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Abstract

This paper analyzes optimal risk sharing among agents that are endowed with
either expected utility preferences or with dual utility preferences. We find that
Pareto optimal risk redistributions and the competitive equilibria can be obtained
via bargaining with a hypothetical representative agent of expected utility max-
imizers and a hypothetical representative agent of dual utility maximizers. The
representative agent of expected utility maximizers resembles an average risk-averse
agent, whereas representative agent of dual utility maximizers resembles an agent
that has lowest aversion to mean-preserving spreads. This bargaining leads to an
allocation of the aggregate risk to both groups of agents. The optimal contract for
the expected utility maximizers is proportional to their allocated risk, and the opti-
mal contract for the dual utility maximizing agents is given by “tranching” of their
allocated risk. We show a method to derive equilibrium prices. We identify a con-
dition under which prices are locally independent of the expected utility functions,
and given in closed form. Moreover, we characterize uniqueness of the competitive
equilibrium.

Keywords: Pareto optimal risk sharing, competitive equilibria, expected utility, dual
utility.

1 Introduction

This paper studies risk sharing in markets with expected utility maximizers and with
dual utility maximizers. Expected utility is often applied as preference relation for indi-
viduals, whereas dual utility is often applied to model the preferences of firms. Expected
utility is characterized in the seminal work of Von Neumann and Morgenstern (1944),
and is well-studied in the economic literature. Dual utility is characterized by Yaari
(1987) by a modification of the independence axiom in expected utility theory. For
expected utility theory, the independence axiom requires independence with respect to
probability mixtures of risks. For dual theory, the modified independence axiom requires
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independence with respect to direct mixing the realizations of the risks. The preferences
towards risk are linear in the pay-offs but non-linear in the probabilities. Its main prop-
erty is cash invariance. This means that cash payments do not affect risk preferences.
Dual theory has applications in both actuarial science and finance, as it is related to
the concept of coherent risk measures (Artzner et al., 1999). It includes the Expected
Shortfall that gained interest after the introduction of Basel III and Swiss Solvency Test
regulations.

Risk sharing is a classical topic in actuarial science. There is a stream of papers
that analyze optimal risk sharing in settings where all agents maximize expected utili-
ties (Borch, 1962; Wilson, 1968; Raviv, 1979; Bühlmann and Jewell, 1979; Bühlmann,
1980, 1984; Aase, 1993, 2010). More recently, risk sharing in settings with dual utility
maximizing agents is studied in the literature as well (Filipović and Kupper, 2008; Jouini
et al., 2008; Ludkovski and Young, 2009; Dana and Le Van, 2010; Boonen, 2015, 2017).
To the best of our knowledge, we are the first to analyze markets in which both types
of agents coexist. We do not argue that either expected utility or dual utility is better,
and we do not find any clear arguments why not both types of agents might coexist
in the market. In economic experiments, there is no clear consensus for one of these
two preference relations as well (see, e.g., Hey and Orme, 1994). Heterogeneous agents
models gained substantial interest in economics and finance (see Hommes, 2006, for an
overview).

Our approach in this paper is twofold. First, we characterize all Pareto optimal risk
redistributions. In this way, we generalize in this way the results of Borch (1962) for
expected utilities and the results of Jouini et al. (2008) and Ludkovski and Young (2009)
for dual utilities. Second, we select a specific Pareto optimal risk redistribution using
the concept of competitive equilibria in a market where agents act as price-takers. We
determine the equilibrium prices and corresponding risk redistributions and characterize
uniqueness of the competitive equilibrium. Moreover, we illustrate the construction of
the equilibrium in some special cases.

This paper is related to the equilibrium model of Chateauneuf et al. (2000) and
Tsanakas and Christofides (2006). They all use rank dependent utility (RDU) prefer-
ences in order to derive the Pareto optimal risk sharing contracts and the competitive
equilibrium. Rank dependent utility preferences are originally characterized by Quiggin
(1982, 1992) and Schmeidler (1989), and generalize both expected and dual utility. In
order to derive a solution, Chateauneuf et al. (2000), Tsanakas and Christofides (2006)
need all agents to have strictly concave expected utility and distortion functions. Pareto
optimal risk redistributions are similar to the solution with regular expected utilities,
but with heterogeneous distorted probability measures. This is in line with Wilson
(1968), who studies markets with expected utility maximizers using subjective probabil-
ities. Moreover, Tsanakas and Christofides (2006) obtain the competitive equilibrium by
solving the first-order conditions where the comonotonicity conditions are slack. Strza-
lecki and Werner (2011) analyze comonotonicity of Pareto optimal risk redistributions
in the context of ambiguity. They show that all Pareto optimal risk redistributions are
comonotone if agents use strictly convex preferences. Dual utility preferences are not
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strictly convex. In our model, either the utility function or the distorted probabilities
are linear for every agent. Then, comonotonicity of equilibrium risk redistributions is
used as constraint in order to solve the solution numerically. We find that the corre-
sponding equilibrium prices and risk redistributions are substantially different compared
to Chateauneuf et al. (2000) and Tsanakas and Christofides (2006). Chateauneuf et al.
(2000) and Tsanakas and Christofides (2006) find that the prices depend also on ex-
pected utility functions, whereas we find that prices may be locally independent of the
expected utility functions.

This paper also contributes to the literature that study uniqueness of the competitive
equilibrium. This is analyzed by Aase (1993, 2010) for expected utility preferences
and by Boonen (2015, 2017) for dual utility maximizers. We derive a condition that
characterizes uniqueness of the equilibrium. This condition is identical to one property of
Boonen (2015), who states the condition for a market with only dual utility maximizers.
Uniqueness of the equilibrium is relevant as it allows us to formalize the Capital Asset
Pricing Model (CAPM) based on the unique prices. The prices follow from specific
dual utility preferences in the market. Testing the equilibrium prices that we derive is
mathematically equivalent to the test of De Giorgi and Post (2008) on US stock returns.
They show a better fit than the classical CAPM model with mean-variance investors.
Therefore, De Giorgi and Post (2008) provide an empirical motivation for the results in
this paper as well.

This paper is set out as follows. Section 2 introduces the model. Section 3 analyzes
Pareto optimality. Section 4 characterizes the competitive equilibrium prices, as well
as a characterization of uniqueness of the corresponding equilibrium risk redistribution.
Section 5 illustrates the competitive equilibrium in case all expected utility maximizers
use exponential utility functions. Finally, Section 6 concludes this paper.

2 Model outline

We consider a one-period model with a pre-determined future time. All random variables
discussed in this paper are on a probability space (Ω,F ,P) such that:

• the state space Ω is finite. Let F the power set on Ω, and the cardinality of Ω
equals p > 1;

• P({ω}) > 0 for all ω ∈ Ω. The probability measure is common knowledge.

We denote IRΩ as the set of all random variables on the state space Ω.
Dual utility is introduced by Yaari (1987). Moreover, it is characterized as a premium

principle by Wang et al. (1997), which is called a distortion risk measure ρ. Dual utility
is given by

V (X) = −ρ(X) = −
∫ 0

−∞
g(FX(x)) dx−

∫ ∞
0

(g(FX(x))− 1) dx, for all X ∈ IRΩ, (1)

for a continuous, concave and increasing distortion function g : [0, 1] → [0, 1] with
g(0) = 0 and g(1) = 1, where FX is the cumulative distribution function (CDF) of
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random variable X. Here, X is interpreted as a future gain. We explicitly assume
concavity of the distortion function g, which is equivalent to aversion to mean-preserving
spreads (Yaari, 1987). Every distortion risk measure is coherent (see Wang et al., 1997),
which is later defined by Artzner et al. (1999). For a random variable X ∈ IRΩ such
that X(ω1) ≤ · · · ≤ X(ωp), it holds that:

V (X) = EQ[X], for all X ∈ IRΩ, (2)

where Q : F → (0, 1] is the additive mapping such that

Q({ω`}) = g(P({ω1, . . . , ω`}))− g(P({ω1, . . . , ω`−1})), for all ` ∈ {1, . . . , p}. (3)

Throughout this paper, we assume that there exists:

• a finite collection of Von Neumann-Morgenstern expected utility maximizing agents
that is given by N1 = {1, . . . , n1}; the corresponding utility functions are given by
ui, i ∈ N1. Moreover, we assume that u′i(·) > 0, u′′i (·) < 0, and that the Inada
conditions limx→−∞ u

′
i(x) =∞ and limx→∞ u

′
i(x) = 0 are satisfied for all i ∈ N1;

• a finite collection of dual utility maximizing agents that is given by N2 = {n1 +
1, . . . , n1 + n2}; the corresponding distortion functions are strictly concave, and
given by gi, i ∈ N2.

Later in this paper (Proposition 4.6), we will discuss results in case the distortion func-
tions are concave instead of strictly concave. We define N = N1∪N2. Agent i ∈ N holds
a random variable Xi ∈ IRΩ that we denote as risk. Generally, we define the utility of
agent i ∈ N as:

Vi(X) =

{
EP[ui(X)] if i ∈ N1,
−ρi(X) if i ∈ N2,

(4)

for all X ∈ IRΩ.
For an overview of the differences between expected utility and dual utility, we refer to

Wang and Young (1998). Dual utilities can be represented as Von Neumann-Morgenstern
expected utilities if and only if the distortion function is given by g(x) = x for all
x ∈ [0, 1], i.e., if the agent is risk-neutral: V (X) = EP[X] for all X ∈ IRΩ. This follows
directly from the fact that the only class of expected utility functions satisfying positive
homogeneity1 is the class of linear utility functions.

3 Pareto optimality

In Section 2, we defined the preferences (expected and dual utilities) that are present
in the market that we consider in this paper. In this section, we provide a full charac-
terization of Pareto optimality in such markets. Moreover, we provide an algorithm to

1A preference relation V : IRΩ → IR is positive homogeneous if V (αX) = αV (X) for all α > 0 and
all X ∈ IRΩ.
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compute the Pareto optimal risk redistributions. In order to define Pareto optimality
properly, we first define the set of feasible risk redistributions as follows:

X =

{
(X̃i)i∈N ∈ (IRΩ)N :

∑
i∈N

X̃i =
∑
i∈N

Xi

}
. (5)

A risk redistribution is called Pareto optimal if there does not exist another feasible
redistribution that is weakly better for all agents, and strictly better for at least one
agent. The set of Pareto optimal risk redistributions is given by

PO =
{

(X̃i)i∈N ∈ X : @(X̂i)i∈N ∈ X s.t. (Vi(X̂i))i∈N 	 (Vi(X̃i))i∈N

}
, (6)

where for every a, b ∈ IRN , a 	 b means ai ≥ bi for every i ∈ N and a 6= b. Here, the
preferences Vi, i ∈ N, are given in (4).

From Kiesel and Rüschendorf (2007, Theorem 3.3 therein), we get that the Pareto
optimal risk redistributions are obtained by maximizing∑

i∈N
kiVi(X̃i), (7)

over all (X̃i)i∈N ∈ X , where k ∈ IRN
++.2 We impose the normalization kn1+n2 = 1.

Denote ρ∗N2
as the distortion risk measure generated by the strictly concave distortion

function g∗N2
(x) = min{gi(x) : i ∈ N2} for all x ∈ [0, 1]. It follows essentially from Jouini

et al. (2008, Theorem 3.1 and Proposition 3.1 therein)3 that for all X ∈ IRΩ, we have

min
∑
i∈N2

ρi(X̃i) = ρ∗N2
(X),

where the minimum is taken over all (X̃i)i∈N2 such that
∑

i∈N2
X̃i = X. Analogous to

Jouini et al. (2008, Theorem 3.1 therein) for k not equal to the unit-vector, we get that
min

∑
i∈N2

kiρi(X̃i) does not exist for non-degenerate for all i ∈ N2, where the minimum

is taken over all (X̃i)i∈N2 such that
∑

i∈N2
X̃i = X. Therefore, we set ki = 1 for all

i ∈ N2, and the objective function in (7) can be written as

∑
i∈N1

kiEP[ui(X̃i)]− ρ∗N2

∑
i∈N2

X̃i

 . (8)

A risk redistribution (X̃i)i∈N ∈ X is called comonotone with each other if there
exists an ordering (ω1, . . . , ωp) of the state space Ω such that X̃i(ω1) ≤ · · · ≤ X̃i(ωp)
for all i ∈ N . Existence of a Pareto optimal comonotone risk redistribution is shown

2This representation is already shown by Borch (1962) for expected utilities. Kiesel and Rüschendorf
(2007) extend this result to cases that include expected and dual utilities.

3For a precise derivation, see Boonen (2015, Equation (10) and Proposition 3.6 therein).
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by Landsberger and Meilijson (1994). They show that any allocation of an aggregate
risk

∑
i∈N Xi is dominated by a comonotone allocation in the sense of second order

stochastic dominance. Carlier et al. (2012, Theorem 3.1 therein) extend this result by
showing that every strictly concave order preserving preference relation is such that for
every non-comonotone risk redistribution, there exists a comonotone risk redistribution
that Pareto dominates it. Moreover, Chew et al. (1987, Corollary 2 therein) show that
dual utilities generated by a strictly concave distortion function strictly preserve the
concave order. For strictly concave expected utility functions, this holds by definition
(Rothschild and Stiglitz, 1970). From this follows directly the following lemma.

Lemma 3.1 Every (X̃i)i∈N ∈ PO is comonotone with each other, where the set PO is
defined in (6).

From Lemma 3.1, we get that all Pareto optimal risk redistributions are comonotone
with the aggregate risk

∑
i∈N Xi. So, there exists an ordering of the finite probability

space Ω such that for all (X̃i)i∈N ∈ PO we have X̃i(ω1) ≤ · · · ≤ X̃i(ωp) for all i ∈ N .
Without loss of generality, we define the state space Ω = {ω1, . . . , ωp} such that∑

i∈N
Xi(ω1) ≤ · · · ≤

∑
i∈N

Xi(ωp).

Moreover, we write Ω` = {ω1, . . . , ω`} for all ` ∈ {1, . . . , p}, and Ω0 = ∅. We will refer
to the comonotonicity constraints as X̃i(ω1) ≤ · · · ≤ X̃i(ωp) for all i ∈ N . From Lemma
3.1, (2)-(3), and (8), we immediately derive that Pareto optimal risk redistributions
(X̃i)i∈N are characterized as the ones that satisfy the following optimization problem:

max
∑
i∈N1

kiEP[ui(X̃i)] + EQ

∑
i∈N2

X̃i

 , (9)

which is maximized over all (X̃i)i∈N ∈ X such that the comonotonicity constraints are
satisfied and

∑
i∈N2

ρi(X̃i) = ρ∗N2

∑
i∈N2

X̃i

 , (10)

where Q({ω`}) = g∗N2
(P(Ω`)) − g∗N2

(P(Ω`−1)) for all ` ∈ {1, . . . , p}. Since the objective
function in (9) is concave, it follows from the Inada conditions that the objective in
(9) is bounded from above. In this section, we solve this optimization problem using
variational calculus.

From Lemma 3.1, we directly get the following corollary.

Corollary 3.2 If
∑

i∈N Xi(ω) =
∑

i∈N Xi(ω
′) for some ω, ω′ ∈ Ω, then X̃i(ω) = X̃i(ω

′)

for all i ∈ N and for all Pareto optimal risk redistributions X̃i, i ∈ N .

6



So, if
∑

i∈N Xi(ω) =
∑

i∈N Xi(ω
′) we tread the set {ω, ω′} as one state.

If N = N1, we get from Borch (1962) that a risk redistribution (X̃i)i∈N1 ∈ X is
Pareto optimal if and only if there exists a k ∈ IRN1

++ such that

k1u
′
1(X̃1(ω)) = · · · = kn1u

′
n1

(X̃n1(ω)), (11)

for all ω ∈ Ω. Moreover, if N = N2, Jouini et al. (2008) show that a necessary and
sufficient condition for a risk redistribution (X̃i)i∈N ∈ X to be Pareto optimal is given by∑

i∈N2
Vi(X̃i) = −ρ∗N2

(∑
i∈N2

Xi

)
. The following theorem extends these results for the

case that there are some agents in the market maximizing utility and some agents that
maximize dual utility. Since the objective function in (9) is concave and the constraints
are all affine, we can use the Karush-Kuhn-Tucker (KKT) conditions to get that the
Pareto optimal risk redistributions.

Theorem 3.3 If N2 6= ∅, it holds that (X̃i)i∈N ∈ PO if and only if there exists a
k ∈ IRN1

++ such that

k1P({ω`})u′1(X̃1(ω`)) = · · · = kn1P({ω`})u′n1
(X̃n1(ω`))

= g∗N2
(P(Ω`))− g∗N2

(P(Ω`−1)) +


−γ̂1 if ` = 1,
+γ̂`−1 − γ̂` if ` = 2, . . . , p− 1,
γ̂p−1 if ` = p,

(12)

for all ` ∈ {1, . . . , p}, and

∑
i∈N2

ρi(X̃i) = ρ∗N2

∑
i∈N2

X̃i

 , (13)

where
∑

i∈N2
X̃i =

∑
i∈N Xi −

∑
i∈N1

X̃i and γ̂` is the Lagrangian multiplier of the

constraint
∑

i∈N2
X̃i(ω`+1) ≥

∑
i∈N2

X̃i(ω`).

Proof The objective function in (9) can be written as∑
i∈N1

ki

p∑
`=1

P({ω`})ui(X̃i(ω`)) +

p∑
`=1

[g∗N2
(P(Ω`))− g∗N2

(P(Ω`−1))]
∑
i∈N2

X̃i(ω`). (14)

This function is maximized over all X̃i ∈ IRΩ, i ∈ N such that
∑

i∈N X̃i =
∑

i∈N Xi,

X̃i(ω1) ≤ · · · ≤ X̃i(ωp) for all i ∈ N1, and
∑

i∈N2
X̃i(ω1) ≤ · · · ≤

∑
i∈N2

X̃i(ωp), where

(13) holds. We first leave out the conditions X̃i(ω1) ≤ · · · ≤ X̃i(ωp) for i ∈ N1; we will
later verify that these conditions are satisfied.

Since the objective function in (14) is concave and the constraints are all affine, we
get that the Pareto optimal risk redistributions (X̃i)i∈N are characterized by the Karush-
Kuhn-Tucker (KKT) conditions. The KKT conditions are obtained by the first-order
conditions of (14) with respect to X̃i(ω`):

kiP({ω`})u′i(X̃i(ω`))− λ̂` = 0, (15)
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if i ∈ N1, and, otherwise, we get

g∗N2
(P(ω1))− λ̂1 − γ̂1 = 0, (16)

g∗N2
(P(Ω`))− g∗N2

(P(Ω`−1))− λ̂` − γ̂` + γ̂`−1 = 0, if ` = 2, . . . , p− 1, (17)

1− g∗N2
(P(Ωp−1))− λ̂p + γ̂p−1 = 0, (18)

and γ̂`

[∑
i∈N2

X̃i(ω`+1)−
∑

i∈N2
X̃i(ω`)

]
= 0 for all ` ∈ {1, . . . , p−1} and i ∈ N , where

λ̂` ∈ IR and γ̂` ≥ 0 are the Lagrangian multipliers of the constraints
∑

i∈N X̃i(ω`) =∑
i∈N Xi(ω`) and

∑
i∈N2

X̃i(ω`) ≤
∑

i∈N2
X̃i(ω`+1), respectively. For a given λ̂` > 0,

the equation (15) has a solution since u′i(·) > 0, u′′i (·) < 0 and the Inada conditions are
satisfied for every i ∈ N1. This follows directly from the Intermediate Value Theorem.
Hence, the result follows directly.

Next, we verify that X̃i(ω1) ≤ · · · ≤ X̃i(ωp) for i ∈ N1. If
∑

i∈N2
X̃i(ω`) =∑

i∈N2
X̃i(ω`+1), then

∑
i∈N1

X̃i(ω`) ≤
∑

i∈N1
X̃i(ω`+1). So, X̃i(ω`) ≤ X̃i(ω`+1) for i ∈

N1 follows directly from (15) and strict concavity of ui, i ∈ N1. Suppose
∑

i∈N2
X̃i(ω`) <∑

i∈N2
X̃i(ω`+1). This leads to γ̂` = 0. Because the distortion functions gi, i ∈ N are

strictly concave, it holds that the function g∗N2
is strictly concave as well. From this and

P({ω`}),P({ω`+1}) > 0, it follows that

g∗N2
(P(Ω`))− g∗N2

(P(Ω`−1)) + γ̂`−1

P({ω`})
>
g∗N2

(P(Ω`+1))− g∗N2
(P(Ω`))− γ̂`+1

P({ω`+1})
,

for any γ̂`−1, γ̂`+1 ≥ 0. Hence, the solution in (12) satisfies X̃i(ω1) ≤ · · · ≤ X̃i(ωp) for
i ∈ N1 due to strict concavity of the utility functions ui, i ∈ N1. This concludes the
proof of Theorem 3.3. �

We proceed with characterizing uniqueness of the Pareto optimal risk redistributions.
We know from Jouini et al. (2008) that there are multiple solutions to (13). For the
agents in N1, we next show that the system (12) in Theorem 3.3 yields the same risks
for a given value of k.

Proposition 3.4 For a given k ∈ IRN1
++, all (X̃i)i∈N , (X̂i)i∈N ∈ PO solving (9) are such

that X̃i = X̂i for all i ∈ N1.

Proof Let k ∈ IRN1
++. Given a positive value of (12), there is a unique solution of

X̃i, i ∈ N1 due to u′i(·) > 0, u′′i (·) < 0 and that ui satisfies the Inada conditions for
all i ∈ N1 (Intermediate Value Theorem). We tread the set N2 as one representative
agent with preferences V (X) = −ρ∗N2

(X), which will bear the risk
∑

i∈N2
X̃i. Next, we

show that there is a unique value of (12) that satisfies the KKT conditions. Existence
of a solution follows from existence of a solution of (9). Suppose there are two solutions
(X̂i)i∈N , (Xi)i∈N ∈ X solving the system in Theorem 3.3, and are not equal to each other
for an agent i ∈ N1. So, (X̂i)i∈N and (Xi)i∈N both solve (9). Then, we that 1

2X̂i + 1
2Xi
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is a strict improvement for agent i due to strict concavity of the utility function ui.
Moreover, we have for all i ∈ N1 that

EP

[
ui

(
1

2
X̂i +

1

2
Xi

)]
≥ 1

2
EP[ui(X̂i)] +

1

2
EP[ui(Xi)],

due to concavity of ui. Hence, we get from this and the fact that an expectation is
additive that∑

i∈N1

kiEP

[
ui
(1

2
X̂i +

1

2
Xi

)]
+ EQ

[ ∑
i∈N2

1

2
X̂i +

1

2
Xi

]
>

1

2

( ∑
i∈N1

kiEP[ui(X̂i)] + EQ
[ ∑
i∈N2

X̂i

])
+

1

2

( ∑
i∈N1

kiEP[ui(Xi)] + EQ
[ ∑
i∈N2

Xi

])
.

So, not both (X̂i)i∈N , (Xi)i∈N ∈ X solve (9). This is a contradiction, which concludes
the proof. �

Proposition 3.5 For a given k ∈ IRN1
++, there is a unique vector γ̂ ∈ IRp−1

+ that solves
the system in Theorem 3.3.

Proof Suppose γ̂1 and γ̂2 both solve the system in Theorem 3.3 and γ̂1 6= γ̂2. Then,
the righthand side of (12) is different for some state index ` ∈ {1, . . . , p}. Due to strict
concavity of the expected utility functions ui, i ∈ N1, this leads to different solutions of
X̃i, i ∈ N1 for the choices of γ̂1 and γ̂2. Hence, these solutions do not both solve the
system in Theorem 3.3 due to Proposition 3.4. This concludes the proof. �

Suppose N2 6= ∅, and define

M =

{
m : {1, . . . , p− 1} → N2

∣∣∣∣∣m(k) ∈ argmin
j∈N2

{gj (P(Ωk))} for all k ∈ {1, . . . , p− 1}

}
.

(19)

Given
∑

i∈N2
X̃i, all Pareto optimal risk redistributions for agents in N2 follow from

(13). From Jouini et al. (2008, Proposition 3.1 therein), we get that for all m ∈M and
d ∈ IRN2 with

∑
i∈N2

di =
∑

i∈N2
X̃i(ωp), it holds that (X̂i)i∈N2 is Pareto optimal, where

X̂i =

p−1∑
k=1

∑
i∈N2

X̃i(ωk)−
∑
i∈N2

X̃i(ωk+1)

1m(k)=i eΩk
+ dieΩ, for all i ∈ N2, (20)

1m(k)=i = 1 if m(k) = i and zero otherwise, and where the risk eA ∈ IRΩ for A ∈ F is
given by

eA(ω) =

{
1 if ω ∈ A,
0 if ω ∈ Ω\A. (21)
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We refer to the structure of risk redistributions in (20) as tranching.
If the sets N1 and N2 are both non-empty, one can use for a given k ∈ IRN1

++ the
following two-step procedure to solve for the Pareto optimal risk redistributions:

• solve the system in Theorem 3.3; we get the Pareto optimal risk profiles X̃i, i ∈ N1.
By Proposition 3.4, these risk profiles are unique given vector k;

• we compute∑
i∈N2

X̃i =
∑
i∈N

Xi −
∑
i∈N1

X̃i,

and determine non-unique Pareto optimal risk redistributions X̃i, i ∈ N2 from (20).

For every risk redistribution problem, there is an allocation of the aggregate risk∑
i∈N Xi to group N1 and group N2. Given

∑
i∈N1

X̃i for group N1, the Pareto optimal
risk redistribution follows from (11). If the agents in N1 all use an equi-cautious Hy-
perbolic Absolute Risk Aversion (HARA) expected utility function, the Pareto optimal
risk redistribution is an affine contract on

∑
i∈N1

X̃i (Wilson, 1968). Given
∑

i∈N2
X̃i,

the Pareto optimal risk redistribution is given by tranching of this risk
∑

i∈N2
X̃i.

We next show an algorithm to solve the Pareto optimal risk redistributions via The-
orem 3.3 for any given k ∈ IRN1

++. Corresponding to vector k, we aim to find the unique

Pareto optimal X̃i, i ∈ N1, as all Pareto optimal X̃i, i ∈ N2, given
∑

i∈N2
X̃i, are given

in (20).

1. Set γ̂` = 0 for all ` ∈ {1, . . . , p − 1}. Solve the system (12) for given γ̂ to obtain
(X̃i)i∈N .

2. If
∑

i∈N2
X̃i(ω1) ≤ · · · ≤

∑
i∈N2

X̃i(ωp), then it holds that X̃i(ω1) ≤ · · · ≤ X̃i(ωp)
for all i ∈ N (see Theorem 3.3); stop here. Otherwise, go to the next step.

3. Find the first ` ∈ {1, . . . , p− 1} for which there exists an z ∈ {0, 1, . . .} such that∑
i∈N2

X̃i(ω`) ≥ · · · ≥
∑

i∈N2
X̃i(ω`+z+1) with one strict inequality. Take this

largest z for which this series of inequalities hold. Then, determine γ̂a ≥ 0, a ∈
{`, . . . , ` + z} such that

∑
i∈N2

X̃i(ω`) = · · · =
∑

i∈N2
X̃i(ω`+z+1) for solutions of

(12) with given γ̂. Then, go back to Step 2.

In this algorithm, it may be tedious to solve Step 3 when the size z is large. At least
we know from Theorem 3.3 that it yields a Pareto optimal risk redistribution. From
Proposition 3.4, we get for every Pareto optimal risk redistribution (X̃i)i∈N that the
risks X̃i, i ∈ N1 are the same for given k ∈ IRN1

++. So, the algorithm selects this unique

risks X̃i, i ∈ N1 corresponding to Pareto optimal risk redistributions (X̃i)i∈N .
We proceed this paper with characterizing specific Pareto optimal risk redistribu-

tions, namely the competitive equilibria. We discuss this topic in the next section.
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4 Competitive Equilibria

4.1 Definition and characterization

Let the pricing function be linear, i.e., we have π(p̂, X) =
∑

ω∈Ω p̂ωX(ω) for all X ∈ IRΩ.
So avoid arbitrage, we assume that the price vector p̂ is strictly positive, i.e., p̂ ∈ IRΩ

++.
The risk-free rate is set equal to zero, i.e., π(p̂, eΩ) = 1. This assumption will serve as a
normalization, as the equilibrium risk redistributions do not depend on it. The economy
will be in equilibrium when every agent i ∈ N solves

max
X̃i∈IRΩ

Vi(X̃i) (22)

s.t. π(p̂, X̃i) ≤ π(p̂, Xi), (23)

where the price vector p̂ induces market clearing, i.e.,

(X̃i)i∈N ∈ X . (24)

Existence of competitive equilibria follows from Arrow and Debreu (1954) and Werner
(1987). The First Fundamental Welfare Theorem states that any equilibrium is Pareto
optimal. This theorem applies to our setting as the preferences are non-satiated (Arrow,
1963). If N = N1 or N = N2, competitive equilibria are studied by, e.g., Borch (1962),
Aase (1993, 2010), Filipović and Kupper (2008), and Dana and Le Van (2010).

Theorem 4.1 Let N1, N2 6= ∅, and recall the definition of a competitive equilibrium in
(22)-(24). Then, (p̂, (X̃i)i∈N ) is an equilibrium if and only if we have (X̃i)i∈N ∈ X ,

P({ω`})u′i(X̃i(ω`)) = λip̂`, for all i ∈ N1, ` ∈ {1, . . . , p}, (25)

π(p̂, X̃i) = π(p̂, Xi), for all i ∈ N1, (26)

−ρi(X̃i) = π(p̂, Xi), for all i ∈ N2, (27)

with λ ∈ IRN
++, and the price vector p̂ is given by

p̂` = g∗N2
(P(Ω`))− g∗N2

(P(Ω`−1)) +


−γ` if ` = 1,
+γ`−1 − γ` if ` = 2, . . . , p− 1,
+γ`−1 if ` = p.

(28)

Here, γ` ≥ 0, ` ∈ {1, . . . , p− 1} are the Lagrangian parameters of∑
i∈N

Xi(ω`+1)−
∑
i∈N1

X̃i(ω`+1) ≥
∑
i∈N

Xi(ω`)−
∑
i∈N1

X̃i(ω`),

where X̃i, i ∈ N1 follow from (25)-(26).

11



Proof From the First Fundamental Welfare Theorem (Arrow, 1963), we get that any
competitive equilibrium is Pareto optimal. Therefore, according to Lemma 3.1, all equi-
librium risk redistributions must be comonotone with each other.

Then, if we explicitly impose that X̃i is comonotone with each other, we can write
Vi(X̃i) = −EQ[Xi] for all X̃i, where Q({ω`}) = g∗N2

(P(Ω`)) − g∗N2
(P(Ω`−1)) for all ` ∈

{1, . . . , p}. Since the objective function is concave and the constraints are all affine,
we get that the equilibrium risk redistributions (X̃i)i∈N are characterized by the KKT
conditions one-to-one. The KKT conditions are obtained by the first-order conditions
of the following function with respect to X̃i(ω`):

Vi(X̃i) + λi

(∑
ω∈Ω

p̂ωXi(ω)−
∑
ω∈Ω

p̂ωX̃i(ω)

)
+

p−1∑
ˆ̀=1

γi,ˆ̀(X̃i(ωˆ̀+1)− X̃i(ωˆ̀)),

where λi ∈ IR, i ∈ N are the Lagrangian parameters of the price constraint and γi,` ≥
0, i ∈ N, ` ∈ {1, . . . , p − 1} are the Lagrangian parameters of the comonotonicity con-
straints. For agents in N1, we now assume that X̃i, i ∈ N1 are such that γi,` = 0 for all

i ∈ N1, ` ∈ {1, . . . , p − 1}. We check at the end of this proof that the risks X̃i, i ∈ N1

are indeed comonotone with
∑

i∈N Xi. Then, the KKT conditions are given by

P({ω`})u′i(X̃i(ω`)) = λip̂`, for all i ∈ N1, (29)

gi(P(Ω`))− gi(P(Ω`−1)) = λip̂` +


−γi,` if ` = 1,
−γi,` + γi,`−1 if ` = 2, . . . , p− 1,
γi,`−1 if ` = p,

(30)

for all i ∈ N2. Since gi(0) = 0 and gi(1) = 1, it holds that

p∑
`=1

[gi(P(Ω`))− gi(P(Ω`−1))] = 1, (31)

and, moreover, it holds that∑
ω∈Ω

p̂ω = 1, (32)

since π(p̂, eΩ) = 1 and

γi,1 +

p−1∑
`=2

(γi,` − γi,`−1)− γi,p−1 = 0. (33)

From (30), (31), (32) and (33) it follows that λi = 1 for all i ∈ N2. Note that due to
Pareto optimality of the equilibrium (First Fundamental Welfare Theorem), the price
constraint in (23) is binding. This leads to constraint (26). From the equilibrium risks
X̃i, i ∈ N1 in equilibrium, we derive a value of

∑
i∈N2

X̃i =
∑

i∈N Xi −
∑

i∈N1
X̃i. The

equilibrium risk redistributions are Pareto optimal and, so, comonotone. Then, for a

12



given total risk
∑

i∈N2
X̃i and equilibrium prices, the equilibrium risk redistributions

are characterized one-to-one by (27) due to Filipović and Kupper (2008, Theorem 3.2
therein). Hence, (p̂, (X̃i)i∈N ) is an equilibrium if and only if we have (X̃i)i∈N ∈ X and
the system (25)-(27) holds for some λ ∈ IRN

++ and price vector p̂.
We proceed with showing the equilibrium price vector p̂. The risk redistribution

(X̃i)i∈N1 in equilibrium follows directly from (25). From this, we get
∑

i∈N2
X̃i =∑

i∈N Xi −
∑

i∈N1
X̃i. Suppose

∑
i∈N2

X̃i(ω1) <
∑

i∈N2
X̃i(ω2), so that γ1 = 0. Then,

it follows that there exists at least one i0 ∈ N2 such that X̃i0(ω1) < X̃i0(ω2), and so
γi0,1 = 0. From this and γj,1 ≥ 0 for all j ∈ N2 it follows from (30), with λi = 1, that

p̂1 = gi0(P(Ω1)) = g∗N2
(P(Ω1)) and γi,1 = gi(P(Ω1))−g∗N2

(P(Ω1)), for all i ∈ N2. (34)

If the equilibrium prices yield
∑

i∈N2
X̃i(ω1) =

∑
i∈N2

X̃i(ω2), it follows from comono-

tonicity of Pareto optimal risk redistributions that X̃i(ω1) = X̃i(ω2) for all i ∈ N2.
Therefore, it holds that γi,1 ≥ 0 for all i ∈ N2. From this, the fact that gi(x) ≥ g∗N2

(x)
for all x ∈ [0, 1] and all i ∈ N2 and from the fact that for all x ∈ [0, 1] there exists a
j ∈ N2 such that gj(x) = g∗N2

(x), we get for γ1 ≥ 0 that

p̂1 = g∗N2
(P(Ω1))− γ1, and γi,1 = gi(P(Ω1))− g∗N2

(P(Ω1)) + γ1. (35)

If p > 2 and if
∑

i∈N2
X̃i(ω2) <

∑
i∈N2

X̃i(ω3), it follows from (30), with λi = 1, and
(35) that:

gi(P(Ω2))− g∗N2
(P(Ω1)) = p̂2 − γ1 + γi,2, for all i ∈ N2, (36)

and, in line with (35), we get

p̂2 = g∗N2
(P(Ω2))− g∗N2

(P(Ω1)) + γ1 and γi,2 = gi(P(Ω2))− g∗N2
(P(Ω2)), (37)

for all i ∈ N2. If the equilibrium prices yield
∑

i∈N2
X̃i(ω2) =

∑
i∈N2

X̃i(ω3), we get for
γ2 ≥ 0 that

p̂2 = g∗N2
(P(Ω2))−g∗N2

(P(Ω1))+γ1−γ2, and γi,1 = gi(P(Ω1))−g∗N2
(P(Ω1))+γ2. (38)

Continuing this procedure for all states ` ∈ {1, . . . , p} leads to equilibrium price vectors
expressed as function of γ1, . . . , γp−1 as in (28).

Finally, we show that for solutions of (25) that the risks X̃i, i ∈ N1 are indeed
comonotone with

∑
i∈N Xi. Random variables X and Y are called anti-comonotone

when X and −Y are comonotone. Then, we show that any equilibrium price vector p̂ is
such that the random variable p̂`

P({ω`}) , ` ∈ {1, . . . , p} is anti-comonotone with
∑

i∈N Xi.

Suppose this is not true, and there exists a state ω` such that p̂`
P({ω`}) <

p̂`+1

P({ω`+1}) . Then, it

follows from (29) and the fact that the function u′i(·) is continuous and strictly decreasing

that X̃i(ω`) > X̃i(ω`+1) for all i ∈ N1. From this and
∑

i∈N Xi(ω`) ≤
∑

i∈N Xi(ω`+1),

it follows that
∑

i∈N2
X̃i(ω`) <

∑
i∈N2

X̃i(ω`+1). This is a contradiction with Lemma
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3.1. Hence, it holds that p̂`
P({ω`}) ≥

p̂`+1

P({ω`+1}) . This concludes the proof that the random

variable p̂`
P({ω`}) , ` ∈ {1, . . . , p}, is anti-comonotone with the risk

∑
i∈N Xi.

From the result that p̂`
P({ω`}) , ` ∈ {1, . . . , p}, is anti-comonotone with the risk

∑
i∈N Xi

and the fact that the functions u′i(·), i ∈ N1, are continuous and strictly decreasing, we get

for the solution of (25) that the risks X̃i, i ∈ N1 are indeed comonotone with
∑

i∈N Xi.
�

Theorem 4.1 characterizes the competitive equilibrium. For all i ∈ N2 and for equi-
librium price vector p̂, we readily get that ρi(X) ≥ ρ∗N2

(X) ≥ −π(p̂, X) for all X ∈ IRΩ,

and ρi(X̃i) = ρ∗N2
(X̃i) = −π(p̂, X̃i) if (p̂, (X̃i)i∈N ) is a competitive equilibrium.

We proceed with providing some characteristics of the competitive equilibrium. To
do so, we first define the following condition:

Condition [C]: the solution (X̃i)i∈N ∈ X of (25)-(27) with

p̂∗` = g∗N2
(P(Ω`))− g∗N2

(P(Ω`−1)), for all ` ∈ {1, . . . , p}, (39)

is such that∑
i∈N2

X̃i(ω1) ≤ · · · ≤
∑
i∈N2

X̃i(ωp).

The next corollary follows directly from Theorem 4.1.

Corollary 4.2 If condition [C] holds, equilibrium prices are given by (39).

Condition [C] has no direct interpretation, but allows us to compute the equilibrium
prices directly from the preferences of the agents in N2, and in closed form (Corollary
4.2).

Proposition 4.3 Condition [C] implies that
∑

i∈N Xi(ω1) < · · · <
∑

i∈N Xi(ωp).

Proof Let condition [C] hold, and suppose that
∑

i∈N Xi(ω1) < · · · <
∑

i∈N Xi(ωp)
does not hold. Then, there exists an ` ∈ {1, . . . , p − 1} such that

∑
i∈N Xi(ω`) =∑

i∈N Xi(ω`+1). Let (25)-(27) hold. For price vector p̂ as in (39), it holds that p̂`
P({ω`}) is

strictly decreasing in ` due to Theorem 4.1. Since the functions ui, i ∈ N1 are strictly con-
cave, we get X̃i(ω`) < X̃i(ω`+1) for all i ∈ N1, and so

∑
i∈N1

X̃i(ω`) <
∑

i∈N1
X̃i(ω`+1).

This implies that
∑

i∈N Xi(ω`) −
∑

i∈N1
X̃i(ω`) >

∑
i∈N Xi(ω`+1) −

∑
i∈N1

X̃i(ω`+1),
which is a contradiction due to Lemma 3.1. Hence, condition [C] does not hold. This
concludes the proof. �

If there exist states ω`, ω`+1 ∈ Ω such that
∑

i∈N Xi(ω`) =
∑

i∈N Xi(ω`+1), then we
get from Corollary 3.2 that for every Pareto optimal redistribution (and so for ev-
ery competitive equilibrium) it holds that X̃i(ω`) = X̃i(ω`+1) for all i ∈ N . Hence,
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the probability-weighted equilibrium prices in both states are the same, i.e., p̂`
P({ω`}) =

p̂`+1

P({ω`+1}) . This implies that we can adjust the problem without loss of generality such

that
∑

i∈N Xi(ω1) < · · · <
∑

i∈N Xi(ωp) holds.

Let λ̂ ∈ IRN1
++. For everyX ∈ IRΩ, there is a unique (X̃i)i∈N1 such that

∑
i∈N1

X̃i = X

and λ̂−1
i u′i(X̃i) = λ̂−1

j u′j(X̃i) for all i, j ∈ N1 (Proposition 3.4). In this way, we define

the function u′
λ̂

as u′
λ̂
(X) = λ̂−1

i u′i(X̃i) for any i ∈ N1, where (X̃i)i∈N1 is such that∑
i∈N1

X̃i = X and λ̂−1
i u′i(X̃i) = λ̂−1

j u′j(X̃i) for all i, j ∈ N1. The function u′
λ̂

represents

the preferences of every agent in N1. Here, the prime on u′
λ̂

is just a matter of notation.

In line with Aase (1993), we have that u′
λ̂

is a derivative of some utility function for a
representative agent of the set N1.

Let λ ∈ IRN1
++ be a vector as in the solution of (25)-(28) in Theorem 4.1. It follows

from the proof of Theorem 4.1 that equilibrium prices can be determined as if there
are just two hypothetical agents in the market: one is endowed with marginal expected
utility function u′λ and one is endowed with −ρ∗N2

. Moreover, if condition [C] is satisfied,
the equilibrium risk redistribution for agents in N1 depends locally not on the aggregate
risk

∑
i∈N Xi, but on the preferences of the “representative” least risk-averse agent of

the set N2. Here, we denote risk aversion in dual utility as aversion to mean-preserving
spreads.

Next, we focus on condition [C]. From (25), we get

u′λ

( ∑
i∈N1

X̃i

)
· P = p̂, (40)

where the probability measure P, random variables and prices are written as vectors,
and · is the is the Hadamard (element-wise) product operator. From u′′i (·) < 0 for all
i ∈ N1, it follows that u′λ(·) is continuous and strictly decreasing. From u′i(·) > 0,
u′′i (·) < 0 and that ui satisfies the Inada conditions for all i ∈ N1, it follows that u′λ(·)
has range (0,∞). Hence, u′ −1

λ exists. We get

∑
i∈N1

X̃i = u′ −1
λ

(
p̂

P

)
.

Hence, condition [C] is equivalent to

∑
i∈N

Xi(ω`+1)−
∑
i∈N

Xi(ω`) ≥ u′ −1
λ

(
p̂∗`+1

P({ω`+1})

)
− u′ −1

λ

(
p̂∗`

P({ω`})

)
, (41)

for all ` ∈ {1, . . . , p − 1}, where p̂∗ is given in (39). Since the function u′λ is strictly
decreasing and g∗N2

is strictly concave, we find that the righthand side of (41) is strictly
positive. The more risk-averse the representative (average risk-averse) agent in N1 and
the representative (least risk-averse) agent in N2 are, the more strong condition [C] is
on the aggregate risk.
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4.2 Equilibrium prices

In this section, we provide an algorithm that yields an equilibrium price vector. Equi-
librium prices in (28) follow from the following algorithm.

1. Set γ̂` = 0 for all ` ∈ {1, . . . , p − 1}. Solve the system (25)-(26) for given γ̂ to
obtain (X̃i)i∈N .

2. If
∑

i∈N2
X̃i(ω1) ≤ · · · ≤

∑
i∈N2

X̃i(ωp), then we found the equilibrium price vector;
stop here. Otherwise, go to the next step.

3. Find the first ` ∈ {1, . . . , p− 1} for which there exists an z ∈ {0, 1, . . .} such that∑
i∈N2

X̃i(ω`) ≥ · · · ≥
∑

i∈N2
X̃i(ω`+z+1) with one strict inequality. Take this

largest z for which this series of inequalities hold. Then, we need to determine
γ̂a > 0, a ∈ {`, . . . , ` + z} such that

∑
i∈N2

X̃i(ω`) = · · · =
∑

i∈N2
X̃i(ω`+z+1) for

solutions of (25)-(26) with given γ̂. Solve the system (25)-(26) for given γ̂ to obtain
(X̃i)i∈N . Then, go back to Step 2.

This procedure has a finite number of iterations due to a finite state space.
In the next proposition, we show that the values γ1, . . . , γp−1 solving this algorithm

are unique.

Proposition 4.4 The algorithm above leads to a unique equilibrium price vector p̂.

Proof We show that Step 3 above has a unique solution for γ̂. Let ` ∈ {1, . . . , p − 1}
be the first index for which there exists an z ∈ {0, 1, . . .} such that the corresponding
risk redistribution is such that

∑
i∈N2

X̃i(ω`) ≥ · · · ≥
∑

i∈N2
X̃i(ω`+z+1) with one strict

inequality. Therefore, we have
∑

i∈N2
X̃i(ω`−1) <

∑
i∈N2

X̃i(ω`) so that γ̂`−1 = 0. From

(25), we get that X̃i(ω`), . . . , X̃i(ω`+z+1), i ∈ N1 are solutions of

u′i(X̂i(ω`+s))

u′i(X̂i(ω`+s+1))
=

(g∗N2
(P(Ω`+s)) + γ̂`+s−1 − γ̂`+s)/P({ω`+s})

(g∗N2
(P(Ω`+s+1)) + γ̂`+s − γ̂`+s+1)/P({ω`+s+1})

, (42)

s ∈ {0, . . . , z}, where γ̂`−1 = 0, and γ̂`+z+1 is fixed and such that γ̂`+z+1 = 0 if `+z = p.
We solve uniqueness of such Lagrangian parameters by mathematical induction, where
we vary z. We define Event s, with s ∈ {0, . . . , z − 1}, as follows:
For given γ̂`+s+1 ≥ 0, the values of γ̂`, . . . , γ̂`+s such that

∑
i∈N2

X̂i(ω`) = · · · =∑
i∈N2

X̂i(ω`+z+1) are unique, and non-negative. Moreover, γ̂` is continuous and strictly
increasing in the value of γ̂`+s+1.
Step 1: first, we show the result for Event s = 0. Fix γ̂`+1. Then, the right-hand side of
(42) only depends on γ̂`. This equation is continuous and strictly decreasing in γ̂` ≥ 0.
Moreover, if γ̂` = 0, then we get that

∑
i∈N2

X̂i(ω`) ≥
∑

i∈N2
X̂i(ω`+1). Moreover, there

is a unique γ̂` > 0 for which p̂`/P({ω`})
p̂`+1/P({ω`+1}) = 1, i.e., u′i(X̂i(ω`)) = u′i(X̂i(ω`+1)) for all

i ∈ N1, and so, due to u′′i (·) < 0, we then have
∑

i∈N2
X̂i(ω`) ≤

∑
i∈N2

X̂i(ω`+1). Due
to u′′i (·) < 0, i ∈ N1 and the Intermediate Value Theorem, we get that there is a unique
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γ̂` ≥ 0 such that
∑

i∈N2
X̂i(ω`) =

∑
i∈N`+1

X̂i(ω`=1). This γ̂` is continuous and strictly
increasing in γ̂`+1.
Step 2: suppose that Event s∗ holds with s∗ ∈ {0, . . . , z − 2}, i.e., γ̂`, . . . , γ̂`+s∗ are
given functions of γ̂`+s∗+1, and γ̂` is strictly increasing in γ̂`+s∗+1. We show that Event
s∗ + 1 holds, i.e., for every given γ̂`+s∗+2 ≥ 0, γ̂`, . . . , γ̂`+s∗+1 are unique, and γ̂` is con-
tinuous and strictly increasing in γ̂`+s∗+2. Fix γ̂`+s∗+2. From (42), we get via iterative
multiplications that

u′i(X̂i(ω`))

u′i(X̂i(ω`+s∗+2))
=

(g∗N2
(P(Ω`))− γ̂`)/P({ω`})

(g∗N2
(P(Ω`+s∗+2)) + γ̂`+s∗+1 − γ̂`+s∗+2)/P({ω`+s∗+2})

. (43)

The right-hand side of this equation is continuous and strictly increasing in γ̂` ≥ 0. If
γ̂` = 0, then we get that

∑
i∈N2

X̃i(ω`) ≥
∑

i∈N2
X̃i(ω`+s∗+2). Moreover, there exists

unique γ̂` > 0 for which p̂`/P({ω`})
p̂`+s∗+2/P({ω`+s∗+2})

= 1, so that
∑

i∈N2
X̃i(ω`) ≤

∑
i∈N2

X̃i(ω`+s∗+2).

Due to u′′i (·) < 0, i ∈ N1 and the Intermediate Value Theorem, we get that there is a
unique γ̂` ≥ 0 such that

∑
i∈N2

X̂i(ω`) =
∑

i∈N2
X̂i(ω`+s∗+2). Then, γ̂`+1, . . . , γ̂`+s∗ fol-

low because we assumed that Event s∗ holds. From (43), we readily see that the value
of γ̂` is continuous and strictly increasing in γ̂`+s∗+2. Hence, Event s∗ + 1 holds. This
concludes the proof, where we show uniqueness of finding the Lagrangian parameters
γ̂`, . . . , γ̂`+z. �

We conjecture that the price vector obtained from the algorithm of this section is the
only equilibrium price vector that constitutes a competitive equilibrium. In the sequel
of this paper, we discuss competitive equilibria only with the equilibrium price vector as
in this section.

4.3 Uniqueness of the competitive equilibrium, and its capital asset
pricing model

In this section, we characterize uniqueness of the competitive equilibrium. From (20),
we get that every Pareto optimal risk redistribution for agents depends on the functions
m ∈ M and the side-payments d. For the competitive equilibria, the side-payments d
are determined. The following condition specifies whether the setM is small enough to
guarantee uniqueness of the competitive equilibrium:

Condition [U]: for all ` ∈ {1, . . . , p − 1} such that
∑

i∈N2
X̃i(ω`) <

∑
i∈N2

X̃i(ω`+1),
there exists exactly one agent i ∈ N2 such that gi(P(Ω`)) is minimal.

Note that condition [U] is satisfied when the set M in (19) or N2 is single-valued.
If there exists a globally least risk-averse agent in N2, then this agent bears the risk∑

i∈N2
X̃i. If there does not exist a globally least risk-averse agent, then it is Pareto

optimal that a locally least risk-averse agent bears the risk
∑

i∈N2
X̃i locally (see (20)).

Condition [U] holds if there is a unique locally least risk-averse agent everywhere.
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Theorem 4.5 If N1 6= ∅, the competitive equilibrium is unique if and only if condition
[U] is satisfied, where the competitive equilibrium is defined in (22)-(24) with price vector
as Section 4.2.

Proof The price vector as Section 4.2 is unique (see Proposition 4.4). First, we show
that there are unique equilibrium risk profiles (X̃i)i∈N1 and

∑
i∈N2

X̃i. Let p̂ be the
unique equilibrium price vector from (28). From u′i(·) > 0, u′′i (·) < 0 and that ui
satisfies the Inada conditions for all i ∈ N1, it follows that u′λ(·) is continuous, strictly
decreasing and has range (0,∞). Therefore, we get that the inverse function u′ −1

i exists.

From (25) we define X̃λi
i = u′ −1

i

(
λi

p̂
P

)
. Due to u′′i (·) < 0 and that ui satisfies the

Inada conditions, it follows that X̃λi
i (ω) is strictly decreasing and continuous in λi for

every ω ∈ Ω, with limλi↓0 X̃
λi
i (ω) =∞ and limλi→∞ X̃

λi
i (ω) = −∞ for all ω ∈ Ω. Since

p̂ > 0, the function π(p̂, ·) in (23) is continuous and strictly increasing. Hence, there is
a unique λi solving the budget constraint in (26). So, the risk redistribution (X̃i)i∈N1

is the same in every equilibrium. Then, so are the risks
∑

i∈N1
X̃i and

∑
i∈N2

X̃i. For a

given
∑

i∈N2
X̃i =

∑
i∈N Xi−

∑
i∈N1

X̃i, the equilibrium risk redistribution for the group
N2 is determined by Pareto optimal risk redistributions satisfying the price constraint
(27). By Boonen (2015, Theorem 3.8 therein), this is unique if and only if condition [U]
holds. This concludes the proof. �

If N = N2, then it follows from Boonen (2015) that condition [U] and X(ω1) < · · · <
X(ωp) are jointly sufficient to have uniqueness of the competitive equilibrium. IfN = N1,
Aase (1993, 2010) proposes conditions for uniqueness of the competitive equilibrium.
His conditions are either assumed in the setting of this paper, or are irrelevant since we
assume that the state space Ω is finite.

If condition [C] is not satisfied, we get from Section 4.2 an algorithm to determine
equilibrium prices. After we determine the equilibrium price vector, the equilibrium
risk redistribution follows from (25)-(27). This method is analogous to the algorithm in
Section 3 for Pareto optima, where the vector k is not fixed, but implicitly given by λ−1

which follows from (25)-(26).
If condition [C] holds, the corresponding pricing kernel is given by the following

Radon-Nikodym derivative:

dQ
dP

({ω`}) =
g∗N2

(P(Ω`))− g∗N2
(P(Ω`−1))

P({ω`})
=
dg∗N2

◦ P
dP

({ω`}), (44)

for all ` ∈ {1, . . . , p}. We can test this pricing kernel empirically via the corresponding
capital asset pricing model (CAPM). This is done by De Giorgi and Post (2008) for
the setting where every agent in the market is endowed with the same distortion risk
measure.4 Using US stock returns, they find a better fit than the classical CAPM with

4Note that our setting is more general than the setting of De Giorgi and Post (2008) since we
allow for heterogenous distortion risk measures and include expected utility maximizers. However, the
corresponding pricing Radon-Nikodym derivative in (44) has the same structure as in De Giorgi and
Post (2008).
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mean-variance investors. If we would test the equilibrium prices, we would assume a
functional form of the distortion function g∗N2

, and test (44) empirically. So, testing our
model is analogous to the test of De Giorgi and Post (2008). Hence, De Giorgi and Post
(2008) show that our model with dual utilities has a better fit than the CAPM with
mean-variance investors.

Even if condition [C] does not hold, we get from Theorem 4.1 the prices in any com-
petitive equilibrium. However, computing any competitive equilibrium may be tedious.
It requires to compute equilibrium prices where some Lagrangian parameters are strictly
positive (see Theorem 3.3), and thus the corresponding constraints binding.

4.4 Competitive equilibrium with Expected Shortfall

As dual utility is related to coherent risk measures, dual utility preferences may be
deduced from regulation. For instance, agents (firms) may aim to minimize their risk-
adjusted value of the liabilities (for more detailed information, see, e.g., Chi, 2012).
Expected Shortfall (see, e.g., Acerbi and Tasche, 2002) is a popular risk measure as
it is used in Basel III and Swiss Solvency Test regulations. Expected Shortfall is a
distortion risk measure, with distortion function g(x) = min{ x

1−α , 1} for all x ∈ [0, 1],
where α ∈ (0, 1) is the parameter used (Kusuoka, 2001). This function is concave but not
strictly concave. For this reason, we focus competitive equilibria in the setting that only
differs from the setting in Sections 4.1-4.3 by allowing the distortion functions gi, i ∈ N2

to be concave and non-decreasing.
If we focus on comonotone equilibrium risk redistributions only, we can use a result

of Landsberger and Meilijson (1994). They show that for every risk redistribution,
there exists a comonotone risk redistribution that dominates it in the sense of second
order stochastic dominance. Since dual utilities with concave distortion functions are
preserving second order stochastic dominance (Chew et al., 1987), there exist competitive
equilibria with comonotone risk redistributions. The following result follows directly
from this and the proof of Theorem 4.1.

Proposition 4.6 Let the set N2 contain dual utility maximizing agents such that the
distortion functions gi, i ∈ N2, are all concave and non-decreasing. Then, every equilib-
rium (p̂, (X̃i)i∈N ) such that (X̃i)i∈N2 is comonotone, is a solution of (25)-(28), where
the equilibria are defined in (22)-(24).

Remark Suppose there exists an agent i that uses the preference relation Vi(X) =
EP[X], i.e., it is risk-neutral. Note that this is the only expected utility function that
is a dual utility function as well. Then, in every Pareto optimum, this agent will bear
all risk, i.e., every Pareto optimum is such that X̃j is deterministic for all j 6= i. This
observation is consistent with results on expected utility (Borch, 1962) and dual utility
(Jouini et al., 2008). Since the distortion function is linear, it is concave. Therefore, we
obtain some competitive equilibria from Proposition 4.6 with i ∈ N2.

Remark Proposition 4.6 cannot be generalized to non-concave distortion functions. It
is possible that every comonotone risk redistribution is not Pareto optimal (see, e.g.,
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Theorem 4.3 from Embrechts et al., 2016), and so does not constitute a competitive
equilibrium due to the First Fundamental Welfare Theorem (see Arrow, 1963). There-
fore, we do not discuss this case in more detail.

5 Special case with exponential utilities

In this section, we restrict the expected utility maximizers in N1 to use exponential
expected utility functions, i.e., agent i ∈ N1 maximizes

Vi(X) = EP[ui(X)] = EP

[
exp

(
X

αi

)]
, for all X ∈ IRΩ,

where αi > 0. It follows from Aase (1993, equation (4.1) therein) that:

u′λ

∑
i∈N1

X̃i

 = exp

{
K −

∑
i∈N1

X̃i∑
i∈N1

αi

}
, where K = −

∑
i∈N1

αi log λi.

From this and (40), we derive∑
i∈N1

X̃i = −
∑
i∈N1

αi log

(
p̂

P

)
+K, (45)

where p̂ is defined in (28). Moreover, any Pareto optimal risk redistribution (X̃i)i∈N
with exponential utilities in N1 is such that

X̃i =
αi∑
i∈N1

αi

∑
i∈N1

X̃i +Ki (46)

= −αi log

(
p̂

P

)
+ K̂i, (47)

for all i ∈ N1, where Ki, i ∈ N1 are such that
∑

i∈N1
Ki = 0 and K̂i = K + Ki, i ∈ N1

are constants. Here, (46) follows from (12) and Bühlmann and Jewell (1979), and (47)
follows from substituting (45) in (46). From this, we derive that condition [C] can be
written as∑

i∈N
Xi(ω`+1)−

∑
i∈N

Xi(ω`) ≥
∑
i∈N1

αi

(
log

(
p̂`

P({ω`})

)
− log

(
p̂`+1

P({ω`+1})

))
,

for all ` ∈ {1, . . . , p − 1}. So, the condition [C] is satisfied whenever the average agent
of the set N1 is relatively risk-averse (small value of

∑
i∈N1

αi) and the least risk-averse

agent in N2 is relatively little risk-averse (small values of log
(

p̂`
P({ω`})

)
− log

(
p̂`+1

P({ω`+1})

)
).

If N = N1, the equilibrium prices are given by Bühlmann (1980). When the risks
Xi and

∑
j 6=iXj are independent, the premium for agent i equals the Esscher premium

principle. Even if there is just one agent in N2 with a small risk, we get that equilibrium
prices may be very different.
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Example 5.1 In this example, we consider a market with four agents, whereN1 = {1, 2}
and N2 = {3, 4}. The agents in N1 use an exponential utility function with α1 = 1 and
α2 = 2. Agents 3 and 4 use distortion functions g3(x) =

√
x and g4(x) = 11

4(1− 1
5

x
) for

all x ∈ [0, 1]. The state space is given by Ω = {ω1, ω2, ω3, ω4}, with P({ω}) = 1
4 for all

ω ∈ Ω. Moreover, let Xi = 1
4X for all i ∈ N , with X(ωk) = 4k for k ∈ {1, 2, 3, 4}. For

our convenience, we write stochastic variables as vectors.
First, we determine the equilibrium risks X̃1, X̃2 and X̃3 + X̃4 via the representative

agent of the setN2, ρ∗N2
. We find that conditions [C] and [U] are satisfied. So, from Corol-

lary 4.2, we get that equilibrium prices follow from (39): p̂ ≈ (0.5, 0.207, 0.169, 0.124).
From this, (25) and (27), we get that (p̂, (X̃i)i∈N ) is a competitive equilibrium, where

X̃1 ≈ (0.96, 2.31, 2.83, 3.87),

X̃2 ≈ (1.41, 2.19, 2.42, 2.83),

X̃3 + X̃4 ≈ (1.63, 3.50, 6.74, 9.30).

We also find that M is single-valued, and its unique element m ∈ M is such that
m(1) = m(2) = 3 and m(3) = 4, where M is defined in (19). From this, and equations
(20) and (26), we find that X̃3 ≈ (0.03, 1.90, 5.14, 5.14) and X̃4 ≈ (1.60, 1.60, 1.60, 4.16).
5

Example 5.2 In this example, we consider the same problem as in Example 5.1, but
we vary the value of X(ω3). We get that condition [C] is not satisfied anymore when
X(ω3) ∈ [8, 8.70). Let X(ω3) = 8.5. We apply the KKT conditions that are derived in
the proof of Theorem 4.1. We obtain that the constraint

∑
i∈N Xi(ω2)−

∑
i∈N1

X̃i(ω2) ≤∑
i∈N Xi(ω3) −

∑
i∈N1

X̃i(ω3) is binding. From (28) in Theorem 4.1, we derive γ1 =
γ3 = 0 and γ2 ≈ 0.0053. This leads to pricing vector p̂ ≈ (0.5, 0.207, 0.169, 0.124) +
(0,−0.0053, 0.0053, 0) ≈ (0.5, 0.202, 0.174, 0.124). Moreover, we derive that the risk
redistribution given by:

X̃1 ≈ (0.88, 2.19, 2.54, 3.57),

X̃2 ≈ (1.30, 2.05, 2.20, 2.61),

X̃3 ≈ (0.80, 2.74, 2.74, 2.74),

X̃4 ≈ (1.02, 1.02, 1.02, 7.07),

constitutes a competitive equilibrium. Note that from γ2 > 0 it follows by construction
that X̃3(ω2) = X̃3(ω3) and X̃4(ω2) = X̃4(ω3). 5

6 Conclusion

This paper studies optimal risk redistributions in markets with expected and dual theory
maximizers. In contrast to previous literature, we study markets where both types of
agents are present. Pareto optimal contracts are characterized in a way that extends both
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the result of Borch (1962) for expected utilities and the result of Jouini et al. (2008) for
dual utility maximizers. We derive that under some circumstances, equilibrium prices do
not depend on the expected utility maximizers in the market. Moreover, we characterize
uniqueness of the competitive equilibrium.

The Pareto optimal and equilibrium risk redistributions follow from the preferences
of two hypothetical representative agents. This is an average risk-averse expected utility
maximizing agent and dual utility maximizing agent that has lowest aversion to mean-
preserving spreads. Given a (non-trivial) allocation of the total risk to both groups, the
solution to expected utility maximizers is in line with the well-known result of Borch
(1962) applied to their allocated risk as if it were to be the aggregate risk. Moreover,
the solution to dual utility maximizing agents is given by a particular tranching of their
allocated risk.

An important question that we leave open for future research is what the Pareto
optima and competitive equilibria are in case of a continuous state space. This paper
characterizes the competitive equilibrium using a finite dimensional optimization prob-
lem. This approach cannot be used in case the state space is continuous. Moreover, the
equilibrium prices that we characterize in this paper have no trivial translation to the
setting with a continuous state space.
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