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Abstract

In the insurance industry, the number of product-specific policies from different
companies has increased significantly. The strong market competition has boosted
the demand for a competitive premium. In actuarial science, scant literature still ex-
ists on how competition actually affects the calculation and the cycles of company’s
premiums. In this paper, we model premium dynamics via differential games, and
study the insurers’ equilibrium premium dynamics in a competitive market. We
apply an optimal control theory methodology to determine the open-loop Nash
equilibrium premium strategies. The market power of each insurance company is
characterized by a price sensitive parameter, and the business volume is affected
by the solvency ratio. We study two models. Considering the average market pre-
miums, the first model studies an exponential relation between premium strategies
and volume of business. The second model initially characterizes the competition
between any selected pair of insurers, and then aggregates all the paired compe-
titions in the market. Numerical examples illustrate the premium dynamics, and
show that premium cycles may exist in equilibrium.
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1 Introduction

1.1 Motivation

This paper constructs two models for determining the premium of general policies in

competitive, non-cooperative, insurance markets. In the corresponding literature, there

is still little research done on how the insurance premium follows from competition, and

responds to changes initiated by competitors (Taylor, 1986; Daykin and Hey, 1990; Emms,

2012; Pantelous and Passalidou, 2015; Wu and Pantelous, 2017). Moreover, despite the

fact that in many lines of insurance the presence of underlying cycles has been observed

empirically, there is a constant endeavour to understand the dynamics of insurance pre-

miums (Cummins and Outreville, 1987; Rantala, 1988; Doherty and Kang, 1988; Daykin

et al., 1994; Winter, 1994; Cummins and Danzon, 1997; Lamm-Tennant and Weiss, 1997;

Taylor, 2008; Malinovskii, 2010).

Furthermore, as it is observed in practice, the competition among insurance companies

is getting stronger. Moreover, the domination of oligopoly markets is reflected often

in the determination of insurance premiums (Friedman, 1982). Thus, a fair, but also

commercially attractive premium is not any more a product of a simple risk assessment

exercise, but a highly challenging decision-making process. Consequently, the demand

of mathematical models is more essential than ever to investigate the interconnectivity

among the competitors in the corresponding markets1 and to understand the formulation

of premium cycles.

1.2 Developments in Competitive Insurance Markets

Over the last three decades, academics have been interested in investigating on how

competition might affect insurance premiums and how insurers respond to changes in the

premium levels that being offered by competitors.

In actuarial science, Taylor (1986) pointed out that competition is a key component

1In this paper, we are interested in local markets. Thus, we should emphasize that competition is
formulated at a local (national) level. Moreover, every insurer is regulated by the same competition and
market’s authority.
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in insurance premium pricing. He embedded the law of demand to analyse the change

of exposure volume through a comparison between the insurer’s and market average pre-

miums. Later, Taylor (1987) noted that the optimum underwriting strategies might be

substantially affected by the expense rates.2 Emms and his co-authors were able to extend

significantly Taylor (1986, 1987)’s ideas developing a series of models in continuous time

by implementing a variety of optimal control theory techniques (Emms and Haberman,

2005; Emms, 2007a,b; Emms et al., 2007; Emms and Haberman, 2009). In this paper,

we defer from these approaches by modelling the competition via the open-loop Nash

equilibrium.

1.3 Game-theoretic approaches for insurance markets

In a control theory framework as presented in Section 1.2, a single insurer’s objective

function is optimized considering the market information as inputs. However, as a key

assumption, a premium strategy does not cause any reaction to the rest of the market’s

competitors.

Instead of focussing on a single insurer, we propose to model the entire insurance

markets’ premium competition by constructing an insurance game. Then, each insurer

is a player in the game, with its premium as a strategy. The entire market’s premium

profile can be obtained by solving the Nash Equilibrium (hereafter referred to as NE) of

the corresponding game.

The use of game theory in actuarial science has a long history. The first attempts

go back to Borch (1962, 1974), Bühlmann (1980, 1984), and Lemaire (1984, 1991), who

applied cooperative games to model insurer and reinsurer risk transfer; see also other

extensions and reviews (Aase, 1993; Brockett and Xia, 1995; Tsanakas and Christofides,

2006). Two models were applied in non-life insurance markets for non-cooperative games:

a) the Bertrand oligopoly in which insurers set premiums and b) the Cournot oligopoly

in which insurers choose the volume of business.3 Boonen (2016) also proposed a way to

2In discrete-time, Taylor’s approach has been revisited recently, and linear as well as non-linear stochas-
tic demand functions were considered (Pantelous and Passalidou, 2013, 2015, 2017).

3For the Bertrand model see (Polborn, 1998; Rees et al., 1999; Dutang et al., 2013), and for the
Cournot model see (Powers et al., 1998; Powers and Shubik, 1998).
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optimally regulate bargaining for risk redistributions. He studied the strategic interaction

between two insurance companies that trade risk over-the-counter in a one-period model.

Emms (2012) considered a model by applying a differential game-theoretic methodol-

ogy for non-cooperative markets. Under his framework, each insurer’s premium depends

on other insurers’ premium strategies, assuming that each market participant chooses an

optimal premium strategy. Insurers’ premium strategies are obtained by calculating the

NE of the game. Recently, Wu and Pantelous (2017) introduced the concept of aggregate

games based on a one-period framework which aggregates market competition by initially

characterizing any selected paired insurers’ payoff. The existence of NE was guaranteed

by proving that the constructed game is a potential game (Monderer and Shapley, 1996;

Jensen, 2010).

1.4 Generalized finite-time differential game models: A new ap-

proach

In this paper, generalized finite-time differential games with a finite number of insurers

are constructed. The formulation allows us to investigate the mechanism for the premium

cycles by solving NE premium profiles. When the market reaches a NE, no insurer can

increase its profit by modifying its strategy given the optimal strategies of the other

insurers.

As in Emms (2012), the optimal control theory methodology is incorporated. Under a

continuous-time framework, the number of new contracts is modelled considering compe-

tition, while the loss of exposure due to policy termination is assumed to be proportional

to the current volume of exposure. In this direction, two competition-related models are

proposed, studied and compared: (1) Model I adopts the exponential demand function

of Taylor (1986, 1987) and Emms (2012) considering the market average premium; while,

(2) Model II is formulated based on the aggregate game developed in Wu and Pantelous

(2017).

The main innovations between the new approach, and respectively Emms (2012) for

Model I, and Wu and Pantelous (2017) for Model II can be summarized as follows. First,
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we analyse the effect of solvency ratio to exposure changes, which is developed further

in Model II. Second, the exposure change is separated between the marginal number of

new and the expired holding policies following Emms and Haberman (2005). Third, the

exponential function proposed by Taylor (1986) in discrete framework is adopted to model

the marginal number of new policies at a selected time point in Model I. Finally, in Model

II, the concept of aggregate games is adopted, and a generalized finite-time differential

game is formulated extending the one-period framework proposed by Wu and Pantelous

(2017).4

Modelling price sensitivity by a single parameter was initially proposed by Taylor

(2008), and it was further explored by Wu and Pantelous (2017). It uses the concept of

price elasticity of demand. In this study, a price sensitivity parameter is formulated as

the market power factor for optimization purposes. The solvency ratio is the capital per

unit of premium, and it is taken into consideration in the competition between each pair

of insurers, as it is observable by the policyholders. In Taylor (2008), it is stated that the

management department will adjust its actuarial premium with respect to the current

solvency ratio. Considering historical data, when the capital amount is relatively high

compared with actuarial premium value, insurance companies prefer to increase their

premium value. The reason is that the insurers are more confident to pay the claims

under this condition. Solvency ratios are observable due to rating agencies. In this

paper, we implement the concept of solvency ratio in the competition, and develop an

insurance game where the solvency ratio is embedded. In particular, we assume that if

the (observable) solvency ratio is high, the number of new contracts sold will be affected

less by other insurers’ premium strategies. Interestingly, premium cycles are observed

in the numerical example of Model II, even without the consideration of any stochastic

variables.5

4In another words, Model I is the natural extension of Taylor (1986, 1987) in continuous time and
under a game theoretical approach. On the other hand, Model II inherits all the good features of Model
I (and also the corresponding to it literature) in continuous time, and uses the concept of aggregation
games which was developed in Wu and Pantelous (2017).

5As it will be clear in the numerical example, Model II appears to capture well the presence of
underlying cycles, which was not the case in Emms (2012). According to the authors’ knowledge, this is
the first time that the underlying cycles of the premium are captured by a mathematical model which
considers competition in the market.
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This paper is organized as follows. Section 2 introduces the construction of the two in-

surance market competition models. In Section 3, the optimization problem is formulated

for the two models, and the Hamiltonians are presented. Section 4 presents numerical

examples of those two models. Section 5 concludes.

2 Model Construction

2.1 Basic Notation

In this part of section, the necessary notation and parameters involved in this paper are

introduced in Table 1. Next, the definition of the key parameters is provided for a better

understanding of the remaining paper:

[Insert Table 1 somewhere here]

2.2 Baseline model

Let N = {1, . . . , n} be the finite set of insurers in the insurance market, and T a given

future time. At every point in time t ∈ [0, T ], every insurer i ∈ N makes a decision to set

the premium pi(t) per unit of exposure. The decisions of all insurers in the market lead to

the state variable θi(t) = (ki(t), qi(t)), where ki(t) > 0 is the capital per unit of exposure of

insurer i, and qi(t) > 0 is the volume of exposure of insurer i, which represents the number

of policies. Denote Pi(t) = {pi(t′) : t′ ∈ [0, t]} and Θi(t) = {θi(t′) : t′ ∈ [0, t]}. Moreover,

we write M−i(t) = {Mj(t) : j ∈ N\{i}} for any N-valued function M , k̇i(t) = d
dt
ki(t) and

q̇i(t) = d
dt
qi(t).

In line with Emms and Haberman (2005), we assume that there is a fixed length τ > 0

of insurance policies, and all new policyholders are required to pay the current premium

rate pi(t). We illustrate in Figure 1 how the underwriting of policies affects the exposure

volume qi(t) of the insurer. The dashed line displays the volume of exposure (policies) at

time t, which is q(t). Jumps up are due to newly sold policies, and jumps down are due

to policy terminations. Moreover, for every t, the top solid line displays the aggregate

number of policies that is accrued since time 0.
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[Insert Figure 1 somewhere here]

The change in exposure at any time t can be split up into the exposure generated by

selling new contracts and the exposure lost due to policy termination. Next, we identify

the details of those two effects. To obtain a Markov model and use conventional control

theory, we follow Emms and Haberman (2005) by assuming that the loss due to policy

termination is given by 1
τ
qi(t) for any insurer i. This implies that the policies expire at a

rate that is proportional to the number of policies in the portfolios of insurer i. In other

words, if insurer i has qi(t) policies that each have a duration of length τ , then the policies

terminate according to a uniform distribution, yielding a rate of policy termination that

is given by 1
τ
qi(t). Then, the state equation of exposure for insurer i is given by

q̇i(t) = mi(t)qi(t)−
1

τ
qi(t), (2.1)

where mi(t) is the marginal number of new policies sold at time t per unit of exposure.

Typically, the value of mi(t) depends on the premiums in the market (pi(t), p−i(t)) and

the state variable ki(t).

Define Ii(t, t+∆t) as the premium income of insurer i in period [t, t+∆t) and Ci(t, t+

∆t) as the cost of holding capital. Here, we assume that the premiums are paid at

the beginning of each contract and all insurance policies have a fixed length τ , and so

Ii(t, t+ ∆t) is the premium income of the new contracts generated. We get from a Taylor

series approximation that:

Ii(t, t+ ∆t) = pi(t)mi(t) qi(t) ∆t+O(∆t2),

where f(∆t) = O(∆t2) is such that lim sup∆t→0 |
f(∆t)
∆t2
| <∞.

Define β ∈ (0, 1) as the depreciation of capital. The cost of holding capital Ci(t, t+∆t)

during the period [t, t+ ∆t) is given by

Ci(t, t+ ∆t) = β Ki(t) ∆t+O(∆t2).
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Moreover, define πi > 0 as the break-even premium of insurer i, that is the deterministic

insurance claim that needs to be paid per unit of exposure (Taylor, 1986; Emms and

Haberman, 2005; Emms, 2012; Wu and Pantelous, 2017). So, the insurer needs to pay

πi qi(t) ∆t + O(∆t2) for insurance claims during the period [t, t + ∆t). The total capital

for insurer i at time t+ ∆t is given by

Ki(t+ ∆t) = Ki(t) + Ii(t, t+ ∆t)− Ci(t, t+ ∆t)− πi qi(t) ∆t+O(∆t2)

= Ki(t) +
(
pi(t)mi(t)− πi − β ki(t)

)
qi(t)∆t+O(∆t2).

The volume of the insurer’s exposure is also modified considering the entry of new

business and the expiration of existing policies. The difference of capital per unit of

exposure in period [t, t+ ∆t) equals to

∆ki(t) = ki(t+ ∆t)− ki(t)

=
Ki(t+ ∆t)

qi(t+ ∆t)
− ki(t)

=
Ki(t+ ∆t)

qi(t) + q̇i(t)∆t
− ki(t) +O(∆t2)

=
ki(t) +

(
pi(t)mi(t)− πi − β ki(t)

)
∆t

1 +
(
mi(t)− 1

τ

)
∆t

− ki(t) +O(∆t2)

=

(
pi(t)mi(t)− πi − ki(t)

(
β +mi(t)−

1

τ

))
∆t+O(∆t2),

by using a Taylor series approximation. Therefore, the state equation of capital per

exposure for insurer i is given by

k̇i(t) = pi(t)mi(t)− πi − ki(t)
(
β +mi(t)−

1

τ

)
. (2.2)

For a given time period [0, T ], we assume that every insurer i ∈ N aims to maximize

the net present value of its profit. This objective is in line with Emms (2012), and the

objective function for insurer i ∈ N is given by

ui(Pi(T ); Θi(T )) =

∫ T

0

e−ζtFi(pi(t); θi(t))dt. (2.3)

8



Here, ζ is the discount factor, and

Fi(pi(t); θi(t)) = (pi(t)mi(t)− πi − βki(t))qi(t). (2.4)

A set of control functions t 7→ (p∗1(t), p∗2(t), . . . , p∗n(t)) is a NE for the game within the

class of open-loop strategies if the following holds. For any insurer i, the control p∗i (·)

provides a solution to the optimal control problem:

maximize ui(Pi(T ); Θi(T )), (2.5)

over the set of controllers, Pi(T ), where the set of controllers of other insurers, P−i(T ),

is feasible, and the system has dynamics: {p1(0), . . . , pn(0)} and {θ1(0), . . . , θn(0)} given,

and (2.1) and (2.2) hold:

k̇i(t) = pi(t)mi(t)− πi − ki(t)
(
β +mi(t)−

1

τ

)
,

q̇i(t) = mi(t)qi(t)−
1

τ
qi(t),

for all i ∈ N.

The rate of selling policies mi is affected by market competition, and not yet spec-

ified. To model mi explicitly, we propose two models in Sections 3.1 and 3.2 that are

denoted by Model I and Model II, respectively. Inspired by Taylor (1986, 1987) and

Emms (2012), Model I investigates exponential relations between exposure volume and

premium competition. On the other hand, Model II characterizes exposure volume re-

garding the aggregation of competition among all the pairs of insurers. The price elasticity

function concept is adopted to investigate the exposure volume change in Model II, as an

extension of Wu and Pantelous (2017) to a dynamic setting.

2.3 Model I Formulation

Model I adopts the exponential demand function proposed in Taylor (1986, 1987) and

Emms (2012) for modelling the competition between any pair of insurers. Let us define
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the function ρi of insurer i at time t by

ρi(t) = −(pi(t)− p̄−i(t)),

where p̄−i(t) is the average premium of all the other insurers in insurance market except

i. When ρi(t) is positive, insurer i’s premium pi(t) is less than p̄−i(t); then we assume

that insurer i gains exposure in the insurance market. Policies flow in a reverse manner

when ρi is negative. We model the rate of selling new policies mi(t) for insurer i at time

t as

mi(t) =
1

τ
ri e

bi ρi(t)−
pi(t)

ki(t) , (2.6)

where bi > 0 is the price sensitivity parameter of insurer i ∈ N, and ri > 0 is a benchmark

solvency ratio for insurer i.

In line with the exponential demand function in Taylor (1986, 1987), we initially model

mi(t) as 1
τ
ebiρi(t). When pi(t) < p̄−i(t), then 1

τ
ebiρi(t) is larger than 1

τ
. We further augment

this effect with an influence of the solvency ratio on competition, which is a new concept

in our paper. The solvency ratio is defined as ki(t)
pi(t)

. Since Taylor (2008) assumed that

the management department adjusts the actuarial premium by comparing the insurer’s

current solvency ratio and a benchmark solvency ratio, we augment m with the factor

rie
− pi(t)

ki(t) .6 When the solvency ratio ki(t)
pi(t)

increases, the rate of selling new policies mi(t)

increases, which describes the effect that insurers with larger solvency ratios can obtain

more policies.

2.4 Model II Formulation

As proposed by Wu and Pantelous (2017), Model II initially specifies the flow of policies

between any pair of insurers. The entire insurance market competition can be evaluated

by aggregating among the different pairs of insurers. For any insurer j, let us define the

6An augmentation with rie
ki(t)

pi(t) would lead to an ill-posed problem, and it is therefore avoided.
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transfer function ρj→i(t) from insurer j to insurer i at time t as follows

ρj→i(t) = 1− pi(t)

pj(t)
.

At time t, when insurer i’s premium is less than insurer j’s premium, insurer j’s

policies tend to flow to insurer i. Policies flow in a reverse direction when pi(t) > pj(t).

We assume that the exposure flow from insurer j to insurer i is given by

qj→i(t) = ai ρj→i(t)
e

pi(t)

ki(t)

ri
qi(t), (2.7)

where ai > 0 is the price sensitivity parameter of insurer i, and ri > 0 is a benchmark

solvency ratio for insurer i. Typically, we have qj→i(t) 6= −qi→j(t). The exposure changes

over time follow from the competition in the entire market. It is obtained by summing up

all the bilateral policies’ gains or losses. The aggregate exposure gain or loss for insurer i

is then given by

q̇i(t) =
∑

j∈N,j 6=i

qj→i(t). (2.8)

We allow
∑

i∈N q̇i(t) to be not equal to zero, since potential customers may enter (leave)

the insurance market when the premiums are low (high).

Substituting (2.7) and (2.8) in (2.1) yields that the rate of selling new policies for

insurer i at time t in Model II is given by

mi(t) =
1

τ
+ ai

1

ri
e

pi(t)

ki(t)

∑
j∈N,j 6=i

(
1− pi(t)

pj(t)

)
. (2.9)

3 Theoretical Results

As it was discussed in Section 2, the NE premium strategy for the ith insurer follows from

a maximization problem over the set of feasible premium strategies given the feasible

premium strategies of the other insurers (Dockner et al., 2000). Thus, in this section, the

corresponding Hamiltonians and related results for Models I and II are presented.
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3.1 Optimisation Problem for Model I

From (2.4)-(2.6), we derive that the marginal profit for insurer i is given by

Fi(pi(t); θi(t)) =

(
pi(t)

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − πi − β ki(t)
)
qi(t). (3.1)

We obtain the following dynamics for the state variables of insurer i:

k̇i(t) = pi(t)
1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − πi

−ki(t)
(
β +

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − 1

τ

)
, (3.2)

and

q̇i(t) =

(
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − 1

)
1

τ
qi(t). (3.3)

With the objective function and state equations, the Hamiltonian for the ith insurer is

given by7

Hi = e−ζt
(
pi(t)

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − πi − β ki(t)
)
qi(t)

+
∑
j∈N

µij(t)

[
pj(t)

1

τ
rj e

bj (p̄−j(t)−pj(t))−
pj(t)

kj(t) − πj

−kj(t)

(
β +

1

τ
rj e

bj (p̄−j(t)−pj(t))−
pj(t)

kj(t) − 1

τ

)]

+
∑
j∈N

λij(t)

(
rj e

bj (p̄−j(t)−pj(t))−
pj(t)

kj(t) − 1

)
1

τ
qj(t). (3.4)

For any i, j ∈ N, the adjoint equations are given by

dλij(t)

dt
= − ∂Hi

∂qj(t)
, λij(T ) = 0, (3.5)

dµij(t)

dt
= − ∂Hi

∂kj(t)
, µij(T ) = 0. (3.6)

The next lemma provides the solution of (3.5) and (3.6) for j 6= i.

7With slight abuse of notation, we do not explicitly write that the Hamiltonian depends on
(pi(t), p−i(t), θi(t)).
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Lemma 1. For any t ∈ [0, T ] and i, j ∈ N such that j 6= i, it holds that λij(t) = 0 and

µij(t) = 0.

Proof. For j 6= i, it holds that

dλij(t)

dt
= −λij(t)

(
rj e

bj (p̄−j(t)−pj(t))−
pj(t)

kj(t) − 1

)
1

τ
. (3.7)

Let A =

(
rj e

bj (p̄−j(t)−pj(t))−
pj(t)

kj(t) − 1

)
1
τ
. When A 6= 0, we have

∣∣∣∣∣ dλij(t)Aλij(t)

∣∣∣∣∣ = dt⇔
∫ ∣∣∣∣∣ dλij(t)Aλij(t)

∣∣∣∣∣ =

∫
dt⇔ ln

∣∣λij(t)∣∣ = |At|+ c

and, hence, we get
∣∣λij(t)∣∣ = e|A·t|+c. With λij(T ) = 0, it is a contradiction.

When A = 0, we have λij(t) = 0 by construction. Hence λij(t) = 0, when j 6= i.

We can prove that µij(t) = 0 for all j 6= i in a similar way.

Using Lemma 1, the Hamiltonian in (3.4) simplifies to

Hi = e−ζt
(
pi(t)

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − πi − β ki(t)
)
qi(t)

+µii(t)

[
pi(t)

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − πi

−ki(t)
(
β +

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − 1

τ

)]

+λii(t)

(
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − 1

)
1

τ
qi(t). (3.8)

From the adjoint equations, we have

dλii(t)

dt
= − ∂Hi

∂qi(t)

= −e−ζt
(
pi(t)

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − πi − β ki(t)
)

−λii(t)
(
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − 1

)
1

τ
, (3.9)
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and

dµii(t)

dt
= − ∂Hi

∂ki(t)

= −e−ζt qi(t)

(
pi(t)

2

ki(t)
2

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) − β

)

−µii(t)

[
− β − 1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) +
1

τ

+
(
pi(t)− ki(t)

) pi(t)

ki(t)
2

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t)

]

−λii(t)
pi(t)

ki(t)
2

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) qi(t). (3.10)

The first-order conditions of the Hamiltonian, defined in (3.8), are given by

∂Hi

∂pi(t)
= e−ζt qi(t)

(
pi(t)

(
−bi −

1

ki(t)

)
+ 1

)
1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t)

+µii(t)

[ (
pi(t)− ki(t)

) (
−bi −

1

ki(t)

)
1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t)

+
1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t)

]

+λii(t) qi(t)

(
−bi −

1

ki(t)

)
1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) . (3.11)

which must equal zero for all t ∈ [0, T ] and i ∈ N. The second-order conditions of the

Hamiltonians are given by

∂2Hi

∂pi(t)
2 = e−ζt qi(t)

(
2

(
−bi −

1

ki(t)

)
+

(
bi +

1

ki(t)

)2
)

1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t)

+µii(t)

[
2

(
−bi −

1

ki(t)

)
1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t)

+
(
pi(t)− ki(t)

) (
bi +

1

ki(t)

)2
1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t)

]

+λii(t) qi(t)

(
bi +

1

ki(t)

)2
1

τ
ri e

bi (p̄−i(t)−pi(t))− pi(t)

ki(t) . (3.12)

It is well-known in optimal control theory that the solution of the first-order conditions
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is a NE when the second-order conditions of Hamiltonians in (3.12) are non-positive for

all t ∈ [0, T ] and i ∈ N (Friesz, 2010).

3.2 Optimisation Problem for Model II

For Model II, the marginal profit for insurer i is given by

Fi(pi(t); θi(t)) =

pi(t)
1

τ
+

∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

− πi − β ki(t)
 qi(t).

(3.13)

Similarly to (3.2)-(3.3), we derive the following state equations

k̇i(t) = pi(t)

1

τ
+

∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri


−πi − ki(t)

β +
∑

j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

 , (3.14)

q̇i(t) =
∑

j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri
qi(t). (3.15)

With the objective function and state equations, the Hamiltonian for insurer i is given by

Hi = e−ζt

pi(t)
1

τ
+

∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

− πi − β ki(t)
 qi(t)

+
∑
j∈N

µij(t)

[
pj(t)

1

τ
+

∑
`∈N,`6=j

aj

(
1− pj(t)

p`(t)

)
e

pj(t)

kj(t)

rj


−πj − kj(t)

β +
∑

`∈N,` 6=j

aj

(
1− pj(t)

p`(t)

)
e

pj(t)

kj(t)

rj

]

+
∑
j∈N

λij

 ∑
`∈N,` 6=j

aj

(
1− pj(t)

p`(t)

)
e

pj(t)

kj(t)

rj
qj(t)

 . (3.16)
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For any i, j ∈ N, the adjoint equations are given by

dλij(t)

dt
= − ∂Hi

∂qj(t)
, λij(T ) = 0, (3.17)

dµij(t)

dt
= − ∂Hi

∂kj(t)
, µij(T ) = 0. (3.18)

The next lemma provides the solution of (3.17) and (3.18) for j 6= i.

Lemma 2. For any t ∈ [0, T ] and i, j ∈ N such that j 6= i, it holds that λij(t) = 0 and

µij(t) = 0.

Proof. The proof is similar to the proof of Lemma 1, and so it is omitted.

Due to Lemma 2, the Hamiltonian in (3.16) simplifies to

Hi = e−ζt

pi(t)
1

τ
+

∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

− πi − β ki(t)
 qi(t)

+ µii(t)

[
pi(t)

τ−1 1

τ
+

∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri


−πi − ki(t)

β +
∑

j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

]

+ λii

 ∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri
qi(t)

 . (3.19)
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From the adjoint equations, we get

dµii(t)

dt
= − ∂Hi

∂ki(t)

= −e−ζt qi(t),

[
pi(t)

 ∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

(
−(ki(t))

2 pi(t)
)

−
∑

j∈N,j 6=i

ai
e

pi(t)

ki(t)

ri

− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

)]

−µii(t)

[ (
pi(t)− ki(t)

)  ∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

(
−(ki(t))

2 pi(t)
)− β

−
∑

j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

]

−λii qi(t)

 ∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

(
−(ki(t))

2 pi(t)
) , (3.20)

and

dλii(t)

dt
= − ∂Hi

∂qi(t)

= −e−ζt

pi(t)
1

τ
+

∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

− πi − β ki(t)


−λii

 ∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

 . (3.21)
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The first-order conditions of the Hamiltonian in (3.19) are given by

∂Hi

∂pi(t)
= e−ζt qi(t)

[
1

τ
+

 ∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri


+pi(t)

 ∑
j∈N,j 6=i

ai
e

pi(t)

ki(t)

ri

− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

)
]

+µii(t)

[
1

τ
+

 ∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri


−
(
pi(t)− ki(t)

)  ∑
j∈N,j 6=i

ai
e

pi(t)

ki(t)

ri

− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

)
]

+λii(t) qi(t)

 ∑
j∈N,j 6=i

ai
e

pi(t)

ki(t)

ri

− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

)
 , (3.22)

which must equal zero for all t ∈ [0, T ] and i ∈ N.

The first-order conditions of the Hamiltonians yield a NE if the second order conditions

are satisfied. The second-order conditions of the Hamiltonians in (3.19) are given by

∂2Hi

∂ri(t)
2 = e−ζt qi(t)

[
2

 ∑
j∈N,j 6=i

ai
e

pi(t)

ki(t)

ri

− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

)


+pi(t)

 ∑
j∈N,j 6=i

ai
e

pi(t)

ki(t)

ri

(
−2ki(t) + pj(t)− pi(t)

ki(t)
2 pj(t)

)]

+µii(t)

[
2

 ∑
j∈N,j 6=i

ai
e

pi(t)

ki(t)

ri

− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

)


+
(
pi(t)− ki(t)

)  ∑
j∈N,j 6=i

ai
e

pi(t)

ki(t)

ri

(
−2ki(t) + pj(t)− pi(t)

ki(t)
2 pj(t)

)]

+λii(t) qi(t)

 ∑
j∈N,j 6=i

ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

(
−(ki(t))

2 pi(t)
) , (3.23)

which must be non-positive for all t ∈ [0, T ] and i ∈ N.
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4 Numerical Application

In this section, a numerical application for both models is formulated in a competitive

insurance market environment. In the Appendix, the relevant steps using the Matlab

programming language for Model I (Section 4.1) and Model II (Section 4.2) are presented

in details. For simplicity and better understanding of the numerous parameters involved,

an insurance market with two competitors is considered.

4.1 Model I

A two insurers’ game is constructed with Insurer 1 and Insurer 2. In Section 3.1, we

obtained ten variables (p1, p2, k1, k2, q1, q2, µ11, µ22, λ11, and λ22), two first-order

conditions of the Hamiltonian, and eight ODEs (k̇1, k̇2, q̇1, q̇2, µ̇11, µ̇22, λ̇11, and λ̇22).

When (3.11) equals zero, the two players’ equilibrium premiums are not correlated.

That is, the premium of is decoupled. This implies that marginal premium ṗ1 for Insurer

1 can be obtained by differentiating the corresponding solution of p1 from (3.11) with

respect to time t, where we do not need to consider the correlation with the price changes

of Insurer 2.8 Likewise, we obtain ṗ2. Under this framework, we have ten variables which

correspond to ten ODEs, accordingly. Considering the initial and terminal conditions, a

Bounded Value Problem (hereafter referred to as BVP) is formulated, which can be solved

numerically. In the following subsection, we describe the numerical steps to calculate of

the NE premium strategies.

4.1.1 Algorithm of Calculating Equilibrium Premium Strategy for Model I

In this section, the main steps of the algorithm are presented, whereas the Appendix

provides the details of the algorithm.

Step 1: Calculate p1, when the first-order conditions of the Hamiltonian for Insurer 1 in

(3.11) are satisfied.

Step 2: Differentiate p1 obtained in Step 1 with respect to time t to calculate ṗ1.

8See Section 4.1.1 and Appendix for more details.
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Step 3: Repeat steps 1 and 2 with respect to Insurer 2 to calculate ṗ2.

Step 4: We have ten variables, p1, p2, k1, k2, q1, q2, µ11, µ22, λ11, and λ22 and the corresponding

ODEs. This is a BVP with six conditions from the initial information of both

insurers and four terminal conditions from (3.5) and (3.6), which we solve using the

”bvp45” function in Matlab.

Step 5: Test whether the second-order conditions of Hamiltonians for both insurers in (3.12)

are non-positive during the time interval [0, T ].9

4.1.2 Numerical Example of Model I

Here, we illustrate an insurance game considering a period of three years. We investigate

the competition among two candidates: one player represents a relatively small insurer

(Insurer 1), while the other one is regarded as a large insurer with substantial market

power (Insurer 2).

Table 2 shows the parameter values of our insurance game, and Table 3 the initial

information, including the initial premium, volume of exposure and capital per exposure

regarding both insurers. The insurance company with a greater market power (Insurer 2)

has a larger price sensitivity parameter b.

[Insert Table 2 somewhere here]

[Insert Table 3 somewhere here]

With the algorithm introduced in Section 4.1.1, a premium profile of both insurers is

calculated, which is presented in Figure 2, with non-positive second-order Hamiltonian

profiles occurred for both insurers. Since the second-order conditions of the Hamiltonians

are satisfied, the premium profiles that follow from the first-order conditions constitutes a

NE. Figures 3 and 4 describe the exposure volume and capital per exposure, respectively.

[Insert Figure 2 somewhere here]

9The strategy profiles with positive second-order conditions will be neglected.
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[Insert Figure 3 somewhere here]

[Insert Figure 4 somewhere here]

Although there is a slight decrease in the value of premium, the larger market power

of Insurer 2 yields that the equilibrium premium of Insurer 2 is kept at a relatively high

level over the whole time horizon. Insurer 1 adopts a relatively low premium level with

the purpose of absorbing more policies. Insurer 2 slightly lower its capital per exposure

through the competition while insurer’s capital per exposure inappreciably increased. No

cycles appear in the equilibrium premiums of Model I. The equilibrium strategies of the

two insurers keep stable over the 3-years period. Different sets of parameters are tested

for Model I, and none of the parameters yield any cycles.

4.2 Model II

Similarly to Section 4.1, we consider a game with Insurer 1 and Insurer 2. In Section 3.2,

we obtained ten variables (p1, p2, k1, k2, q1, q2, µ11, µ22, λ11, and λ22), two first-order

conditions of the Hamiltonian for the two insurers, and eight ODEs (k̇1, k̇2, q̇1, q̇2, µ̇11,

µ̇22, λ̇11, and λ̇22).

We can eliminate two variables p2 and λ22
10, and substitute λ̇22 to the differential

equation of p1. Under these circumstances, we take eight variables which correspond to

eight ODEs, accordingly. The backward integration considers the standard Mean Value

Theorem, which is adopted in this section in order to solve the BVP.

4.2.1 Algorithm of Calculating Equilibrium Premium Strategy for Model II

In this section, the main steps of the algorithm are presented, whereas the Appendix

provides the details of the algorithm.

Step 1: Calculate p2 when the first-order condition of the Hamiltonian in (3.22) for Insurer

1 is satisfied.

10See Step 1 in the algorithm presented in Section 4.2.1 and Appendix. We get an expression for p2,
which will be substituted from the solution of Insurer 1’s first order condition of Hamiltonian in (3.22).
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Step 2: Get an expression of λ22 from the first-order condition of insurer 2’s Hamiltonian,

with p2 replaced by the solution of Insurer 1’s first order condition of Hamiltonian

(3.22) calculated in Step 1.

Step 3: Differentiate the expression of λ22 with respect to time t. Generate an ODE for p1.

Step 4: Apply a backward iteration of the system with the first-order conditions of Hamil-

tonian for insurer 1 and 2. Terminal values of ten variables are required to be used

as inputs. From (3.17) and (3.18), it follows that µ11(T ) = µ22(T ) = λ11(T ) =

λ22(T ) = 0. For the other 6 variables, p1(T ), p2(T ), k1(T ), k2(T ), q1(T ), q2(T ) need

to satisfy (3.22) in order to be used as inputs.

Since µ11(T ) = µ22(T ) = λ11(T ) = λ22(T ) = 0, (3.22) does not depend on q1(T ) and

q2(T ) at time T . We use the Matlab solver ’fsolve’ to provide p1(T ), p2(T ) when

k1(T ), k2(T ) are fixed, via (3.22).

Then, we guess q1(T ) and q2(T ). Terminal values of the 10 variables are used as

inputs in the backward iteration.

Step 5: Stop until the initial values of p1, p2, k1, k2, q1, and q2 from backward iteration

equals to the initial data value. Otherwise, we adjust the guess of k1(T ), k2(T ),

q1(T ), and q2(T ).11

Step 6: From the previous step, we collect the terminal values that yield the correct initial

values. We check whether the second-order conditions of the Hamiltonians of both

insurers are non-positive during the time interval [0, T ].12

Remark 1. A NE of a game with more insurers can also be obtained applying similar

algorithms to those in Sections 4.1.1 and 4.2.1. However, as it is expected that more loops

are required and the corresponding computational cost will increase in order to calculate

the NE premium strategy.

11The Algorithmic Steps for Model II in the Appendix shows the guess only of k1(T ).
12Similarly to the algorithm for Model I, we will neglect the strategy profiles with positive second-order

conditions.
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4.2.2 Numerical Example of Model II

We introduce in this section a 3-year insurance game. Similarly to Model I, we study nu-

merically the competition among a large insurer with market power and a relatively small

insurer. The insurance company with greater market power has a lower price sensitivity

parameter a. As it was the case in Wu and Pantelous (2017), the Lerner index is consid-

ered for a. The Lerner index is a market power measurement which describes the inverse

correlation between market performance and profit margin for monopolist environments

(Lerner, 1934).

Table 4 states the chosen parameter values. Table 5 illustrates the initial information

of the two insurers.

[Insert Table 4 somewhere here]

[Insert Table 5 somewhere here]

With the algorithm introduced in Section 4.2.1, a NE premium profile for the two

insurers is calculated, which is shown in Figure 5. Similarly as for Model I, verification

that it is a NE follows from the fact that the second-order Hamiltonians are non-positive

for both insurers. Figures 6 and 7 describe the exposure volume and capital per exposure,

accordingly. Premium cycles are observed in the whole time period. Figure 5 supports

the empirical evidence in the insurance literature (Cummins and Outreville, 1987; Do-

herty and Kang, 1988; Winter, 1994; Cummins and Danzon, 1997; Lamm-Tennant and

Weiss, 1997) that premium cycles in insurance markets are caused by market competi-

tion. Although the premiums between the two insurers are not proportional, the shape

of premium cycle profiles is similar. Figure 5 suggests that Insurer 1 follows Insurer 2’s

premium strategy. The premium of Insurer 1 even falls below the break-even premium

level from the 3rd month to the 6th month in order to remain competitive and attract

more policies. The two insurers’ total capital, displayed in Figure 8, remains stable for

the first two years. Due to the increment of premium, both insurers gain massive capital

in the third year, which is particularly true for Insurer 1.

[Insert Figure 5 somewhere here]
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[Insert Figure 6 somewhere here]

[Insert Figure 7 somewhere here]

[Insert Figure 8 somewhere here]

Different sets of parameters are tested for Model II, and premium cycles appear to be

related to the profit margins. When the break-even premium is relatively low compared to

the premium, insurers intend to compete with their rivals, and more cycles appear. Figure

9 shows the equilibrium premium profiles where the break-even premiums are increased

to π1 = 0.8 and π2 = 0.85, while the other parameters remain the same as they appear

in Tables 4 and 5. In Figure 9, we find premium cycles, but with longer periods; while

both insurers’ equilibrium premium slightly increased smoothly over the time horizon.

For instance, Figure 10 shows the NE premium profiles where the break-even premiums

are given by π1 = 1.2 and π2 = 1.1.

[Insert Figure 9 somewhere here]

[Insert Figure 10 somewhere here]

5 Conclusion

This paper studies two finite-time differential games in an insurance market. It provides

how competition impacts the premium process of non-life insurance products. An optimal

control theory approach is applied to determine premiums in the open-loop Nash Equi-

librium. The first model (Model I) adopts the exponential demand function proposed

by Taylor (1986, 1987) and Emms (2012), and the second model (Model II) is formu-

lated based on the aggregate exposure proposed by Wu and Pantelous (2017). Numerical

examples illustrate the premium dynamics, and show that premium cycles do exist in

equilibrium for the Model II.

As a future research, we are interested in applying stochastic models to dynamic games.

Another possible extension would be to study feedback Nash equilibria for dynamic games.
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APPENDIX

Algorithmic Steps using Matlab Programming for Model

I

The steps 1, 2 and 4 are presenting using Matlab:

Matlab - Step 1:

% Type in (3.11) with respect to Insurer 1, denoted as firstorderH1.

1: x1=solve(firstorderH1 ==0, p1).

Matlab - Step 2:

% Create symbolic variables with respect to t;

1: odex1=diff(x1(t), t).

% odex1 includes diff (k1(t), t), diff (q1(t), t), diff (λ11(t), t), diff (µ11(t), t) .
% Replace the differential equations in odex1 with their expressions,
see (3.2), (3.3), (3.9), and (3.10). ṗ1 is obtained.

Matlab - Step 4:

1: init=bvpinit(linspace(0,3,1000),@bc init);
2: sol=bvp4c(@rhs bvp,@bc bvp,init);
3: t=linspace(0,3,1000);
4: BS=deval(sol,t);
5: plot(t,BS(1,:));

6: function rhs=rhs bvp(t,y);

7: rhs=[ ṗ1; ṗ2;k̇1;k̇2;q̇1;q̇2;µ̇11;µ̇22;λ̇11;λ̇22] ;

8: function bc=bc bvp(yl, yr);
9: bc=[yl(1)-0.88; yl(2)-1.05; yl(3)-0.6; yl(4)-1; yr(5)-5225; yr(6)-13700;
yr(7); yr(8); yr(9); yr(10)];
10: end.

% @bc init is the initial guess of this BVP.13

13See matlab code ’solinit ’ for more details.

30



Algorithmic Steps using Matlab Programming for Model

II

The steps 1 to 5 are presenting using Matlab:

Matlab - Step 1:

% Type in (3.22) with respect to Insurer 1, denoted as FirstorderH1.

1: x2=solve(FirstorderH1 ==0, p2).

Matlab - Step 2:

% Type in (3.22) for Insurer 2, denoted as FirstorderH2 .

1: FirstorderH2 fh=matlabFunction(FirstorderH2 ) ;
2: FirstorderH2 new=FirstorderH2 fh(a2,r2,τ−1,ζ,t,p1,x2,k2,q2,µ22,λ22) ;
3: x10=solve(FirstorderH2 new==0,λ22).

Matlab - Step 3:

% Create symbolic variables with respect to t;

1: dx10=diff(x10(t), t);

% dx10 includes diff (p1(t), t), diff (k1(t), t), diff (k2(t), t), diff (q1(t), t), diff
(q2(t), t), diff (µ11(t), t) , diff (µ22(t), t), diff (λ11(t), t). (3.15), (3.16),

(3.20), and (3.21) provide all the above differential equations, except
diff (p1(t), t).
% Replace diff (k1(t), t), diff (k2(t), t), diff (q1(t), t), diff (q2(t), t),
diff (µ11(t), t) , diff (µ22(t), t), diff (λ11(t), t) with the corresponding
differential equations in dx10, which is denoted as x 10. x 10 includes
ten variables p1, p2, k1, k2, q1, q2, µ11, µ22, λ11, and λ22 and diff (p1(t), t) ;

2: x 10 - diff (λ22(t), t) == 0

% x 10 is the derivative of λ22(t) with respect to t which satisfies both two
insurers’ first-order conditions of Hamiltonians. Regarding diff (λ22(t), t)
from (3.21), an equation of diff (p1(t), t) is obtained through the above equation.
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Matlab - Step 4:

1: x0=[0.000001 0.000001];
2: p=fsolve(@premium,x0);
3: function F = premium(u);

% Replace p1 as u(1), p2 as u(2) in ∂H1

∂p1
and ∂H2

∂p2
.

4: F = [ ∂H1

∂p1
; ∂H2

∂p2
] ;

5: end.

% Given by the terminal values kT1 , kT2 , qT1 , qT2 , the terminal value of p1

and p2 are calculated by solving F with variable vector u regarding
µT11 = µT22 = λT11 = λT22 = 0 ,

6: for i=N:-1:1;
7: t = (i-1) * T/(N-1) ;

% 8 ODE systems with 8 variables:

8: k1(i− 1) = −dt ∗ diff (k1(t), t) + k1(i);
k2(i− 1) = −dt ∗ diff (k2(t), t) + k2(i);
q1(i− 1) = −dt ∗ diff (q1(t), t) + q1(i);
q2(i− 1) = −dt ∗ diff (q2(t), t) + q2(i);
µ11(i− 1) = −dt ∗ diff (µ11(t), t) + µ11(i);
µ22(i− 1) = −dt ∗ diff (µ22(t), t) + µ22(i);
λ11(i− 1) = −dt ∗ diff (λ11(t), t) + λ11(i);
syms v

% Replace diff (p1(t), t) with an approximation of the first derivative
p1(i)−v
dt

. p1(i− 1) = vpasolve(x 10− diff (λ22(t), t) == 0, v);
% Replace p2, λ22 with x2, x10 correspondingly in all the above

equations.

9: end.
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Matlab - Step 5:

1: kT1 =linspace(1.6,2,9) ;
2: x0=[0.000001 0.000001];
3: Y=zeros(length(kT1 ),2);
4: for z=1:length(kT1 ) ;
5: fun= @(x)premium(x,kT1 (z)) ;
6: Y(z,:)=fsolve(fun,x0);
7: end.

8: for z=1:length(k1);
9: p1(N, z) = Y (:, 1); ...

% ”...” symbolises the assignment of terminal values, like k1(N, z) = kT1 (z),
k2(N, z) = 3, q1(N, z) = 5000. Unnecessary repetitions are omitted. See also Tables.

10: for i=N:-1:1;
11: W = [0,1];

...

% ”...” means that we have to use here the 8 ODE systems with 8 variables
mentioned in Step 4,

12: if (p1(1, z) > 0.885) && (p1(1, z) < 0.895) && (p2(1, z) > 1.535) &&
(p2(1, z) < 1.545) && ...

% ”...” describes all the initial values of insurers, such as premium, capital
and exposure. p2 at each stage i can be calculated through x2,

13: W(index,1)=[k1(z),1];
14: index = index +1;
15: end.
16: end.
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TABLES

N Set of insurers in the insurance market, N = {1, . . . , n}, n ∈ N;

T Terminal time in the future;

t A moment in time, t ∈ [0, T ];

pi Premium value (per unit of exposure) for insurer i ∈ N ;

qi Exposure (volume of business) for insurer i ∈ N ,

which represents the number of policies (quantity) undertaken by insurer i ∈ N ;

ki Capital (per unit of exposure) for insurer i ∈ N ;

πi Break-even premium for insurer i ∈ N ;

mi Marginal number of new policies (at time t);

Ii Premium Income for insurer i ∈ N ;

Ki Total capital for insurer i ∈ N ;

Ci Total cost of holding capital for insurer i ∈ N ;

p̄−i Average premium of all the other insurers in insurance market except i ∈ N ;

β Depreciation of capital;

τ Fixed length of insurance policies;

ζ Discount rate, for the calculation of the net present value;

θ State variable, that includes ki, qi;

µ, λ Adjoint variables for q and k, respectively;

ai, bi Price sensitivity (positive) parameter of insurer i ∈ N ;

ui Objective function for insurer i ∈ N .

Table 1: Notation for the Model I & II.

Number of market participants n 2
Break-even premium of Insurer 1 π1 0.6
Break-even premium of Insurer 2 π2 0.609
Price sensitivity parameter of Insurer 1 b1 0.2
Price sensitivity parameter of Insurer 2 b2 0.28
Benchmark solvency ratio of Insurer 1 r1 3.3
Benchmark solvency ratio of Insurer 2 r2 2.2
Depreciation of capital β 0.03
Discount factor ζ 0.02

Table 2: Parameter values for Model I.
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Initial premium of Insurer 1 p1(0) 0.88
Initial premium of Insurer 2 p2(0) 1.05
Initial exposure volume of Insurer 1 q1(0) 5,225
Initial exposure volume of Insurer 2 q2(0) 13,700
Initial capital per exposure of Insurer 1 k1(0) 0.6
Initial capital per exposure of Insurer 2 k2(0) 1

Table 3: Initial information of Insurer 1 and Insurer 2.

Number of market participants n 2
Break-even premium of Insurer 1 π1 0.6
Break-even premium of Insurer 2 π2 0.61
Price sensitivity parameter of Insurer 1 a1 1.16
Price sensitivity parameter of Insurer 2 a2 0.87
Benchmark solvency ratio of Insurer 1 r1 2
Benchmark solvency ratio of Insurer 2 r2 3.5
Depreciation of capital β 0.03
Discount factor ζ 0.02

Table 4: Parameter values for Model II.

Initial premium of Insurer 1 p1(0) 0.89
Initial premium of Insurer 2 p2(0) 1.54
Initial exposure volume of Insurer 1 q1(0) 3,240
Initial exposure volume of Insurer 2 q2(0) 5,240
Initial capital per exposure of Insurer 1 k1(0) 1.28
Initial capital per exposure of Insurer 2 k2(0) 1.96

Table 5: Initial information of Insurer 1 and Insurer 2.
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FIGURES

Figure 1: The dashed line is the volume of exposure q(t) for time t, and the solid lines
denote the duration of policies with the same start date. Moreover, for every t, the top
solid line displays the aggregate number of policies that is accrued from time 0.
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Figure 2: Equilibrium premium profiles of both insurers over three years time in Model
I. The blue line is Insurer 1’s premium and the red line is Insurer 2’s premium. The
premium is given on the y-axis while the corresponding time is on the x-axis.
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Figure 3: Volume of exposure profiles regarding both insurers over three years time in
Model I. The blue line is Insurer 1’s volume of exposure and the red line is Insurer 2’s
volume of exposure. The volume of exposure is given on the y-axis while the corresponding
time is on the x-axis.
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Figure 4: Exposure per capital profiles for both insurers over three years time in Model I.
The blue line is Insurer 1’s capital per exposure and the red line is Insurer 2’s capital per
exposure. The capital per exposure is given on the y-axis while the corresponding time
is on the x-axis.

0 1 2 3

t (Time)

0

1

2

3

P
re

m
iu

m
 V

al
ue

Premium of Insurer 1
Premium of Insurer 2

Figure 5: Equilibrium premium profiles of both insurers over three years time in Model
II. The blue line is Insurer 1’s premium and the red line is Insurer 2’s premium. The
premium is given on the y-axis while the corresponding time is on the x-axis.
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Figure 6: Volume of exposure profiles regarding both insurers over three years time in
Model II. The blue line is Insurer 1’s volume of exposure and the red line is Insurer 2’s
volume of exposure. The volume of exposure is given on the y-axis while the corresponding
time is on the x-axis.
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Figure 7: Exposure per capital profiles regarding both insurers over three years time in
Model II. The blue line is Insurer 1’s capital per exposure and the red line is Insurer 2’s
capital per exposure. The capital per exposure is given on the y-axis while the corre-
sponding time is on the x-axis.
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Figure 8: Total capital profiles regarding both insurers over three years time in Model II.
The blue line is Insurer 1’s capital and the red line is Insurer 2’s capital. The capital is
given on the y-axis while the corresponding time is on the x-axis.
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Figure 9: Equilibrium premium profiles of both insurers over three years time in Model
II, where π1 = 0.8, and π2 = 0.85. The blue line is Insurer 1’s premium and the red line
is Insurer 2’s premium. The premium is given on the y-axis while the corresponding time
is on the x-axis.
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Figure 10: Equilibrium premium profiles of both insurers over three years time in Model
II, where π1 = 1.2, and π2 = 1.1. The blue line is Insurer 1’s premium and the red line is
Insurer 2’s premium. The premium is given on the y-axis while the corresponding time
is on the x-axis.
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