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Abstract

Optimal contracts have widely been studied in the literature, yet the
bargaining for optimal prices has remained relatively unexplored. There-
fore the key objective of this paper is to analyze the price of reinsurance
contracts. We use a novel way to model the bargaining powers of the in-
surer and reinsurer, which allows us to generalize the contracts according to
the Nash bargaining solution, indifference pricing, and the equilibrium con-
tracts. We illustrate these pricing functions by means of inverse-S shaped
distortion functions of the insurer and the Value-at-Risk for the reinsurer.

1 Introduction

This paper analyzes optimal reinsurance design and its pricing when firms are
endowed with comonotonic additive utility functions. Comonotonic additive pref-
erences are such that the utilities are additive for comonotonic risks. It gained
particular interest after Schmeidler (1986) characterized a class of comonotonic ad-
ditive preferences as Choquet integrals. As a special case, we focus on dual utilities
(Yaari, 1987), that which is equivalent with minimizing distortion risk measures
(Wang et al., 1997). Broadly speaking there are two recent streams of literature
that consider risk sharing with dual utility functions. Both streams study roughly
the same objective function in mathematical terms, but with different motivations.
Firstly, several authors study optimal risk sharing and Pareto equilibria (see, e.g.,
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Heath and Ku, 2004; Barrieu and El Karoui, 2005; Filipović and Kupper, 2008;
Jouini et al., 2008; Ludkovski and Young, 2009; Boonen, 2015). Secondly, there is
a stream in the literature that studies optimal (re)insurance contract design with
a given premium principle (see, e.g., Asimit et al., 2013; Cui et al., 2013; Chi and
Tan, 2011; Chi and Meng, 2014; Assa, 2015; Boonen et al., 2015; Cheung and Lo,
2015). The problem is often formulated from the point of view of the insurer by
optimizing its own utility given the fact that the reinsurance premium is given by
a distortion premium principle and does not impose any Pareto optimality con-
dition. Instead, a moral hazard constraint is typically included that states that
reinsurance contracts are increasing, but not more increasing than the underlying
losses. This paper combines both settings in the sense that we use a bargaining
approach for optimal risk sharing in the context of optimal reinsurance contract
design. We model the preferences of the insurer and reinsurer by a distortion risk
measure under the Pareto optimality framework under a moral hazard constraint.
To the best of our knowledge, we are the first to explicitly combine both streams
of literature.

Pricing of insurance and reinsurance contracts is typically done by assuming
indifference. In other words, the price is set such that the reinsurer or insurer is
indifferent to selling the contract or not. In this way, one determines the zero-utility
premium. A second approach is introduced by Zhou et al. (2015a) focussing on
a competitive equilibrium approach (also called a tâtonnement approach). If the
reinsurer uses an additive utility function, this method yields indifference prices.
A feature that is common to both approaches is that both firms benefit from
trading. Moreover, there is a stream in the literature that focuses on empirical
data on insurance prices, and try to derive the implied pricing functions. The
problem with such approach is that the number of transactions in reinsurance
is typically limited. Our approach is different from these three approaches. We
determine the prices via a cooperative bargaining process.

Kihlstrom and Roth (1982), Schlesinger (1984), and Quiggin and Chambers
(2009) all use the Nash bargaining solution for an insurance contract between a
client and an insurer. Moreover, Aase (2009) uses the Nash bargaining problem to
price reinsurance risk as well. Specifically for longevity risk, Boonen et al. (2012)
and Zhou et al. (2015b) use Nash bargaining solutions to price longevity-linked
Over-The-Counter contracts. All these authors focus on firms that maximize Von
Neumann-Morgenstern expected utility. We use a cooperative bargaining approach
to derive optimal reinsurance contracts and their corresponding prices via the Nash
bargaining solutions. Moreover, we let firms maximize a comonotonic additive
utility function. In contrast to indifference pricing, bargaining solutions allow us
to share the benefits from trading, leading to profits for both parties. We provide
a unique mechanism that allows us to generalize optimal contracts even if there is
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asymmetric bargaining power such as for the asymmetric Nash bargaining solution
(Kalai, 1977). This mechanism includes indifference pricing as well, which leads to
the extreme case that one firm is indifferent from trading, and the other firm gains
maximally. This assumption is popular in the economic and actuarial literature,
dating back from the concept of Bertrand equilibria (Bertrand, 1883).

This paper contributes to the literature in the following ways. We characterize
the optimal hedge benefits (alternative interpreted as welfare gains) from bilateral
bargaining for reinsurance. In the special case in which the preferences are given
by a distortion risk measure, we derive a simple expression of the hedge benefits.
Moreover, we derive bounds on the individual rational prices of a specific Pareto
optimal contract, and provide to any price a corresponding bargaining power for
the asymmetric Nash bargaining solution. To highlight our results, we illustrate
the construction of the premium principle under the special case that the insurer
is endowed with preferences given by an inverse-S shaped distortion risk mea-
sure, and the reinsurer optimizes a trade-off between the expected value and the
Value-at-Risk (VaR). This leads to a discontinuous pricing function. Inverse-S
shaped distortion risk measures are getting more popular to use as preferences
since Quiggin (1982, 1991, 1992) and Tversky and Kahneman (1992).

Risk sharing and optimal reinsurance with expected utilities is discussed by,
e.g., Borch (1960, 1962), Wilson (1968), Raviv (1979), Lemaire (1990), Taylor
(1992a,b), and Aase (1993a,b, 2002). This paper focuses on preferences that are
monotone and comonotonic additive. This includes convex risk measures (Föllmer
and Schied, 2002; Frittelli and Rossaza-Gianin, 2002) that are comonotonic ad-
ditive. Risk sharing under convex risk measures is first studied by Barrieu and
El Karoui (2005), and later extended by, e.g., Burgert and Rüschendorf (2006),
Filipović and Kupper (2008), and Jouini et al. (2008). In the more specific context
of coherent risk measures, this problem is studied by, e.g., Heath and Ku (2004)
and Burgert and Rüschendorf (2008). In this paper, we study bargaining for opti-
mal reinsurance contracts. We derive conditions on Pareto optima in the context
of reinsurance contract design, where a contract is an indemnity function on the
insurer’s risk and a price. The use of comonotonic additive preferences helps us
to disentangle the characterization of the indemnity function and a method to
determine the price. A special case of our preferences are distortion risk measures,
as introduced and characterized by Wang et al. (1997). Distortion risk measures
are related to coherent risk measures (see Wang et al., 1997; Artzner et al., 1999),
as well as ambiguity aversion. Based on Schmeidler (1989), ambiguity is typically
modeled by distorted probabilities (see, e.g., Chateauneuf et al., 2000; Werner,
2001; Tsanakas and Christofides, 2006; De Castro and Chateauneuf, 2011).

This paper is set out as follows. Section 2 provides all general results on bar-
gaining with comonotonic additive utility functions. Section 3 shows how these
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results translate to preferences given by a distortion risk measure. Section 4 pro-
vides important insight on the premium principle for the class of inverse-S shaped
distorted preferences and the well-known Value-at-Risk. Section 5 concludes the
paper.

2 Model formulation

We consider a one-period model involving two firms, with one firm representing
an insurer (I) and the other firm representing the reinsurer (R). Let (Ω,F,P) be
a probability space, and L∞(Ω,F,P) be the class of bounded random variables on
it. When there is no confusion, we simply write L∞ = L∞(Ω,F,P). The total
insurance liabilities that the insurer faces is given by the non-negative, bounded
risk X ∈ L∞. Here we assume that the insurer is interested in transferring a part of
this risk to a reinsurer. Let us denoteM = esssupX = inf{a ∈ R : P(X > a) = 0}.
The reinsurance contract is given by the tuple (f, π), where f(X) is the indemnity
paid by the reinsurer to the insurer and π ∈ IR is the price (or premium) paid by
the insurer to the reinsurer. It is natural to assume that f ∈ F , where

F = {f : IR+ → IR+ |0 ≤ f(x)− f(y) ≤ x− y, ∀x ≥ y ≥ 0, f(0) = 0} , (1)

i.e., we assume that the indemnity f ∈ F is non-decreasing and 1-Lipschitz. The
assumption that f ∈ F is often used in the literature on reinsurance contract
design and its importance is highlighted in Chi and Tan (2011). More specifically,
using the criterion of minimizing the VaR of the total risk of the insurer, Chi
and Tan (2011) demonstrate that if we do not impose non-decreasing constraint
on the indemnity f , the truncated stop-loss reinsurance is optimal. This form
of reinsurance has the peculiar property that if losses exceed a certain threshold,
the amount that is indemnified from the reinsurer to insurer is reduced to zero.
Reinsurance treaty with such structure is perceived to be undesirable in that it
encourages the insurer to under report its losses. See also Denuit and Vermandele,
1998; Young, 1999; Asimit et al., 2013; Chi and Meng, 2014; Assa, 2015; Xu et al.,
2015. On the other hand, if f were to increase more rapidly than losses increase,
then the insurer would have an incentive to create incremental losses. Both of
these cases trigger the so-called moral hazard in the sense they create opportunity
for the insurer to mis-report its actual losses to the reinsurer. The assumption
that f ∈ F also makes sure that the indemnity function is continuous.

By denoting Wk as the deterministic initial wealth for firm k, where k ∈ {I, R},
and πI as the premium received by the insurer for accepting risk X , then without
the reinsurance the wealth at a pre-determined future time for the insurer and
reinsurer are WI + πI − X and WR, respectively. If the insurer were to transfer
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part of its risk to a reinsurer using f(X) with corresponding price π, then the
wealth at a pre-determined future time for the insurer becomes

WI + πI −X + f(X)− π. (2)

Similarly, the wealth for the reinsurer changes to

WR − f(X) + π. (3)

To assess if there should be a risk transfer between both firms, we need to make
additional assumption on how firms evaluate such preference. In particular, we
next define the preferences that we discuss in this paper.

Definition 2.1 The preference relations Vk, k ∈ {I, R} are such that

• it is monotone with respect to the order of L∞;

• it satisfies the normalization conditions Vk(0) = 0 and Vk(1) = 1;

• it is comonotonic additive, i.e., Vk(−Y ) = Vk(−Y + f(Y )) + Vk(−f(Y )) for
all Y ∈ L∞ and all f ∈ F .

Note that the normalizations and comonotonic additivity imply that Vk has the
cash-invariance property, i.e. Vk(X+a) = Vk(X)+a for every X ∈ L∞ and a ∈ IR.
Note that comonotonic additivity and the monotonicity assumption on Vk together
with a regularity assumption on continuity imply the Choquet representation of
Vk (Schmeidler, 1986; Wang et al., 1997). Providing an example of a Choquet
representation is tedious, so we relegate the constructive examples to Sections 3
and 4, where we consider more specific preferences. It is well-known that the
initial wealth and πI are irrelevant for preferences given by cash-invariant utility
functions, and therefore we set without loss of generalityWI = πI = WR = 0. Since
we consider non-decreasing 1-Lipschitz indemnities, we have that −X + f(X) and
−f(X) are comonotonic for all f ∈ F . By focussing on contracts (f, π) ∈ F × IR,
the comonotonic additivity of Vk implies that the utility function Vk is additive (and
hence concave) on the subdomain. Note that Jouini et al. (2008) and Filipović
and Kupper (2008) use monetary utility functions that are, in addition to the
properties in Definition 2.1, concave. For instance, the risk measure Value-at-Risk
that we will formally define in Section 4 is not concave in general, and so not a
convex risk measure. It is however comonotonic additive, and so concave (in fact
additive) on the subdomain of comonotonic risks.

We call a reinsurance contract (f, π) ∈ F × IR Pareto optimal if there does not
exist a contract (f̂ , π̂) ∈ F × IR such that VI(−X + f̂(X)− π̂) ≥ VI(−X + f(X)−
π) and VR(−f̂ (X) + π̂) ≥ VR(−f(X) + π), with at least one strict inequality.
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The problem of finding an optimal contracts (f, π) ∈ F × IR is analogous to
the problem of finding optimal comonotonic risk sharing contracts. Jouini et al.
(2008, Theorem 3.1 therein) characterize Pareto optimal risk sharing contracts for
the class that contains also non-comonotonic risk sharing contracts. We extend
this to the case where we restrict f ∈ F .

Proposition 2.2 Let Vk, k ∈ {I, R} as in Definition 2.1. It holds that (f, π) ∈
F × IR is Pareto optimal if and only if f is an element of:

argmax
f∈F

VI(−X + f(X)) + VR(−f(X)), (4)

where F is defined in (1).

Proof First, we prove for “only if” part. We suppose that (f, π) ∈ F×IR is Pareto
optimal, but f is not an element of the set (4). Then, there exists an f̂ ∈ F such
that VI(−X + f(X)) + VR(−f(X)) < VI(−X + f̂(X)) + VR(−f̂(X)). By defining
π̂ := VR(−f(X)+π)−VR(−f̂(X)) and the cash-invariance property of VR, we have
VR(−f(X) + π) = VR(−f̂(X) + π̂). Note that VI(−X + f(X)− π) + VR(−f(X) +
π) < VI(−X + f̂(X) − π̂) + VR(−f̂(X) + π̂), as π and π̂ will cancel out due to
cash-invariance of VI and VR. Therefore, it follows that VI(−X + f(X) − π) <

VI(−X+ f̂(X)− π̂) as VR(−f(X)+π) = VR(−f̂(X)+ π̂), which is a contradiction
with (f, π) ∈ F × IR being Pareto optimal. Hence, f is an element of the set (4).

For the “if” part, it also follows easily from the cash-invariance property of VI

and VR. The proposition is thus proved.

Note that π does not appear in the above objective function due to the cash
invariance property of Vk, k ∈ {I, R}: the π’s cancel out each other. Proposition
2.2 asserts that the Pareto optimality of a reinsurance contract (f, π) depends
only on the indemnity contract f ∈ F . It is important to note that this property
holds under the assumption of comonotonic additive utility functions, and it does
not necessary apply for general utility functions, with notable exception is the
exponential utility (Bühlmann and Jewell, 1979; Gerber and Pafumi, 1998).

The following proposition asserts the existence of Pareto optimal reinsurance
contracts.

Proposition 2.3 Let Vk, k ∈ {I, R} as in Definition 2.1. Under the assumption

that Vk(X) < ∞, k ∈ {I, R}, there exists a Pareto optimal reinsurance contract

(f, π) ∈ F × IR, i.e. there exists an f solving (4).

Proof First, it follows from Vk(X) < ∞ for k ∈ {I, R} that problem (4) is well-
posed, i.e., the supremum of the objective in (4) is finite. Functions in f ∈ F are
1-Lipschitz, and therefore any sequence fn ∈ F for n ∈ IN is equicontinuous. By
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defining the norm d(f 1, f 2) = maxt∈[0,M ] |f
1(t) − f 2(t)|, for any f 1, f 2 ∈ F , then

the set F is compact under this norm d by Arzela-Ascoli’s theorem.
Next, we show that Vk, k ∈ {I, R}, are 1-Lipschitz continuous in f under

the norm d. Let ε > 0, and d(f̂ , f) ≤ ε. Then, we have f(t) − ε ≤ f̂(t) ≤
f(t) + ε for any t ∈ [0,M ]. From this, we get −ε = Vk(f(X) − ε) − Vk(f(X)) ≤
Vk(f̂(X))− Vk(f(X)) ≤ Vk(f(X) + ε)− Vk(f(X)) = ε holds by monotonicity and
cash-invariance property. This implies that |Vk(f̂(X)) − Vk(f(X))| ≤ ε. Hence,
by the Weierstrass extreme value theorem, the optimal solution to (4) exists.

We now consider the benefits of reinsurance to both firms. Recall that without
reinsurance, the utility of the insurer for insuring risk X is VI(−X) and the utility
of the reinsurer is simply 0. If both firms agree to an indemnity function f(X)
with corresponding price π, then the resulting utility of the insurer changes to
VI(−X + f(X)− π) so that the difference

VI(−X + f(X)− π)− VI(−X) = −VI(−f(X))− π (5)

can be interpreted as the hedge benefit to the insurer using the indemnity f ∈ F .
The right hand side of the above equation follows from comonotonic additivity and
cash invariance of VI . Similarly, from the perspective of the reinsurer its hedge
benefit is

VR(−f(X) + π)− VR(0) = VR(−f(X)) + π. (6)

Positive differences imply that there are incentives for reinsurance due to the gains
in (monetary) utility. By denoting HB(f) as the aggregate hedge benefits or the
aggregate utility gains in the market for exercising the indemnity f ∈ F , then we
have

HB(f) = VR(−f(X))− VI(−f(X)).

Note that HB(f) is simply the sum of the hedge benefit of both insurer and
reinsurer and hence for brevity we refer HB(f) as the (aggregate) hedge benefit
for a given indemnity f ∈ F . Note also that HB(f) can be positive, negative,
or zero, depending on f(X) and the heterogeneous preferences of insurer and
reinsurer. Since the utility functions are cash-invariant, the hedge benefit HB(f)
is expressed in monetary terms.

If the contract (f ∗, π) is Pareto optimal, then this implies the achievable hedge
benefit of the market is maximal. By setting HB∗ ≡ HB(f ∗), we have

HB∗ = HB(f ∗) = VR(−f ∗(X))− VI(−f ∗(X)) ≥ 0. (7)

Note that the maximum achievable hedge benefit cannot be negative since f(X) =
0 is a feasible strategy in F . If VI = VR, then the comonotonic additivity of Vk
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leads to HB∗ = 0; i.e. there is no gain in welfare in the market regardless of the
indemnity f ∈ F .

Depending on the market conditions, the hedge benefit HB∗ will be shared
among both firms. Particularly, we require that the following two conditions are
satisfied:

• Pareto optimality,

• individual rationality, or both firms are weakly better off than when they do
not trade: VI(−X + f(X)− π) ≥ VI(−X) and VR(−f(X) + π) ≥ 0.

Recall that Pareto optimality of the contract (f, π) ∈ F × IR does not depend
on the price π. The following proposition establishes the lower and upper bounds
of individual rational prices corresponding to f . The key to deriving these bounds
is based on the minimum acceptable price that a reinsurer is willing to accept the
risk from an insurer and the maximum price that an insurer is willing to pay to
transfer its risk to a reinsurer.

Proposition 2.4 Let Vk, k ∈ {I, R} as in Definition 2.1, and let (f, π) ∈ F × IR
be Pareto optimal and individual rational. Then, f solves (4), and

π ∈ [−VR(−f(X)),−VI(−f(X))].

Proof For any π ∈ IR, the solution f solving (4) is Pareto optimal (see Proposition
2.2). Note that due to the cash-invariance of V , we obtain that VI(−X+f(X)−π)
is strictly decreasing and continuous in π, and VR(−f(X)+π) is strictly increasing
and continuous in π. Hence, the set of individual rational pricing is given by an
interval, where the lower bound is such that VR(−f(X) + π) = VR(0), and the
upper bound is such that VI(−X+f(X)−π) = VI(−X). The lower bound follows
directly from cash-invariance and VR(0) = 0, and the upper bound follows directly
from cash-invariance, comonotonic additivity, and the fact that −X + f(X) and
−f(X) are comonotonic. Finally, −VR(−f(X)) ≤ −VI(−f(X)) follows from (7).
This concludes the proof.

Note that for any Pareto optimal and individual rational contract (f, π), we have
π ≥ 0.

For a given indemnity function f , we now define a pricing principle. Given that
both firms are individual rational, the hedge benefit HB(f) is to be allotted among
both firms. Then, the problem writes as a problem to “share a dollar” (see, e.g,
Osborne and Rubinstein, 1990; Binmore, 1998), i.e., we aim to allocate a monetary
amount among two firms. Define α ∈ [0, 1] as the proportion of the hedge benefit
that is allocated to the insurer; i.e. αHB(f) hedge benefit is assigned to the insurer
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and the remaining (1−α)HB(f) hedge benefit to the reinsurer. Corresponding to
the hedge benefit allocation α and the indemnity function f , it is of our interest to
determine the resulting price of the reinsurance contract. To do this, it is useful to
interpret the price π as a function of both α and f , so that π ≡ π(α, f) represents
the price of indemnity f(X) where the insurer receives αHB(f) hedge benefit and
reinsurer receives the remaining (1− α)HB(f) hedge benefit.

Definition 2.5 Let Vk, k ∈ {I, R} as in Definition 2.1. For a given α ∈ [0, 1] and
f ∈ F , the price π(α, f) is defined as the unique solution to

VI(−X + f(X)− π(α, f)) = VI(−X) + α ·HB(f).

The above relation, together with the cash invariance property of VI , lead to

π(α, f) = VI(−X + f(X))− VI(−X)− α ·HB(f). (8)

Moreover, the posterior utility of the reinsurer is given by (1− α)HB(f).
For a given f ∈ F , the function VI(−X + f(X)− π) is continuous and strictly

decreasing in π, and the function VR(−f(X) + π) is continuous and strictly in-
creasing in π. Therefore, the pricing function for a given α and f ∈ F can be
defined as the solution to the following optimization problem:

π(α, f) = argmax
π

VI(−X + f(X)− π) (9)

s.t. VR(−f(X) + π) ≥ (1− α)HB(f). (10)

The following proposition explicitly provides an expression for determining the
price π(α, f).

Proposition 2.6 Let Vk, k ∈ {I, R} as in Definition 2.1. For all f ∈ F and

α ∈ [0, 1], we have

π(α, f) = −(1 − α)VI(−f(X))− αVR(−f(X)), (11)

where π(α, f) is defined in Definition 2.5.

Proof It follows from (8) that

π(α, f)

=VI(−X + f(X))− VI(−X)− αHB(f)

=VI(−X + f(X))− VI(−X)− α[−VI(−f(X)) + VR(−f(X))]

=VI(−X)− VI(−f(X))− VI(−X)− α[−VI(−f(X)) + VR(−f(X))]

9



=− (1− α)VI(−f(X))− αVR(−f(X)).

Here, the second last equation follows from comonotonic additivity of VI and the
fact that −X + f(X) and −f(X) are comonotonic since f ∈ F . This concludes
the proof.

Note that HB(f) can be negative, but it is bounded from above by HB(f ∗) with
f ∗ solving (4). Moreover, by using the property that Vk is monotone and Vk(0) = 0,
we can see that π(α, f) is always non-negative even when HB(f) is negative. Note
that if HB(f) is negative, any contract (f, π) is not individual rational.

A more interesting situation to analyze is the Pareto optimal case with (f, π),
where f is the optimal solution to (4). Recall that the resulting HB∗ gives the
highest attainable hedge benefit among the insurer and the reinsurer and that α
captures the proportion of HB∗ that is assigned to insurer. As α increases from
0 to 1, the portion of the hedge benefit that is allocated to the insurer increases
until α = 1 with the insurer receives the entire hedge benefit. Consequently the
parameter α measures the bargaining power of the insurer; the higher the α, the
greater the bargaining power of the insurer. The extreme cases α = 0, 1 reflect
cases of indifference pricing: all hedge benefits in the market are shifted to one
party. It is easy to show that the competitive equilibrium outcome, also called
tâtonnement outcome (see, e.g., Zhou et al., 2015a), corresponds to α = 1 when
the reinsurer uses a comonotonic additive utility function.

Next, we provide a characterization of our mechanism which is well-studied in
the classical economic literature. In particular, the asymmetric Nash bargaining
solution (Kalai, 1977) with asymmetry parameter α is given by:

argmax
(f,π)∈F×IR+

[VI(−X + f(X)− π)− VI(−X)]αVR(−f(X) + π)1−α (12)

s.t. VI(−X + f(X)− π) ≥ VI(−X), (13)

VR(−f(X) + π) ≥ 0. (14)

Kalai (1977) characterizes this rule for convex bargaining problems as introduced
by Nash (1950). A convex bargaining problem is given a convex and compact set
A ⊂ IR2 of feasible utility levels, and a disagreement point d ∈ IR2 that is in our
case the vector d = (VI(−X), 0). According to Proposition 2.2, we can write the set
of all utility levels corresponding to the Pareto optimal and individually rational
reinsurance contracts (f, π) ∈ F× IR as A = {(VI(−X+f ∗(X)−π), VR(−f ∗(X)+
π)) : π ∈ IR} ∩ {x ∈ IR2 : x ≥ d} with f ∗ solving (4). This set is a line in IR2, and
so it is convex. As the asymmetric Nash bargaining solution yields Pareto optimal
and individually rational contracts (Kalai, 1977), we can restrict the feasible set
in (12) to the utility levels in the set A.

10



Then, the asymmetric Nash bargaining rule is characterized by means of two
more properties by Kalai (1977). One property is independent of equivalent utility
representatives, which implies that affine transformations of the utility functions do
not affect the outcome. The other property is independent of irrelevant alternatives
(IIA). This property resembles a gradual elimination of other contracts from the
feasible set, where eliminated contracts have no effect on the bargaining solution.
Non-cooperative characterizations of the asymmetric Nash bargaining solution are
provided by, e.g., Britz et al. (2010) and Miyakawa (2012). The Nash bargaining
solution gained popularity in pricing reinsurance risk as well (see, e.g., Aase, 2009;
Boonen et al., 2012; Zhou et al., 2015b; Boonen, 2016).

Proposition 2.7 Let Vk, k ∈ {I, R} as in Definition 2.1. If HB∗ > 0 and f ∈
F solves (4), then the price π(α, f) with α ∈ (0, 1), defined in Definition 2.5,

coincides one-to-one with the asymmetric Nash bargaining solution with asymmetry

parameter α, as defined in (12)-(14).

Proof It is well-known that the asymmetric Nash bargaining solution is Pareto
optimal (see, e.g., Kalai, 1977).

For any Pareto optimal contract (f, π), Proposition 2.2 implies that f ∈ F
solves (4). It follows from (5) and (6) that the objective in (12), with constraints
(13) and (14), can be reformulated as

argmax
a∈[0,1]

[aHB∗]α · [(1− a)HB∗]1−α. (15)

Obviously, the solution of (15) does not depend on HB∗ > 0. Then, we derive
straightforwardly that the solution a is given by a = α. Finally, π = π(α, f)
follows by definition. This concludes the proof.

The case α = 1
2
corresponds to equal sharing of the hedge benefits, and corre-

sponds to the Nash bargaining solution (Nash, 1950). The following proposition
characterizes the pricing rule π(α, f) in a way that is commonly used in economic
theory as well.

Proposition 2.8 Let Vk, k ∈ {I, R} as in Definition 2.1. For every f ∗ ∈ F solv-

ing (4), π as defined in Definition 2.5 and α ∈ [0, 1], we have that the reinsurance

contract (f ∗, π(α, f ∗)) is an element of

argmax
(f,π)∈F×IR+

VI(−X + f(X)− π)

s.t. VR(−f(X) + π) ≥ (1− α) ·HB∗,

}
(16)

where HB∗ is fixed, and given by (7).
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Proof First, we show that every solution to (16) is Pareto optimal. Let (f, π) ∈
F × IR+ solve (16) and suppose that it is not Pareto optimal. Then, there exist
(f̂ , π̂) such that VI(−X + f̂(X)− π̂) ≥ VI(−X + f(X)−π) and VR(−f̂(X)+ π̂) ≥
VR(−f(X) + π) with one strict inequality. Since (f, π) solve (16), we get that
VI(−X + f̂(X) − π̂) = VI(−X + f(X) − π), and, hence, VR(−f̂(X) + π̂) >

VR(−f(X) + π). The function VI(−X + f(X) − π) is continuous and strictly
decreasing in π, and the function VR(−f(X) + π) is continuous and strictly in-
creasing in π. Hence, there exist (f̂ , π̃), with π̃ < π̂ such that VI(−X+f̂ (X)−π̃) >

VI(−X+f(X)−π) and VR(−f̃(X)+π̂) > VR(−f(X)+π). This is a contradiction.
Hence, (f, π) is Pareto optimal. Hence, according to Proposition 2.2, f solves (4).
For all Pareto optimal (f, π) ∈ F × IR, we get due to Proposition 2.2 and cash-
invariance that VI(−X+ f(X)−π)VR(−f(X)+π) is the same. So, if (f, π) solves
(16), then for every f̂ solving (4) there exists a π̂ ∈ IR such that (f̂ , π̂) solves (16)
as well.

The result that π = π(α, f) follows from the (9)-(10). This concludes the proof.

In Proposition 2.8, we characterize a pricing rule such that the insurer maximizes
its profit under a participation constraint. This participation constraint might
incorporate a reservation utility, which is non-negative. This approach coincides
with, e.g., the approach Filipović et al. (2015) to price insurance arrangements
under limited liability.

The preference relations Vk is called law-invariant when we have Vk(X) = Vk(Y )
for all X, Y ∈ L∞ that have the same distribution with respect to P. To conclude
this section, we point out that if the reinsurance contracts f are allowed to have any
shape, i.e., f : [0,M ] → [0,M ] with f(0) = 0, and not restricted to the set F , and
if the preferences are concave and law-invariant, then Proposition 2.2, Proposition
2.3, and Proposition 2.7 still hold. It is important to note that Landsberger and
Meilijson (1994) and Ludkovski and Rüschendorf (2008) show in risk sharing that
there exists a Pareto optimal contract (f, π) such that f ∈ F .

3 Distortion risk measures

In this section, we assume that insurer I and reinsurer R are endowed with a
particular type of comonotonic additive utility function. More specifically, their
preferences are given by a distortion risk measure. Wang et al. (1997) show that
distortion risk measures satisfy the properties of Section 2, and are in addition
law-invariant and satisfy a regularity condition on continuity.

Definition 3.1 Preference relation Vk, k ∈ {I, R} is given by a distortion risk
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measure when we have for every random variable W ∈ L∞ that

Vk(W ) := −Egk [−W ] =

∫ 0

−∞

[1− gk(S−W (z))] dz −

∫ ∞

0

gk(S−W (z)) dz, (17)

where k ∈ {I, R}, S−W (z) = 1 − F−W (z) is the survival function of −W , and

gk : [0, 1] → [0, 1] is a non-decreasing function such that gk(0) = 0 and gk(1) = 1.

A non-decreasing function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1 is called a
distortion function. As a special case, when Y ≥ 0, we have

Egk [Y ] =

∫ ∞

0

gk(SY (z)) dz. (18)

Moreover, distortion risk measures are convex if the distortion functions are con-
cave. Distortion risk measures are popular as it is related to the dual theory (Yaari,
1987) and the coherent risk measures (Artzner et al., 2001). Maximizing dual util-
ity is equivalent to minimizing a distortion risk measure. Risk-aversion for distor-
tion risk measures is equivalent to using a concave distortion function (Yaari, 1987).
The Value-at-Risk (VaR) and all coherent risk measures satisfying law-invariance
and comonotonic additivity are distortion risk measures (see Wang et al., 1997).
Also, maximizers of a risk-reward trade-off Vk(W ) = (1 − γ)E[W ]− γρk(W ), γ ∈
[0, 1], are captured by this preference relation if ρk is a distortion risk measure.
Here, γ reflects the aversion towards risk (see, e.g., De Giorgi and Post, 2008).
Note that we do not require the distortion functions gk, k ∈ {I, R} to be concave
or continuous. For instance, the distortion risk measure might be Value-at-Risk,
which we will specify later in Section 4.

Pareto optimal reinsurance contracts (f ∗, π) ∈ F × IR for distortion risk mea-
sures follow from Cui et al. (2013) and Assa (2015). Every optimal indemnity
function f ∗, so that solves (4), can be shown to satisfy the following relationship:

f ∗ ′

(z) =





1 if gI(SX(z)) > gR(SX(z)),

β(z) if gI(SX(z)) = gR(SX(z)),

0 otherwise,

(19)

for all z ≥ 0 almost surely, where β(z) ∈ [0, 1]. Note that the indemnities f ∈ F
are 1-Lipschitz, and therefore absolutely continuous. Hence the derivative of f
exists almost everywhere. The indemnities in (19) are given by specific tranching
of the insurer’s risk. Every tranche is allocated to the firm that is endowed with
the smallest distortion function on this quantile. This is interpreted as the locally
least risk-averse firm (Boonen, 2015).

It is here important to remark that the contract in (19) is analogous to Pareto
optimal risk sharing contracts with distortion risk measures. In the risk sharing
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context, Ludkovski and Young (2009, Theorem 2) characterize the same structure
of Pareto optimal risk allocations for concave distortions. Our class of distor-
tion risk measures allow also for non-concave distortion functions. Ludkovski and
Young (2009) explicitly require the admissible set of risk sharing contracts to be
such that the risks are comonotonic with the aggregate risk. This condition is anal-
ogous to requiring reinsurance indemnities to be non-decreasing and 1-Lipschitz as
we impose in F , and the price be any element of IR. In risk sharing, assuming con-
tracts to be comonotonic is unrealistic if there might not exist Pareto optimal risk
sharing contracts that are comonotonic when distortion functions are not concave
(see Ludkovski and Rüschendorf, 2008). In reinsurance contract design, however,
focussing on non-decreasing and 1-Lipschitz indemnities contracts is popular.

An interesting consequence of using the distortion risk measure to capture
the comonotonic additive utility function is that the hedge benefit HB∗ can be
determined without knowing the Pareto optimal contract (f, π). This is asserted
in the following proposition, of which the proof is trivial.

Proposition 3.2 Suppose VI and VR are both distortion risk measures, defined in

Definition 3.1. Then, it holds that

HB∗ =

∫ ∞

0

∆g+(SX(z)) dz,

where ∆g+ = (gI − gR)+, (y)+ = max{y, 0}, and where HB∗ is defined in (7)

Corollary 3.3 Let VI and VR are both distortion risk measures, defined in Defi-

nition 3.1, and let X have a compact support [0,M ]. It holds that HB∗ = 0 if and

only if the Lebesgue measure of the set {z ∈ [0,M ] : gI(SX(z)) − gR(SX(z)) > 0}
is zero. Furthermore, if X has a positive density on its support [0,M ], then it

holds that HB∗ = 0 if and only if the Lebesgue measure of the set {z ∈ [0,M ] :
gI(z)− gR(z) > 0} is zero.

Recall that HB∗ = 0 signifies the situation that both firms are not able to
strictly benefit from risk sharing. Corollary 3.3 provides an explicit characteriza-
tion for this situation. In the economic literature on risk sharing, this situation is
also called no-trade (De Castro and Chateauneuf, 2011).

We next derive a pricing function associated with the distortion risk measures.

Proposition 3.4 Suppose VI and VR are both distortion risk measures, defined in

Definition 3.1. For any α ∈ [0, 1] and f ∈ F satisfying (19), we obtain

π(α, f) = E(1−α)gI+αgR[f(X)].
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Proof Let f ∈ F solve (4). The fact that f ∈ F implies f(X) ≥ 0. If Vk, k ∈
{I, R}, are distortion risk measures, then by substituting (18) in Proposition 2.6,
we obtain

π(α, f) = (1− α)EgI(f(X)) + αEgR(f(X))

= (1− α)

∫ ∞

0

gI(Sf(X)(z)) dz + α

∫ ∞

0

gR(Sf(X)(z))] dz

=

∫ ∞

0

[(1− α)gI(Sf(X)(z)) + αgR(Sf(X)(z))]dz

= E(1−α)gI+αgR[f(X)].

This concludes the proof.

Suppose the state space is finite; let Ω = {ω1, . . . , ωp}, P(ω) > 0 for all ω ∈ Ω, and
X(ω1) > · · · > X(ωp). Then, we get by direct calculations for g := (1−α)gI+αgR
and Y := f(X) that

Eg(Y ) =
∑

ω∈Ω

Y (ω)[g(P(X ≥ X(ω)))− g(P(X > X(ω)))] (20)

=

p−1∑

k=1

[Y (ωk)− Y (ωk+1)]g(P(X ≥ X(ωk))) + Y (ωp),

where we interpret g(P(X ≥ X(ω)))−g(P(X > X(ω))), ω ∈ Ω as state prices that
we characterized in Proposition 3.4. If the function g is strictly increasing, the
state prices are positive. Because f ∈ F , we get that Y (ωk) ≥ Y (ωk+1) ≥ 0 for all
k. So, if Y (ω1) > 0, we get that Eg(Y ) ≥ Y (ω1)g(P(ω1)) > 0 if the function g is
strictly increasing. Hence, we then get Y (ω1) > 0 if and only if Eg(Y ) > 0, i.e., a
non-negative risk with positive realizations has a positive price, and so the prices
do not allow arbitrage opportunities. Note that we here do not need to restrict
the pricing function g to be continuous.

By assuming that g is absolutely continuous and the state space is continuous,
we have Eg(Y ) = Eg(f(X)) =

∫M

0
f(z)g′(1 − FX(z))dFX(z) = E[f(X)g′(1 −

FX(X))] = E[Y g′(1 − FX(X))], where we used the fact that f ∈ F . Here, g′(1 −
FX(X)) is the pricing kernel that we characterized in Proposition 3.4. So, the prices
reflect the preferences of a “representative” agent; namely the preferences of an
agent who is endowed with distortion function g. In risk sharing with expected
utilities, a representative agent model is also characterized by, e.g., Aase (1993).

Proposition 3.4 establishes that the pricing function is a distortion premium
principle. The use of distortion premium principles to price risk has gained popu-
larity in the actuarial literature (see, e.g., De Waegenaere et al., 2003; Cui et al.,
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2013; Assa, 2015). Note that these authors all assume that the distortion premium
principles are given, whereas we derive it from cooperative bargaining.

To conclude this section, we point out that suppose the insurer is a risk-averse
distortion risk measure minimizer (i.e., gI is concave), and the reinsurer is risk-
neutral, then it is optimal to reinsure all risk to the reinsurer, i.e., f(X) = X . This
follows from EgI [Y ] ≥ E[Y ] for all Y ∈ L∞ (see, e.g., Boonen, 2015). However,
the reinsurer might ask for a mark-up above the expected value premium if α < 1,
i.e., when the reinsurer has some bargaining power. Therefore, the premium is
always larger than the expected value of a risk, which is also typically observed in
reinsurance.

4 An illustration: inverse-S shaped distorted pref-

erences and VaR

The objective of this section is to provide explicitly the pricing function under some
additional assumptions on the preferences of insurer and reinsurer. We assume that
the utility function for the insurer is dictated by an inverse-S shaped distorted
function while the reinsurer relies on the value-at-risk (VaR). We consider inverse-
S shaped distortion risk measures because of their desirable properties in modeling
human behavior and their popularity in recent years (Quiggin 1982, 1991, 1992;
Tversky and Kahneman 1992; Tversky and Fox 1995; Wu and Gonzalez, 1999;
Abdellaoui, 2000; Rieger and Wang, 2006; Jin and Zhou, 2008; He and Zhou,
2011; Xu and Zhou, 2013; Bernard et al., 2015). Similarly, we adopt VaR in our
example because it is a prominent measure of risk among financial institutions and
insurance companies. It is also a regulatory risk measure adopted by the Solvency
II regulations for insurance companies in European Union.

We first focus on the insurer’s utility function and then followed by the rein-
surer’s. For the insurer, we additionally assume that the adopted distortion func-
tion gI is continuously differentiable so that for every random variable W ∈ L∞,
(17) can be written as

VI(W ) =

∫ 1

0

F−1
W (s)g′I(s)ds, (21)

where F−1
W (s) = inf{z ∈ IR : FW (z) ≥ s}, s ∈ [0, 1]. The above representation

demonstrates the role of the shape of the distortion function on evaluating wealth.
If the function gI is strictly concave; i.e. g′I(0) > 1 and g′I(1) < 1, then (21) im-
plies that the good outcomes receive higher weights and the bad ones get smaller
weights. If the function gI is strictly convex; i.e. g′I(0) < 1 and g′I(1) > 1, then the
good outcomes get smaller weights and the bad ones receive higher weights. On
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the other hand, inverse-S shaped preferences (g′I(0) > 1 and g′I(1) > 1) are such
that both bad outcomes and good outcomes are heavily weighted. This is con-
sistent with numerous psychological experiments conducted to study individual’s
risk aversion (Tversky and Kahneman, 1992; Tversky and Fox, 1995). Therefore,
we consider an inverse-S shaped function in our example.

We now formally provide the definition of an inverse-S shaped distortion func-
tion.

Definition 4.1 A distortion function g is called inverse-S shaped if:

• it is continuously differentiable;

• there exists b ∈ (0, 1) such that g is strictly concave on the domain (0, b) and
strictly convex on the domain (b, 1);

• it holds that g′(0) = lims↓0 g
′(s) > 1 and g′(1) = lims↑1 g

′(s) > 1.

The point b in the above definition is the inflection point such that the g changes
from locally concave to locally convex. Many distortion functions used in the
literature are examples of inverse-S shaped. For example, let us consider the
function proposed by Tversky and Kahneman (1992), which is parameterized by:

gζ(s) =
sζ

(sζ + (1− s)ζ)
1

ζ

for all s ∈ [0, 1], (22)

where ζ > 0. Figure 1 plots (22) using ζ = 0.5. Rieger and Wang (2006) point
out that (22) is increasing and inverse-S shaped for ζ ∈ (0.279, 1).

Recall that Proposition 3.4 formally establishes that the distortion function in
premium principle is given by a convex combination of both functions gI and gR.
If the distortion functions gI and gR are inverse-S shaped, the pricing function is
a distortion premium principle with an increasing distortion function. Any shape
can be generated by a choice of α, gI and gR.

Remark If the functions gI and gR are concave, then π is a concave distortion
premium principle.1 If the functions gI and gR are convex, then π is a convex
distortion premium principle. If the functions gI and gR are inverse-S shaped and
the inflection points of gI and gR are the same, then π is an inverse-S shaped
distortion premium principle.

1A concave distortion premium principle follows from bargaining between two firms that both
use a concave distortion risk measure. Concave distortion risk measures resemble risk-averse
preferences (Yaari, 1987).
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Figure 1: The solid line is the inverse-S shaped distortion function gζ, defined in
(22), with ζ = 0.5. The point a will be explained later in Lemma 4.3.

We now discuss the reinsurer’s utility function, which is based on the Value-
at-Risk (VaR). Formally, the VaR of the random variable W ∈ L∞ at a confidence
level β ∈ (0, 1) is given by V aRβ(W ) = Eg(−W ) with g(s) = 1s>β. It is popular in
insurance industry due to regulations (see, e.g., Pritsker, 1997). This risk measure
is connected to the quantile function via V aRβ(W ) = −F−1

W (β). We assume that
the reinsurer is risk-neutral, but bears the costs of holding capital. We further
assume that the amount of capital to withhold is captured by the VaR risk measure,
with the corresponding cost given by CoC · (V aRβ(W )− E[−W ]), where CoC ∈
[0, 1] is the cost of holding capital and β ∈ (0, 1). Then, maximizing the expected
value of future wealth is equivalent to maximizing E[W ] − CoC · (V aRβ(W ) −
E[−W ]), which in turn leads to the following preferences of the reinsurer:

VR(W ) = γE[W ]− (1− γ)V aRβ(W ), (23)

for all W ∈ L∞, where γ := 1 − CoC ∈ [0, 1], and β ∈ (0, 1). The above
representation implies that firms optimize a trade-off between expected return
and risk, where risk is measured by VaR.2 By construction, the price incorporates
an expected value as well. In the literature, this is also called the risk-adjusted

2We emphasize that the preferences are similar to mean-variance preferences of Markowitz
(1952), but with the risk captured by VaR, instead of variance.
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value of the liabilities (for more detailed information, see Chi, 2012; Chi and Weng,
2013; Cheung and Lo, 2015).

The preference relation (23) is a distortion risk measure, which corresponds to
setting the distortion function gR as a weighted average of g(s) = s and g(s) =
1s>β:

gR(s) =

{
γs if s ≤ β,

γs+ (1− γ) if s > β.

The VaR is criticized for being discontinuous in the sense that small changes
in the risk leads to disproportional changes in the VaR. Therefore, it leads to
undesirable outcomes when used for risk sharing. In this paper we focus on non-
decreasing, 1-Lipschitz indemnities f , as defined in (1). We next show that V aRβ

is continuous in f on the domain F under the norm d(X, Y ) = ‖X − Y ‖1 :=
E[|X − Y |].3.

Proposition 4.2 The preference relation VR is continuous in f on the domain F
under the norm d(X, Y ) = ‖X − Y ‖1 := E[|X − Y |], where VR is defined in (23)
with a given β, γ ∈ (0, 1)× [0, 1].

Proof We show that for all ε > 0, there exists a δ > 0, such that for any f1, f2 ∈ F
satisfying E[|f1(X)− f2(X)|] < δ, we have |VR(f1(X))− VR(f2(X))| < ε.

We first show this result for VR = V aRβ, i.e., when γ = 0. If V aRβ(X) = 0,
then the results holds trivially as |V aRβ(f1(X))−V aRβ(f2(X))| = |f1(V aRβ(X))−
f2(V aRβ(X))| = 0. Therefore, we assume that V aRβ(X) > 0. For all ε > 0, we de-
note by Aε := P(F−1

X (β)− ε
2
≤ X ≤ F−1

X (β)+ ε
2
) ≥ FX(F

−1
X (β)+ ε

2
)−FX(F

−1
X (β)−

ε
2
) ≥ FX(F

−1
X (β)) − FX(F

−1
X (β) − ε

2
) ≥ β − FX(F

−1
X (β) − ε

2
) > 0, where we use

the facts that FX(F
−1
X (β)) ≥ β and β > FX(F

−1
X (β) − ε

2
). Let ε > 0, and let

E[|f1(X)−f2(X)|] < δ := ε
2
Aε. Suppose we have |V aRβ(f1(X))−V aRβ(f2(X))| ≥

ε. Then, due to the fact that f1 and f2 are non-decreasing, we get |V aRβ(f1(X))−
V aRβ(f2(X))| := |−F−1

f1(X)(β)−(−F−1
f2(X)(β))| = |f2(F

−1
X (β))−f1(F

−1
X (β))|. From

|f2(F
−1
X (β)) − f1(F

−1
X (β))| ≥ ε and 1-Lipschitz continuity of f1 and f2, we get

|f1
(
F−1
X (β) + z

)
− f2

(
F−1
X (β) + z

)
| ≥ ε

2
for all z ∈ [− ε

2
, ε
2
]. Therefore, we have

E[|f1(X) − f2(X)|] > ε
2
P(F−1

X (β) − ε
2
≤ X ≤ F−1

X (β) + ε
2
) = ε

2
Aε = δ. This is a

contradiction. Hence, we have |V aRβ(f1(X))−V aRβ(f2(X))| < ε. This concludes
the result that V aRβ is continuous for f on the domain F .

It follows from |E[f1(X)] − E[f2(X)]| ≤ E[|f1(X) − f2(X)|] that E[f(X)] is
continuous in f . Hence, it follows directly that VR, defined in (23), is continuous
for f on the domain F .

3Note that continuity under the norm ‖X−Y ‖1 is much stronger than the regularity condition
on continuity by Schmeidler (1986), who requires continuity under the norm d(X,Y ) = ‖X −
Y ‖∞ := sup

ω∈Ω |X(ω)− Y (ω)|
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Next, we show the Pareto optimal reinsurance contracts. It turns out that for
the construction of the optimal indemnity function f , the following function for
inverse-S shaped distortion functions plays a crucial rule:

p(s) =
1− gI(s)

1− s
, for all s ∈ [0, 1). (24)

This function is introduced by Bernard et al. (2015). The following lemma follows
from Xu et al. (2015).

Lemma 4.3 The function p, defined in (24), is continuous. Moreover, there exists

a ∈ (0, b) such that p is strictly decreasing on [0, a] and strictly increasing on [a, 1).

The point a in the above lemma is illustrated in Figure 1. While it is difficult
to provide an economic interpretation of a, we will see shortly that the inflection
point a is useful for differentiating different cases of the indemnity contract. If
γ < 1, there are five cases to consider for the Pareto optimal insurance contracts
given by (19). These five cases are illustrated in Figure 2.
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Figure 2: The solid line is an inverse-S shaped distortion function gI . The five
different cases are indicated via the areas A,B, 1, 2, 3, 4.

Case 4.1 In Figure 2, we have (β, γβ) ∈ A and (β, γβ + 1− γ) ∈ 1, i.e., gI(β) ≥
γβ + 1− γ. Then, there exists c ∈ [β, 1) such that gR(s) < gI(s) for s ∈ (0, c) and
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gR(s) > gI(s) for s ∈ (c, 1). The optimal solution in (19) is given by

f ∗(z) =

{
0 if 0 ≤ z ≤ V aRc(−X),

z − V aRc(−X) if z > V aRc(−X),
(25)

or, equivalently, f ∗(X) = (X − V aRc(−X))+.

Case 4.2 In Figure 2, we have (β, γβ) ∈ A and (β, γβ + 1 − γ) ∈ 2, i.e., γβ <

gI(β) < γβ + 1 − γ, γ > p(a) and β ≥ a. Then, we have gR(s) < gI(s) for
s ∈ (0, β) and gR(s) > gI(s) for s ∈ (β, 1). The optimal solution in (19) is given
by f ∗(X) = (X − V aRβ(−X))+.

Case 4.3 In Figure 2, we have (β, γβ) ∈ A and (β, γβ + 1 − γ) ∈ 3, i.e., γβ <

gI(β) < γβ+1−γ and γ ≤ p(a). The optimal solution coincides with the solution
of Case 4.2.

Case 4.4 In Figure 2, we have (β, γβ) ∈ A and (β, γβ + 1 − γ) ∈ 4, i.e., γβ <

gI(β) < γβ + 1 − γ, γ ≤ p(a) and β ≥ a. Then, there exist two points c ∈ (0, a)
and d ∈ (a, 1) such that gR(s) < gI(s) for s ∈ (0, β), gR(s) > gI(s) for s ∈ (β, c),
gR(s) < gI(s) for s ∈ (c, d) and gR(s) > gI(s) for s ∈ (d, 1). The optimal solution
in (19) is given by

f ∗(z) =





0 if 0 ≤ z ≤ V aRd(−X),

z − V aRd(−X) if V aRd(−X) < z ≤ V aRc(−X),

V aRc(−X)− V aRd(−X) if V aRc(−X) < z ≤ V aRβ(−X),

z − V aRβ(−X) + V aRc(−X)− V aRd(−X) if z > V aRβ(−X),

or, equivalently, f ∗(X) = min{(X − V aRd(−X))+, V aRc(−X) − V aRd(−X)} +
(X − V aRβ(−X))+.

Case 4.5 In Figure 2, we have (β, γβ) ∈ B, i.e., gI(β) ≤ γβ. Then, there exists
e ∈ [β, 1) such that gR(s) < gI(s) for s ∈ (0, e) and gR(s) > gI(s) for s ∈ (e, 1).
The optimal solution in (19) is given by f ∗(X) = (X − V aRe(−X))+.

The case γ = 1 is analogue to Case 4.1, where, without loss of generality, we set
β = 0.

In Figure 3, we graphically illustrate the pricing premium principle of Proposi-
tion 3.4 for Case 4.1. We observe that the pricing distortion function is discontin-
uous and piecewise concave. This function is then used for the optimal stop-loss
reinsurance contract given in (25). If the state space is countable, we get from
(20) that the state price at the quantile β of the VaR is very high due to this
discontinuity.
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Figure 3: We graphically display the premium principle. The preferences of the
insurer are inverse-S shaped (the solid line) and the preferences of the reinsurer are
given in (23), with γ = 0.9 and β = 0.1 (the dotted line). The optimal reinsurance
contract is derived from Case 4.1, and is given by f ∗(X) = (X −V aRc(−X))+ for
c ≈ 0.45 in this figure. The line of crosses is the distortion function that serves as
a premium principle after bargaining with α = 0.5.

5 Conclusion

This paper studies bargaining for optimal reinsurance contracts with comonotonic
additive preferences. In classical economics, one often assume that all profits from
trading in economic markets are borne by one party. This leads to no profits for
the other parties. Very few papers in the literature consider the fact in Over-The-
Counter trades, benefits from sharing risk are shared between the two parties.
Some exceptions are Kihlstrom and Roth (1982), Schlesinger (1984), Aase (2009),
Boonen et al. (2012), Zhou et al. (2015b), and Boonen (2016). All these authors
consider the Nash bargaining solution.

If firms have comonotonic additive preferences and use the Nash bargaining
solution, the profits are shared equally between the two parties. We generalize
this concept by parameterizing the share of the hedge benefits that are assigned
to the insurer. We derive an implicit premium principle, which is analogue to a
comonotonic additive utility function.
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