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Abstract

The paper proposes a new method to allocate risk capital to divisions or lines of business

within a firm. Existing literature advocates an allocation rule that, in game-theoretic terms, is

equivalent to using the Aumann-Shapley value as allocation mechanism. The Aumann-Shapley

value, however, is only well-defined if a specific differentiability condition is satisfied. The rule

that we propose is characterized as the limit of an average of path-based allocation rules with

grid size converging to zero. The corresponding allocation rule is equal to the Aumann-Shapley

value if it exists. If the Aumann-Shapley value does not exist, the allocation rule is equal to the

weighted average of the Aumann-Shapley values of “nearby” capital allocation problems.

Keywords: risk management, capital allocation, risk measure, Aumann-Shapley value,

non-differentiability.
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1 Introduction

This paper proposes a rule to allocate risk capital among divisions within a firm. Regulators require

that financial institutions withhold a level of capital that is invested safely in order to mitigate the

effects of adverse events such as, for example, a financial crisis. This amount of capital is referred

to as risk capital. Regulatory requirements focus at the level of risk capital to be withheld at firm

level. Our focus is on how this amount of risk capital is allocated to different business divisions or

portfolios within the firm.1 This problem is called the risk capital allocation problem.
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†Department of Accountancy and Department of Econometrics and OR, Tilburg University, CentER for Economic

Research and Netspar.
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1Alternatively, one can interpret a division as a financial portfolio.
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There are several reasons why firms want to allocate risk capital to divisions. First, allocating risk

capital is important for performance evaluation. Investment activities of financial institutions are

typically divided into different portfolios, with different divisions within the firm being responsible

for different portfolios. It is not uncommon that the managers of these divisions are evaluated

on the basis of the return earned on the amount of risk capital to be withheld for their portfolio.

This requires an allocation of risk capital to divisions that is perceived as “fair” by the managers.

Second, allocating risk capital to business divisions is important for decisions regarding whether to

increase or decrease the engagement in the activities of certain divisions. The attractiveness of a

risky activity (e.g., a specific financial investment) is typically evaluated by means of a risk-return

trade-off. Evaluating the performance of a division’s activity in isolation, however, can be very

misleading. For example, the activity might seem highly risky in isolation, but may be useful in

hedging risk in other divisions’s activities.2 One approach to evaluate the attractiveness of increasing

the engagement in the activities of a specific division taking into account potential hedge effects is

to determine the effect of increasing the level of the activities on the allocation of risk capital to all

divisions.

The allocation problem is non-trivial because whenever a coherent risk measure (Artzner et al.,

1999) is used to determine risk capital, the amount of risk capital to be withheld for the firm as a

whole would typically be lower than the sum of the amounts of risk capital that would need to be

withheld for each division in isolation. The reason is that the individual risks associated with the

divisions are typically not perfectly correlated, and, hence, there can be some hedge potential from

combining the risks. The allocation rule then determines how the benefits of this hedge potential

are allocated to the divisions.

There is a large literature on capital allocation rules, with approaches based on finance (e.g.,

Tasche, 1999; Myers and Read, 2001; Major, 2018), optimization (e.g., Dhaene et al., 2003) and game

theory (e.g., Denault, 2001; Tsanakas and Barnett, 2003; Tsanakas, 2004; Powers, 2007; Csóka et

al., 2009; Boonen et al., 2017). Our focus in this paper is on game-theoretic approaches to allocating

risk capital. Homburg and Scherpereel (2008) and Balog et al. (2017) provide excellent simulation-

based game-theoretic comparisons of different methods to allocate capital, with a focus on core-

compatibility. This means that allocations are considered as stable, which in game-theoretic terms

2An example would be an insurance company that holds both annuities and death benefit insurance. Both types
of liabilities are sensitive to longevity risk (the risk associated with unpredictable changes in survival rates in a
population). In isolation, each of these liabilities could be evaluated as relatively risky. However, the death benefit
insurance provides hedge potential for the annuity portfolio. Gulick et al. (2012) show the impact of this hedge
potential on the allocation of risk capital.
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means that it is an element of the core. A game-theoretic approach that has received considerable

attention is the one of Denault (2001). He models the risk capital allocation problem as a fuzzy

game. Specifically, he considers risk capital allocations that are “stable” in the sense that no (set

of) division(s) has incentives to withdraw fully or in part from the collective. In game-theoretic

terms, this condition means that the allocation is an element of the fuzzy core. Denault specifies a

number of other desirable properties of a risk capital allocation rule, and shows that the Aumann-

Shapley value (Aumann and Shapley, 1974), if it exists, is the only allocation rule that satisfies these

additional properties.3 Aubin (1979) shows that if the Aumann-Shapley value exists, the fuzzy core

is single-valued and the Aumann-Shapley value is its unique element. Moreover, Kalkbrener (2005)

imposes a diversification axiom that requires the risk capital allocation of a division not to exceed

its corresponding stand-alone risk capital. The Aumann-Shapley value is then characterized as the

only allocation rule that satisfies this condition and two more technical conditions.

The Aumann-Shapley value as a risk capital allocation rule has received considerable attention

in the literature. Financial and economic arguments in favor of the Aumann-Shapley value are

provided by, e.g., Tasche (1999) and Myers and Read (2001). One of the drawbacks, however, of the

Aumann-Shapley value is that it requires partial differentiability of the fuzzy risk capital allocation

function at the level of full participation of each division. It is well-known that the fuzzy risk capital

function is generally not differentiable everywhere when the probability distributions of the risks

associated with the divisions are not continuous (see, e.g., Tasche, 1999). We propose an alternative

generalization of the Aumann-Shapley value that is well-defined even when the risk capital function

is not differentiable. The rule that we propose is inspired by the idea underlying the Shapley value

(Shapley, 1953) for non-fuzzy cooperative games. We first discretize the participation levels of

divisions by considering a finite grid of participation levels. Then, for any given discrete path on

the grid starting from no participation (the participation profile where the participation level of each

division is zero) and ending at full participation (the participation profile with full participation of

each division), we determine the corresponding path-based allocation. Specifically, in each step of

the path, the participation level of exactly one division is increased, and the corresponding difference

in risk capital is allocated to that division. Proceeding in this way along the path, the total risk

capital will be allocated once the path reaches the level of full participation. This procedure yields

3For general production functions, the Aumann-Shapley value is characterized by Aubin (1981), Billera and Heath
(1982), and Mirman and Tauman (1982). Moreover, its empirical computation is studied by Bogetoft et al. (2016)
using a mathematical programming approach. They propose a lexicographic goal programming technique to overcome
non-differentiabilities.

3



a risk capital allocation for every possible path. Moreover, the average of the corresponding risk

capital allocations over all possible paths is also a risk capital allocation. When the grid is binary,

i.e., when the divisions either participate fully or not at all, this average coincides with the Shapley

value. We show that when the grid size converges to zero, this average converges. The allocation

rule that we propose in this paper equals this asymptotic value. We refer to it as the Weighted

Aumann-Shapley value. For risk capital allocation problems for which the corresponding risk capital

function is differentiable at the level of full participation, the Weighted Aumann-Shapley value

coincides with the Aumann-Shapley value. In contrast to the Aumann-Shapley value, however, the

Weighted Aumann-Shapley value is well-defined even when the risk capital allocation function is

non-differentiable.

There is some literature on risk capital allocation in cases where the risk capital function is not

differentiable. Gulick et al. (2012) introduce a capital allocation rule in which the excess risks (as

measured by the expected loss in excess of the allocated risk capital) are minimized in lexicographical

order. This risk capital allocation rule is well-defined in case of non-differentiabilities. Grechuk

(2015) uses the characterization of Kalkbrener (2005) to reduce the problem of finding a linear

diversifying capital allocation to the problem of selecting the unique center of a convex weakly

compact set in a Banach space. The latter problem has a natural solution in the finite-dimensional

case, and generalizes the Aumann-Shapley value to the case of non-differentiabilities. Cherny and

Orlov (2011) deal with non-differentiability by replacing the derivative of the risk capital function

by a directional derivative, which is always well-defined. They refer to this directional derivative as

the marginal risk contribution. However, as shown in Balog at al. (2017), the sum of the marginal

risk contributions of divisions within a firm would typically not be equal to the firm’s aggregate

risk, and so the directional derivative approach cannot be used to determine an allocation of risk

capital. Centrone and Rosazza Giannin (2018) analyze a family of risk capital allocations for quasi-

convex risk measures with non-differentiabilities. Our goal is to characterize a generalization of the

Aumann-Shapley value for a class of coherent risk measures.

Aumann and Shapley (1974) show that under very strong assumptions their value can be ob-

tained via an asymptotic approach. However, in Example 19.2 of their book they show that fuzzy

games, corresponding to convex, piecewise affine functions (like the fuzzy games related to risk capi-

tal allocation problems which we consider in this paper), do not satisfy this strong assumption (also

pointed out by Neyman and Smorodinsky, 2004). The allocation rule that we propose in this paper

follows a much weaker asymptotic approach than the one used by Aumann and Shapley (1974).
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As a consequence, our approach is convergent for all fuzzy games related to risk capital allocation

problems. We also show that the corresponding risk capital allocation rule satisfies a number of

desirable properties. Some of these properties are known to be satisfied by the Aumann-Shapley

value on the class of risk capital allocation problems for which the Aumann-Shapley value is well-

defined. Moreover, the approach that we use to characterize the allocation rule allows us to give an

explicit formula for the corresponding risk capital allocations. This specific formula has a geometric

interpretation.

The paper is organized as follows. In Section 2, we recall the definition of coherent risk measures

and risk capital allocation problems and we introduce the class of risk measures that we will use in

this paper. We also briefly summarize existing literature regarding the use of the Aumann-Shapley

value as risk capital allocation rule. In Section 3, we introduce a generalization of the Aumann-

Shapley value that is well-defined even if the risk capital function is not differentiable. We also

provide a closed form expression with a geometric interpretation for the corresponding risk capital

allocations. In Section 4 we derive some properties of the new allocation rule. In Section 5, we

conclude. All proofs are delegated to the Online Appendix.

2 Risk measures and risk capital allocation problems

In this section we introduce the class of risk measures that we will use in this paper, and we

briefly summarize relevant literature regarding game-theoretic approaches to risk capital allocation

problems.

2.1 Finitely generated risk measures

Regulators require financial institutions (e.g., pension funds, banks, or insurance companies) to

withhold so-called “reserve capital” that needs to be invested safely. The purpose of this reserve

capital is to limit the probability of insolvency. A risk is represented by a random variable X on a

probability space (Ω,F ,P), i.e., Ω is the state space, F is a σ-algebra on Ω and P is the physical

probability measure on (Ω,F). The class of probability measures on (Ω,F) is denoted by P(Ω,F).

The realization of X can be interpreted as the (net) loss faced at a pre-specified future time. We

consider the case where Ω is finite, and we let the σ-algebra F be its power set, i.e., F = 2Ω. A risk

can then be represented by a vector in IRΩ.

The amount of risk capital to be withheld for a given risk is typically determined using a risk
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measure, i.e., a function ρ : IRΩ → IR that maps risks into real numbers. Throughout our analyses,

we will focus on the case where the risk measure is coherent (see Artzner et al. 1999).4 Artzner

et al. (1999) show that a risk measure ρ is coherent if and only if there exists a set of probability

measures Q ⊂ P(Ω,F) such that

ρ(X) = sup {EQ[X] : Q ∈ Q} , for all X ∈ IRΩ. (1)

We will use the following terminology:

• If for a given risk measure ρ, (1) is satisfied for a set Q ⊂ P(Ω,F), then the set Q is referred

to as a generating probability measure set for the risk measure ρ.

• Let Q be a generating probability measure set for the risk measure ρ, and let X ∈ IRΩ be a

risk. A probability measure Q ∈ Q such that ρ(X) = EQ[X] is referred to as a worst case

probability measure for X.

The generating probability measure set for a given risk measure ρ is typically not unique. We

will consider coherent risk measures for which there exists a finite generating probability measure

set Q. We will refer to such risk measures as being finitely generated.

Definition 2.1 A coherent risk measure ρ : IRΩ → IR is finitely generated if there exists a finite

generating probability measure set, i.e., there exists a finite set Q ⊂ P(Ω,F) such that

ρ(X) = max {EQ [X] : Q ∈ Q} , for all X ∈ IRΩ. (2)

The condition in Definition 2.1 may seem restrictive. However, we show in Proposition 2.2 that

all coherent risk measures that satisfy Comonotonic Additivity (see, e.g., Wang et al., 1997) are

finitely generated.5

4A risk measure ρ is called coherent if it satisfies the following four properties (Artzner et al., 1999):

• Sub-additivity : For all X,Y ∈ IRΩ, we have ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

• Monotonicity : For all X,Y ∈ IRΩ such that X ≥ Y , we have ρ(X) ≥ ρ(Y ).

• Positive Homogeneity : For every X ∈ IRΩ and every c > 0, we have ρ(cX) = cρ(X).

• Translation Invariance: For every X ∈ IRΩ and every c ∈ IR, we have ρ(X+ c · eΩ) = ρ(X)+ c, where eΩ ∈ IRΩ

is such that eΩ(ω) = 1 for all ω ∈ Ω.

Note that Artzner et al. (1999) defines risk measures on random variables that are interpreted as gains, whereas we
define risk measures on random variables that are interpreted as losses. This affects the definition of the Monotonicity

property.
5A risk measure ρ satisfies Comonotonic Additivity if for all X,Y ∈ IRΩ such that X and Y are comonotone, it
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Proposition 2.2 If the risk measure ρ is coherent and satisfies Comonotonic Additivity, then ρ is

finitely generated.

Proposition 2.2 shows that the full class of coherent risk measures that satisfy Comonotonic

Additivity is finitely generated. We note that while Comonotonic Additivity is a sufficient condition

for a coherent risk measure to be finitely generated, it is not a necessary condition.

We now show how a finite generating probability measure set can be determined. Let the risk

measure ρ be given and suppose it is coherent and satisfies Comonotonic Additivity. It then follows

from Delbaen (2000) that there exists a supermodular function υ : F → IR+ with υ(∅) = 0 and

υ(Ω) = 1 such that the set

Qυ := {Q ∈ P(Ω,F) : Q(A) ≥ υ(A) for all A ∈ F} , (3)

is a generating probability measure set for ρ.67 Now let Ω = {ω1, . . . , ω|Ω|}, σ : {1, . . . , |Ω|} →
{1, . . . , |Ω|} be a permutation, and let Π(Ω) be the set of all permutations of {1, . . . , |Ω|}. For every
permutation σ ∈ Π(Ω), we define the probability measure:

Qσ,υ({ωσ(j)}) := υ




σ(j)⋃

k=1

{ωσ(k)}


 − υ




σ(j)−1⋃

k=1

{ωσ(k)}


 , for all j ∈ {1, . . . , |Ω|}. (4)

The additive probability measure Qσ,υ on a finite probability space Ω is determined by specifying

the values Qσ,υ({ω}), ω ∈ Ω. Supermodularity and non-negativity of υ combined with the fact that

υ(∅) = 0 and υ(Ω) = 1 imply that Qσ,υ is indeed a probability measure on (Ω,F).

Proposition 2.3 Let ρ be a coherent risk measure that satisfies Comonotonic Additivity. Let υ

be a supermodular function such that Qυ as defined in (3) is a generating probability measure set

for ρ. Then, the set QFG,υ := {Qσ,υ : σ ∈ Π(Ω)} with Qσ,υ as defined in (4) is a finite generating

probability measure set for ρ.

Throughout the paper, we will illustrate our results for the case where Expected Shortfall is used

as risk measure. In the following example we determine the finite generating probability measure

set from Proposition 2.3 for this risk measure.

holds that ρ(X + Y ) = ρ(X) + ρ(Y ) (see, e.g., Wang et al., 1997). Random variables X, Y ∈ IRΩ are comonotone if
[X(ω1) − X(ω2)] · [Y (ω1) − Y (ω2)] ≥ 0 for all (ω1, ω2) ∈ Ω × Ω (e.g., Denneberg, 1994). If a risk measure satisfies
Comonotonic Additivity, there is no diversification benefit from pooling risks that are comonotone.

6A function υ : F → IR is supermodular if υ(S ∪ T ) + υ(S ∩ T ) ≥ υ(S) + υ(T ) for all S, T ∈ F .
7The supermodular function υ in (3) depends on the risk measure ρ, and is therefore usually denoted as υρ. For

notational convenience, we do not explicitly denote this dependence.
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Example 2.4 Expected Shortfall with significance level α ∈ (0, 1), denoted ρES
α : IRΩ → IR, is

defined as follows (Acerbi and Tasche, 2002, Tasche, 2002):

ρES
α (Y ) = (1− α)−1

[
EP

(
Y · 1{Y >qα(Y )}

)
+ qα(Y ) · (P(Y ≤ qα(Y ))− α)

]
,

where qα(Y ) is the smallest α-quantile, i.e., qα(Y ) := inf{x ∈ IR|P(Y ≤ x) ≥ α}. For continuous

random variables, the second term would be equal to zero, and so ρES
α (Y ) then equals the expected loss

conditional on the loss being among the (1−α)100% highest losses (the right tail of the distribution).

For discrete distributions, however, the second term is non-zero and corrects for the fact that the

probability of exceeding the smallest α-quantile need not be equal to 1− α.

It is well-known that Expected Shortfall is coherent and satisfies Comonotonic Additivity (see,

e.g., Tasche, 2002). Let the supermodular function υ be given by υ(A) = 1 − g(1 − P(A)), for

all A ∈ F , where the so-called “distortion function” g is given by g(x) = min
{

x
1−α , 1

}
for all

x ∈ [0, 1]. Then, the set Qυ from (3) is a generating probability measure set for ρES
α (Kusuoka,

2001).8 Because g(x) is linear for x ≤ α and Q(A) ≤ 1 for all Q ∈ P(Ω,F), we can replace the set

F = 2Ω in (3) by the set of singletons {{ω} : ω ∈ Ω}. Hence, the generating probability measure set

of ρES
α from (3) is given by:

Qυ =

{
Q ∈ P(Ω,F) : Q({ω}) ≤ P({ω})

1− α
for all ω ∈ Ω

}
, (5)

and the probability measures Qσ,υ for σ ∈ Π(Ω), as defined in (4), are given by:

Qσ,υ({ωσ(j)}) = min





∑|Ω|
k=j P({ωσ(k)})

1− α
, 1



−min





∑|Ω|
k=j+1 P({ωσ(k)})

1− α
, 1



 , for all j ∈ {1, . . . , |Ω|}.

(6)

Now suppose further that Ω = {ω1, ω2, ω3} with physical probability measure P =
(

1
20 ,

9
20 ,

1
2

)
, and

suppose that the confidence level α in Expected Shortfall is 90%, i.e., ρ = ρES
0.9 . Then, using (6)

yields the outcomes of Qσ,υ(ω1),Q
σ,υ(ω2), and Qσ,υ(ω3) for all σ ∈ Π(Ω) as displayed in Table 1.

Combined with Proposition 2.3, this implies that a finite generating probability measure set for

8Expected Shortfall is a member of the broader class of distortion risk measures (Wang, 1996). A distortion risk
measures is given by ρ(X) =

∫∞

0
g(P(X > x))dx+

∫ 0

−∞
(g(P(X > x)) − 1)dx, for some “distortion function” g that

satisfies g(0) = 0 and g(1) = 1 and is continuous, concave and increasing. For any given distortion function g, the set
Qυ from (3) with υ(A) = 1− g(1−P(A)), for all A ∈ F , is a generating probability measure set for the corresponding
distortion risk measure (Tsanakas, 2004).
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(σ(1), σ(2), σ(3)) Qσ({ω1}) Qσ({ω2}) Qσ({ω3})
(1, 2, 3) 0 0 1
(1, 3, 2) 0 1 0
(2, 1, 3) 0 0 1
(2, 3, 1) 1

2 0 1
2

(3, 2, 1) 1
2

1
2 0

(3, 1, 2) 0 1 0

Table 1: The construction of the finite generating probability measure set Qσ,υ corresponding to
Example 2.4.

ρES
0.9 is given by QFG,υ = {Q1,Q2,Q3,Q4}, with Q1 =

(
1
2 ,

1
2 , 0
)
, Q2 =

(
1
2 , 0,

1
2

)
, Q3 = (0, 0, 1), and

Q4 = (0, 1, 0). Note that the elements of QFG,υ are the extreme points of the set in (5). ▽

Throughout the remainder of the paper, we fix for a given finitely generated risk measure ρ a

finite generating probability measure set, which we denote Q(ρ). None of our results depend on the

choice of Q(ρ).

2.2 Risk capital allocation problems and the Aumann-Shapley value

In this section, we recall some definitions and key results regarding game-theoretic approaches to

risk capital allocation. Readers familiar with this literature can skip this section.

We consider financial institutions that consist of multiple divisions that each face risk. The

divisions are indexed i ∈ N . The risk of division i is represented by a random variable Xi on

the probability space (Ω,F ,P). Once the amount of risk capital that needs to be withheld for the

aggregate risk (i.e., ρ
(∑

i∈N Xi

)
) is determined, the firm needs to decide how to allocate this risk

capital to the divisions; it needs to determine amounts of risk capital (ai)i∈N ∈ IRN that satisfy

∑

i∈N

ai = ρ

(
∑

i∈N

Xi

)
. (7)

Unless risks are perfectly correlated, diversification benefits typically imply that the risk capital

that needs to be withheld at aggregate level is (weakly) lower than the sum of the risk capitals

that would need to be held for each division if that division was on its own. Indeed, the Sub-

additivity property of coherent risk measures implies that ρ
(∑

i∈N Xi

)
≤ ∑i∈N ρ(Xi). Whenever

the inequality is strict, there is a diversification benefit from pooling the risks. The goal is then

to find an allocation (ai)i∈N ∈ IRN that satisfies (7) and allocates the diversification benefit in a

“fair” way to the divisions. We now formally define risk capital allocation problems and risk capital

9



allocations.

Definition 2.5 Risk capital allocation problems, risk capital allocations, and risk capital allocation

rules are defined as follows:

(i) A risk capital allocation problem is a tuple R = ((Xi)i∈N , ρ), where Xi ∈ IRΩ for all i ∈ N

and ρ is a finitely generated risk measure. The class of all risk capital allocation problems is

denoted R.

(ii) A vector (ai)i∈N ∈ IRN is a risk capital allocation for R = ((Xi)i∈N , ρ) ∈ R if and only if

(ai)i∈N satisfies (7).

(iii) Let R̃ ⊆ R be a (sub)domain of risk capital allocation problems. A risk capital allocation rule

on R̃ is a function K : R̃ → IRN that assigns to every risk capital allocation problem R ∈ R̃
a unique risk capital allocation K(R) ∈ IRN .

A game-theoretic approach that has received considerable attention is the one of Denault (2001).

He models the risk capital allocation problem as a fuzzy game. Specifically, for any given risk capital

allocation problem R = ((Xi)i∈N , ρ), he defines the corresponding risk capital function r : IRN
+ → IR

as follows

r(λ) = ρ

(
∑

i∈N

λi ·Xi

)
, for all λ ∈ IRN

+ . (8)

If λ ∈ [0, 1]N , r(λ) is the amount of risk capital that would need to be withheld for a subportfolio

consisting of a fraction λi of the risk of division i, for all i ∈ N , if that subportfolio were separated

from the rest. The fuzzy core (Aubin, 1979) of the corresponding risk capital function r is given by:

FCore(R) =

{
(ai)i∈N ∈ IRN :

∑

i∈N

λiai ≤ r(λ) for all λ ∈ [0, 1]N ,
∑

i∈N

ai = r(eN )

}
, (9)

where eN is the unit vector in IRN , and so r(eN ) = ρ
(∑

i∈N Xi

)
. For an allocation in the fuzzy core,

the risk capital allocated to a subportfolio consisting of a fraction λi of the risk of division i, for all

i ∈ N (which is
∑

i∈N λiai) is weakly lower than the risk capital that would need to be withheld

for this subportfolio if it was on its own (which is r(λ)). Hence, no subportfolio of fractional risks

has an incentive to split off. Therefore, the fuzzy core condition can be seen as a stability condition

(see, e.g., also Denault, 2001; Tsanakas and Barnett, 2003).
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Denault (2001) focuses on the case where: (i) the risk measure ρ is coherent and satisfies

Comonotonic Additivity, and, (ii) the corresponding risk capital allocation function r in (8) is

partially differentiable at λ = eN . He then shows that the fuzzy core in (9) is single-valued and that

the unique element is the Aumann-Shapley value. Let R′ ⊂ R be the set of risk capital allocation

problems for which r is partially differentiable at λ = eN . Then, the Aumann-Shapley allocation

rule, denoted KAS : R′ → IRN , is given by (see Denault, 2001):9

KAS
i (R) =

∂r

∂λi
(eN ), for all i ∈ N. (10)

Hence, the Aumann-Shapley value is the gradient of the risk capital function r evaluated in the

vector eN of full participation.

In addition to the desirable stability property, financial and economic arguments in favor of the

Aumann-Shapley value are provided by, e.g., Tasche (1999) and Myers and Read (2001). A main

drawback of the Aumann-Shapley value, however, is that it requires partial differentiability of the

risk capital function at the level of full participation, i.e., at λ = eN . More generally, for risk capital

allocation problems R = ((Xi)i∈N , ρ) ∈ R for which the risk capital function is not necessarily

partially differentiable at λ = eN , it follows immediately from Proposition 4 in Aubin (1979) that

the fuzzy core is given by:

FCore(R) = conv{(EQ[Xi])i∈N : Q ∈ Q∗(ρ)}, (11)

where conv denotes the convex hull operator and where Q∗(ρ) is the set of worst case probability

measures for the aggregate risk
∑

i∈N Xi, i.e.,
10

Q∗(ρ) =

{
Q ∈ Q(ρ) : r(eN ) = EQ

[
∑

i∈N

Xi

]}
. (12)

This fuzzy core in (11) is non-empty, convex and compact. Now recall that the Aumann-Shapley

value, if it exists, is the unique element of the fuzzy core (Aubin, 1981). Combined with (11), this

implies that if the Aumann-Shapley value exists, it holds that (EQ[Xi])i∈N = (E
Q̃
[Xi])i∈N for all

9More generally, the Aumann-Shapley value of a fuzzy game r : [0, 1]N → IR is given by (ai)i∈N such that
ai =

∫ 1

0
∂r
∂λi

(γ · eN )dγ, for all i ∈ N , provided that these integrals exist. Due to Positive Homogeneity of the risk

measure ρ, this integral expression simplifies to (10) in the case of risk allocation problems.
10Recall that r(eN) = ρ

(
∑

i∈N Xi

)

. Hence, if r(eN) = EQ

[
∑

i∈N Xi

]

for some Q ∈ Q(ρ), then the maximum in (2)
is attained in Q. Therefore, Q is referred to as a worst case probability measure for the risk

∑

i∈N Xi.
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Q, Q̃ ∈ Q∗(ρ), and the Aumann-Shapley value is given by:

KAS
i (R) = EQ[Xi], for all i ∈ N , for any Q ∈ Q∗(ρ). (13)

If there exist two worst case probability measures Q, Q̃ ∈ Q∗(ρ) for the aggregate risk such that

(EQ[Xi])i∈N 6= (E
Q̃
[Xi])i∈N , the Aumann-Shapley value does not exist.

In the next section we propose an allocation rule that can be seen as a generalization of the

Aumann-Shapley value, and that is well-defined also for allocation problems R ∈ R for which the

function r is not partially differentiable at λ = eN . The new allocation rule selects a fuzzy core

element.

3 The Weighted Aumann-Shapley value

In this section we introduce a generalization of the Aumann-Shapley value. The rule that we propose

is inspired by the idea underlying the Shapley value (Shapley, 1953) for non-fuzzy cooperative games.

In Subsection 3.1, we first discuss some properties of the risk capital function r. Then, in Subsection

3.2 we discretize the participation levels of divisions by considering a finite grid of participation

levels, and determine the corresponding path-based allocations. The average of the corresponding

risk capital allocations over all possible paths is also a risk capital allocation.11

In Subsection 3.3, we show that when the grid size converges to zero, this average converges as

well. The allocation rule that we propose in this paper equals this asymptotic value. We will refer

to this value as the Weighted Aumann-Shapley value.

3.1 Properties of the risk capital allocation function

In this subsection we show that the risk capital function r as defined in (8) is piecewise linear and

almost everywhere partially differentiable.

Definition 3.1 Let R = ((Xi)i∈N , ρ) ∈ R. For all Q ∈ Q(ρ):

(i) The function fQ : IRN → IR is defined as follows:

fQ(λ) :=
∑

i∈N

λi ·EQ[Xi], for all λ ∈ IRN . (14)

11The construction of a rule as average over paths is in line with, e.g., Moulin (1995) and Sprumont (2005), who
both consider a discrete production problem. They consider the units of production goods as fixed, i.e., they do not
consider convergence by taking infinitely small fractions of such goods.

12



(ii) The set AQ ⊆ [0, 1]N is defined as follows:

AQ :=
{
λ ∈ [0, 1]N : r(λ) = fQ(λ)

}
. (15)

For all Q ∈ Q(ρ), the set AQ consists of participation profiles λ for which Q is a worst case

probability measure for the risk
∑

i∈N λi · Xi.
12 It is straightforward to show that AQ is a closed

and convex polytope (in fact, a pointed cone). The participation profile λ = e∅, where e∅ is the zero

vector in IRN is an element of AQ for all Q ∈ Q(ρ). The following result follows immediately from

(2).

Proposition 3.2 For all R = ((Xi)i∈N , ρ) ∈ R, the corresponding risk capital function r from (8)

is piecewise linear on [0, 1]N . Specifically, there exist Q1, . . . ,Qp ∈ Q(ρ) with p ≤ |Q(ρ)| such that:

p⋃

m=1

AQm = [0, 1]N . (16)

In the remainder of the paper we will without loss of generality assume that Q1, . . . ,Qp ∈ Q(ρ)

are chosen and ranked such that:

• AQi
6= AQj

for all i 6= j;

• eN ∈ AQm for m ∈ {1, . . . , p∗} and eN /∈ AQm for m ∈ {p∗ + 1, . . . , p}, for some p∗ ≤ p.

In the next example we illustrate Proposition 3.2.

Example 3.3 Consider again the setting from Example 2.4 with ρ = ρES
0.9 , and recall the corre-

sponding finite generating probability measure set QFG,υ = {Q1, . . . ,Q4} derived in that example.

Now let N = {1, 2} and suppose the two risks are given by:

X1 =




0

2

4


 , X2 =




6

2

0


 .

It follows from (2) with Q = QFG,υ combined with (14) and (15) that:

AQ1 =
{
λ ∈ [0, 1]N : r(λ) = fQ1(λ)

}

12If r(λ) = fQ(λ) for some Q ∈ Q(ρ), then ρ
(
∑

i∈N λi ·Xi

)

= EQ

(
∑

i∈N λi ·Xi

)

, and so the maximum in (2) is
attained in Q.

13



=
{
λ ∈ [0, 1]N : fQ1(λ) ≥ fQj

(λ) for all j ∈ {2, 3, 4}
}

=
{
λ ∈ [0, 1]N : λ1 + 4λ2 ≥ max{2λ1 + 3λ2, 4λ1, 2λ1 + 2λ2}

}

=
{
λ ∈ [0, 1]N : λ1 ≤ λ2

}
.

Likewise, we find AQ2 =
{
λ ∈ [0, 1]N : 3λ2 ≥ 2λ1 ≥ 2λ2,

}
, AQ3 =

{
λ ∈ [0, 1]N : 2λ1 ≤ 3λ2

}
, and

AQ4 = {e∅}. Because AQ4 ⊂ AQm for m ∈ {1, 2, 3}, we can without loss of generality drop Q4, and

so (16) is satisfied with p = 3. Moreover, because eN = (1, 1) ∈ AQm for m ∈ {1, 2} and eN /∈ AQm

for m = 3, it holds that p∗ = 2. Note that non-differentiability of r in eN is caused by the firm

having the same loss in states ω2 and ω3. ▽

We conclude this subsection by showing that the risk capital function r is almost everywhere

partially differentiable. If for some given λ, there exists a unique m ∈ {1, . . . , p} such that λ ∈ AQm ,

then there exists a neighborhood U ⊂ [0, 1]N of λ such that r(λ̂) = fQm(λ̂) for all λ̂ ∈ U , and so

∂r

∂λi
(λ) = EQm [Xi], for all i ∈ N. (17)

Hence, uniqueness of m ∈ {1, . . . , p} such that λ ∈ AQm is a sufficient condition for the risk capital

function r to be partially differentiable in λ. Formally, for all R ∈ R, we let the set L(R) be given

by

L(R) =
{
λ ∈ [0, 1]N : there exists a unique m ∈ {1, . . . , p} such that λ ∈ AQm

}
. (18)

The following result will be relevant when we propose a new risk capital allocation rule later in

this section.

Proposition 3.4 For all R ∈ R, it holds that:

(i) The risk capital function r is partially differentiable in λ if λ ∈ L(R).

(ii) The risk capital function r is almost everywhere partially differentiable. The set of participation

profiles λ where the risk capital function r is not partially differentiable is a subset of the union

of a finite number of hyperplanes passing through λ = e∅.

14



3.2 Path based allocation rules

In this subsection, we discuss path based allocation rules, as introduced in Wang (1999). It extends

the idea of the marginal vectors of the Shapley value (Shapley, 1953) by allowing for divisions to

participate in the risk capital allocation for only a fraction of their risk. The fractions are represented

by the participation levels λ ∈ [0, 1]N . We first describe a path based allocation rule informally and,

thereafter, we provide a formal definition.

Let n ∈ IN and define the grid on [0, 1]N with grid size 1
n by

Gn =

{
0,

1

n
,
2

n
, . . . , 1

}N

. (19)

The starting point on grid Gn is the participation profile λ = e∅ in which the participation level of

each division is zero. In the first step the participation level of some division i is increased by 1
n and

the corresponding difference in risk capital, r ((1/n) · ei)− r(e∅), is allocated to division i, where ei

is the i-th unit vector in IRN . In the second step of the path again the participation level of some

division (not necessarily the same as the one in the first step) is increased by 1
n and the risk change

is allocated to this division. Proceeding in this way, we will end up after |N |n steps in eN and total

risk capital (which is ρ
(∑

i∈N Xi

)
= r(eN )) has been allocated to the divisions by then.

Formally, a path is defined as follows.

Definition 3.5 Let n ∈ IN be given. A path on the grid Gn is a map P : {0, 1, 2, . . . , |N |n} → Gn

satisfying:

(i) P (0) = e∅ and P (|N |n) = eN ;

(ii) for every k ∈ {0, . . . , |N |n− 1}, there exists a unique i ∈ N such that

P (k + 1)− P (k) =
1

n
· ei. (20)

This unique division i will be denoted i(P, k).

An example of a path P on the grid Gn is given in Figure 1. We denote the collection of all

paths on the grid Gn by Pn.

Proposition 3.6 Let P ∈ Pn be a path on the grid Gn. Then, the map Kpath,P : R → IRN defined

15



0 1
0

1

λ1 →
λ
2
→

Figure 1: Example of a path P ∈ Pn for |N | = 2 with n = 10. We connected succeeding elements
of the path as illustration.

by

Kpath,P (R) =

|N |n−1∑

k=0

[r(P (k + 1)) − r(P (k))] · ei(P,k), for all R ∈ R, (21)

with risk capital function r as defined in (8), is an allocation rule on R.

We will refer to Kpath,P as a path based allocation rule.

Following Moulin (1995) and Sprumont (2005),we then consider the allocation rule that is given

by the average over all paths of the corresponding path based risk capital allocations. Formally,

this allocation rule is defined as follows.

Definition 3.7 Let n ∈ IN be given. Then, Kavg,n : R → IRN is defined by

Kavg,n(R) =
1

|Pn|
∑

P∈Pn

Kpath,P (R), for all R ∈ R,

where Kpath,P : R → IRN for a given path P ∈ Pn is the allocation rule defined in (21).

If n = 1, the corresponding allocation rule Kavg,1(R) equals the Shapley value (Shapley, 1953).

In the following subsection, we study its asymptotic behavior when we let n go to infinity.
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3.3 The Weighted Aumann-Shapley value

If the Aumann-Shapley value in (10) exists, i.e., if the risk capital function r is partially differentiable

along the diagonal, it can be approximated by a path based allocation by using a very small grid

and a path close to the diagonal (see, e.g., Aumann and Shapley, 1974, for functions that are

globally partially differentiable). However, as mentioned before, the Aumann-Shapley value is not

well-defined if the risk capital function r is not partially differentiable along the diagonal. We

therefore now propose a generalization that is well-defined even if r is not partially differentiable

along the diagonal. The rule that we propose arises from letting the grid size become infinitely small

and taking the limit of the corresponding allocations Kavg,n(R). In this subsection, we show that

limn→∞Kavg,n(R) exists for all R ∈ R. Our focus is on the intuition behind the result. Detailed

proofs are available in the Online Appendix.

Proposition 3.8 Let R ∈ R and n ∈ IN. Let P be a path that is randomly selected from Pn

according to the discrete uniform distribution on Pn. Then, it holds that

Kavg,n
i (R) =

∑

λ∈Gn:λi<1

P
(
λ ∈ P

)
P
(
λ+ (1/n) · ei ∈ P |λ ∈ P

)
[r (λ+ (1/n) · ei)− r(λ)], (22)

for all i ∈ N , where the risk capital function r is as defined in (8).

Hence, the amount of risk capital allocated to division i, Kavg,n
i (R), is equal to the sum over all

participation profiles λ ∈ Gn with λi < 1 for all i, of the marginal contribution to the risk capital

from moving from λ to λ + (1/n) · ei (which is equal to r(λ+ (1/n) · ei) − r(λ)) multiplied by the

probability that both λ and λ+ (1/n) · ei are on a randomly selected path.

In the proofs in the Online Appendix we show that the following subsets of participation profiles

have a negligible contribution to (22) if n becomes sufficiently large:

• Participation profiles that lie in a neighbourhood of e∅ or eN . We show in Lemma

C.13 of the Online Appendix that for ε sufficiently small, participation profiles λ /∈ Gn
ε :=

{
λ ∈ Gn : ε ≤ λ̄ ≤ 1− ε

}
with λ̄ = 1

|N |

∑
i∈N λi, have a negligible contribution to Kavg,n(R)

if n becomes sufficiently large.

• Participation profiles that are not sufficiently close to the diagonal. We show in

Lemma C.14 of the Online Appendix that participation profiles λ /∈ D(n) := {λ ∈ [0, 1]N :

17



‖λ− λ̄eN‖ < n
− 1

2
+ 1

8|N| }13 have a negligible contribution to Kavg,n(R) if n becomes sufficiently

large.14

• Participation profiles sufficiently close to the set [0, 1]N\L(R). Let B(n) be the set of

participation profiles in an 1
n -environment of participation profiles in [0, 1]N\L(R), i.e.,

B(n) :=

{
λ ∈ [0, 1]N : ∃λ̂ ∈ [0, 1]N\L(R) : ‖λ− λ̂‖ <

1

n

}
, (23)

where L(R) is as defined in (18). Recall that L(R) contains all participation profiles where r

is differentiable (Proposition 3.4(i)). We show in Lemma C.18 of the Online Appendix that

all participation profiles in λ ∈ B(n) have a negligible aggregate contribution to Kavg,n(R)

for sufficiently large n.

We illustrate the sets Gn
ε and D(n) in Figure 2, for the case where there are two divisions

(|N | = 2).

λ1 →

λ
2
→

I

II

III

IV

1

1

0

0

Figure 2: The shaded set is a set of participation profiles with non-negligible aggregate contribution
to the Weighted Aumann-Shapley value in case |N | = 2. Here, I ∪ II = [0, 1]N\Gε and III ∪ IV =
Gε\D(n) for an arbitrary choice of ε > 0 and n ∈ IN.

Let us provide some intuition here for the case |N | = 2. Participation profiles in I∪II obviously

have a small contribution if ε is small. But why is the same true for the profiles in III ∪ IV that

nearly covers the full participation profile set [0, 1]N ? The point here is that for a fixed ε > 0 and

13Here, ‖ · ‖ is the Euclidean norm, i.e., ‖λ‖ =
√

∑

i∈N λ2
i .

14Theorem 3.9 can be proven by using a diagonal width n− 1

2
+δ for some δ ∈

(

0, 1
2(|N|+2)

)

. The proofs are based

on δ = 1
8|N|

.
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large n the fraction of paths crossing III ∪ IV is close to 0, or, stated differently, the fraction of

paths that stay within the neighborhood of the diagonal is close to 1. The reason for this is the

following. A path from e∅ to eN can be seen as a sequence of 2n steps of which n steps move to the

right and n steps move up. So selecting an arbitrary path from Pn corresponds to a sequence of 2n

steps X1,X2, . . . ,X2n which are random variables taking the value “move to the right” and “move

up”. These random variables are not independent as a path has to end in eN : if after k steps more

“moves to the right” occurred than “moves up” then the probability of a next “move up” increases.

In other words, if the path deviates from the diagonal the probability that the path moves back to

the diagonal increases. There is reversion to the diagonal. Now consider as a benchmark a random

walk Y1, Y2, . . . , Y2n where this reversion effect to the diagonal is absent: the random variables are

independent and identically distributed and take value “move to the right” and “move up” both

with probability 1/2. For sure, such a random walk does not need to end up in eN . The number of

moves to the right after the first k steps follows the binomial distribution Bin(k, 1/2) with mean k/2

(which corresponds to a position on the diagonal) and standard deviation
√
k/2. Such a standard

deviation corresponds to a position at a distance of
√
2(
√
k/2) · (1/n) from the diagonal. As k ≤ 2n

this position is definitely at most 1/
√
n away from the diagonal. The boundaries of the set D(n)

are at a distance of n−1/2+1/16 from the diagonal. Crossing this boundary corresponds to a random

walk that moves at least n1/16 standard deviations away from the mean. According to the inequality

of Chebychev this happens with probability converging to 0 if n becomes large.

Combined, our results imply that only participation profiles in the set ΛNN (ε, n) := Gn
ε ∩

D(n)\B(n) have a non-negligible contribution to Kavg,n(R) if n becomes sufficiently large. In

Lemma C.17 of the Online Appendix, we show that for all ε > 0:

ΛNN (ε, n) ⊂
⋃

m∈{1,...,p∗}

AQm , for large n. (24)

Hence, for participation profiles λ that have non-negligible contribution to Kavg,n(R), there exists

an m ∈ {1, . . . , p∗} such that λ ∈ AQm . This allows us to determine the marginal contribution

r(λ + (1/n) · ei) − r(λ) in (22) for all these participation profiles. Indeed, because r is partially

differentiable in an 1
n -environment of any λ /∈ B(n) for n sufficiently large, it follows from (17) that

for all λ ∈ AQm\B(n), the marginal contribution is given by:

r(λ+ (1/n) · ei)− r(λ) =
1

n

∂

∂λi
r(λ) =

1

n
EQm[Xi], for all i ∈ N, (25)
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for n sufficiently large. Combining the fact that only participation profiles in ΛNN (ε, n) have a non-

negligible contribution to (22) if n becomes large with (24) and (25) suggests that limn→∞Kavg,n
i (R)

exists and is of the form
∑p∗

m=1 φmEQm [Xi], for some weights φm. The following theorem provides

the formal result and gives a closed form expression for the weights φm.

Theorem 3.9 For all R ∈ R, it holds that limn→∞Kavg,n(R) exists and is given by

lim
n→∞

Kavg,n
i (R) =

p∗∑

m=1

φmEQm [Xi], for all i ∈ N, (26)

with

φm =
µ (Sm)

µ (S)
, (27)

where µ is the hypersurface measure15 and

S =

{
z ∈ IRN :

∑

i∈N

zi = 0, ‖z‖ = 1

}
(28)

Sm =

{
z ∈ S : fQm(z) = max

ℓ∈{1,...,p∗}
fQℓ

(z)

}
, for all m ∈ {1, . . . , p∗}. (29)

The set S is a set of normalized directions perpendicular to the diagonal. The set Sm consists

of all directions z ∈ S that will bring us in the set AQm if we start in eN and move an infinitesimal

amount in the direction z.

Note that

p∗∑

m=1

φm = 1. (30)

If p∗ > 1 it follows from (13) that for all m ∈ {1, . . . p∗}, the allocation (EQm [Xi])i∈N is the Aumann-

Shapley value of the risk capital allocation problem that would arise if the risk capital function r was

modified marginally such that r(λ) =
∑

i∈N λiEQm [Xi] in a small neighbourhood around λ = eN (so

that p∗ = 1 for the modified problem). Hence, the allocation rule limn→∞Kavg,n(R) is a weighted

average of Aumann-Shapley values of “nearby” differentiable allocation problems. Therefore, we

refer to limn→∞Kavg,n(R) as the Weighted Aumann-Shapley value.

15The set S is an (|N | − 2)-dimensional sphere in IRN . In case |N | = 3 the set S is a circle and µ represents arc
length, in case |N | = 4 the set S is a sphere and µ represents surface area, etcetera.

20



Definition 3.10 The allocation rule KWAS : R → IRN is given by:

KWAS(R) := lim
n→∞

Kavg,n(R), for all R ∈ R.

In the next example, we determine KWAS(R) for a given risk capital allocation problem and we

illustrate the geometric interpretation of the corresponding weights φm from (27).

Example 3.11 We consider a firm with three divisions, N = {1, 2, 3}, and five possible states of

the world, i.e., Ω = {ω1, . . . , ω5} with equal probabilities P({ω}) = 1
5 for all ω ∈ Ω. We consider

the case where the regulator does not allow insolvency, i.e., the amount of risk capital needs to be

sufficient to cover the highest possible loss. Hence, the risk measure is defined as follows,

ρ (X) = max
j∈{1,2,3,4,5}

{X(ωj)} ,

for any X ∈ IRΩ. This risk measure satisfies (2) with Q = {Q1, . . . ,Q5}, where Qm({ω}) = 1 if

ω = ωm and Qm({ω}) = 0 otherwise, for m ∈ {1, 2, 3, 4, 5}. Now suppose the three risks are given

by

X1 =




1

0

0

1

−1




, X2 =




0

0

1

−1

2




, and X3 =




0

1

0

1

−1




.

Here, the j-the element of vector Xi represents the loss in state ωj, for j ∈ {1, 2, 3, 4, 5}. The

corresponding fuzzy risk capital game r as defined in (8) is given by

r(λ) = ρ

(
∑

i∈N

λi ·Xi

)
= max

j∈{1,2,3,4,5}

{
∑

i∈N

λi ·Xi(ωj)

}
, for all λ ∈ [0, 1]N . (31)
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(0, 0, 0)

eN

(3, 0, 0)

(0, 0, 3)

(0, 3, 0)

Figure 3: The cube [0, 1]N and its diagonal. The shaded area is the simplex T :=
{
λ ∈ IRN

+ : λ̄ = 1
}
.

This yields

r(λ) =





λ1 if λ1 ≥ λ2 ≥ λ3,

λ3 if λ3 ≥ λ2 ≥ λ1,

λ2 if λ2 ≥ λ1, λ2 ≥ λ3, λ2 ≤ λ1 + λ3,

λ1 − λ2 + λ3 if λ1 ≥ λ2, λ3 ≥ λ2,

−λ1 + 2λ2 − λ3 if λ2 ≥ λ1 + λ3.

(32)

It follows immediately from (32) that r(λ) is not differentiable at λ = (1, 1, 1), and so the Aumann-

Shapley value does not exist. Because eN ∈ AQm for m ∈ {1, 2, 3, 4} and eN 6∈ AQ5 , it holds that

p∗ = 4. The Aumann-Shapley values of the four differentiable fuzzy games that are “nearby” r at

λ = (1, 1, 1) are given by am = (EQm[Xi])i∈N , for m ∈ {1, 2, 3, 4}, i.e.,

a1 = (1, 0, 0), a2 = (0, 0, 1), a3 = (0, 1, 0), and a4 = (1,−1, 1). (33)

To determine KWAS(R) from (26), it remains to determine the weights φm for m ∈ {1, 2, 3, 4},
that should be assigned to these four values. We first consider the simplex T defined by T := {λ ∈
IRN

+ : λ̄ = 1}, as displayed in Figure 3. This simplex T is also displayed in Figure 4, together
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(3, 0, 0) (0, 3, 0)

(0, 0, 3)

eN

AQ1

AQ2

AQ3

AQ4

AQ5

0

α1
α3

α2α4

S2

S4

S1

S3

Figure 4: The simplex T and its intersections with the sets AQm , m ∈ {1, 2, 3, 4, 5}, and the set of
directions S partitioned in the subsets Sm, m ∈ {1, 2, 3, 4}.

with all intersections T ∩ AQm , m ∈ {1, 2, 3, 4, 5}. The dashed circle consists of all points eN + z

where directions z are elements of the unit circle S. The subset Sm, m ∈ {1, 2, 3, 4}, consists of

all directions z ∈ S that will bring us in the set AQm if we start in eN and move an infinitesimal

amount in direction z. The unit circle S partitioned in the sets S1, S2, S3 and S4 is displayed in

Figure 4 as well. With two dimensions, the measure µ represents arc length and the weights φm are

found by computing the normalized arc lengths of the sets Sm, m ∈ {1, 2, 3, 4}. This is equivalent to

computing the normalized angles αm, m ∈ {1, 2, 3, 4}. This yields weights φ1 = 1
6 , φ2 = 1

6 , φ3 = 1
3

and φ4 =
1
3 . It then follows from (26) and (33) that

KWAS(R) =

(
1

2
, 0,

1

2

)
.

4 Properties of the Weighted Aumann-Shapley value

It follows immediately from (11), (26) and (27) that the Weighted Aumann-Shapley value is an

element of the fuzzy core. Because the Aumann-Shapley value, if it exists, is the unique element of

the fuzzy core (Aubin, 1981), this in turn immediately implies that the Weighted Aumann-Shapley

value equals the Aumann-Shapley value if the risk capital function r is differentiable in eN . Hence,

we have the following result.

Proposition 4.1 It holds that:

(i) For all R ∈ R, it holds that KWAS(R) ∈ FCore(R).

(ii) For all R ∈ R′, it holds that KWAS(R) = KAS(R).
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If the firm consists of two divisions, the weights φm of the Weighted Aumann-Shapley value can

only take values equal to 0, 1/2, or 1. In that case, the following corollary shows an expression of

the Weighted Aumann-Shapley value.

Corollary 4.2 If |N | = 2 and R ∈ R, it holds that:

KWAS
i (R) =

1

2
max{EQm [Xi] : m ∈ {1, . . . , p∗}}+1

2
min{EQm [Xi] : m ∈ {1, . . . , p∗}}, for all i ∈ N.

If |N | = 2, Corollary 4.2 shows that the Weighted Aumann-Shapley value equals the average of

a worst-case Aumann-Shapley value and a best-case Aumann-Shapley value, where the Aumann-

Shapley values are taken from the set of Aumann-Shapley values corresponding to “nearby” differ-

entiable allocation problems.

Based on Denault (2001), we define the following properties of a risk capital allocation rule

K : R̃ → IRN :

• Translation Invariance: For all R = ((Xi)i∈N , ρ) ∈ R̃, it holds that if R̃ = ((X̃i)i∈N , ρ) ∈ R̃
where (X̃i)i∈N = (Xj + c · eΩ,X−j) for some c ∈ IR and j ∈ N , then K(R̃) = K(R) + c · ej .

• Scale Invariance: For all R = ((Xi)i∈N , ρ) ∈ R̃, it holds that if R̃ = ((X̃i)i∈N , ρ) ∈ R̃ where

(X̃i)i∈N = (c ·Xi)i∈N for some c > 0, then K(R̃) = c ·K(R).

• Monotonicity : For all R ∈ R̃ where ρ is non-decreasing in the sense that ρ
(∑

i∈N λiXi

)
≤

ρ
(∑

i∈N λ∗
iXi

)
whenever λ, λ∗ ∈ [0, 1]N and λ ≤ λ∗, we have K(R) ≥ 0.

Denault (2001) shows that the regular Aumann-Shapley value satisfies these three properties on

R′. We next show that the Weighted Aumann-Shapley value satisfies these three properties on R.

Theorem 4.3 The Weighted Aumann-Shapley value satisfies Translation Invariance, Scale Invari-

ance and Monotonicity on R.

We conclude this section with three remarks.

Remark Because all of our proofs rely only on positive homogeneity and piecewise linearity of the

function r, all our results extend to this more general setting by replacing fQm by a more general

linear function fm, for m ∈ {1, . . . , p}, and replacing EQm[Xi] by
∂r
∂λi

(λ) for λ ∈ [0, 1]N such that

r(λ) = fm(λ)} for m ∈ {1, . . . , p}. This more general case is analyzed in the working paper version

Boonen et al. (2018).
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Remark The Weighted Aumann-Shapley value, as presented in (26), can also be computed via the

following integral formula:

KWAS
i (R) = E

[∫ 1

0
∂r(γeN , Y, ei)dγ

]
(34)

for every i ∈ N , where r is defined in (8). Here, Y is a random vector in S that is uniformly

distributed over S, E is the expectation operator with respect to Y , and

∂r(γeN , Y, ei) = lim
ε↓0

dr(γeN , Y + εei)− dr(γeN , Y )

ε
,

where dr(x, y) is the directional derivative of r in x in the direction y. In short, in order to

compute KWAS
i (R), for every realization y of the random vector Y compute and integrate the

directional derivatives of r in the direction ei on the line segment obtained by shifting the diagonal

an infinitesimal amount in the direction y, and finally compute the expectation of these outcomes.

We note that for coherent risk measures, Positive Homogeneity of the measure implies that the risk

capital function r is positive homogeneous (i.e., r(tλ) = tr(λ) for every λ ∈IRN
+ and t > 0), which

implies that ∂r(γeN , Y, ei) is independent of γ. Hence, (34) simplifies to

KWAS
i (R) = E [∂r(eN , Y, ei)] , for all i ∈ N. (35)

The equivalence between (26) and (35) follows from the fact that for any realization y of the random

vector Y , it holds that ∂r(eN , y, ei) ∈ {EQm [Xi] : m ∈ {1, . . . , p∗}} and the weights φm in (26) satisfy

φm = P(∂r(eN , Y, ei) = EQm [Xi]) for all m ∈ {1, . . . , p∗}.
Formula (34) is similar to the Mertens value, but differs in the fact that for the Mertens value

Y is a random vector in IRN where the coordinates are independent random variables, each one

having the standard Cauchy distribution (Haimanko, 2001). An overview of the Mertens value is

given by Neyman (2002). We show in Boonen et al. (2018) that the Weighted Aumann-Shapley

value is not identical to the Mertens value.

Remark Our paper focused on the case where the risk measure is finitely generated and the state

space is finite. However, the asymptotic approach of Section 3 may be suited for a broader class of

risk measures on finite and infinite state spaces for which (34) is well-defined. For example, when

the risk capital allocation function r is convex (which is the case for all coherent risk measures),

the necessary directional derivatives in (34) exist. As a suggestion for further research, we leave
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open the characterization of the class of convex risk capital allocation functions for which (34) is

well-defined and is equal to the limit of the allocation rules Kavg,n(R) as n goes to infinity.

5 Conclusion

This paper considers the allocation problem that arises when the total risk capital withheld by a firm

needs to be divided over several portfolios or divisions within the firm. We propose a generalization

of the Aumann-Shapley value that is also well-defined if the risk capital allocation function is not

partially differentiable at the level of full participation. The allocation rule that we propose is

inspired by the Shapley value in a fuzzy setting, but is derived using a much weaker asymptotic

approach than the one proposed by Aumann and Shapley (1974), which is not valid for fuzzy games

corresponding to risk capital allocation problems. For a given grid on a fuzzy participation set,

one can define paths on this grid and for each path one can construct a corresponding path-based

allocation rule. The average of these path-based allocation rules is an allocation rule itself. We

show that the limit of this average exists when grid size converges to zero. The rule that we propose

is equal to this limit.
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A Proofs of Sections 2.1, 3.1 and 3.2

Proof of Proposition 2.2 Let Q be the generating probability measure set of ρ that is defined in

(3), i.e.,

Q = {Q ∈ P(Ω,F) : Q(A) ≥ υ(A) for all A ∈ F} ,

where υ : F → IR+ is supermodular, υ(∅) = 0 and υ(Ω) = 1. Note that as the state space Ω is

finite, the σ-algebra F is finite as well. Because F is finite, Q is defined via a finite number of linear

inequalities on [0, 1]Ω. So, Q is a convex polytope. Let Q̃ be the finite collection of extreme points

of this convex polytope. Because Q → EQ[X] is a linear map on Q for every X ∈ IRΩ, (1) is a linear

programming problem and, therefore, we have

ρ(X) = sup {EQ [X] : Q ∈ Q} = max
{
EQ [X] : Q ∈ Q̃

}
, for all X ∈ IRΩ.

Hence, ρ(X) equals the maximum of all expectations of X under the probability measures in Q̃.

Hence, Q̃ is finite a generating probability measure set. This concludes the proof. �

Proof of Proposition 2.3 The set Qυ defined in (3) is the core of the Transferable Utility game

(Ω, υ), where the state space Ω is now interpreted as a “player” set. Supermodularity of the function

υ is equivalent to convexity of the game (Ω, υ) (Shapley, 1971). Moreover, Shapley (1971) shows

that the core of a convex game is the convex hull of the marginal vectors. The marginal vectors of

the game are the vectors mσ,υ ∈ IRΩ with mσ,υ
σ(j) := Qσ,υ(ωσ(j)), for all σ ∈ Π(Ω).

Proof of Proposition 3.2 For all R ∈ R, we have

r(λ) = max

{
EQ

[
∑

i∈N

λiXi

]
: Q ∈ Q(ρ)

}

= max

{
∑

i∈N

λiEQ [Xi] : Q ∈ Q(ρ)

}

= max{fQ(λ) : Q ∈ Q(ρ)}, (36)

for all λ ∈ [0, 1]N . This concludes the proof. �
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Proof of Proposition 3.4 (i) Follows directly from the fact that r is the maximum of finitely

many linear (hence partially differentiable) functions fQm,m ∈ {1, . . . , p}.
We continue with the proof of (ii). We obtain for all ℓ,m ∈ {1, . . . , p} that

AQℓ
∩AQm =

{
λ ∈ [0, 1]N : r(λ) = fQℓ

(λ) = fQm(λ)
}

⊆
{
λ ∈ [0, 1]N : fQℓ

(λ) = fQm(λ)
}

=

{
λ ∈ [0, 1]N :

∑

i∈N

λi (EQℓ
[Xi]−EQm [Xi]) = 0

}
. (37)

If EQℓ
[Xi] = EQm [Xi] for all i ∈ N , we have AQℓ

= AQm which implies ℓ = m. So, the set AQℓ
∩AQm

is a (possibly empty) subset of a hyperplane passing through λ = e∅ for all ℓ,m ∈ {1, . . . , p} such

that ℓ 6= m. We have by construction that

[0, 1]N\L(R) =
⋃

ℓ,m∈{1,...,p}:ℓ 6=m

AQℓ
∩AQm , for all R ∈ R. (38)

From this it follows that the collection of profiles where the risk capital function r is not partially

differentiable is a subset of the collection of a finite number of hyperplanes passing trough λ = e∅.

�

Proof of Proposition 3.6 Let n ∈ IN and P ∈ Pn. Then, the result follows directly from

∑

i∈N

Kpath,P
i (R) =

∑

i∈N

|N |n−1∑

k=0

[r(P (k + 1))− r(P (k))] 1i(P,k)=i (39)

=

|N |n−1∑

k=0

[r(P (k + 1))− r(P (k))]
∑

i∈N

1i(P,k)=i (40)

=

|N |n−1∑

k=0

[r(P (k + 1))− r(P (k))] (41)

= r(P (|N |n)) − r(P (0))

= r(eN ), (42)

where 1i(P,k)=i = 1 if i(P, k) = i and 1i(P,k)=i = 0 otherwise. Here, (39) follows from Definition 21,

(40) follows by interchanging the summations, (41) follows from the fact that there is precisely one

i ∈ N such that i(P, k) = i for all k ∈ {0, . . . , |N |n − 1} and (42) follows from Definition 3.5(i).

This concludes the proof. �
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B Proof of Proposition 3.8

To prove Proposition 3.8, we first prove the following lemma.

Lemma B.1 Let R ∈ R and n ∈ IN. Then, we have for all i ∈ N that

Kavg,n
i (R) =

∑

λ∈Gn:λi<1

tn(λ)pni (λ)[r (λ+ (1/n) · ei)− r(λ)], (43)

where

tn(λ) =

∏
j∈N


 n

nλj





 |N |n

|N |nλ̄




, (44)

and

pni (λ) =
1− λi∑

j∈N (1− λj)
, (45)

for all λ ∈ Gn\{eN}, λ̄ = 1
|N |

∑
i∈N λi, for all λ ∈ IRN , and where the risk capital function r is

defined in (8).

Proof of Lemma B.1 In this proof, we use the following notation. The set G̃n
k is given by

G̃n
k =

{
λ ∈ Gn :

∑

i∈N

λi =
k

n

}
, for all n ∈ IN and k ∈ {0, . . . , |N |n}. (46)

The set G̃n
k consists of all participation profiles on the grid where the sum of the coordinates is

constant. Note that we have

G̃n
k = {P (k) : P ∈ Pn}, for all n ∈ IN and k ∈ {0, . . . , |N |n}. (47)

Next, we show (43). Then, Kavg,n(R) can be rewritten as

Kavg,n(R) =
1

|Pn|
∑

P∈Pn

Kpath,P (R) (48)

30



=
1

|Pn|
∑

P∈Pn

|N |n−1∑

k=0

[r(P (k + 1))− r(P (k))] · ei(P,k) (49)

=

|N |n−1∑

k=0

∑

P∈Pn

1

|Pn| [r(P (k + 1))− r(P (k))] · ei(P,k), (50)

where (48) follows from Definition 3.7 and (49) follows from Definition 21. Let i ∈ N . Then, we

obtain

Kavg,n
i (R) =

|N |n−1∑

k=0

∑

P∈Pn:i(P,k)=i

1

|Pn| [r(P (k + 1)) − r(P (k))] (51)

=

|N |n−1∑

k=0

∑

P∈Pn:i(P,k)=i

1

|Pn| [r(P (k) + (1/n) · ei)− r(P (k))] (52)

=

|N |n−1∑

k=0

∑

λ∈G̃n
k

∑

P∈Pn:
i(P,k)=i,P (k)=λ

1

|Pn| [r (λ+ (1/n) · ei)− r(λ)] (53)

=

|N |n−1∑

k=0

∑

λ∈G̃n
k
:λi<1

[r (λ+ (1/n) · ei)− r(λ)]
∑

P∈Pn:
i(P,k)=i,P (k)=λ

1

|Pn| (54)

=

|N |n−1∑

k=0

∑

λ∈G̃n
k
:λi<1

[r (λ+ (1/n) · ei)− r(λ)] tn(λ)pni (λ) (55)

=
∑

λ∈Gn:λi<1

[r (λ+ (1/n) · ei)− r(λ)] tn(λ)pni (λ), (56)

where we define

tn(λ) =

∣∣{P ∈ Pn : P
(
|N |nλ̄

)
= λ

}∣∣
|Pn| ,

as the fraction of paths in Pn that pass through λ and

pni (λ) =

∣∣{P ∈ Pn : P
(
|N |nλ̄

)
= λ, i

(
P, |N |nλ̄

)
= i
}∣∣

∣∣{P ∈ Pn : P
(
|N |nλ̄

)
= λ

}∣∣ ,

as the fraction of the paths in Pn passing through λ, that pass through λ+ 1
n · ei as well. Here, (51)

follows from (50), (52) follows from (20), (53) follows from (47), (54) follows from the fact that if

k ∈ {0, . . . , |N |n− 1} and λ ∈ G̃n
k are such that λi = 1 then no path P ∈ Pn exists with i(P, k) = i
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and P (k) = λ, (55) follows from the fact that if k ∈ {0, . . . , |N |n − 1} and λ ∈ G̃n
k are such that

P (k) = λ then k = |N |nλ̄ and (56) follows from the fact that
⋃|N |n−1

k=1 Gn
k = Gn and Gn

k1
∩Gn

k2
= ∅

if k1 6= k2.

Next, we show (44). Any path can be regarded as an ordered sequence of |N |n steps, where for

every division i ∈ N precisely n steps are made in the direction of division i. Hence,

|Pn| = (|N |n)!
(n!)|N |

. (57)

Let λ ∈ Gn\{eN}. The number of paths P in Pn such that P
(
|N |nλ̄

)
= λ is given by

∣∣{P ∈ Pn : P
(
|N |nλ̄

)
= λ

}∣∣ =
(
|N |nλ̄

)
!
(
|N |n(1− λ̄)

)
!∏

j∈N (nλj)!(n(1 − λj))!
. (58)

Hence, one can verify that dividing (58) by (57) yields (44). Note that, keeping λ̄ constant, the var-

ious values of tn(λ) constitute a density function of some multivariate hypergeometric distribution.

Finally, we show (45). The number of paths P in Pn with P (|N |nλ̄) = λ and i(P, |N |nλ̄) = i

(i.e. passing through λ and λ+ (1/n)ei) is given by:

∣∣{P ∈ Pn : P
(
|N |nλ̄

)
= λ, i

(
P, |N |nλ̄

)
= i
}∣∣ = (|N |nλ̄)!(|N |n(1 − λ̄)− 1)![∏

j∈N (nλj)!
]
·
[∏

j∈N\{i}(n(1− λj))!
]
· (n(1− λi)− 1)!

.

(59)

Dividing (59) by (58) yields (45) in a straightforward way. �

Proof of Proposition 3.8 It follows immediately from the proof of Lemma B.1 that the function

tn(λ) represents the probability that λ lies on a path, if we randomly select a path from Pn according

to the discrete uniform distribution. Moreover, pni (λ) is the conditional probability that λ+(1/n) ·ei
lies on a path, provided that the path passes through λ.

C Proof of Theorem 3.9

We use the following notation.

• We use the Bachmann-Landau notation. Let f, g : IN → IR be two real-valued functions.

Then, we write f(n) = O(g(n)) if there is a K > 0 such that |f(n)| ≤ K|g(n)| for every

n ∈ IN. If f : IN → IR is such that f(n) = O(n−p) for every p > 0, we write f(n) = O(n−∞).
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Moreover, if g : IR++ → IR is such that there is a K > 0 such that |g(ε)| ≤ Kε for every ε > 0,

we write g(ε) = O(ε). Here, IR++ = (0,∞) is the set of all positive, real numbers.

• Let f : IR++ × IN → IR and g : IN → IR. Then, we write f(ε, n) = Oε(g(n)) if for every ε > 0,

there is a Kε > 0 such that |f(ε, n)| ≤ Kε|g(n)| for all n ∈ IN. This notation is an extension

of the standard Bachmann-Landau notation.

• For all λ ∈ IRN , we write ‖λ‖ =
√∑

i∈N λ2
i as the Euclidean norm of λ.

• We define the set of participation profiles that are not nearby λ = e∅ and eN as follows. For

all n ∈ IN and ε > 0, we define Gε =
{
λ ∈ [0, 1]N : ε ≤ λ̄ ≤ 1− ε

}
, and Gn

ε = Gn ∩Gε.

• We define Dd as the set of participation profiles in the d-environment of the diagonal, i.e., for

all d > 0, we have Dd = {λ ∈ [0, 1]N : ‖λ − λ̄ · eN‖ < d}. Moreover, we define for all n ∈ IN

the set D(n) = Ddn , where dn = n
− 1

2
+ 1

8|N| .16

To prove Theorem 3.9, we will prove the following three propositions. The proofs of these

propositions are in Subsections C.1, C.2, and C.3, respectively.

Proposition C.1 Let i ∈ N and define Dom = {(ε, n, λ) : ε > 0, n ∈ IN, λ ∈ Gn
ε }. Then, we have

tn(λ) =
(
e−c(λ̄)n‖λ−λ̄·eN‖2

)
b(n, λ̄)[1 +Oε(n− 1

4 )], if λ ∈ D(n), (60)

= Oε(n−∞), if λ /∈ D(n), (61)

and

pni (λ) =
1

|N | [1 +Oε(n− 1
4 )], if λ ∈ D(n), (62)

= O(1), if λ /∈ D(n), (63)

for all (ε, n, λ) ∈ Dom, where

c(λ̄) =
1

2λ̄(1− λ̄)
> 0, (64)

16Theorem 3.9 can be proven by using a diagonal width dn = n− 1

2
+δ for some δ ∈

(

0, 1
2(|N|+2)

)

. The proofs are

based on δ = 1
8|N|

.
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and

b(n, λ̄) = (2πn)
1
2
(1−|N |)

√
|N |(λ̄(1− λ̄))

1
2
(1−|N |). (65)

For large n, we get that tn(λ) only depends on λ via λ̄ and ‖λ − λ̄ · eN‖ and that pni (λ) is

symmetric close to the diagonal. For a given n ∈ IN and λ̄ ∈
{
0, 1

n , . . . , 1
}
, the function b(n, λ̄) is

approximately the probability that a path goes through the diagonal (i.e., through λ̄ · eN ) and c(λ̄)

indicates a speed at which tn(λ) converges to zero for participation profiles away from the diagonal.

The function tn(λ) is exponentially small in n if λ is not nearby to the diagonal, i.e., λ /∈ D(n).

Moreover, pni (λ) is bounded. Therefore, only participation profiles very close to the diagonal are

relevant for Kavg,n if n converges to infinity.

To proceed with the proof, we define the function hn : [0, 1]N\{e∅, eN} → IR++ as follows:

hn(λ) =
(
e−c(λ̄)n‖λ−λ̄·eN‖2

)
b(n, λ̄)

1

|N | , (66)

for all λ ∈ [0, 1]N\{e∅, eN} and n ∈ IN, where c(λ̄) is defined in (64) and b(n, λ̄) in (65).

It follows from Proposition C.1 that

tn(λ)pni (λ) = hn(λ)[1 +Oε(n− 1
4 )], (67)

for all (ε, n, λ) ∈ Dom such that λ ∈ D(n). This leads to the following approximation.

Proposition C.2 Let R ∈ R. Then, for all i ∈ N we have

Kavg,n
i (R) =

p∗∑

m=1

EQm [Xi]φ
n,ε
m +O(ε) +Oε(n− 1

4 ),

where

φn,ε
m =

1

n

∑

λ∈Gn
ε∩D(n)∩AQm

hn(λ), (68)

with p∗ and Qm as defined in Proposition 3.2.

The expression φn,ε
m is a weight for a gradient of the risk capital function r “nearby” the diagonal,

namely (EQm [Xi])i∈N . Next, we show that we can replace this weight by an expression that has

a geometric interpretation and is not dependent on n or ε anymore. This result is obtained by
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replacing the sum in (68) by an integral (see Lemma C.20 and Lemma C.21) and, thereafter,

solving this integral.

Proposition C.3 For all R ∈ R, it holds that

Kavg,n
i (R) =

p∗∑

m=1

EQm [Xi]φm +O(ε) +Oε(n− 1
4 ), for all i ∈ N,

where φm for m ∈ {1, . . . , p∗} is as defined in (27).

Proof of Theorem 3.9 Let R ∈ R. From Proposition C.3, we get for all n ∈ IN and ε > 0 that

∣∣∣∣∣∣
Kavg,n

i (R)−
p∗∑

m=1

EQm [Xi]φm

∣∣∣∣∣∣
< Kε+ Lεn

− 1
4 , where K,Lε > 0.

Pick an η > 0. Let ε = η
2K and Nη such that LεN

− 1
4

η = 1
2η. Then, we have for all n > Nη that

∣∣∣∣∣∣
Kavg,n

i (R)−
p∗∑

m=1

EQm [Xi]φm

∣∣∣∣∣∣
< η.

This concludes the proof. �

In the remaining three subsections of this Online Appendix, we present the proofs of Propositions

C.1, C.2, and C.3, respectively.

C.1 Proof of Proposition C.1

We use the following definitions, notation and properties:

• The function g : IR+ → IR is given by

g(x) =





x ln(x) if x > 0,

0 if x = 0.

• The function G : [0, 1]N → IR is given by

G(λ) = |N |g
(
λ̄
)
−
∑

i∈N

g(λi) + |N |g
(
1− λ̄

)
−
∑

i∈N

g(1− λi), for all λ ∈ [0, 1]N . (69)
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• For all λ ∈ [0, 1]N , we define

Nλ
1 = {i ∈ N : λi > 0} and Nλ

2 = {i ∈ N : λi < 1}. (70)

• For x, y ∈ IR we denote [x; y] as the interval [min{x, y},max{x, y}], i.e., [x; y] = [x, y] if x ≤ y

and [x; y] = [y, x] if x > y.

• Some arithmetic rules of the Bachmann-Landau notation are given by:

f(n) = O(na), g(n) = O(nb) → f(n) + g(n) = O(na), for all a ≥ b,

f(n) = O(na), g(n) = O(n−∞) → f(n) + g(n) = O(na), for all a ∈ IR,

f(n) = O(na), g(n) = O(nb) → f(n)g(n) = O(na+b), for all a, b ∈ IR,

f(n) = O(na) → f(n) = O(nb), for all a ≤ b.

Moreover, we have

f(n) = O(na), g(n) = Oε(nb) → f(n) + g(n) = Oε(na), for all a ≥ b.

• It is well-known that for any k ∈ IR, δ > 0 and c ∈ (0, 1) the function f : IN → IR++, defined

by f(n) = nkcn
δ
, is such that f(n) = O(n−∞).

C.1.1 Some preliminary lemmas

Lemma C.4 The function g is continuous and strictly convex, i.e., if x, y ∈ IR+, x 6= y and

λ ∈ (0, 1), then g(λx+ (1− λ)y) < λg(x) + (1− λ)g(y).

Proof Continuity of f follows from continuity of x → x ln(x) for x > 0 and the fact that limx↓0 x ln(x) =

0. Strict convexity follows from g′′(x) = 1
x > 0 for every x > 0. �

Lemma C.5 For the function G the following holds:

1. G is continuous;

2. G(λ) ≤ 0 for all λ ∈ [0, 1]N ; moreover, G(λ) = 0 if and only if λ1 = λ2 = · · · = λ|N |;

3. for all λ ∈ (0, 1)N , we have

G(λ) = −c(λ̄)‖λ− λ̄ · eN‖2 +R,
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where |R| ≤ 1
3 |N |min{λ1, . . . , λ|N |, 1− λ1, . . . , 1− λ|N |}−2‖λ− λ̄ · eN‖3.

Proof 1. This follows from continuity of g (Lemma C.4).

2. This follows from strict convexity of g (Lemma C.4).

3. Let λ ∈ (0, 1)N and i ∈ N . Then, there exists a ξi,1 ∈ [λi; λ̄] such that

g(λi) = g(λ̄) + g′(λ̄)(λi − λ̄) +
g′′(λ̄)

2
(λi − λ̄)2 +

g′′′(ξi,1)

6
(λi − λ̄)3 (71)

= g(λ̄) + (ln(λ̄) + 1)(λi − λ̄) +
1

2λ̄
(λi − λ̄)2 − 1

6ξ2i,1
(λi − λ̄)3, (72)

where (71) follows from Taylor’s theorem. Note that

∑

i∈N

(λi − λ̄) = 0. (73)

Then, summing the expression (72) of g(λi) for all i ∈ N yields

∑

i∈N

g(λi) = |N |g(λ̄) + 1

2λ̄
‖λ− λ̄ · eN‖2 −

∑

i∈N

1

6ξ2i,1
(λi − λ̄)3.

Similarly, we obtain

∑

i∈N

g(1− λi) = |N |g(1 − λ̄) +
1

2(1− λ̄)
‖λ− λ̄ · eN‖2 +

∑

i∈N

1

6ξ2i,2
(λi − λ̄)3.

where ξi,2 ∈ [1 − λi; 1 − λ̄] for all i ∈ N . Now the upper bound of |R| follows from ξi,1 ≥
min{λ1, . . . , λ|N |}, ξi,2 ≥ min{1−λ1, . . . , 1−λ|N |} and |(λi− λ̄)3| ≤ ‖λ− λ̄ ·eN‖3 for all i ∈ N .

�

Lemma C.6 Let d, ε > 0. Then, for all λ ∈ Gε ∩Dd, we have

min{λ1, . . . , λ|N |, 1− λ1, . . . , 1− λ|N |} > ε− d.

Proof Let λ ∈ Gε∩Dd. Since
∣∣λi − λ̄

∣∣ ≤
∥∥λ− λ̄ · eN

∥∥ < d, we obtain λi > λ̄−d and 1−λi > 1−λ̄−d

for all i ∈ N . Moreover, we have ε ≤ λ̄ ≤ 1− ε. Hence, we obtain λi > ε− d and 1− λi > ε− d for

all i ∈ N . This concludes the proof. �
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Lemma C.7 For all (n, λ) such that n ∈ IN and λ ∈ Gn\{e∅, eN}, we have

tn(λ) =
(
eG(λ)

)n
(2πn)

1
2
(1+|N |−|Nλ

1 |−|Nλ
2 |)
√

|N | (λ̄(1− λ̄))
1
2

∏
i∈Nλ

1

√
λi
∏

i∈Nλ
2

√
1− λi

·
[
1 +O

(
1

nmin({λj : j ∈ Nλ
1 } ∪ {1− λj : j ∈ Nλ

2 })

)]
, (74)

where Nλ
1 and Nλ

2 are defined in (70).

Proof Using (44), we obtain for all (n, λ) such that n ∈ IN and λ ∈ Gn\{e∅, eN} that

tn(λ) =

∏
i∈N


 n

nλi





 |N |n

|N |nλ̄




=
(n!)|N |(|N |nλ̄)!(|N |n(1− λ̄))!

(|N |n)!∏i∈N [(nλi)!(n(1− λi))!]

=
(n!)|N |(|N |nλ̄)!(|N |n(1 − λ̄))!

(|N |n)!∏i∈Nλ
1
(nλi)!

∏
i∈Nλ

2
(n(1− λi))!

.

Taking the logarithm yields

ln(tn(λ)) = |N | ln(n!) + ln((|N |nλ̄)!) + ln((|N |n(1 − λ̄))!)− ln((|N |n)!)

−
∑

i∈Nλ
1

ln((nλi)!)−
∑

i∈Nλ
2

ln((n(1− λi))!). (75)

Now, using Stirling’s approximation, which is given by

ln(n!) = g(n)− n+
1

2
ln(2πn) +O

(
1

n

)
, for all n ∈ IN,

formula (75) can be written as

ln(tn(λ)) = |N |g(n) − |N |n+
1

2
|N | ln(2πn) +O

(
1

n

)

+ g(|N |nλ̄)− |N |nλ̄+
1

2
ln(2π|N |nλ̄) +O

(
1

|N |nλ̄

)

+ g(|N |n(1 − λ̄))− |N |(n(1 − λ̄)) +
1

2
ln(2π|N |n(1 − λ̄)) +O

(
1

|N |n(1− λ̄)

)
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−
[
g(|N |n)− |N |n+

1

2
ln(2π|N |n) +O

(
1

|N |n

)]

−
∑

i∈Nλ
1

[
g(nλi)− nλi +

1

2
ln(2πnλi) +O

(
1

nλi

)]

−
∑

i∈Nλ
2

[
g(n(1− λi))− n(1− λi) +

1

2
ln(2πn(1− λi)) +O

(
1

n(1− λi)

)]
.

Now, using that g(xy) = xg(y) + yg(x) for all x, y ≥ 0, g(0) = 0,
∑

i∈Nλ
1
λi = |N |λ̄ and

∑
i∈Nλ

2
(1−

λi) = |N |(1− λ̄), we get

ln(tn(λ)) = |N |g(n) − |N |n+
1

2
|N | ln(2πn) +O

(
1

n

)

+ λ̄g(|N |n) + |N |ng(λ̄)− |N |nλ̄+
1

2
ln(2πn) +

1

2
ln(|N |) + 1

2
ln(λ̄) +O

(
1

nλ̄

)

+ (1− λ̄)g(|N |n) + |N |ng(1 − λ̄)− |N |n(1− λ̄) +
1

2
ln(2πn) +

1

2
ln(|N |) + 1

2
ln(1− λ̄)

+O
(

1

n(1− λ̄)

)

− g(|N |n) + |N |n− 1

2
ln(2πn)− 1

2
ln(|N |) +O

(
1

n

)

− |N |λ̄g(n)−
∑

i∈N

ng(λi) + |N |nλ̄− 1

2
|Nλ

1 | ln(2πn)−
1

2

∑

i∈Nλ
1

ln(λi) +
∑

i∈Nλ
1

O
(

1

nλi

)

− |N |(1− λ̄)g(n) −
∑

i∈N

ng(1− λi) + |N |n(1− λ̄)− 1

2
|Nλ

2 | ln(2πn)−
1

2

∑

i∈Nλ
2

ln(1− λi)

+
∑

i∈Nλ
2

O
(

1

n(1− λi)

)
.

From |N |g(n)− |N |λ̄g(n)− |N |(1− λ̄)g(n) = 0, −|N |n− |N |nλ̄− |N |(n(1− λ̄)) + |N |n+ |N |nλ̄+

|N |n(1 − λ̄) = 0, λ̄g(|N |n) + (1 − λ̄)g(|N |n) − g(|N |n) = 0 and rearranging and collecting some

terms it follows that

ln(tn(λ)) = n

[
|N |g(λ̄)−

∑

i∈N

g(λi) + |N |g(1 − λ̄)−
∑

i∈N

g(1 − λi)

]

+

[
1

2
(1 + |N | − |Nλ

1 | − |Nλ
2 |)
]
ln(2πn) +

1

2
ln(|N |)

+
1

2
ln(λ̄) +

1

2
ln(1− λ̄)− 1

2

∑

i∈Nλ
1

ln(λi)−
1

2

∑

i∈Nλ
2

ln(1− λi)

+O
(
1

n

)
+O

(
1

nλ̄

)
+O

(
1

n(1− λ̄)

)
+
∑

i∈Nλ
1

O
(

1

nλi

)
+
∑

i∈Nλ
2

O
(

1

n(1− λi)

)
.
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Then, recall the function G from (69). We get

ln(tn(λ)) = nG(λ) +

[
1

2
(1 + |N | − |Nλ

1 | − |Nλ
2 |)
]
ln(2πn) +

1

2
ln(|N |) + 1

2
ln(λ̄(1− λ̄))

− 1

2

∑

i∈Nλ
1

ln(λi)−
1

2

∑

i∈Nλ
2

ln(1− λi) +O
(
1

n

)
+O

(
1

nλ̄

)
+O

(
1

n(1− λ̄)

)

+
∑

i∈Nλ
1

O
(

1

nλi

)
+
∑

i∈Nλ
2

O
(

1

n(1− λi)

)
.

So, taking the exponent and using the fact that ex = 1 + O (x) if x ∈ [0,K] for some constant

K > 0, yields

tn(λ) =
(
eG(λ)

)n
(2πn)

1
2
(1+|N |−|Nλ

1 |−|Nλ
2 |)
√

|N | (λ̄(1− λ̄))
1
2

∏
i∈Nλ

1

√
λi
∏

i∈Nλ
2

√
1− λi

·
[
1 +O

(
1

n

)]

·
[
1 +O

(
1

nλ̄

)]
·
[
1 +O

(
1

n(1− λ̄)

)] ∏

i∈Nλ
1

[
1 +O

(
1

nλi

)] ∏

i∈Nλ
2

[
1 +O

(
1

n(1− λi)

)]
.

Then, as λi ≥ min{λj : j ∈ Nλ
1 } for all i ∈ Nλ

1 ,1 − λi ≥ min{1 − λj : j ∈ Nλ
2 } for all i ∈ Nλ

2 ,

λ̄ ≥ 1
|N | min{λj : j ∈ Nλ

1 } and 1−λ̄ ≥ 1
|N | min{1−λj : j ∈ Nλ

2 }, the result follows in a straightforward

way. �

Lemma C.8 We have for all (ε, n, λ) ∈ Dom with dn < 1
2ε and λ ∈ D(n) that

(λ̄(1− λ̄))
1
2
|N |

∏
i∈N

√
λi
∏

i∈N

√
1− λi

= 1 +Oε(n
−1+ 1

4|N| ). (76)

Proof According to Lemma C.6 we have λi ≥ 1
2ε and 1− λi ≥ 1

2ε for all i ∈ N . Consequently, we

have λ̄ ≥ 1
2ε and 1− λ̄ ≥ 1

2ε. According to Taylor’s theorem, we have

ln(λi) = ln(λ̄) +
1

λ̄
(λi − λ̄)− 1

2ξ2i,1
(λi − λ̄)2, (77)

for some ξi,1 ∈ [λi; λ̄] and for all i ∈ N . From (73) and (77) it follows that

1

2

∑

i∈N

ln(λi) =
1

2
|N | ln(λ̄)−

∑

i∈N

1

4ξ2i,1
(λi − λ̄)2. (78)
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Similarly, we obtain

1

2

∑

i∈N

ln(1− λi) =
1

2
|N | ln(1− λ̄)−

∑

i∈N

1

4ξ2i,2
(λ̄− λi)

2, (79)

where ξi,2 ∈ [1− λi; 1− λ̄] for all i ∈ N . Since ξi,1 ≥ 1
2ε, ξi,2 ≥ 1

2ε and (λi − λ̄)2 ≤ ‖λ− λ̄ · eN‖2 for

all i ∈ N , we get

∑

i∈N

1

4ξ2i,1
(λi − λ̄)2 +

∑

i∈N

1

4ξ2i,2
(λ̄− λi)

2 ≤ 2|N |ε−2‖λ− λ̄ · eN‖2

≤ 2|N |ε−2d2n

= 2|N |ε−2n
−1+ 1

4|N|

= Oε(n
−1+ 1

4|N| ).

Using the fact that ex = 1 +O(x) if x ∈ [0,K] for some constant K > 0 yields

eO
ε(n

−1+ 1
4|N| ) = 1 +Oε(n

−1+ 1
4|N| ).

Now taking the exponent in (78) and (79) yields the desired result. �

C.1.2 Proof of Proposition C.1

We now use Lemmas C.4 to C.8 to prove Proposition C.1. We do this in several steps: (60) is

shown in Lemma C.9, (61) in Lemma C.10, (62) in Lemma C.11 and (63) in Lemma C.12. We

implicitly use in the statement of this proposition that if g(n) = O(nc) for some c ≤ −1
4 , we have

g(n) = O(n− 1
4 ).

Note that the result follows directly if |N | = 1, so we let |N | ≥ 2.

Lemma C.9 We have for all (ε, n, λ) ∈ Dom that

tn(λ) =
(
e−c(λ̄)n‖λ−λ̄·eN‖2

)
b(n, λ̄)

[
1 +Oε

(
n
− 1

2
+ 3

8|N|

)]
, if λ ∈ D(n).

Proof It is sufficient to show this result for all n ∈ IN such that dn < 1
2ε. From Lemma C.6, we

then get

min{λ1, . . . , λ|N |, 1− λ1, . . . , 1− λ|N |} >
1

2
ε, (80)
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and, so,

Nλ
1 = Nλ

2 = N. (81)

Using Lemma C.5.3 and the fact that ‖λ− λ̄ · eN‖3 = O(n
− 3

2
+ 3

8|N| ), we get that

G(λ̄) = −c(λ̄)‖λ− λ̄ · eN‖2 +Oε(n
− 3

2
+ 3

8|N| ).

Hence,

enG(λ) = e−c(λ̄)n‖λ−λ̄·eN‖2 · eOε(n
− 3

2+ 3
8|N| )

= e−c(λ̄)n‖λ−λ̄·eN‖2
[
1 +Oε

(
n
− 1

2
+ 3

8|N|

)]
. (82)

where (82) follows from the fact that ex = 1 + O(x) if x ∈ [0,K] for some constant K > 0.

Substituting (76), (80), (81) and (82) in (74) yields the desired result. �

Lemma C.10 We have for all (ε, n, λ) ∈ Dom that

tn(λ) = Oε(n−∞), if λ /∈ D(n).

Proof Let ε ∈ (0, 1), denote d = 1
3|N |ε

2 and recall the function G in (69). The set Gε\Dd is

compact. Moreover, the function G is continuous (Lemma C.5.1). Hence, the function G takes a

maximum value mε on Gε\Dd. As λ ∈ Dd if λ1 = · · · = λ|N |, we obtain from Lemma C.5.2 that

mε < 0. Let (n, λ) be such that n ∈ IN and λ ∈ Gn
ε \Dd. Since λi ≥ 1

n for all i ∈ Nλ
1 , 1− λi ≥ 1

n for

all i ∈ Nλ
2 and λ̄(1− λ̄) < 1, we get from Lemma C.7 that

tn(λ) = Oε(n
1
2
(1+|N |)(emε)n).

Since emε ∈ (0, 1) and limn→∞ cnnd = 0 for c ∈ (0, 1) and d ∈ IR, we have for all (ε, n, λ) ∈ Dom

that

tn(λ) = Oε(n−∞), if λ /∈ Dd.

Next, we show this result for all (n, λ) such that n ∈ IN and λ ∈ (Gn
ε ∩Dd)\D(n). We obtain
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from Lemma C.5.3 that

G(λ) = −c(λ̄)‖λ− λ̄ · eN‖2 +R

= −c(λ̄)‖λ− λ̄ · eN‖2
[
1−R(c(λ̄))−1‖λ− λ̄ · eN‖−2

]
,

where |R| ≤ 1
3 |N |min{λ1, . . . , λ|N |, 1− λ1, . . . , 1− λ|N |}−2‖λ− λ̄ · eN‖3. From Lemma C.6, we get

min{λ1, . . . , λ|N |, 1− λ1, . . . , 1− λ|N |} > ε− d >
3|N | − 1

3|N | ε >
1

2
ε.

Moreover, we have (c(λ̄))−1 = 2λ̄(1− λ̄) ≤ 1
2 and ‖λ− λ̄ · eN‖ < d. Therefore, we have

|R(c(λ̄))−1‖λ− λ̄ · eN‖−2| ≤ |R|(c(λ̄))−1‖λ− λ̄ · eN‖−2 ≤ 1

6
|N |

(
1

2
ε

)−2

d <
1

2
.

So, then, we obtain that

nG(λ) < −c(λ̄)n‖λ− λ̄ · eN‖2 1
2
≤ −n‖λ− λ̄ · eN‖2 ≤ −n

1
4|N| ,

which follows from c(λ̄) ≥ 2, and, hence,

enG(λ) < e−n
1

4|N|
. (83)

We get

tn(λ) = Oε(enG(λ)n
1
2
(1−|N |)) (84)

= Oε((e−1)n
1

4|N|
n

1
2
(1−|N |)) (85)

= Oε(n−∞), (86)

where (84) follows from Lemma C.7, (85) follows from (83) and (86) follows from the fact that

limn→∞ nkcn
δ
= 0 for all k ∈ IR, c ∈ (0, 1) and δ > 0. �

Lemma C.11 We have for all i ∈ N and (ε, n, λ) ∈ Dom that

pni (λ) =
1

|N |
[
1 +Oε

(
n
− 1

2
+ 1

8|N|

)]
, if λ ∈ D(n).

Proof Note that from λ ∈ Gn
ε it follows that λ 6= eN , so λ̄ < 1. Then, the result follows directly
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from

∣∣∣∣∣
1− λi∑

j∈N (1− λj)
− 1

|N |

∣∣∣∣∣ =
∣∣∣∣

1− λi

(1− λ̄)|N | −
1− λ̄

(1− λ̄)|N |

∣∣∣∣

=
|λ̄− λi|

(1− λ̄)|N |

<
n
− 1

2
+ 1

8|N|

(1− λ̄)|N | (87)

≤ n
− 1

2
+ 1

8|N|

ε|N | , (88)

for all (ε, n, λ) ∈ Dom such that λ ∈ D(n). Here, (87) follows from |λ̄− λi| ≤ ‖λ− λ̄ · eN‖ < dn =

n
− 1

2
+ 1

8|N| and (88) follows from 1− λ̄ ≥ ε. This concludes the proof. �

Lemma C.12 We have for all i ∈ N and (ε, n, λ) ∈ Dom that pni (λ) = O(1).

Proof This follows directly from 0 ≤ pni (λ) ≤ 1. �

C.2 Proof of Proposition C.2

We use the following notation:

• For all x ∈ IR, we write ⌊x⌋ as the largest integer not greater than x and ⌈x⌉ as the smallest

integer not less than x.

• For all n ∈ IN and λ ∈ Gn, the set Cn(λ) is given by

Cn(λ) =

{
λ+

1

n
x : x ∈ [0, 1]N

}
. (89)

• The set D′(n) is given by

D′(n) = Dd′n , where d′n = dn + (
√

|N |/n) = n
− 1

2
+ 1

8|N| + (
√

|N |/n). (90)

• If there might be confusion about the notation | · | for the absolute value of a real number and

the cardinality of a set, we sometimes write ♯(A) as the cardinality of the set A.

• We write ν(B) as the Lebesgue measure of the set B. Note that

ν(Cn(λ)) = n−|N |, for all λ ∈ Gn, (91)
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and

ν(D′(n)) = O(d′|N |−1
n ) = O(n

− 1
2
+ 1

8|N| ), for all n ∈ IN. (92)

• Let R ∈ R and ε > 0. We define the set B(R,n) by

B(R,n) =

{
λ ∈ [0, 1]N : ∃λ̂ ∈ [0, 1]N \L(R) : ‖λ− λ̂‖ <

1

n

}
, (93)

for all R ∈ R and n ∈ IN, where L(R) is defined in Definition 3.2. This is the set of all

participation profiles close to a participation profile that is an element of multiple sets AQm . As

the risk capital allocation problem is always clear from the context, we write B(n) = B(R,n).

First, we show that only the participation profiles inGn
ε have a non-negligible aggregate contribution.

Lemma C.13 For all i ∈ N , we have

n−1
∑

λ∈Gn\Gn
ε :λi<1

tn(λ)pni (λ) = O(ε) +O(n−1).

Proof Recall (46) for the definition of G̃n
k . We obtain

∑

λ∈Gn\Gn
ε :λi<1

tn(λ)pni (λ) =

⌈ε|N |n⌉−1∑

k=0

∑

λ∈G̃n
k
:λi<1

tn(λ)pni (λ) +

|N |n−1∑

k=⌊(1−ε)|N |n⌋+1

∑

λ∈G̃n
k
:λi<1

tn(λ)pni (λ)

(94)

≤
⌈ε|N |n⌉−1∑

k=0

∑

λ∈G̃n
k
:λi<1

tn(λ) +

|N |n−1∑

k=⌊(1−ε)|N |n⌋+1

∑

λ∈G̃n
k
:λi<1

tn(λ) (95)

≤
⌈ε|N |n⌉−1∑

k=0

1 +

|N |n−1∑

k=⌊(1−ε)|N |n⌋+1

1 (96)

= ⌈ε|N |n⌉ + ⌈ε|N |n⌉ − 1

< 2ε|N |n + 1 (97)

= O(ε)n +O(1).

Here, (94) follows from (46) and (55), (95) follows from 0 ≤ pni (λ) ≤ 1 for all λ ∈ Gn\{eN}, (96)
follows from

∑
λ∈G̃n

k
tn(λ) = 1 for all k ∈ {0, . . . , |N |n − 1} and (97) follows from the fact that

⌈x⌉ < x+ 1 for all x ∈ IR. �
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The following result follows almost directly from Proposition C.1.

Lemma C.14 For all i ∈ N , we have

∑

λ∈[Gn
ε \D(n)]:λi<1

tn(λ)pni (λ) = Oε(n−∞).

Proof This result follows directly from

∑

λ∈[Gn
ε \D(n)]:λi<1

tn(λ)pni (λ) =
∑

λ∈[Gn
ε \D(n)]:λi<1

Oε(n−∞) (98)

< (n+ 1)|N |Oε(n−∞) (99)

= Oε(n−∞),

where (98) follows from Proposition C.1 and (99) follows from ♯({λ ∈ [Gn
ε \D(n)] : λi < 1}) <

♯(Gn) = (n+ 1)|N |. �

Lemma C.15 Let R ∈ R. Then, we have

r (λ+ (1/n) · ei)− r(λ) = O
(
n−1

)
,

for all i ∈ N and (n, λ) such that n ∈ IN, λ ∈ Gn and λi < 1.

Proof Denote c = max{|fQ(ej)| : Q ∈ Q(ρ), j ∈ N}. LetQ1,Q2 ∈ Q(ρ) be such that r (λ+ (1/n) · ei) =
fQ1 (λ+ (1/n) · ei) and r(λ) = fQ2(λ). Then, we have

r (λ+ (1/n) · ei)− r(λ) = fQ1 (λ− (1/n) · ei)− fQ2 (λ)

≤ fQ1 (λ+ (1/n) · ei)− fQ1 (λ)

=
1

n
fQ1 (ei)

≤ 1

n
c

and

r (λ+ (1/n) · ei)− r(λ) = fQ1 (λ+ (1/n) · ei)− fQ2 (λ)

≥ fQ2 (λ+ (1/n) · ei)− fQ2 (λ)

=
1

n
fQ2 (ei)
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≥ − 1

n
c.

This concludes the proof. �

Lemma C.16 For all i ∈ N , we have

∑

λ∈Gn
ε∩D(n)

|tn(λ)pni (λ)− hn(λ)| = Oε(n
3
4 ).

Proof It is sufficient to show this result only for n ∈ IN such that dn < 1
2ε. If |N | = 1 the result is

trivial as tn(λ)pni (λ) = hn(λ) = 1 for all λ ∈ Gn
ε . Next, we let |N | ≥ 2. For all λ ∈ Gn

ε ∩D(n), we

have

|tn(λ)pni (λ)− hn(λ)| =
∣∣∣hn(λ)[1 +Oε(n

− 1
2
+ 3

8|N| )] · [1 +Oε(n
− 1

2
+ 1

8|N| )]− hn(λ)
∣∣∣ (100)

=
∣∣∣hn(λ)Oε(n

− 1
2
+ 3

8|N| )
∣∣∣

= Oε(n
− 1

2
|N |+ 3

8|N| ), (101)

where (100) follows from Lemma C.9 and Lemma C.11 and (101) follows from hn(λ) = Oε(n
1
2
(1−|N |)).

If y ∈ Cn(λ) for a λ ∈ Gn
ε ∩D(n), we have

‖y − ȳ · eN‖ ≤ ‖y − λ̄ · eN‖ (102)

≤ ‖y − λ‖+ ‖λ− λ̄ · eN‖ (103)

< (
√

|N |/n) + n
− 1

2
+ 1

8|N| , (104)

where (102) and (103) follow from the triangular inequality and (104) follows from the fact that

‖y − λ‖ ≤ (
√

|N |/n) for all y ∈ Cn(λ). So, we get

⋃

λ∈Gn
ε∩D(n)

Cn(λ) ⊂ D′(n). (105)

and, so,

n−|N |♯(Gn
ε ∩D(n)) ≤ ν

(
D′(n)

)
(106)

= O(d′|N |−1
n ) (107)
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= O
((

n
− 1

2
+ 1

8|N| + (
√

|N |/n)
)(|N |−1)

)

= O(n
− 1

2
|N |+ 5

8
− 1

8|N| ), (108)

where (106) follows from (91) and (105), and (107) follows from (92). From this, we get

∑

λ∈Gn
ε∩D(n)

|tn(λ)pni (λ)− hn(λ)| ≤ ♯(Gn
ε ∩D(n))Oε(n

− 1
2
|N |+ 3

8|N|
)
)

= Oε(n
5
8
+ 2

8|N| ).

As |N | ≥ 2, this concludes the proof. �

Lemma C.17 Let R ∈ R. Then, for all ε > 0 and all m ∈ {p∗ +1, . . . , p}, we have for sufficiently

large n that

Gε ∩D(n) ∩AQm = ∅.

Proof If p∗ = p, the result follows directly and, so, we let p∗ < p. Denote

α = r(eN )− max
m′∈{p∗+1,...,p}

fQm′ (eN ) > 0,

and let ℓ ∈ {1, . . . , p∗} and m ∈ {p∗ + 1, . . . , p}. Then, we have

fQℓ
(eN ) ≥ fQm(eN ) + α.

By linearity of fQℓ
, we have

fQℓ
(t · eN )− fQm(t · eN ) = t(fQℓ

(eN )− fQm(eN )) ≥ tα, for all t ∈ [0, 1]. (109)

If fQm′ (ei) = 0 for all m′ ∈ {1, . . . , p} and for all i ∈ N , we have p = p∗ = 1, which contradicts the

assumption that p∗ < p. So, let M = maxm′∈{1,...,p} ‖(fQm′ (ei))i∈N‖ > 0 and ε > 0. Then, define

Nε =
(
2M
αε

)4
and let n > Nε. Then, we obtain for every λ ∈ Gε ∩D(n) that

fQℓ
(λ)− fQm(λ) = fQℓ

(λ̄ · eN )− fQm(λ̄ · eN ) + fQℓ
(λ− λ̄ · eN )− fQm(λ− λ̄ · eN ) (110)

≥ λ̄α+ fQℓ
(λ− λ̄ · eN )− fQm(λ− λ̄ · eN ), (111)
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where (110) follows from linearity of fQℓ
and fQm and (111) follows from (109). Moreover, we obtain

that

|fQm′ (λ− λ̄ · eN )| ≤ ‖(fQm′ (ei))i∈N‖ · ‖λ− λ̄ · eN‖ (112)

≤ Mn− 1
4 (113)

< MN
− 1

4
ε (114)

=
1

2
εα (115)

≤ 1

2
λ̄α, (116)

for allm′ ∈ {1, . . . , p}, where (112) follows from the Cauchy-Schwartz inequality applied to
∑

i∈N fQm(ei)(λi−
λ̄), (113) follows from m′ ∈ {1, . . . , p} and λ ∈ D(n), (165) follows from n > Nε, (115) follows from

substituting the definition of Nε, follows from and (116) follows from λ ∈ Gε. Hence, substituting

(116) in (111) yields that fQℓ
(λ)−fQm(λ) > 0. Therefore, we have λ /∈ AQm for every λ ∈ Gε∩D(n)

and, hence,

Gε ∩D(n) ∩AQm = ∅. (117)

�

Note that from (16) and Lemma C.17 it follows for all ε > 0 that

Gε ∩D(n) ⊂
⋃

m∈{1,...,p∗}

AQm , for large n.

We next show that we can neglect participation profiles close to profiles where the function r

is non-differentiable. Note that B(n), as defined in (93), is the set of participation profiles close

to a participation profile where the function r is non-differentiable. For all n ∈ IN we have that if

λ ∈ AQm\B(n) for some m ∈ {1, . . . , p}, then λ+ (1/n) · ei ∈ AQm for all i ∈ N and, by linearity of

fQm , r (λ+ (1/n) · ei)− r(λ) = 1
nEQm [Xi].

Lemma C.18 Let R ∈ R. Then, we have

∑

λ∈Gn
ε∩D(n)∩B(n)

hn(λ) = Oε(n
5
8 ).
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Proof If p = 1, we have that B(n) = ∅ for all n ∈ IN and, so, the result follows directly. Next, let

p > 1. Recall (38), i.e.,

[0, 1]N\L(R) =
⋃

ℓ,m∈{1,...,p}:ℓ 6=m

AQℓ
∩AQm .

Let ε > 0, ℓ,m ∈ {1, . . . , p}, ℓ 6= m and n > 2
ε . We define

Hn(ℓ,m) =

{
λ ∈ Gn

ε ∩D(n) : ∃λ̂ ∈ AQℓ
∩AQm : ‖λ− λ̂‖ ≤ 1

n

}
,

and Dε = {λ ∈ Gε : λ = λ̄ · eN}. According to Lemma C.17 we have for all m ∈ {p∗ + 1, . . . , p}
that Dε ∩ AQm = ∅. Since Dε and AQm are both compact we can define αε,m = dist(Dε, AQm) =

min{‖x− y‖ : x ∈ Dε, y ∈ AQm}. Obviously, αε,m > 0. So, if ℓ /∈ {1, . . . , p∗} or m /∈ {1, . . . , p∗} we

get Hn(ℓ,m) = ∅ for large n. If p∗ = 1 it follows from this thatHn(ℓ,m) = ∅ for all ℓ,m ∈ {1, . . . , p}.
Next, let p∗ > 1 and ℓ,m ∈ {1, . . . , p∗}. Recall (37) from the proof of Proposition 3.4, i.e.,

AQℓ
∩AQm ⊂

{
λ ∈ IRN :

∑

i∈N

λi(EQℓ
[Xi]− EQm[Xi]) = 0

}
:= V (ℓ,m).

Note that V (ℓ,m) is an (|N | − 1)-dimensional linear space where {t · eN : t ∈ IR} ⊂ V (ℓ,m). To

obtain an upper bound of the cardinality of Hn(ℓ,m), we first derive the Lebesgue measure of the

following Euclidean set

H̃n(ℓ,m) =

{
λ ∈ G 1

2
ε ∩D′(n) : ∃λ̂ ∈ V (ℓ,m) : ‖λ− λ̂‖ ≤

√
|N |
n

+
1

n

}
.

We describe this set via the Gram-Schmidt process. Choose an orthonormal basis u1, . . . , u|N | of

IRN such that u1 =
eN√
|N |

, u1, . . . , u|N |−1 is an orthonormal basis of the (|N | − 1)-dimensional space

V (ℓ,m) and u|N | is a unit normal vector of the (|N | − 1)-dimensional space V (ℓ,m). So u|N | is a

multiple of the vector (EQℓ
[Xi]−EQm [Xi])i∈N . Now let λ ∈ H̃n(ℓ,m). Let λ1 be the unique element

in V (ℓ,m) that is closest to λ. Obviously ‖λ − λ1‖ ≤
√

|N |

n + 1
n . Let λ2 = λ̄1 · eN (= λ̄ · eN ) be

the unique element in {t · eN : t ∈ IR} that is closest to λ1 (and hence closest to λ). We provide an

overview of the construction of λ1 and λ2 in Figure 5. Obviously ‖λ−λ2‖2 = ‖λ−λ1‖2+‖λ1−λ2‖2

and hence ‖λ1 − λ2‖ ≤ ‖λ− λ2‖ = ‖λ− λ̄ · eN‖ < d′n. Now we can write λ = α1u1 + · · ·+ α|N |u|N |

where λ2 = α1u1, λ1 − λ2 = α2u2 + · · ·+ α|N |−1u|N |−1 and λ− λ1 = α|N |u|N |. From this it follows

that |α1| = ‖λ2‖ = λ̄
√

|N | <
√

|N |, |αk| ≤
√

α2
2 + · · ·+ α2

|N |−1 = ‖λ1 − λ2‖ < d′n = O(n
− 1

2
+ 1

8|N| )
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λ

λ1

λ2

V (ℓ,m)

{t · eN : t ∈ IR}

Figure 5: Illustration of λ1 and λ2 corresponding to the proof of Lemma C.18.

for all k ∈ {2, . . . , |N | − 1} and |α|N || = ‖λ− λ1‖ ≤ 1
n +

√
|N |
n = O(n−1). Hence,

ν(H̃n(ℓ,m)) = O(1)O(n
(− 1

2
+ 1

8|N|
)(|N |−2)

)O(n−1)

= O(n− 1
2
|N |+ 1

8 ). (118)

For all λ ∈ Gn
ε and y ∈ Cn(λ), we get from

ȳ = λ̄+ (ȳ − λ̄)





≥ ε− (1/n) > 1
2ε,

≤ 1− ε+ (1/n) < 1− 1
2ε,

(119)

that y ∈ G 1
2
ε. Moreover, we get

min
λ̂∈V (ℓ,m)

‖y−λ̂‖ ≤ ‖y−λ‖+ min
λ̂∈V (ℓ,m)

‖λ−λ̂‖ ≤
√

|N |
n

+
1

n
, for all λ ∈ Hn(ℓ,m) and y ∈ Cn(λ).

From this, (105) and (119), we get

⋃

λ∈Hn(ℓ,m)

Cn(λ) ⊂ H̃n(ℓ,m), for all n ∈ IN such that n >
2

ε
. (120)

From (91) and (120) we get

n−|N |♯(Hn(ℓ,m)) ≤ ν(H̃n(ℓ,m)). (121)
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Substituting (118) in (121) yields

♯(Hn(ℓ,m)) = O(n
1
2
|N |+ 1

8 ). (122)

Then, we obtain

∑

λ∈Gn
ε∩D(n)∩B(n)

hn(λ) ≤
∑

ℓ,m∈{1,...,p}:ℓ 6=m

∑

λ∈Hn(ℓ,m)

hn(λ) (123)

≤


 p

2


 max

ℓ,m∈{1,...,p}:ℓ 6=m
♯(Hn(ℓ,m)) max

λ∈Gε

hn(λ) (124)

=


 p

2


O(n

1
2
|N |+ 1

8 )Oε(n
1
2
(1−|N |)) (125)

= Oε(n
5
8 ),

where (123) follows from (38), (124) follows from ♯({ℓ,m ∈ {1, . . . , p} : ℓ 6= m}) =


 p

2


 and (125)

follows from (122) and hn(λ) = Oε(n
1
2
(1−|N |)) for all λ ∈ Gε. This concludes the proof. �

Proof of Proposition C.2 It is sufficient to show this result for sufficiently large n. We get

Kavg,n
i (R) =

∑

λ∈Gn:λi<1

tn(λ)pni (λ) [r (λ+ (1/n) · ei)− r(λ)] (126)

=
∑

λ∈Gn
ε :λi<1

tn(λ)pni (λ) [r (λ+ (1/n) · ei)− r(λ)] +O(ε) +O(n−1) (127)

=
∑

λ∈Gn
ε∩D(n)

tn(λ)pni (λ) [r (λ+ (1/n) · ei)− r(λ)] +O(ε) +Oε
(
n−1

)
(128)

=
∑

λ∈Gn
ε∩D(n)

hn(λ) [r (λ+ (1/n) · ei)− r(λ)] +O(ε) +Oε(n− 1
4 ) (129)

=
∑

λ∈[Gn
ε∩D(n)]\B(n)

hn(λ) [r (λ+ (1/n) · ei)− r(λ)] +O(ε) +Oε(n− 1
4 ) (130)

=

p∑

m=1

∑

λ∈[Gn
ε∩D(n)∩AQm ]\B(n)

hn(λ)
1

n
EQm [Xi] +O(ε) +Oε(n− 1

4 ) (131)

=

p∗∑

m=1

∑

λ∈[Gn
ε∩D(n)∩AQm ]\B(n)

hn(λ)
1

n
EQm [Xi] +O(ε) +Oε(n− 1

4 ) (132)
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=

p∗∑

m=1

EQm [Xi]
1

n

∑

λ∈[Gn
ε∩D(n)∩AQm ]\B(n)

hn(λ) +O(ε) +Oε(n− 1
4 )

=

p∗∑

m=1

EQm [Xi]
1

n

∑

λ∈Gn
ε∩D(n)∩AQm

hn(λ) +O(ε) +Oε(n− 1
4 ), (133)

where (126) follows from Proposition B.1, (127) follows from Lemma C.13 and Lemma C.15, (128)

follows from Lemma C.14 and Lemma C.15, (129) follows from Lemma C.15 and Lemma C.16,

(130) follows from Lemma C.15 and Lemma C.18, (131) follows from [0, 1]N\L(R) ⊂ B(n), (132)

follows from Lemma C.17 and (133) follows from Lemma C.18. This concludes the proof. �

C.3 Proof of Proposition C.3

Lemma C.19 The function hn is differentiable for a fixed n ∈ IN, and, moreover, we have for all

i ∈ N and (ε, n, λ) ∈ Dom that

∂hn

∂λi
(λ) = Oε(n

− 1
2
|N |+1+ 1

8|N| ), if λ ∈ D′(n),

where D′(n) is defined in (90).

Proof Define the functions fn(λ) = −c(λ̄)n‖λ − λ̄ · eN‖2 and g(λ) = (λ̄(1 − λ̄))
1
2
(1−|N |) for all

λ ∈ [0, 1]N . Then, we obtain

∂hn

∂λi
(λ) =

∂fn

∂λi
(λ) · hn(λ) + ∂g

∂λi
(λ) · h

n(λ)

g(λ)
, for all λ ∈ [0, 1]N\{e∅, eN}. (134)

Moreover, we obtain the following approximations for all λ ∈ Gε ∩D′(n):

∂fn

∂λi
(λ) = −c(λ̄)n



∑

k 6=i

2
(
λk − λ̄

)
· − 1

|N | + 2(λi − λ̄)

(
1− 1

|N |

)


+
1− 2λ̄

2|N |(λ̄(1− λ̄))2
n‖λ− λ̄ · eN‖2

= −c(λ̄)n2
(
λi − λ̄

)
+

1− 2λ̄

2|N |(λ̄(1− λ̄))2
n‖λ− λ̄ · eN‖2

= Oε(n
1
2
+ 1

8|N| ) +Oε(n
1

4|N| ) (135)

= Oε(n
1
2
+ 1

8|N| ),

∂g

∂λi
(λ) = Oε(1),
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(g(λ))−1 = O(1),

hn(λ) = Oε(n
1
2
(1−|N |)),

where (135) follows from |λi− λ̄| ≤ ‖λ− λ̄ · eN‖ ≤ d′n = O(n
− 1

2
+ 1

8|N| ). Then, the result follows from

substituting these equations in (134). �

Lemma C.20 Let R ∈ R. Then, we have for all m ∈ {1, . . . , p} that

∑

λ∈Gn
ε∩D(n)∩AQm

hn(λ) = n|N |
∑

λ∈Gn
ε∩D(n)∩AQm

∫

Cn(λ)
hn(λ∗)dλ∗ +Oε(n

5
8 ),

where Cn(λ) is defined in (89)

Proof Let ε > 0. It is sufficient to show this result for all n ∈ IN such that n > 2
ε . Let λ ∈ Gn

ε∩D(n).

From (105) and (119) it follows that

Cn(λ) ⊂ G 1
2
ε ∩D′(n). (136)

We get from (136) and Lemma C.19 that hn is differentiable in λ∗ for all λ∗ ∈ Cn(λ). Applying

Taylor’s theorem yields that

hn(λ)− hn(λ∗) =
∑

i∈N

∂h

∂λi
(χ)(λi − λ∗

i ), for all λ∗ ∈ Cn(λ), where χ ∈ conv{λ, λ∗}. (137)

Here, as χ ∈ Cn(λ), we get from Lemma C.19 that

∂h

∂λi
(χ) = Oε(n

− 1
2
|N |+1+ 1

8|N| ), for all i ∈ N. (138)

So, as |λi − λ∗
i | ≤ n−1 for all λ∗ ∈ Cn(λ) and i ∈ N , we get from (137) and (138) that

hn(λ)− hn(λ∗) = |N |Oε(n
− 1

2
|N |+1+ 1

8|N| )n−1

= Oε(n
− 1

2
|N |+ 1

8|N| ),

for all λ∗ ∈ Cn(λ). From this, we directly get

hn(λ)− n|N |

∫

Cn(λ)
hn(λ∗)dλ∗ = Oε(n

− 1
2
|N |+ 1

8|N| ), for all λ ∈ Gn
ε ∩D(n). (139)
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Moreover, from (108) we get

♯(Gn
ε ∩D(n) ∩AQm) ≤ ♯(Gn

ε ∩D(n))

= O(n
1
2
|N |+ 5

8
− 1

8|N| ). (140)

Hence, from (139) and (140) it follows that

∣∣∣∣∣∣

∑

λ∈Gn
ε∩D(n)∩AQm

(
hn(λ)− n|N |

∫

Cn(λ)
hn(λ∗)dλ∗

)∣∣∣∣∣∣
≤ ♯(Gn

ε ∩D(n) ∩AQm)Oε(n
− 1

2
|N |+ 1

8|N| )

= Oε(n
5
8 ).

This concludes the result. �

Lemma C.21 Let R ∈ R. Then, we have for all m ∈ {1, . . . , p} that

∑

λ∗∈Gn
ε∩D(n)∩AQm

∫

Cn(λ∗)
hn(λ)dλ =

∫

Gε∩D(n)∩AQm

hn(λ)dλ+Oε(n−|N |+ 5
8 ).

Proof Let ε > 0 and define D′′(n) = Dd′′n , where d′′n = dn − (
√

|N |/n). It is sufficient to show this

result for all n ∈ IN such that n > 2
ε . Define A =

⋃
λ∗∈Gn

ε∩D(n)∩AQm
Cn(λ∗) and B = Gε ∩D(n) ∩

AQm . Moreover, define

En
1 = B(n/(

√
|N |+ 1)) ∩G 1

2
ε

En
2 = [Gε−(1/n) ∩D′(n)]\D′′(n)

En
3 = [D′(n) ∩Gε−(1/n)]\Gε+(1/n),

where the set B(n) is defined in (93). We first show

(A\B) ∪ (B\A) ⊂ En
1 ∪ En

2 ∪ En
3 . (141)

Let y1 ∈ A\B, so we have y1 ∈ Cn(λ) for some λ ∈ Gn
ε ∩ D(n) ∩ AQm . If y1 /∈ AQm, there is a

λ′ ∈ [0, 1]N\L(R) such that λ′ ∈ conv{λ, y1} and, so, y1 ∈ En
1 . If y1 /∈ D(n), we have according

to (104) that ‖y1 − ȳ1 · eN‖ < (
√

|N |/n) + dn = d′n and, so, y1 ∈ En
2 . If y1 /∈ Gn

ε , then ȳ1 < ε

or ȳ1 > 1 − ε and hence we have according to (119) that ε − (1/n) ≤ ȳ1 ≤ 1 − (ε − (1/n)) and,

so, y1 ∈ En
3 . Now, let y2 ∈ B\A, so we have y2 ∈ Gε ∩ D(n) ∩ AQm and there does not exist a
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λ ∈ Gn
ε ∩D(n) ∩AQm such that y2 ∈ Cn(λ). Let λ such that y2 ∈ Cn(λ). If λ /∈ AQm, there exists

an λ′ ∈ [0, 1]N\L(R) such that λ′ ∈ conv{λ, y2} and, so, y2 ∈ En
1 . If λ /∈ D(n), we get from the

triangle inequality that ‖y2 − ȳ2 · eN‖ ≥ ‖λ − λ̄ · eN‖ − ‖y2 − λ‖ ≥ dn − (
√

|N |/n) = d′′n and, so,

y2 /∈ D′′(n). So, y2 ∈ En
2 . If λ /∈ Gn

ε , then λ̄ < ε or λ̄ > 1−ε and hence ȳ2 = λ̄+(ȳ2− λ̄) < ε+(1/n)

or ȳ2 < 1− (ε+ (1/n)) and so, y2 /∈ Gε+(1/n). So, y2 ∈ En
3 . Hence, we have shown (141). Then, we

get

∣∣∣∣
∫

A
hn(λ)dλ−

∫

B
hn(λ)dλ

∣∣∣∣ ≤
∫

A\B
hn(λ)dλ+

∫

B\A
hn(λ)dλ (142)

≤
∫

En
1 ∪E

n
2 ∪E

n
3

hn(λ)dλ (143)

≤
3∑

k=1

∫

En
k

hn(λ)dλ (144)

≤
3∑

k=1

ν(En
k )Oε(n

1
2
(1−|N |)) (145)

= Oε(n−|N |+ 5
8 ). (146)

Here, (142) follows from
∫
A hn(λ)dλ −

∫
B hn(λ)dλ =

∫
A\B hn(λ)dλ −

∫
B\A hn(λ)dλ, (143) follows

from (141), (144) is a standard rule of integration, (145) follows from hn(λ) = Oε(n
1
2
(1−|N |)) for all

λ ∈ G 1
2
ε and (146) follows from ν(En

1 ) = Oε(n− 1
2
|N |+ 1

8 ) (see (118)) and we get in a similar fashion

as for (118) via a Gram-Schmidt process that

ν(En
2 ) = O

((
n
− 1

2
+ 1

8|N| + (
√

|N |/n)
)|N |−1

−
(
n
− 1

2
+ 1

8|N| − (
√

|N |/n)
)|N |−1

)

= Oε(n− 1
2
|N |+ 1

8 ),

ν(En
3 ) = O((n

− 1
2
+ 1

8|N| + (
√

|N |/n))|N |−1n−1)

= Oε(n− 1
2
|N |− 3

8 ).

This concludes the proof. �

Lemma C.22 For all t ∈ (0, 1) it holds that

∫ n
1

4|N| /2t(1−t)

0
e−ss

1
2
(|N |−3)ds = Γ

(
1

2
|N | − 1

2

)
+O(n−∞),
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where Γ is the Gamma function:

Γ(κ) =

∫ ∞

0
e−ttκ−1dt, for all κ > 0. (147)

Proof We get

Γ

(
1

2
|N | − 1

2

)
−
∫ n

1
4|N| /2t(1−t)

0
e−ss

1
2
(|N |−3)ds =

∫ ∞

n
1

4|N| /2t(1−t)
e−ss

1
2
(|N |−3)ds (148)

≤ K

∫ ∞

n
1

4|N| /2t(1−t)
e−

1
2
sds (149)

= K2e−n
1

4|N| /4t(1−t) (150)

≤ K2e−n
1

4|N|
(151)

= O(n−∞), (152)

where K > 0. Here, (148) is a standard integration rule, (149) follows from that there exists a

constant K > 0 such that e−ss
1
2
(|N |−3) < Ke−

1
2
s for all s > 1, (150) follows from

∫ b
a e−

1
2
sds =

−2(e−
1
2
b − e−

1
2
a) for all a ≤ b, (151) follows from 4t(1 − t) ≤ 1 for all t ∈ (0, 1) and (152) follows

from the fact that (e−1)n
1

4|N|
= O(n−∞). This concludes the proof. �

Proof of Proposition C.3 We get

Kavg,n
i (R) =

p∗∑

m=1

EQm [Xi]
1

n

∑

λ∈Gn
ε∩D(n)∩AQm

hn(λ) +O(ε) +Oε(n− 1
4 ) (153)

=

p∗∑

m=1

EQm [Xi]n
|N |−1

∑

λ∈Gn
ε∩D(n)∩AQm

∫

Cn(λ)
hn(λ∗)dλ∗ +O(ε) +Oε(n− 1

4 ) (154)

=

p∗∑

m=1

EQm [Xi]n
|N |−1

∫

Gε∩D(n)∩AQm

hn(λ)dλ+O(ε) +Oε(n− 1
4 ) (155)

=

p∗∑

m=1

EQm [Xi]n
1
2
(|N |−1)(2π)

1
2
(1−|N |)|N |− 1

2 (156)

·
∫

Gε∩D(n)∩AQm

(
e
− 1

2λ̄(1−λ̄)
n‖λ−λ̄·eN‖2

)
(λ̄(1− λ̄))

1
2
(1−|N |)dλ+O(ε) +Oε(n− 1

4 )

=

p∗∑

m=1

EQm [Xi]n
1
2
(|N |−1)(2π)

1
2
(1−|N |) (157)

·
∫ 1−ε

ε

∫ dn

0

∫

Sm

e
− 1

2t(1−t)
r2n

(t(1 − t))
1
2
(1−|N |)r|N |−2dωdrdt+O(ε) +Oε(n− 1

4 )
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=

p∗∑

m=1

EQm [Xi]n
1
2
(|N |−1)(2π)

1
2
(1−|N |)µ(Sm) (158)

·
∫ 1−ε

ε

∫ dn

0
e
− 1

2t(1−t)
r2n

(t(1− t))
1
2
(1−|N |)r|N |−2drdt+O(ε) +Oε(n− 1

4 )

=

p∗∑

m=1

EQm [Xi]n
1
2
(|N |−1)(2π)

1
2
(1−|N |)φm2

π− 1
2
(1−|N |)

Γ
(
1
2 |N | − 1

2

) (159)

·
∫ 1−ε

ε

∫ dn

0
e
− 1

2t(1−t)
r2n

(t(1− t))
1
2
(1−|N |)r|N |−2drdt+O(ε) +Oε(n− 1

4 )

=

p∗∑

m=1

EQm [Xi]φmn
1
2
(|N |−1)21

1
2
− 1

2
|N | 1

Γ
(
1
2 |N | − 1

2

)
(
2

n

) 1
2
(|N |−2)

(160)

·
∫ 1−ε

ε

∫ n
1

4|N| /2t(1−t)

0
e−ss

1
2
(|N |−2)(t(1− t))−

1
2

√
t(1− t)

2ns
dsdt+O(ε) +Oε(n− 1

4 )

=

p∗∑

m=1

EQm [Xi]φm
1

Γ
(
1
2 |N | − 1

2

) (161)

·
∫ 1−ε

ε

∫ n
1

4|N| /2t(1−t)

0
e−ss

1
2
(|N |−3)dsdt+O(ε) +Oε(n− 1

4 )

=

p∗∑

m=1

EQm [Xi]φm
1

Γ
(
1
2 |N | − 1

2

)
∫ 1−ε

ε

(
Γ

(
1

2
|N | − 1

2

)
+O(n−∞)

)
dt+O(ε) +Oε(n− 1

4 )

(162)

=

p∗∑

m=1

φmEQm [Xi] +O(ε) +Oε(n− 1
4 ) (163)

Here, (153) follows from Proposition C.2, (154) follows from Lemma C.20 and (155) follows from

Lemma C.21, (156) follows from substitution of (66), (157) follows from the polar coordinate

transformation λ = t · eN + rω and dλ = r|N |−2|N | 12d(t, r, ω), (158) follows from the fact that
∫
Sm

dω = µ(Sm), (159) follows from µ(Sm) = φmµ(S) and the well-known result that the hypersur-

face measure of an |N |-dimensional ball is given by

µ(S) = 2
π− 1

2
(1−|N |)

Γ
(
1
2 |N | − 1

2

) ,

where Γ is defined in (147), (160) follows from the transformation s = r2n
2t(1−t) and dr =

√
t(1−t)
2ns ds,

(161) follows from canceling of some terms and (162) follows from Lemma C.22. This concludes the

proof. �
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D Proofs of Section 4

Proof of Proposition 4.1 (i) Follows immediately from (11), (26) and (27).

(ii) Follows immediately from (i) and the fact that the Aumann-Shapley value, if it exists, is the

unique element of the fuzzy core (Aubin, 1981). �

Proof of Corollary 4.2 If |N | = 2, we get

S = {(−
√
0.5,

√
0.5), (

√
0.5,−

√
0.5)}

Sm = {z ∈ S : z1EQm [X1] + z2EQm [X2] ≥ z1EQℓ
[X1] + z2EQℓ

[X2] for all ℓ ∈ {1, . . . , p∗}}.

So, µ(S) = |S| = 2, and µ(Sm) = |Sm| = |{z ∈ S : z1EQm [X1] + z2EQm[X2] ≥ z1EQℓ
[X1] +

z2EQℓ
[X2] for all ℓ ∈ {1, . . . , p∗}}|. Note that for all ℓ ∈ {1, . . . , p∗}, it holds by construction that

EQℓ
[X1] + EQℓ

[X2] is the same (and equal to r(eN )). So, if z = (−
√
0.5,

√
0.5), then z1EQm [X1] +

z2EQm [X2] ≥ z1EQℓ
[X1] + z2EQℓ

[X2] for all ℓ ∈ {1, . . . , p∗} holds when EQm[X2] = max{EQℓ
[X2] :

ℓ ∈ {1, . . . , p∗}} or, equivalently, EQm [X1] = min{EQℓ
[X1] : ℓ ∈ {1, . . . , p∗}}. Likewise, if z =

(
√
0.5,−

√
0.5), then z1EQm [X1] + z2EQm [X2] ≥ z1EQℓ

[X1] + z2EQℓ
[X2] for all ℓ ∈ {1, . . . , p∗} holds

when EQm [X1] = max{EQℓ
[X1] : ℓ ∈ {1, . . . , p∗}} or, equivalently, EQm[X2] = min{EQℓ

[X2] : ℓ ∈
{1, . . . , p∗}}. This concludes the proof. �

Proof of Theorem 4.3 It follows immediately from Definition 3.7 and Definition 3.10 that it is

sufficient to show that for all n ∈ IN, all P ∈ Pn, and all R ∈ R, the properties Translation Invari-

ance, Scale Invariance and Monotonicity are satisfied for the allocation rule Kpath,P (R) defined in

(21).

We start with showing the property Translation Invariance. Let P ∈ Pn, n ∈ IN, j ∈ N ,

R = ((Xi)i∈N , ρ) ∈ R and R̃ = ((X̃i)i∈N , ρ) ∈ R such that (X̃i)i∈N = (Xj + c · eΩ,X−j) for some

c ∈ IR. Let r (r̃) be the fuzzy game corresponding to R (R̃), as defined in (8). Then, we get

r̃(λ) = ρ

(
∑

i∈N

λiX̃i

)

= ρ

(
∑

i∈N

λi ·Xi + c · λj · eΩ
)

= ρ

(
∑

i∈N

λi ·Xi

)
+ c · λj (164)

= r(λ) + c · λj , (165)
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for all λ ∈ [0, 1]N , where (164) follows from Translation Invariance of ρ. We get

Kpath,P (R̃) =

|N |n−1∑

k=0

[r̃(P (k + 1)) − r̃(P (k))] · ei(P,k) (166)

=

|N |n−1∑

k=0

[r(P (k + 1)) + c · Pj(k + 1)− r(P (k))− c · Pj(k)] · ei(P,k) (167)

= Kpath,P (R) + c ·
|N |n−1∑

k=0

[Pj(k + 1)− Pj(k)] · ei(P,k) (168)

= Kpath,P (R) + c ·
|N |n−1∑

k=0

[Pj(k + 1)− Pj(k)] · ej (169)

= Kpath,P (R) + c · [Pj(|N |n)− Pj(0)] · ej

= Kpath,P (R) + c · ej , (170)

where Pj(k) is the j-th element of P (k). Here, (166) follows from (21), (167) follows from (165),

(168) follows from (21), (169) follows from Pj(k + 1)− Pj(k) = 0 if i(P, k) 6= j (see (20)) and (170)

follows from Definition 3.5(i). This concludes the proof of Translation Invariance.

The proof of Scale Invariance is similar to the proof of Translation Invariance.

Next, we show Monotonicity. Let the risk measure ρ be non-decreasing in the sense that

ρ
(∑

i∈N λiXi

)
≤ ρ

(∑
i∈N λ∗

iXi

)
whenever λ, λ∗ ∈ [0, 1]N and λ ≤ λ∗. Combined with (8) and

(20), this implies that r(P (k + 1)) − r(P (k)) ≥ 0 for all k ∈ {0, . . . , |N |n − 1}. It now follows

immediately from (21) that Kpath,P (R) ≥ 0. This concludes the proof of Monotonicity. �
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