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Abstract

Bowley reinsurance solutions are reinsurance contracts for which the reinsurer
optimally sets the pricing density, while anticipating that the insurer will chose
the optimal reinsurance indemnity given this pricing density. This Bowley solution
concept of equilibrium reinsurance strategy has been revisited in the modern risk
management framework by Boonen et al. (2021), where the insurer and reinsurer
are both endowed with distortion risk measures but there is asymmetric information
on the distortion risk measure of the insurer. In this article, we continue to study
this framework, but we allow the premium principle to be more flexible. We call
this solution the first-best Bowley solution. We provide first-best Bowley solutions
in closed-form under very general assumptions. We implement some numerical ex-
amples to illustrate the findings and the comparisons with the second-best solution.
The main result is further extended to the case when both of the reinsurer and the
insurers have heterogeneous beliefs on the distribution functions of the underlying
risk.

Key words: Bowley reinsurance; Asymmetric information; General premium prin-
ciple; Distortion risk measure; Heterogeneous beliefs.
JEL classification: C61, G22, G32.

1 Introduction
This paper studies Bowley reinsurance solutions with asymmetric information with a very
general pricing principle. In Bowley reinsurance contracts, a monopolistic reinsurer se-
lects the premium principle, and sequentially the insurer selects the optimal reinsurance
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coverage given this premium principle. The reinsurer selects the premium principle such
that it maximizes expected profit, while taking into account the insurer’s optimal response
to buy reinsurance coverage. Bowley solutions are first studied in optimal reinsurance by
Chan and Gerber (1985). In the reinsurance market, we assume that there is asymmetric
information in the sense that the reinsurer cannot observe the preferences of the insurer.
More precisely, the insurer is endowed with a distortion risk measure, and the reinsurer
does not know the underlying distortion function used by the insurer. The preferences
of the insurer may only be revealed by the reinsurance contract that the insurer pur-
chases. The reinsurer communicates the premium principle to the insurer, and the class
of admissible premium principles is very flexible. We assume that the premium principle
is law invariant, comonotonic additive and the total premium cannot be negative. This
is more general than Boonen et al. (2021), as this premium principle may admit nega-
tive state prices. Note, however, that we still do not permit arbitrage opportunities due
to market-incompleteness. In other words, there does not exist a reinsurance indemnity
that is positive somewhere with positive probability and has a non-positive premium.
Such premium principles are closely related to distortion riskmetrics (Wang et al., 2020),
that generalize distortion risk measures to allow for non-monotone and non-translation-
invariant risk measures in the sense of Artzner et al. (2001). We however restrict the
underlying distortion function to be non-negative in order to avoid negative prices.

The premium principle that is shown to be optimal is akin to a distortion risk measure,
but the underlying “distortion function” may be decreasing somewhere. For this premium
principle to be a distortion premium principle (also called Wang’s premium principle when
the distortion function is concave), the underlying distortion function needs to be non-
decreasing. To avoid any confusion, we do not call a function that is not non-decreasing a
distortion function, but a premium generating function. As seen later from our numerical
examples, the first-best Bowley solution in the present paper yields a higher profit for the
reinsurer than the second-best solution developed in Boonen et al. (2021).

The literature on Bowley solutions in optimal reinsurance is summarized as follows.
First, under expected-utility theory, Chan and Gerber (1985) show the Bowley solutions
for many special cases. Recently, also under expected-utility theory, Chi et al. (2020)
design as different type of game, and study Bowley solutions therein. In particular,
they assume that the reinsurer selects the insurer’s budget for reinsurance, and then the
insurer maximizes its utility given this premium budget. Distortion risk measures have
been studied in many different settings, as they are related to dual utility (Yaari, 1987)
and Wang’s premium principle (Wang, 1996). Also, it is related to insurance regulation,
as the Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) are special cases of distortion
risk measures. In the setting of distortion risk measures, Bowley solutions are studied
by Cheung et al. (2019) and Boonen et al. (2021). In Cheung et al. (2019), the insurer
minimizes a distortion risk measure and the reinsurer is risk-neutral, while the premium
principle is also of a distortion risk measure type. The solution of this optimal reinsurance
problem is reached by solving two sub-problems in order. The first step is to minimize
the distortion risk measure of the retained loss of the insurer with increasing concave
distortion function for a given premium functional. This problem is closely related to
optimal reinsurance with distortion risk measures (Cui et al., 2013; Assa, 2015). The
second step then for the reinsurer is to select the premium functional that maximizes
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the net expected gain of the reinsurer. Boonen et al. (2021) extend this approach in the
second step, where they include asymmetric information of the preferences of the insurer
and the reinsurer adopts a distortion premium principle. Henceforth, we refer the results
in Boonen et al. (2021) as the second-best Bowley solution under asymmetric information.

Bowley solutions are closely related to Stackelberg equilibria in game theory. In Stack-
elberg equilibria, there is a leader who first discloses their strategy, and the other economic
agent - the follower - selects their strategy in response. With symmetric information, the
leadership will yield an advantage in welfare compared to the follower. In actuarial sci-
ence, this is for instance studied by Albrecher and Dalit (2017), Chen and Shen (2018)
and Anthropelos and Boonen (2020). In Bowley solutions with asymmetric information,
however, it may be possible to mutually strictly benefit in the equilibrium outcome, as
we will show in this paper.

The premium principle that we find admits a bang-bang type structure. A feature of
this premium principle is that it may also admit negative state prices. This paper explic-
itly focuses on optimal reinsurance contracts, and we only allow reinsurance indemnity
contracts that satisfy a moral hazard condition, implying comonotonicity of the retained
and the insured risks. In contrast to complete markets (for instance with Arrow-Debreu
securities), this comonotonicity restriction implies that negative state prices cannot be ex-
ploited as arbitrage opportunity.1 Market incompleteness is also a result of the standard
assumption that the insurer can only buy reinsurance, and not sell reinsurance.

The results developed in the present paper have the following differences and ad-
vantages: (i) we establish the Bowley reinsurance contracts (called the first-best Bowley
solution in the sequel) under asymmetric information provided that the reinsurer adopts
a very general premium generating function and a general cost function when contracting
reinsurance contracts with the insurer; (ii) there is no need to consider only special cases
for the shape of the distortion functions employed by the insurer, which is in sharp contrast
with the basic assumption of the findings in Boonen et al. (2021). The techniques in this
paper are very different from the ones in Boonen et al. (2021). More specifically, we use
an optimal control method via path-wise optimization instead of a geometric method; (iii)
by construction, the reinsurer can gain more profit under our first-best solution compared
with the second-best solution in some situations; (iv) the main result can be smoothly
extended to the case where the reinsurer and the two types of insurers have heterogeneous
beliefs on the probability distributions of the underlying risk.

This paper is set out as follows. Section 2 states the asymmetric information problem
studied in this paper. Section 3 solves this problem. In Section 4, we give an example
to illustrate the main result when the two distortion functions of the insurer are ordered.
Section 5 presents another two numerical examples when the distortion risk measures are
(i) VaR and convex distortion risk measure, and (ii) TVaR and convex distortion risk
measure. Some comparative analysis is carried out on our first-best Bowley solution and
the second-best solution established in Boonen et al. (2021). Section 6 extends the main
result of Section 3 to the scenario where the reinsurer and the insurers have asymmetric
information and heterogeneous beliefs. Section 7 concludes the paper.

1In asset markets, negative pricing kernel realisations appear also in equilibrium markets with mean-
variance optimizing agents (Jarrow and Madan, 1997), or in markets with restricted participation (Rahi
and Zigrand, 2014).
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2 Problem formulation

2.1 Indemnities, premium principles and distortion risk measures

Let (Ω,F ,P) a probability space. The insurer is initially endowed with a bounded, non-
negative random loss variable X, which is realized at a given future reference time period.
Its distribution function FX is known by both the insurer and the reinsurer.2

The insurer cedes the risk f(X) to the reinsurer. We assume that f ∈ F , with

F = {f : [0,M ] 7→ [0,M ]|f(0) = 0, 0 ≤ f(x)− f(y) ≤ x− y for 0 ≤ y ≤ x ≤M},

where M is the essential supremum of X. The purpose of restricting the admissible set of
ceded loss functions to F is to avoid moral hazard or insurance swindles; see for instance
Huberman et al. (1983), Denuit and Vermandele (1998) and many other recent papers.
The function f ∈ F is non-decreasing and 1-Lipschitz and hence absolutely continuous.
This implies that f is almost everywhere differentiable on [0,M ]. Moreover, there exists
a Lebesgue integrable function h : [0,M ] 7→ [0, 1] such that

f(x) =

∫ x

0

h(z)dz, x ≥ 0, (1)

where h is the slope of the ceded loss function f .
In return for the ceding the random loss f(X), the insurer pays a premium to the

reinsurer. The premium is determined via a premium principle, which maps every ceded
random loss f(X) to non-negative premiums. We assume that the premium principle
is comonotonic additive and law invariant, but not necessarily monotone. In particular,
for any ceded loss function f ∈ F , we assume that the reinsurance premium charged is
determined by the following general premium principle:

Πgr(f(X)) =

∫ f(M)

0

gr(F f(X)(z))dz =

∫ M

0

gr(FX(z))h(z)dz, (2)

where h satisfies (1), F f(X)(z) := 1 − Ff(X)(z) is the survival function of f(X), gr ∈ G,
and

G = {g : [0, 1] 7→ R+|g(0) = 0, g is bounded variation}.

We refer to gr as a premium generating function. In (2), the second equality follows from
Cheung and Lo (2017).3 Recently, Wang et al. (2020) studied a class of functionals that is
very similar to (2),4 and they defined this as a distortion riskmetric. Distortion riskmetrics
generalize distortion risk measures as they allow for non-monotone risk measures. The
expected premium principle, Wang’s premium principle and the VaR are all special cases

2In Section 6, we generalize this assumption, and allow for heterogeneous beliefs.
3Since any function of bounded variation can be always written as the difference of two non-decreasing

functions, the proofs and results of Cheung and Lo (2017) still hold and can be applied here directly. It
is worth mentioning that bounded variation is also assumed by Wang et al. (2020).

4To be precise, and in contrast to our setting, Wang et al. (2020) allow for functions gr that can be
negative somewhere. Negative values of gr lead to negative prices for some insurance contracts, and this
makes negativity not a desirable property for premium principles.
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of the general premium principle in (2). There are also some other well-known premium
principles used in insurance practice when the premium generating function gr is not
monotone (might be strictly decreasing somewhere on [0, 1]). These include the Gini
deviation, the mean-median deviation, the inter-quantile range with confidence level α ∈
[1/2, 1), and the inter-ES range with confidence level β ∈ (0, 1), whose distortion functions
are given by gr(t) = t−t2, gr(t) = t∧(1−t), gr(t) = 1{1−α≤t≤α}, and gr(t) = t

1−β∧1+ β−t
1−β∧0,

respectively. We refer interested readers to Table 1 in Wang et al. (2020) for more details.
Besides, it is easy to observe that the premium must be greater than the expectation if
we set the premium generating function as g̃r(t) := gr(t) + t, where gr(t) refers to one of
the above mentioned non-monotone premium generating functions. This policy is very
important and useful in many insurance applications.

If gr is decreasing somewhere, the underlying pricing kernel may be negative some-
where. Note however that Π(f(X)) ≥ 0 for all f ∈ F , and if gr(t) > 0 for all t ∈ (0, 1]
and P(f(X) > 0) > 0 then Πgr(f(X)) > 0. Thus, it is not necessarily possible to
construct an arbitrage opportunity5 when gr is non-monotone, which is a result of the
constraints in F . Also, from (2), we get that if f ′1(z) ≥ f ′2(z) for all z ∈ [0,M ], then
Πgr(f1(X)) ≥ Πgr(f2(X)).

Finally, we discuss the preferences of the insurer. The insurer is assumed to minimize
a distortion risk measure. A distortion risk measure ρg of a non-negative random variable
Z is given by

ρg(Z) =

∫ ∞
0

g(FZ(z))dz, (3)

whenever the integral exists, where g : [0, 1] 7→ [0, 1] is a non-decreasing and left-
continuous function such that g(0) = 0 and g(1) = 1. The set of all such distortion
functions g is denoted by Gd, i.e.,

Gd = {g ∈ G : g(0) = 0, g(1) = 1, g is non-decreasing and left-continuous}.

2.2 Bowley reinsurance solutions with asymmetric information

The distortion risk measure used by the insurer is hidden information for the reinsurer, and
the reinsurer only knows that there are just finitely many possible distortion risk measures
of the insurer. For brevity of our result, we proceed under the case that there are only
two possible distortion risk measures of the insurer. To be precise, the reinsurer holds
the opinion that insurer minimizes ρgi1 or ρgi2 with probability p and 1− p, respectively,
where p ∈ [0, 1] and {gi1, gi2} ⊂ Gd.

For the reinsurance indemnity function f ∈ F , the total retained loss for the insurer
is equal to X−f(X)+Πgr(f(X)), where gr ∈ G and Πgr is the corresponding reinsurance
premium principle given by (2). The two-step game played by the insurer and the reinsurer
is formalized as follows:

• (Decision problem faced by the insurer) For any given gr ∈ G provided by the
5An arbitrage opportunity is here understood as the existence of a reinsurance indemnity that is

positive somewhere with positive probability and that has a non-positive premium.
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reinsurer, the insurer chooses the optimal ceded loss function f ∈ F by solving

min
f∈F

ρgi(X − f(X) + Πgr(f(X))), (4)

where gi = gi1 or gi = gi2, depending the identity of the insurer.

• (Decision problem faced by the reinsurer) The reinsurer is uncertain about the
identity of the insurer, but knows the distortion functions gi1 and gi2 and probability
p. The reinsurer selects the optimal reinsurance premium generating function g∗r by
maximizing the expected net profit. Then, the optimization problem of interest is

max
gr∈G

W (gr) := max
gr∈G
{p{E[Πgr(f{gr;gi1}(X))− f{gr;gi1}(X)]− C(f{gr;gi1})}

+ (1− p){E[Πgr(f{gr;gi2}(X))− f{gr;gi2}(X)]− C(f{gr;gi2})}},
(5)

where C(f{gr;gij}) denotes the aggregate administrative cost paid by the reinsurer if
the insurer purchases the policy f{gr;gij}, for j = 1, 2.

Only after the insurer selects the indemnity function that is optimal for him/her, the
identity of the insurer is revealed to the reinsurer via this indemnity selection. In fact,
the reinsurer can distinguish insurers according to different responses from different types
of the insurer. The problem of this paper is summarized as follows:

max
gr∈G

W (gr; f{gr;gi1}, f{gr;gi2})

s.t. f{gr;gij} ∈ argmin
f∈F

ρgij(X − f(X) + Πgr(f(X))), j = 1, 2,

where W (gr; f{gr;gi1}, f{gr;gi2}) is the expected net profit of the reinsurer in (5) for given
indemnity functions f{gr;gi1} and f{gr;gi2}. Solutions are called first-best Bowley solutions.

Problem (4) has been solved by Cheung et al. (2019), which is stated in the following
lemma.6

Lemma 2.1 (Cheung et al. (2019)) For any gr ∈ G, the optimal ceded loss function
f ∗{gr,gij} that solves problem (4) is given by

f ∗{gr,gij}(x) = µ({z ∈ [0, x] | ψj(FX(z)) > 0})

+

∫ x

0

hj(z)1{ψj(FX(z))=0}µ(dz), x ≥ 0, (6)

where the function ψj is defined as

ψj(t) := gij(1− t)− gr(1− t), t ∈ [0, 1],

and hj could be any measurable function with 0 ≤ hj(z)1{ψj(FX(z))=0} ≤ 1, for j = 1, 2.

6Cheung et al. (2019) require that the set of admissible premium functions is given by Gd instead of
G, but this assumption is not needed in this proof of this result.
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We assume that the administrative cost of offering the compensation is proportional
to a distortion risk measure, i.e., let C(f) =: γρĝR(f(X)) for any f ∈ F , where γ ≥ 0 is
a fixed constant and ĝR ∈ Gd.7 Then, for j ∈ {1, 2},

E[f{gr;gij}(X)] + γρĝR(f{gr;gij}) =

∫ f{gr ;gij}(M)

0

F f{gr ;gij}(X)(z)dz

+ γ

∫ f{gr ;gij}(M)

0

ĝR(F f{gr ;gij}(X)(z))dz

=

∫ f{gr ;gij}(M)

0

[F f{gr ;gij}(X)(z) + γĝR(F f{gr ;gij}(X)(z))]dz

=

∫ f{gr ;gij}(M)

0

gR(F f{gr ;gij}(X)(z))dz

= ΠgR(f{gr;gij}(X)),

where gR(t) := t+ γĝR(t), t ∈ [0, 1], is such that gR ∈ G, and where ΠgR is defined in (2).
Thus, we rewrite the objective in (5) as:

W (gr) = p{E[Πgr(f{gr;gi1}(X))− f{gr;gi1}(X)]− γρĝR(f{gr;gi1})}
+ (1− p){E[Πgr(f{gr;gi2}(X))− f{gr;gi2}(X)]− γρĝR(f{gr;gi2})}
= p{Πgr(f{gr;gi1}(X))− ΠgR(f{gr;gi1}(X))}
+ (1− p){Πgr(f{gr;gi2}(X))− ΠgR(f{gr;gi2}(X))}.

Note that the expectation is a special case of a distortion risk measure. When the costs
are proportional to the expectation, Cheung et al. (2019) studied problem (5) when p = 1,
i.e., the identity of the insurer is known by the reinsurer: there is symmetric information.
Also for the case with costs that are proportional to the expectation, Boonen et al. (2021)
studied the case where the premium generating function has to be non-decreasing and for
a general value p ∈ [0, 1].

According to Lemma 2.1, the insurer with distortion function gij is indifferent regarding
the choice of hj(z) for z ∈ [0,M ] such that ψj(FX(z)) = 0; however, the reinsurer may
still make a profit by setting hj(z) = 1. Note that if the premium rate g∗r(FX(z)) is not
profitable for the reinsurer, the reinsurer would prefer to select a higher premium rate.
As studied in Laffont and Martimort (2009), we assume that the insurer is “willing to”
improve the welfare of the reinsurer in case the insurer is faced with alternatives that are
that the insurer is indifferent with. Therefore, we set hi(z) = 1 in the sequel of this paper,
which is also consistent with the setting in Cheung et al. (2019) and Boonen et al. (2021).
From this and Lemma 2.1, it follows that problem (5) can be written as:

max
gr∈G

W (gr) = max
gr∈G

∫ 1

0

[gr(t)− gR(t)] [p1{gr(t)≤gi1(t)} + (1− p)1{gr(t)≤gi2(t)}]νX(dt)

7Modelling transaction costs proportional to a distortion risk measure is common in finance via bid-
ask spreads (Bannor and Scherer, 2014; Eberlein et al., 2014). In optimal reinsurance, the administrative
cost is also interpreted as a cost of holding risk capital that is measure by a distortion risk measure (Chi,
2012; Cheung and Lo, 2017).
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= max
gr∈G

{
p

∫ 1

0

[gr(t)− gR(t)]1{gr(t)≤gi1(t)}νX(dt)

+(1− p)
∫ 1

0

[gr(t)− gR(t)]1{gr(t)≤gi2(t)}νX(dt)

}
=: max

gr∈G
{pW (gr, gi1) + (1− p)W (gr, gi2)} , (7)

where

W (gr, gij) =

∫ 1

0

[gr(t)− gR(t)]1{gr(t)≤gij(t)}νX(dt), j = 1, 2,

and where νX is the Radon measure on [0, 1) such that νX([a, b)) = (−F−1X (1 − b)) −
(−F−1X (1− a)) for 0 ≤ a < b < 1.

3 Main result
In this section, we provide our main result for problem (7). We assume {gi1, gi2} ⊂ Gd. It
will be helpful to define, for t ∈ [0, 1],

φ(t) = 1{gi1(t)>gi2(t)}(gi2(t)− (p · gi1(t) + (1− p)gR(t)))

+ 1{gi1(t)<gi2(t)}((1− p) · gi2(t) + pgR(t)− gi1(t)).

Moreover, define

A = {t ∈ [0, 1] : φ(t) < 0, gi1(t) ≥ gR(t)},
B = {t ∈ [0, 1] : φ(t) = 0, gi2(t) ≥ gR(t)},
C = {t ∈ [0, 1] : φ(t) > 0, gi2(t) ≥ gR(t)}.

This allows us to state our main result in the following theorem, which provides the
first-best Bowley solutions under asymmetric information.

Theorem 3.1 The solution set to problem (7) contains those g∗r ∈ G such that

g∗r(t) =


gi1(t), if t ∈ A,
∈ {gi1(t), gi2(t)}, if t ∈ B,
gi2(t), if t ∈ C,

and
νX{t ∈ [0, 1]\(A ∪ B ∪ C) : g∗r(t) ≤ max{gi1(t), gi2(t)}} = 0.

Moreover, for any of these g∗r , we have, for x ∈ [0,M ],

f ∗{g∗r ,gi1}(x) = µ({z ∈ [0, x] | FX(z) ∈ A})
+µ({z ∈ [0, x] | FX(z) ∈ B, g∗r(FX(z)) ≤ gi1(FX(z))})
+µ({z ∈ [0, x] | FX(z) ∈ C, gi1(FX(z)) > gi2(FX(z))}),

and

f ∗{g∗r ,gi2}(x) = µ({z ∈ [0, x] | FX(z) ∈ A, gi1(FX(z)) < gi2(FX(z))})
+µ({z ∈ [0, x] | FX(z) ∈ B, g∗r(FX(z)) ≤ gi2(FX(z))})
+µ({z ∈ [0, x] | FX(z) ∈ C}).
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Proof. The proof uses the technique of path-wise optimization. Equation (7) writes as

max
gr∈G

∫ 1

0

[gr(t)− gR(t)] [p1{gr(t)≤gi1(t)} + (1− p)1{gr(t)≤gi2(t)}]νX(dt)

= max
gr∈G

∫ 1

0

[gr(t)− gR(t)] [p1{gi2(t)<gr(t)≤gi1(t)} + (1− p)1{gi1(t)<gr(t)≤gi2(t)}

+1{gr(t)≤min{gi1(t),gi2(t)}}]νX(dt)

= max
gr∈G

∫ 1

0

ψ(gr(t), t)νX(dt)

≤
∫ 1

0

max
gr(t)≥0

ψ(gr(t), t)νX(dt),

where

ψ(gr(t), t) :=


[gr(t)− gR(t)] [p1{gi2(t)<gr(t)≤gi1(t)} + 1{gr(t)≤gi2(t)}] if gi1(t) > gi2(t),
[gr(t)− gR(t)]1{gr(t)≤gi1(t)} if gi1(t) = gi2(t),
[gr(t)− gR(t)] [(1− p)1{gi1(t)<gr(t)≤gi2(t)} + 1{gr(t)≤gi1(t)}] if gi1(t) < gi2(t).

Now, we solve the maximization problem path-wise, and therefore we first fix t ∈ [0, 1].
We are next constructing solutions of maxgr(t)≥0 ψ(gr(t), t). We separate three different
cases.

(i) gi1(t) > gi2(t): Then, ψ(gr(t), t) := [gr(t)− gR(t)] [p1{gi2(t)<gr(t)≤gi1(t)}+1{gr(t)≤gi2(t)}].
For all t ∈ [0, 1], it holds that ψ(·, t) is strictly increasing on [0, gi2(t)] and on
(gi2(t), gi1(t)], and ψ(·, t) = 0 on (gi1(t),∞). Thus, the maximum value of ψ(·, t) is
either located at the possible discontinuities, gi2(t) and gi1(t), or it is zero. Hence,

max
gr(t)≥0

ψ(gr(t), t) = max{p(gi1(t)− gR(t)), gi2(t)− gR(t), 0}

= max{p(gi1(t)− gR(t))

+ max{0, gi2(t)− (p · gi1(t) + (1− p)gR(t))}, 0}
= max{p(gi1(t)− gR(t)) + max{0, φ(t)}, 0}.

Hence, if φ(t) < 0 and gi1(t) ≥ gR(t), then maxgr(t)≥0 ψ(gr(t), t) is solved by gr(t) =
gi1(t). Likewise, if φ(t) > 0 and gi2(t) ≥ gR(t), then maxgr(t)≥0 ψ(gr(t), t) is solved
by gr(t) = gi2(t). If φ(t) = 0 and gi2(t) ≥ gR(t), then maxgr(t)≥0 ψ(gr(t), t) is
solved by either gr(t) = gi1(t) or gr(t) = gi2(t). Finally, if gi1(t) < gR(t), then
maxgr(t)≥0 ψ(gr(t), t) = 0, and it is thus solved by any gr(t) > gi1(t).

(ii) gi1(t) = gi2(t): Then, ψ(gr(t), t) := [gr(t)− gR(t)]1{gr(t)≤gi1(t)}. For all t ∈ [0, 1], it
holds that ψ(·, t) is strictly increasing on [0, gi1(t)], and ψ(·, t) = 0 on (gi1(t),∞).
Thus, the maximum value of ψ(·, t) is either located at gi1(t), or it is zero. Hence,

max
gr(t)≥0

ψ(gr(t), t) = max{gi1(t)− gR(t), 0}.

Recall that φ(t) = 0. If gi1(t) ≥ gR(t), then maxgr(t)≥0 ψ(gr(t), t) is solved by
gr(t) = gi1(t) = gi2(t). If gi1(t) < gR(t), then maxgr(t)≥0 ψ(gr(t), t) = 0, and is thus
solved by any gr(t) > gi1(t).
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(iii) gi1(t) < gi2(t): Then, ψ(gr(t), t) := [gr(t)− gR(t)] [(1−p)1{gi1(t)<gr(t)≤gi2(t)}+1{gr(t)≤gi1(t)}].
For all t ∈ [0, 1], it holds that ψ(·, t) is strictly increasing on [0, gi1(t)] and on
(gi1(t), gi2(t)], and ψ(·, t) = 0 on (gi2(t),∞). Thus, the maximum value of ψ(·, t) is
either located at the possible discontinuities, gi1(t) and gi2(t), or it is zero. Hence,

max
gr(t)≥0

ψ(gr(t), t) = max{(1− p)(gi2(t)− gR(t)), gi1(t)− gR(t), 0}

= max{(1− p)(gi2(t)− gR(t))

+ max{0, gi1(t)− ((1− p) · gi2(t) + pgR(t))}, 0}
= max{(1− p)(gi2(t)− gR(t)) + max{0,−φ(t)}, 0}.

Hence, if φ(t) < 0 and gi1(t) ≥ gR(t), then maxgr(t)≥0 ψ(gr(t), t) is solved by gr(t) =
gi1(t). Likewise, if φ(t) > 0 and gi2(t) ≥ gR(t), then maxgr(t)≥0 ψ(gr(t), t) is solved
by gr(t) = gi2(t). If φ(t) = 0 and gi2(t) ≥ gR(t), then maxgr(t)≥0 ψ(gr(t), t) is
solved by either gr(t) = gi1(t) or g∗r(t) = gi2(t). Finally, if gi1(t) < gR(t), then
maxgr(t)≥0 ψ(gr(t), t) = 0, and is thus solved by any gr(t) > gi1(t).

Now we constructed the solutions of maxgr(t)≥0 ψ(gr(t), t) for all t ∈ [0, 1]. Let g∗r ∈ G
such that it solves maxgr(t)≥0 ψ(gr(t), t) for all t ∈ (0, 1]. Note that g∗r(0) = 0 is a solution
to maxgr(0)≥0 ψ(gr(0), 0) = 0. Thus,∫ 1

0

max
gr(t)≥0

ψ(gr(t), t)νX(dt) =

∫ 1

0

ψ(g∗r(t), t)νX(dt)

≤ max
gr∈G

∫ 1

0

ψ(gr(t), t)νX(dt)

≤
∫ 1

0

max
gr(t)≥0

ψ(gr(t), t)νX(dt).

Thus, the inequalities can be replaced by equalities, which concluded the proof of the
premium generating functions g∗r in first-best Bowley solutions.

For a fixed premium generating function g∗r , the optimal indemnity functions f ∗{g∗r ,gi1}
and f ∗{g∗r ,gi2} follow from Lemma 2.1. This concludes the proof.

While the function φ is merely used as ancillary function to construct the first-best
Bowley solutions, it has an interpretation. At a given value t ∈ [0, 1], φ(t) is the marginal
profit that the reinsurer makes by choosing g∗r(t) = gi2(t) instead of g∗r(t) = gi1(t). So,
if φ(t) is positive (negative), then it is profitable for the reinsurer to select the premium
generating function g∗(t) that makes the type 2 (1) insurer indifferent between buying
or not buying marginal reinsurance. While, for the marginal profit, reinsurance prices
often make one type of insurer “indifferent”, this does not imply that the insurer will be
indifferent between insuring or not insuring. In fact, since it may hold that g∗r(t) < gij(t)
for some t ∈ [0, 1], the insurer can strictly profit from buying reinsurance.

Note that (f ∗{g∗r ,gij})
′(z) > 0 for some j ∈ {1, 2} implies for z ∈ [0,M ] a.e. that FX(z) ∈

A∪B∪C. Then, the solution in Theorem 3.1 is such that g∗r(FX(z)) ≥ gR(FX(z)) ≥ FX(z)
for z ∈ [0,M ] a.e. As a direct consequence of this chain of inequality, it must hold that
Πg∗r (f ∗{g∗r ,gij}(X)) ≥ E[f ∗{g∗r ,gij}(X)]. In fact, a solution in Theorem 3.1 can always be chosen
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such that g∗r(t) ≥ t for all t ∈ [0, 1]. This observation implies that an optimal premium
principle is such that the premium always exceeds the expected value of the insurable
loss.

We have assumed that the insurer uses two possible distortion risk measures that the
insurer is endowed with: gi1 and gi2. It is important to note that our results can be
generalized straightforwardly for finitely many possible distortion risk measures of the
insurer. We provide optimal solutions for such case in Appendix A, but prefer to further
omit this case in the main text to avoid cumbersome expressions. Note that in Boonen
et al. (2021), it is not trivial to extend the optimal reinsurance contracts beyond the case
of two possible distortion risk measures of the insurer unless the distortion risk measures
are all equal to a VaR.

4 An example with ordered distortion functions of the
insurer

In this section, we provide an example for the special case where gi1(t) ≥ gi2(t) for all
t ∈ [0, 1]. For ease of implementing the calculation and comparisons on the net gains
between the result of Theorem 3.1 and that in Theorem 5.1 of Boonen et al. (2021), we
set ĝR(t) = t so that gR(t) = (1 + γ)t and ΠĝR(f{gr;gij}(X)) = (1 + γ)E[f{gr;gij}(X)],
j = 1, 2. In this case, the function φ simplifies as

φ(t) = gi2(t)− (p · gi1(t) + (1− p)(1 + γ)t), t ∈ [0, 1].

From Theorem 3.1, we get that, for any optimal g∗r , we have, for x ∈ [0,M ],

f ∗{g∗r ,gi1}(x) = µ({z ∈ [0, x] | FX(z) ∈ A})
+µ({z ∈ [0, x] | FX(z) ∈ B, g∗r(FX(z)) = gi1(FX(z))}),

and

f ∗{g∗r ,gi2}(x) = µ({z ∈ [0, x] | FX(z) ∈ A ∪ B ∪ C}).

As studied in Boonen et al. (2021), we define the second-best Bowley solutions as
the solutions of problem (7), but now we restrict the set of feasible premium generating
functions to gr ∈ Gnd, where

Gnd = {g : [0, 1] 7→ R+|g(0) = 0, g is bounded, left-continuous and non-decreasing}.

Note that in Theorem 3.1, we allow for the situation where g∗r might be decreasing on
some interval. We will highlight this in the numerical examples in the next two sections.
Because Gnd ⊂ G, it holds that first-best Bowley solutions, as shown in Theorem 3.1, yield
a menu of reinsurance contracts from which the reinsurer may benefit more compared with
the second-best Bowley solutions. In other words, W (g∗r) is larger in the for the first-best
Bowley solutions than for the second-best Bowley solutions. The insurer, on the other
hand, may however be better off in a second-best Bowley solution. Also note that if a
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premium generating function g∗r ∈ Gnd constitutes a first-best Bowley solution, then g∗r
also constitutes a second-best Bowley solution, and the net profit for the reinsurer W (g∗r)
is the same in both solutions.

The next example serves as an illustration of the result in Theorem 3.1. As will be
observed, the value of probability p plays a key role in determining the optimal premium
generating function and the corresponding ceded loss functions.

Example 4.1 Suppose that the distortion functions of the insurer are given by gi1(t) = tβ1

and gi2(t) = tβ2, for t ∈ [0, 1], where β1 = 0.2 and β2 = 0.4. Clearly, gi1(t) ≥ gi2(t), for
all t ∈ [0, 1]. Let γ = 0.1. Then, the solutions of the equations gi1(t) = gR(t) and
gi2(t) = gR(t) on t ∈ (0, 1) can be calculated as t1 = 0.8877 and t2 = 0.8531, respectively.
Assume that the risk X has an exponential distribution with expectation 1. According to
definitions of the sets A, B and C, we need to determine first the signs of the function
φ(t) for t ∈ [0, t1], and then get the explicit expressions of these three sets. Consider the
following three examples of the probability p:
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Figure 1: Plot of the function φ(t) on t ∈ [0, t1] for three different values of p. Corre-
sponding to Example 4.1.

(i) p = 0.1. Figure 1(a) plots the function φ(t) on t ∈ [0, t1]. From this figure it
can be observed that φ(t) = 0 has a unique solution on [0, t1], which is given by
t3 = 0.8478. Moreover, φ(t) > 0 for t ∈ (0, t3) and φ(t) < 0 for t ∈ (t3, t1). Hence,
we have A = (t3, t1], B = {0, t3}, and C = (0, t3). Premium generating functions g∗r
in first-best Bowley solutions are then given by

g∗r(t) =


t0.4, if t ∈ [0, 0.8478],
t0.2, if t ∈ (0.8478, 0.8877],
g̃r(t), such that νX{t ∈ (0.8877, 1] : g̃r(t) ≤ t0.2} = 0,

which can be chosen such that g∗r ∈ Gnd. These premium generating functions g∗r ∈
Gnd constitute also second-best Bowley solutions. Furthermore, the optimal ceded
loss functions are given by

f ∗{g∗r ,gi1}(x) = µ({z ∈ [0, x] | e−z ∈ (t3, t1]})
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= µ({z ∈ [0, x] | z ∈ [− ln(t1),− ln(t3))})
= min{(x+ ln(t1))+, ln(t1/t3)}
= min{(x− 0.1191)+, 0.0460}, x ∈ [0,M ].

where y+ := max{y, 0}, and

f ∗{g∗r ,gi2}(x) = (x− 0.1191)+, x ∈ [0,M ].

This means that traditional stop-loss policy is provided for the type 2 insurer, while
a limited stop-loss reinsurance contract is designed for the type 1 insurer. Moreover,
the expected net profit acquired by the insurer can be calculated as W (g∗r) = 1.4077.

(ii) p = 0.4. For this case, the plot of φ(t) for t ∈ [0, t1] is shown in Figure 1(b). The
equation φ(t) = 0 has two solutions on [0, t1], which are t3 = 0.0132 and t4 = 0.8136.
Moreover, φ(t) > 0 for t ∈ (t3, t4) and φ(t) < 0 for t ∈ (0, t3) ∪ (t4, t1), which lead
to A = (0, t3) ∪ (t4, t1], B = {0, t3, t4}, and C = (t3, t4). Then, premium generating
functions g∗r in first-best Bowley solutions are given by

g∗r(t) =


t0.2, if t ∈ [0, 0.0132] ∪ (0.8136, 0.8877],
t0.4, if t ∈ (0.0132, 0.8136],
g̃r(t), such that νX{t ∈ (0.8877, 1] : g̃r(t) ≤ t0.2} = 0.

Obviously, any g∗r as specified above is not non-decreasing, which means that the
functions g∗r do not constitute second-best Bowley solutions. Moreover, the corre-
sponding ceded loss function for both types of the insurer is given by

f ∗{g∗r ,gi1}(x) = µ({z ∈ [0, x] | e−z ∈ [0, t3] ∪ [t4, t1]})
= min{(x− 0.1191)+, 0.0871}+ (x− 4.3275)+, x ∈ [0,M ],

and
f ∗{g∗r ,gi2}(x) = (x− 0.1191)+, x ∈ [0,M ].

Hence, the stop-loss contract is signed between the reinsurer and the type 2 insurer,
while a two layer stop-loss policy is provided for the type 1 insurer. Besides, the
expected net profit for the reinsurer is W (g∗r) = 1.8158.

(iii) p = 0.8. The plot of φ(t) for t ∈ [0, t1] is shown in Figure 1(c). It can be seen that
A = (0, t1], B = {0}, and C = ∅. Premium generating functions g∗r in first-best
Bowley solutions are then given by

g∗r(t) =

{
t0.2, if t ∈ [0, 0.8877],
g̃r(t), such that νX{t ∈ (0.8877, 1] : g̃r(t) ≤ t0.2} = 0.

Thus, a pooling reinsurance contract is provided for both types of the insurer

f ∗{g∗r ,gi1}(x) = f ∗{g∗r ,gi2}(x) = (x− 0.1191)+, x ∈ [0,M ].

The profit acquired by the reinsurer can be computed as W (g∗r) = 3.1247.
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5 Examples with general distortion functions of the in-
surer

In this section, we present another two numerical examples to validate the finding in
Theorem 3.1. We first consider the situation where the type 1 insurer adopts a VaR
measure and the type 2 insurer uses a convex distortion risk measure. Setting ĝR(t) = t,
we have gR(t) = (1 + γ)t and ΠgR(f{gr;gij}(X)) = (1 + γ)E[f{gr;gij}(X)], j = 1, 2.

Example 5.1 Suppose that the distortion functions of the insurer may take the expres-
sions of gi1(t) = 1{1−α<t≤1} and gi2(t) = tβ, for t ∈ [0, 1], where β = 0.2. Thus, it can be
seen that gi1(t) ≥ gi2(t), for all t ∈ (1−α, 1], and gi1(t) ≤ gi2(t), for all t ∈ [0, 1−α]. The
solution of the equation gi2(t) = gR(t) on t ∈ (0, 1) can be calculated as t1 = (1+γ)1/(β−1).
Assume that the risk X has an exponential distribution with expectation 1. Consider the
following two cases of the confidence level α and cost coefficient γ:

(i) Suppose α = 0.7 and γ = 3. From Theorem 3.1, it can be checked that, for any
p ∈ [0, 1], A = ∅, B = ∅, and C = [0, t1], where t1 = 0.1768. Premium gen-
erating functions g∗r in first-best Bowley solutions are given by g∗r(t) = t0.2 for
t ∈ [0, 0.1768]; otherwise, νX{t ∈ (0.1768, 1] : g∗r(t) ≤ max{1{0.3<t≤1}, t0.2}} = 0.
Then, f ∗{g∗r ,gi1}(X) = 0 and f ∗{g∗r ,gi2}(x) = (x − 1.7327)+, for x ∈ [0,M ], which
means that a shutdown policy is provided for the type 1 insurer, and a stop-loss
contract is ceded to the type 2 insurer. The expected net profit for the reinsurer
is W (g∗r) = 2.8284(1 − p), which depends on the probability that the insurer is of
type 2. Since there exist first-best Bowley solutions that coincide with the second-best
Bowley solutions, the expected net profits for the reinsurer in the second-best Bowley
solutions coincide with the first-best Bowley solutions.

(ii) Suppose α = 0.9 and γ = 0.1. Define t2 = 1/(1 + γ) = 0.9091, which is a solution
of gi1(t) = gR(t). First, it can be seen that φ(t) > 0 always holds on t ∈ [0, 1 − α].
Also, (t2, 1] ⊂ [0, 1]\(A ∪ B ∪ C), and thus νX{t ∈ (t2, 1] : g∗r(t) ≤ 1} = 0. Now, for
t ∈ [1 − α, t2], we consider the following three cases of the probability p: p = 0.3,
p = 0.7, and p = 0.9.

(a) p = 0.3. For this case, it can found that the solution of φ(t) = 0 on t ∈
(0.1, 0.9091] is t3 = 0.8748 (see Figure 2(a)). Hence, A = (0.8748, 0.9091],
B = {0.8748}, and C = [0, 0.8748). Then, according to Theorem 3.1, premium
generating functions g∗r in first-best Bowley solutions are given by

g∗r(t) =


t0.2, if t ∈ [0, 0.8748],
1, if t ∈ (0.8748, 0.9091],
g̃r(t), such that νX{t ∈ (0.9091, 1] : g̃r(t) ≤ 1} = 0.

Further, the corresponding ceded loss functions for the two types of the insurer
can be calculated as

f ∗{g∗r ,gi1}(x) = min{(x− 0.0953)+, 2.2073}, x ∈ [0,M ],
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Figure 2: Plot of the function φ(t) on t ∈ [1 − α, t2] for three different values of p.
Corresponding to Example 5.1.

and
f ∗{g∗r ,gi2}(x) = (x− 0.0953)+, x ∈ [0,M ].

The net gain obtained by the reinsurer can be calculated as W (g∗r) = 2.9925. It
can be verified that the optimal ceded loss functions in this case coincide with
the second-best Bowley solutions, as there exists a first-best Bowley solution
with g∗r ∈ Gnd.

(b) p = 0.7. As displayed in Figure 2(b), φ(t) = 0 has two solutions on t ∈
(0.1, 0.9091], which are given by 0.3938 and 0.7024. Then A = (0.1, 0.3938) ∪
(0.7024, 0.9091], B = {0.3938, 0.7024}, and C = [0, 0.1) ∪ (0.3938, 0.7024).
Thus, premium generating functions g∗r in first-best Bowley solutions are given
by

g∗r(t) =


1, if t ∈ (0.1, 0.3938] ∪ (0.7024, 0.9091],
t0.2, if t ∈ [0, 0.1] ∪ (0.3938, 0.7024],
g̃r(t), if t ∈ (0.9091, 1],

where g̃r(t) is such that νX{t ∈ (0.9091, 1] : g̃r(t) ≤ 1, for t ∈ (0.9091, 1]} = 0.
Obviously, the function g∗r is not monotone on [0, 1]. As a result, the optimal
ceded loss function for the type 1 insurer admits the limited stop-loss reinsur-
ance contract

f ∗{g∗r ,gi1}(x) = min{(x− 0.0953)+, 2.2073}, x ∈ [0,M ],

and for the type 2 insurer admits the two-layer stop-loss reinsurance contract

f ∗{g∗r ,gi2}(x) = min{(x− 0.3534)+, 0.5787}+ (x− 2.3026)+, x ∈ [0,M ].

Then the expected net profit for the reinsurer under this reinsurance contract is
W (g∗r) = 1.8378. For the same example, ceded loss functions in the second-best
Bowley solutions are given by

f̃ ∗{gr,gi1}(x) = min{(x− 0.0953)+, 2.2073}, x ∈ [0,M ],
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and f̃ ∗{gr,gi2}(x) = (x−0.3534)+, for x ∈ [0,M ], where we use Case 3 of Theorem
4.1(i) of Boonen et al. (2021). Then, the corresponding expected net profit for
the reinsurer can be computed as 1.7764. Thus, the expected net profit for the
reinsurer under the first-best strategy is larger than that under the second-best
policy, which is mainly caused by the assumption that the premium generating
function might be decreasing under some interval.

(c) p = 0.9. Under this setting, it can be checked from Figure 2(c) that φ(t) < 0
for all t ∈ (0.1, 0.9091]. Thus, A = (0.1, 0.9091], B = ∅, and C = [0, 0.1]. Then
we have

g∗r(t) =


1, if t ∈ (0.1, 0.9091],
t0.2, if t ∈ [0, 0.1],
g̃r(t), if t ∈ (0.9091, 1],

where g̃r(t) is such that νX{t ∈ [0, 0.1] : g̃r(t) ≤ t0.2, for t ∈ [0, 0.1]} = 0 and
νX{t ∈ (0.9091, 1] : g̃r(t) ≤ 1, for t ∈ (0.9091, 1]} = 0. The corresponding
reinsurance indemnity functions are given by

f ∗{g∗r ,gi1}(x) = min{(x− 0.0953)+, 2.2073}, x ∈ [0,M ],

and f ∗{g∗r ,gi2}(x) = (x− 0.3534)+, for x ∈ [0,M ]. The expected net profit for the
reinsurer is W (g∗r) = 1.49. Since there exist first-best Bowley solutions with
g∗r ∈ Gnd, the second-best Bowley solutions yield the same expected net profit
for the reinsurer.

As seen in Example 5.1, it is worth addressing that Theorem 3.1 not only improves
the welfare gains of the reinsurer in the reinsurance contract, but also solves the Bowley
solution in much more general cases than Boonen et al. (2021) (cf. Theorem 5.1 therein).

In the next example, we consider the case when the insurer adopts a convex distortion
risk measure or a TVaR measure, which was not studied by Boonen et al. (2021).

Example 5.2 Suppose the insurer adopts either gi1(t) = min{t/(1−α), 1} or gi2(t) = tβ,
for t ∈ [0, 1], where β = 0.2. Thus, it can be seen that gi1(t) ≥ gi2(t), for all t ∈ (t2, 1],
and gi1(t) ≤ gi2(t), for all t ∈ [0, t2], where t2 = (1− α)1/(1−β) is the intersection point of
gi1(t) and gi2(t) on t ∈ (0, 1). The solution of gi2(t) = gR(t) on t ∈ (0, 1) can be calculated
as t1 = (1 + γ)1/(β−1). Let t3 = 1/(1 + γ). Assume that the risk X has an exponential
distribution with expectation 1.

(i) Let α = 0.7 and γ = 3. It holds that, for any p ∈ [0, 1], A = ∅, B = ∅, and C = [0, t1],
where t1 = 0.1768. This case is very similar to case (i) in Example 5.1. Premium
generating functions in first-best Bowley solutions are then given by g∗r(t) = t0.2 for
t ∈ [0, 0.1768]; otherwise, νX{t ∈ (0.1768, 1] : g∗r(t) ≤ max{min{t/0.3, 1}, t0.2}} = 0.
Then, f ∗{g∗r ,gi1}(X) = 0 and f ∗{g∗r ,gi2}(x) = (x − 1.7327)+, for x ∈ [0,M ]. Hence, a
“shutdown policy” is provided for the type 1 insurer, and a stop-loss contract is
ceded to the type 2 insurer. Then, the expected net profit for the reinsurer is given
by W (g∗r) = 2.8284(1−p), which is linear in the probability 1−p since the reinsurer
shuts down the contract for the type 1 insurer.
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Figure 3: Plot of the function φ(t) on t ∈ [0, t3] for three different values of p. Corre-
sponding to Example 5.2.

(ii) Let α = 0.9 and γ = 0.1. Consider the following three cases of the probability p:
p = 0.3, p = 0.7, and p = 0.9.

(a) p = 0.3. For this setting, the plot of φ(t) on t ∈ [0, t3] is shown in Figure 3(a),
from which we see that φ(t) = 0 has two solutions on t ∈ (0, t3), namely 0.0375
and 0.8748. Then, we can obtain that A = (0.0375, 0.0562] ∪ (0.8748, 0.9091],
B = {0, 0.0375, 0.8748}, and C = (0, 0.0375) ∪ (0.0562, 0.8748). According to
Theorem 3.1, premium generating functions g∗r in first-best Bowley solutions
are given by

g∗r(t) =


t0.2, if t ∈ [0, 0.0375] ∪ (0.0562, 0.8748],
min{10t, 1}, if t ∈ (0.0375, 0.0562] ∪ (0.8748, 0.9091],
g̃r(t), such that νX{t ∈ (0.9091, 1] : g̃r(t) ≤ 1} = 0.

Then, the corresponding ceded loss functions for the two types of the insurer
can be derived as

f ∗{g∗r ,gi1}(x) = min{(x− 0.0953)+, 3.1881}, x ∈ [0,M ],

and

f ∗{g∗r ,gi2}(x) = min{(x− 0.0953)+, 2.7835}+ (x− 3.2834)+, x ∈ [0,M ].

This means that a layer stop-loss contract is provided for the type 1 insurer,
while a two-layer stop-loss contract is ceded to the type 2 insurer. Moreover,
the expected net profit for the reinsurer is given by W (g∗r) = 3.1089.

(b) p = 0.7. For this case, Figure 3(b) presents the plot of φ(t) on t ∈ [0, t3],
from which we see that φ(t) = 0 has four solutions on t ∈ (0, t3), that are
0.0138, 0.0829, 0.3938 and 0.7023. Thus, we have A = (0.0138, 0.0562] ∪
(0.0829, 0.3938) ∪ (0.7023, 0.9091], B = {0, 0.0138, 0.0829, 0.3938, 0.7023}, and
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C = (0, 0.0138) ∪ (0.0562, 0.0829) ∪ (0.3938, 0.7023). Further, premium gener-
ating functions g∗r in first-best Bowley solutions are given by

g∗r(t) =


t0.2, if t ∈ [0, 0.0138] ∪ (0.0562, 0.0829] ∪ (0.3938, 0.7023],
min{10t, 1}, if t ∈ (0.0138, 0.0562] ∪ (0.0829, 0.3938] ∪ (0.7023, 0.9091],
g̃r(t), such that νX{t ∈ (0.9091, 1] : g̃r(t) ≤ 1} = 0.

Therefore, the corresponding ceded loss functions for the two types of the insurer
are

f ∗{g∗r ,gi1}(x) = min{(x− 0.0953)+, 4.1878}, x ∈ [0,M ],

and

f ∗{g∗r ,gi2}(x) = min{(x− 0.0953)+, 2.7835}+ (x− 4.2831)+, x ∈ [0,M ].

This set of contracts is similar with the one in case (a). Furthermore, the net
gain obtained by the insurer is W (g∗r) = 2.2385.

(c) p = 0.9. For this case, the solution of φ(t) = 0 on t ∈ (0, t3) can be calculated
as 0.0036 and 0.0632 (see Figure 3(c)). Thus, we have A = (0.0036, 0.0562] ∪
(0.0632, 0.9091], B = {0, 0.0036, 0.0632}, and C = (0, 0.0036)∪(0.0562, 0.0632).
Premium generating functions g∗r in first-best Bowley solutions are then given
by

g∗r(t) =


t0.2, if t ∈ [0, 0.0036] ∪ (0.0562, 0.0632],
min{10t, 1}, if t ∈ (0.0036, 0.0562] ∪ (0.0632, 0.9091],
g̃r(t), such that νX{t ∈ (0.9091, 1] : g̃r(t) ≤ 1} = 0.

Hence, the corresponding ceded loss functions for the two types of the insurer
have the expressions

f ∗{g∗r ,gi1}(x) = min{(x− 0.0953)+, 5.5315}, x ∈ [0,M ],

and

f ∗{g∗r ,gi2}(x) = min{(x− 0.0953)+, 2.7835}+ (x− 5.6268)+, x ∈ [0,M ].

This menu of reinsurance contracts is also consistent with the findings both
in cases (a) and (b). However, the shape of the optimal premium generating
function g∗r for cases (a) and (c) is very different from that in case (b). For
this case (c), the expected net profit for the reinsurer is W (g∗r) = 2.1694.

6 Extensions to heterogeneous beliefs
In this section, we study the first-best Bowley solutions under heterogeneous beliefs of both
parties on the probability distributions of X. Belief heterogeneity in optimal reinsurance
has been motivated by several papers, including Boonen (2016), Ghossoub (2017), Chi
(2019), and Boonen and Ghossoub (2020).
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Let the reinsurer use probability measure PR on the measurable space (Ω,F), and
the type-i insurer uses Pi on (Ω,F), i ∈ {1, 2}. For ease of presentation, we denote
F
R

X(z) = PR(X > z) and F
i

X(z) = Pi(X > z), i ∈ {1, 2}. Moreover, we assume that
Pi � PR, i.e., Pi is absolutely continuous with respect to PR. Similar to (2), we then
write the premium charged by the reinsurer as follows:

Π̂gr(f(X)) =

∫ f(M)

0

gr(F
R

f(X)(z))dz =

∫ M

0

gr(F
R

X(z))h(z)dz,

where h satisfies (1) and gr ∈ G is the premium generating function adopted by the
reinsurer. Then, the optimization problem of interest is

max
gr∈G

W (gr) := max
gr∈G
{p{E[Π̂gr(f{gr;gi1}(X))− f{gr;gi1}(X)]− C(f{gr;gi1})}

+ (1− p){E[Π̂gr(f{gr;gi2}(X))− f{gr;gi2}(X)]− C(f{gr;gi2})}}, (8)

where the ceded loss functions f{gr;gij}, j ∈ {1, 2}, solve

min
f∈F

ρPj
gj

(X − f(X) + Π̂gr(f(X))),

where ρPj
gj is a distortion risk measure as in (3), but with the probability distribution Pj.

It will be helpful to define, for z ∈ [0,M ],

φ̂(z) = 1{gi1(F
1
X(z))>gi2(F

2
X(z))}(gi2(F

2

X(z))− (p · gi1(F
1

X(z)) + (1− p)gR(F
R

X(z))))

+ 1{gi1(F
1
X(z))<gi2(F

2
X(z))}((1− p) · gi2(F

2

X(z)) + pgR(F
R

X(z))− gi1(F
1

X(z))).

Moreover, define

Â = {z ∈ [0,M ] : φ̂(z) < 0, gi1(F
1

X(z)) ≥ gR(F
R

X(z))},

B̂ = {z ∈ [0,M ] : φ̂(z) = 0, gi2(F
2

X(z)) ≥ gR(F
R

X(z))},

Ĉ = {z ∈ [0,M ] : φ̂(z) > 0, gi2(F
2

X(z)) ≥ gR(F
R

X(z))}.

This allows us to state the main result in the following theorem, which provides the
first-best Bowley solutions under asymmetric information and heterogeneous beliefs.

Theorem 6.1 The solution set to problem (8) contains those g∗r ∈ G such that

g∗r(F
R

X(z)) =


gi1(F

1

X(z)), if z ∈ Â,
∈ {gi1(F

1

X(z)), gi2(F
2

X(z))}, if z ∈ B̂,
gi2(F

2

X(z)), if z ∈ Ĉ,

and

PR(z ∈ [0,M ]\(Â ∪ B̂ ∪ Ĉ) : g∗r(F
R

X(z)) ≤ max{gi1(F
1

X(z)), gi2(F
2

X(z))}) = 0.
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Moreover, for any of these g∗r , we have, for x ∈ [0,M ],

f ∗{g∗r ,gi1}(x) = µ({z ∈ [0, x] | z ∈ Â})

+µ({z ∈ [0, x] | z ∈ B̂, g∗r(F
R

X(z)) ≤ gi1(F
1

X(z))})
+µ({z ∈ [0, x] | z ∈ Ĉ, gi1(F

1

X(z)) > gi2(F
2

X(z))}),

and

f ∗{g∗r ,gi2}(x) = µ({z ∈ [0, x] | z ∈ Â, gi1(F
1

X(z)) < gi2(F
2

X(z))})

+µ({z ∈ [0, x] | z ∈ B̂, g∗r(F
R

X(z)) ≤ gi2(F
2

X(z))})
+µ({z ∈ [0, x] | z ∈ Ĉ}).

Proof. Equation (8) writes as

max
gr∈G

∫ M

0

[
gr(F

R

X(z))− gR(F
R

X(z))
]

[p1{
gr(F

R
X(z))≤gi1(F

1
X(z))

} + (1− p)1{
gr(F

R
X(z))≤gi2(F

2
X(z))

}]dz

= max
gr∈G

∫ M

0

[
gr(F

R

X(z))− gR(F
R

X(z))
]

[p1{
gi2(F

2
X(z))<gr(F

R
X(z))≤gi1(F

1
X(z))

}
+(1− p)1{

gi1(F
1
X(z))<gr(F

R
X(z))≤gi2(F

2
X(z))

} + 1{
gr(F

R
X(z))≤min{gi1(F

1
X(z)),gi2(F

2
X(z))}

}]dz

= max
gr∈G

∫ M

0

ψ̂(gr(F
R

X(z)), z)dz

≤
∫ M

0

max
gr(F

R
X(z))≥0

ψ̂(gr(F
R

X(z)), z)dz,

where ψ̂(gr(F
R

X(z)), z) :=

[
gr(F

R

X(z))− gR(F
R

X(z))
]

[p1{
gi2(F

2
X(z))<gr(F

R
X(z))≤gi1(F

1
X(z))

} + 1{
gr(F

R
X(z))≤gi2(F

2
X(z))

}]

if gi1(F
1

X(z)) > gi2(F
2

X(z)),[
gr(F

R

X(z))− gR(F
R

X(z))
]
1{

gr(F
R
X(z))≤gi1(F

1
X(z))

} if gi1(F
1

X(z)) = gi2(F
2

X(z)),[
gr(F

R

X(z))− gR(F
R

X(z))
]

[(1− p)1{
gi1(F

1
X(z))<gr(F

R
X(z))≤gi2(F

2
X(z))

} + 1{
gr(F

R
X(z))≤gi1(F

1
X(z))

}]

if gi1(F
1

X(z)) < gi2(F
2

X(z)).

The remainder of the proof is similar to the proof of Theorem 3.1, and thus omitted.

As illustrated in the examples of Sections 4 and 5, the optimal ceded loss function
derived in Theorem 6.1 not only depends on the sign of the function φ̂ (which further
relies on the proportion value p), but also depends upon the exact distortion functions
of both parties and their beliefs on the probability distributions of the underlying risk.
Thus, it is not easy to figure out the exact shape of the optimal ceded loss functions. For
the sake of brevity, we will not present numerical examples for validating the finding of
Theorem 6.1 since it is very similar with those presented in Sections 4 and 5.
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7 Conclusion
Under the framework of distortion risk measures, we have revisited the Bowley reinsurance
problem when the identity of the insurer is unknown to the reinsurer. By assuming
that the reinsurer adopts a general premium function such that the pricing kernel might
be negative on some states and the reinsurer uses general distortion risk measures, the
first-best Bowley solutions are derived in full generality with the help of marginal profit
functions. The optimal ceded loss functions depend on the underlying risk distribution,
the shape of distortion functions that are possibly used by insurer, the cost function, and
the probabilities that the reinsurer assigns to the insurer of being a certain type. By
implementing some numerical examples, we found that the shut-down policy, the pooling
stop-loss policy, the layer or limited stop-loss contracts are possible candidates of the
optimal indemnity functions for the insurer. Besides, the expected net profit under our
first-best Bowley solution is naturally larger than the second-best solution studied in
Boonen et al. (2021). Finally, we generalize our main result to the case when both of the
reinsurer and the types of the insurer have heterogeneous beliefs regarding the distribution
function of the underlying risk.

As a future study, we are interested in extending the current study to the case where
the types of the insurer are in a continuum. Besides, since different types of insurers may
also have different distributions of losses, we wish to design optimal Bowley reinsurance
contracts with such kind of asymmetric information as well.
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A Multiple types of the insurer
In this appendix, we extend our main result to the case of finitely many types of the
insurer. Let there be n > 1 types, and every type j ∈ {1, . . . , n} is identified by a
distortion function gij, i.e., {gi1, . . . , gin} ⊂ Gd. The reinsurer believes that these types
occur with probability pj ≥ 0 such that

∑n
j=1 pj = 1. It will be helpful to define, for

t ∈ [0, 1], σt : {1, . . . , n} 7→ {1, . . . , n} as the bijective order of {gi1, . . . , gin}: giσt(1)(t) ≤
giσt(2)(t) ≤ · · · ≤ giσt(n)(t). Moreover, define

Ak = {t ∈ [0, 1] :[giσt(k)(t)− gR(t)]
n∑
`=k

pσ(`) ≥ [giσt(m)(t)− gR(t)]
n∑

`=m

pσ(`)

for all m = 1, 2, . . . , n, giσt(k)(t) ≥ gR(t)},

for all k ∈ {1, . . . , n}. Note that the sets Ak are not mutually exclusive, and
⋃n
k=1Ak ⊂

[0, 1]. Here, k is understood as a fixed rank in the bijective ordering σt for t ∈ [0, 1].

Theorem A.1 The solution set to problem (7) contains those g∗r ∈ G such that

νX{t ∈ [0, 1]\(
n⋃
k=1

Ak) : g∗r(t) ≤ giσt(n)(t)} = 0,

and
g∗r(t) ∈

{
giσt(k)(t)|k ∈ {1, . . . , n} such that t ∈ Ak

}
, for all t ∈ [0, 1].

The proof of Theorem A.1 is similar to the proof of Theorem 3.1 and thus omitted.
After obtaining an optimal premium generating function g∗r , the indemnities follow directly
from Lemma 2.1.
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