 1[xi−1,t4)(x)+

φ′λ(x)1[t4,t5](x) + 1(t5,xi](x).

Applying the formula I∗(x) = I∗(xi−1) +
∫ x
xi−1

η∗(t)dt leads to the result in (5).

To prove (6), we note that I∗′(t)− φ′λ(t) > 0 in this case. We next focus on the case where the

root of I∗(t) = φλ(t) exists on (xi−1, xi). Other cases could be studied in a similar way and are thus

omitted.

Denote by tr2 the root of I∗(t) = φλ(t) on (xi−1, xi), then L′(t; I∗, λ) > 0 for t ∈ [xi−1, tr2) and

L′(t; I∗, λ) < 0 for t ∈ (tr2 , xi]. That means L(t; I∗, λ) can cross the t-axis at most twice and on

(xi−1, tr2) and (tr2 , xi) respectively. Similar to the proof of (4), let

t6 = inf
{
t ∈ [xi−1, xi] : L(t; I∗, λ) ≥ 0

}
, t7 = inf

{
t ∈ [t6, xi] : L(t; I∗, λ) ≤ 0

}
,

then L(t; I∗, λ) < 0 over [xi−1, t6), L(t; I∗, λ) > 0 over (t6, t7) and L(t; I∗, λ) < 0 over (t7, xi].

According to Lemma 3.1, we have η∗(x) = 1[xi−1,t6)(x) + 1(t7,xi](x). Applying the basic formula

I∗(x) = I∗(xi−1) +
∫ x
xi−1

η∗(t)dt leads to the result in (6). This ends the proof.

A.3 Proof of Proposition 3.1

Under the conditions of this proposition, for any t ∈ [0, λ2 ),

I∗(t)− ψ1(t)

ψ2(t)
(t− λ

2
) > 0.

As such, for t ∈ [0, λ2 ),

L′(t; I∗, λ) = −ψ2(t)

(
I∗(t)− ψ1(t)

ψ2(t)
(t− λ

2
)

)
fX(t) < 0.

Let t1 = inf
{
t ∈ [0, λ2 ] : L(t; I∗, λ) ≤ 0

}
, then as per the monotonicity of L(t; I∗, λ) over [0, λ2 ), we

have L(t; I∗, λ) > 0 for t ∈ [0, t1) and L(t; I∗, λ) < 0 for t ∈ (t1,
λ
2 ). Applying Lemma 3.1 gives

I∗′(x) = 1(t1,
λ
2
)(x). As such, for any x ∈ [0, λ2 ]

I∗(x) =

∫ x

0
I∗′(t)dt = (x− t1)+.

This finishes the proof.
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