
Competitive Equilibria with Distortion Risk Measures∗

Tim Boonen†

University of Amsterdam
Appeared in: ASTIN Bulletin 45 (3), 703-728.

October 1, 2015

Abstract

This paper studies optimal risk redistribution between firms, such as banks or insurance
companies. The introduction of the Basel II regulation and the Swiss Solvency Test (SST)
has increased the use of risk measures to evaluate financial or insurance risk. We consider the
case where firms use a distortion risk measure (also called dual utility) to evaluate risk. The
paper first characterizes all Pareto optimal redistributions. Thereafter, it characterizes all
competitive equilibria. It presents three conditions that are jointly sufficient for existence of a
unique equilibrium redistribution. This equilibrium’s redistribution and prices are provided
in closed form via a representative agent.

JEL classification: D53, D81, G11, G22.
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1 Introduction

In this paper, we study the question how to redistribute risk if firms use a distortion risk measure
in order to evaluate risk. There is a relatively large literature that analyzes optimal redistribu-
tions of risk, based on the seminal work of Borch (1962) and Wilson (1968). This paper mainly
differs in terms of the objective of firms. In this paper, we study optimal risk sharing in the
context of distortion risk measures instead of Von Neumann-Morgenstern expected utilities. Dis-
tortion risk measures are used to define the preference relations of the firms. De Giorgi and Post
(2008) show that the capital asset pricing model with distortion risk measures is empirically
better fitting US stock returns.

Distortion risk measures have applications in both actuarial science and finance, being related
both to the dual theory of risk (Yaari, 1987) and coherent risk measures (Artzner et al., 1999).
Existing literature has investigated the use of distortion risk measures as pricing mechanisms,
e.g., Yaari (1987), Chateauneuf et al. (1996), Wang (1996, 2000), and Wang et al. (1997).
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Yaari (1987) characterizes dual utility by a modification of the independence axiom in expected
utility theory. Instead of requiring independence with respect to probability mixtures of risks, he
requires independence with respect to direct mixing the realizations of the risks. The evaluation of
a risk is linear in the pay-offs but non-linear in the probabilities. Distortion risk measures coincide
with dual utility if firms are risk averse. Distortion risk measures differ in two fundamental ways
from expected utility theory. First, they reflect cash-equivalent preferences, implying that cash
payments do not affect risk preferences. For example, in insurance this implies that the price of a
risk is independent of the initial wealth of the insurer. Second, distortion risk measures attempt
to reflect business practices where Expected Shortfall has been gaining practitioner interest. In
line with mean-variance preferences, we can formulate a risk preference based on a distortion
risk measure by any trade-off between the expectation and a distortion risk measure. This leads
to risk-reward preferences as in De Giorgi and Post (2008).

The approach that we propose to optimally redistribute risk is twofold. First, we analyze
Pareto optimal redistributions, where all transfers such that all risk is redistributed are allowed.
Pareto optimality of redistributions based on risk measures is first studied by Jouini et al. (2008)
and it is applied to distortion risk measures by Ludkovski and Rüschendorf (2008) and Ludkovski
and Young (2009). Ludkovski and Rüschendorf (2008) focuses on existence of Pareto optima.
Jouini et al. (2008) and Ludkovski and Young (2009) characterize all comonotone Pareto optimal
risk redistributions as a finite sum of stop-loss contracts on the aggregate risk. We introduce one
condition that guarantees that all Pareto optimal risk redistributions are comonotone. More-
over, we derive two conditions that are jointly sufficient to ensure unique Pareto optimal risk
redistributions up to side-payments.

Second, we analyze the problem of determining the size of the side-payments. We focus on
the competitive equilibria in a well-functioning market where firms act as price-takers. Filipović
and Kupper (2008), Dana and Le Van (2010), Dana (2011), and Fl̊am (2011) analyze existence of
equilibria in markets where firms use risk measures. Our focus is on uniqueness of the equilibrium.
We provide three jointly sufficient conditions to guarantee that there is a unique equilibrium risk
redistribution. The equilibrium prices are derived from the preferences of a representative agent.
From this unique equilibrium, we derive a corresponding capital asset pricing model (CAPM)
for distortion risk measures.

An important application of the problem described in this paper is insurance. Particularly
for the trading of insurance products, tranching of the aggregate risk is empirically observed.
Typically, the idiosyncratic part of insurance risk can be hedged via pooling. This creates
incentives for insurance in the first place. We show that only the systematic component of
insurance risk is priced. Multiple small firms can benefit from this by pooling their risk with
other firms. The systematic part of insurance risk cannot be hedged by pooling risk. However,
firms can still benefit from trading the systematic part of insurance risk with other firms which
face insurance risk in other insurance risk classes. The systematic risk can be shared and,
therefore, firms can benefit by redistributing. For instance, the class of longevity risk is an
application where there is potential to redistribute risk since death benefit insurers and pension
funds have negatively correlated risk exposures (see, e.g., Tsai et al., 2010; Wang et al., 2010).

This paper contributes to the literature on ambiguity. Distortion risk measures are derived
via distorted probabilities. Distorted probabilities are typically used to include ambiguity (see,
e.g., Chateauneuf et al., 2000; Werner, 2001; Tsanakas and Christofides, 2006; De Castro and
Chateuneuf, 2011; Strzalecki and Werner, 2011; Rigotti and Shannon, 2012). With ambiguity,
utility of firms is often determined via distorted probabilities and a concave utility function via
a Choquet expected utility (Schmeidler, 1989). Chateauneuf et al. (2000), Werner (2001), and
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Tsanakas and Christofides (2006) study Pareto optima and equilibria, and assume that the ex-
pected utility function is strictly concave. We extend these results by allowing for linear utility
functions, i.e., firms are neutral towards risk and averse towards ambiguity (also called Knightian
uncertainty). Ambiguity aversion is captured by concavity of the probability distortions (see,
e.g., Yaari, 1987; Schmeidler, 1989). In this way, we get a more explicit solution. De Castro
and Chateuneuf (2011) analyze the trading volumes under ambiguity. They show that more
ambiguity leads to a smaller set of Pareto optimal risk redistributions. If the utility functions
are linear and firms use strictly concave probability distortions, we derive in this paper that the
set of Pareto optimal risk redistributions is independent of the degree of ambiguity aversion.
Strzalecki and Werner (2011) analyze comonotonicity of Pareto optimal risk redistributions in
the context of ambiguity. They show that all Pareto optimal risk redistributions are comonotone
if firms use strictly convex preferences. If the utility function is linear, however, the preferences
are not strictly convex. Moreover, Rigotti and Shannon (2012) show existence of a finite num-
ber of competitive equilibria with ambiguity. In our setting, existence is guaranteed as shown
by Filipović and Kupper (2008). Our specific setting allows us to analyze uniqueness of the
competitive equilibrium.

This paper is set out as follows. Section 2 introduces distortion risk measures and the risk
redistribution problem. Section 3 analyzes Pareto optimality. We hereby focus explicitly on
uniqueness of Pareto optimal risk redistributions. Section 4 derives the competitive equilibrium
prices, as well as conditions such that the corresponding equilibrium risk redistribution is unique.
Finally, Section 5 concludes this paper.

2 Distortion risk measures and risk redistribution prob-

lems

2.1 Distortion risk measures

Distortion risk measures are developed from research on dual utility by Yaari (1987). Moreover,
they are developed as premium principle by Wang (1995). Let Ω a finite state space and P the
physical probability measure on the power set 2Ω. Moreover, denote IRΩ as the space of all
real valued stochastic variables on Ω that are realized at a well-defined reference time. These
stochastic variables are referred to as risks. A realization of a risk is interpreted as a future loss.

A risk measure is a function ρ : IRΩ → IR, i.e., a risk measure maps risks into real numbers.
For every risk Y ∈ IRΩ, we refer to ρ(Y ) as the risk adjusted value of the liabilities. Wang (1995)
defines a distortion risk measure by

ρ(Y ) =

∫ ∞

0

gρ(1− FY (x)) dx +

∫ 0

−∞
(gρ(1− FY (x)) − 1) dx, for all Y ∈ IRΩ, (1)

for a continuous, concave and increasing distortion function gρ : [0, 1] → [0, 1] with gρ(0) = 0
and gρ(1) = 1, where FY is the cumulative density function (CDF) of risk Y . Here, convergence
of the integrals is guaranteed by boundedness of the risk Y .

We continue with an alternative representation of distortion risk measures that we use
throughout this paper. We get via direct calculations that

ρ(Y ) = EQY [Y ], for all Y ∈ IRΩ, (2)

where QY : 2Ω → (0, 1] is the additive mapping such that

QY ({ω}) = gρ(P(Y ≥ Y ({ω})))− gρ(P(Y > Y ({ω}))), for all ω ∈ Ω. (3)
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Since gρ is increasing and such that gρ(0) = 0 and gρ(1) = 1, it holds that QY is a probability
measure for a given Y . A distortion risk measure evaluated in risk Y is its expectation under the
probability measure QY that assigns higher probabilities to worst-case realizations of the risk Y .

Distortion risk measures are characterized as the risk measures that are coherent and satisfy-
ing the two properties Conditional State Independence and Comonotonic Additivity (see Wang
et al., 1997). Coherence is later formally introduced by Artzner et al. (1999). A risk measure
ρ : IRΩ → IR is called coherent if and only if it satisfies the four properties Sub-additivity, Mono-
tonicity, Positive Homogeneity, and Translation Invariance. The relevance of these properties is
widely discussed by Artzner et al. (1999).

Artzner et al. (1999) show that a risk measure ρ is coherent if and only if there exists a set
of probability measures Q such that

ρ(Y ) = sup {EQ[Y ] : Q ∈ Q} , for all Y ∈ IRΩ. (4)

Denote P(Ω) as the set of all probability measures on the state space Ω. Based on Denneberg
(1994), it holds that a representation of the set Q in (4) for distortion risk measures is given by

Q(ρ) = {Q ∈ P(Ω) : Q(A) ≤ gρ(P(A)) for all A ⊂ Ω} . (5)

In the sequel, we discuss the problem to redistribute risk where all firms use distortion risk
measures to evaluate risk.

2.2 Risk redistribution problems

Throughout this paper, we fix the set of firms and the discrete state space such that:

• the finite collection of firms is given by N = {1, . . . , n};
• the state space is finite and given by Ω. Without loss of generality, it is assumed that
|Ω| > 1;1

• the physical probability measure is given by P : 2Ω → (0, 1].2 This measure is common
knowledge.

Assuming a finite state space will help us later to solve and display the competitive equilibria.
Therefore, the reason to assume a finite state space is computational tractability. The techniques
we use in this paper are similar to Heath and Ku (2004) and De Giorgi and Post (2008), who
also assume a finite state space.

Next, we define risk redistribution problems with distortion risk measures.

Definition 2.1 A risk redistribution problem with distortion risk measures is a tuple (Xi, ρi)i∈N ,
where

• Xi ∈ IRΩ is the risk held by firm i ∈ N ;

• ρi : IRΩ → IR is the distortion risk measure that firm i ∈ N is endowed with. The
corresponding distortion function is denoted by gi.

3

1We denote |Ω| for the cardinality of the state space Ω.
2We assume that P({ω}) > 0 for each state ω ∈ Ω, i.e., the probability that a state occurs is strictly positive.

As the state space is finite, this is without loss of generality; states with zero probability can be omitted from the
state space.

3For notational convenience, we write gi instead of gρi .
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The class of risk redistribution problems with distortion risk measures is denoted by R.

In the sequel, we refer to a risk redistribution problem with distortion risk measures as a risk
redistribution problem. There is common knowledge about the risks and risk measures of all
firms. Moreover, we define the aggregate risk as X =

∑
i∈N Xi.

For a risk redistribution problem, we aim to redistribute the aggregate risk X among firms.
The objective of a firm is to minimize its risk adjusted value of the liabilities. We allow for all
forms of risk redistributions, as long as the aggregate risk is redistributed. The set of feasible
risk redistributions of a risk redistribution problem R ∈ R is given by

F(R) =

{
(X̃i)i∈N ∈ (IRΩ)N :

∑
i∈N

X̃i = X

}
. (6)

The set of risk redistributions in (6) allows for, e.g., proportional or stop-loss contracts on the
aggregate risk X .

Notation: In the following two sections, we use the following notation. Without loss of gener-
ality, we order the state space Ω = {ω1, . . . , ωp} such that

X(ω1) ≥ · · · ≥ X(ωp). (7)

Moreover, we define the set Ωk = {ω1, . . . , ωk} for all k ∈ {1, . . . , p − 1}, Ω0 = ∅, and the risk
eA ∈ IRΩ for A ⊆ Ω is given by

eA(ω) =

{
1 if ω ∈ A,
0 otherwise,

(8)

for all ω ∈ Ω.

3 Pareto optimality

3.1 Definition and characterization

In this subsection, we summarize two results in the literature that we need in this paper. Tsanakas
and Christofides (2006), Acciaio (2007), Burgert and Rüschendorf (2008), Filipović and Svind-
land (2008), Jouini et al. (2008), Kiesel and Rüschendorf (2007, 2010), Kaina and Rüschendorf
(2009), and Ludkovski and Young (2009) all analyze existence of Pareto optimal risk redistribu-
tions in settings where risk is measured by a risk measure. A risk redistribution is called Pareto

optimal if there does not exist another feasible redistribution that is weakly better for all firms,
and strictly better for at least one firm. The set of Pareto optimal risk redistributions of a risk
redistribution problem R ∈ R is given by

PO(R) =
{
(X̃i)i∈N ∈ F(R) : �(X̂i)i∈N ∈ F(R) s.t. (ρi(X̂i))i∈N � (ρi(X̃i))i∈N

}
. (9)

Similar to Borch (1962) where firms use expected utilities, the set PO(R) only depends on the
risks Xi, i ∈ N , via their sum X .

Next, we introduce side-payments. These are used to characterize Pareto optimal risk re-
distributions. A risk Y ∈ IRΩ is a side-payment if there exists a constant c ∈ IR such that
Y = c · eΩ (i.e., the risk Y is a degenerated stochastic variable). For all R ∈ R, it holds that
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(X̃i)i∈N ∈ PO(R) if and only if (X̃i+cieΩ)i∈N ∈ PO(R) for any c ∈ IRN such that
∑

i∈N ci = 0.
This follows straightforwardly from Translation Invariance of ρi and is also stated by Ludkovski
and Young (2009). So, if we find a Pareto optimal risk redistribution (X̃i)i∈N , we can construct a
set of Pareto optimal risk redistributions by adding zero-sum side-payments (ci ·eΩ)i∈N such that∑

i∈N ci = 0 to (X̃i)i∈N . If there exists a risk redistribution (X̃i)i∈N , such that the set of risk
redistributions that arises from adding zero-sum side-payments equals the set of Pareto optimal
risk redistributions, we call this risk redistribution (X̃i)i∈N the unique element of PO(R) up to
side-payments.

Definition 3.1 For an R ∈ R, the risk redistribution (X̃i)i∈N ∈ PO(R) is, up to side-payments,
the unique element of PO(R) if

PO(R) =

{
(X̃i + cieΩ)i∈N : c ∈ IRN ,

∑
i∈N

ci = 0

}
.

The term side-payment is inspired by the procedure that first firms pick a Pareto optimal risk
redistribution and, thereafter, add or subtract zero-sum side-payments. Uniqueness up to side-
payments is first introduced in the context of risk measures by Jouini et al. (2008) in the case
where one firm is endowed with a very specific risk measure.

If firms use expected utilities, one obtains every Pareto optimal risk redistribution by max-
imizing a weighted sum of expected utilities (see Borch, 1962). Then, under mild regularity
conditions, every (normalized) weight-vector yields a unique risk redistribution. For distortion
risk measures, we also get the Pareto optimal risk redistributions by minimizing the weighted ag-
gregate risk adjusted value of the liabilities, i.e., for every k ∈ IRN

++ we minimize
∑

i∈N kiρi(X̃i)

over all (X̃i)i∈N ∈ F(R). However, in case of distortion risk measures this minimization problem
only has a solution if k equals the ones-vector. If k equals the ones-vector, we get all Pareto
optimal risk redistributions as shown by Jouini et al. (2008) and Filipović and Kupper (2008).

So, for all R ∈ R, it holds that (X̃i)i∈N ∈ PO(R) if and only if (X̃i)i∈N ∈ F(R) and

∑
i∈N

ρi(X̃i) = min

{∑
i∈N

ρi(X̂i) : (X̂i)i∈N ∈ F(R)

}
. (10)

3.2 Special case

The following proposition shows that if there is a firm that is endowed with a smaller distortion
function than all other firms, it is Pareto optimal to shift all risk to this firm.

Proposition 3.2 If R ∈ R is such that there exists a firm i ∈ N such that

gi(x) ≤ gj(x), for all x ∈ [0, 1] and j ∈ N, (11)

then for X̃i = X and X̃j = 0 · eΩ for all j ∈ N\{i}, it holds that (X̃j)j∈N ∈ PO(R). Moreover,
if

gi(x) < gj(x), for all x ∈ (0, 1) and j ∈ N\{i}, (12)

then (X̃j)j∈N is, up to side-payments, the unique element of PO(R).
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Proposition 3.2 extends the result of Schmidt (1999), who shows that if (12) holds we have

(X̃j)j∈N ∈ PO(R). We show that this risk redistribution is, up to side-payments, the unique
element of PO(R). The result of Schmidt (1999) is later generalized by Ludkovski and Young
(2008), who determine a subset of all Pareto optimal risk redistributions.

Condition (11) seems restrictive. However, we next provide examples where this condition
holds. These examples focus on the case where firms use Expected Shortfall risk measures (see,
e.g., Acerbi and Tasche, 2002).

Example 3.3 In this example, we discuss two cases where condition (11) holds. For all j ∈ N ,
let firm j use the risk measure Expected Shortfall with significance level αj ∈ (0, 1], which is the

distortion risk measure with distortion function gj(x) = min
{

x
αj

, 1
}
, for all x ∈ [0, 1] (Dhaene et

al., 2006). One can easily verify that condition (11) is satisfied, where i ∈ argmax{αj : j ∈ N}.
Hence, according to Proposition 3.2, it is Pareto optimal to redistribute all risk to firm i. Note
that it might seem unfair that firm i takes over all risk. Firm i is, however, willing to bear all risk
only if the side-payments it receives are sufficiently high. This problem is examined in Section 4.

As a second example, we let every firm j ∈ N use the risk measure Mean-Expected Shortfall
with significance levels ζ ∈ [0, 1] and αj ∈ (0, 1), i.e.,

ρMES
ζ,αj

(Y ) = ζEP[Y ] + (1− ζ)ρES
αj

(Y ), for all Y ∈ IRΩ, (13)

where ρES
αj

(Y ) is the Expected Shortfall with significance level αj ∈ (0, 1]. The (ζ, αj)-Mean-
Expected Shortfall is a distortion risk measure with distortion function gj(x) = ζx + (1 −
ζ)min

{
x
αj

, 1
}

for all x ∈ [0, 1]. One can again verify that condition (11) is satisfied, where

i ∈ argmax{αj : j ∈ N}. This result is also shown by Asimit et al. (2013) in the context of
optimal risk transfers between two divisions within an insurance company, where the objective
of the insurer is equal to (10). Generalizing this to multiple divisions is straightforward. More
generally, if a firm uses a weighted average of a distortion risk measure and the expectation, its
preferences can again be formalized via a distortion risk measure. If every firm j ∈ N uses

ρj(Y ) = ζjEP[Y ] + (1− ζj)ρ(Y ), for all Y ∈ IRΩ, (14)

for some distortion risk measure ρ and ζj ∈ [0, 1], it is Pareto optimal to shift all risk to a firm
i ∈ argmax{ζj : j ∈ N}. 


3.3 Comonotonicity with the aggregate risk

A risk redistribution (X̃i)i∈N ∈ F(R) is comonotone with the aggregate risk if there exists an or-

dering (ω1, . . . , ωp) on the state space Ω such that Ω = {ω1, . . . , ωp}, and X̃i(ω1) ≥ · · · ≥ X̃i(ωp)

for all i ∈ N . So, all stochastic variables in (X̃i)i∈N are comonotone with each other. For
distortion risk measures, comonotonicity of Pareto optimal risk redistributions is first studied by
Ludkovski and Rüschendorf (2008). Their main result, which is based on Landsberger and Meil-
ijson (1994), states that there exists a Pareto optimal risk redistribution such that all individual
posterior risks are comonotone with the aggregate risk X . For a broader class than distortion risk
measures, this result is extended by Kiesel and Rüschendorf (2010) by characterizing all Pareto
optimal risk redistributions as being μ-comonotone. This is a weaker condition than comono-
tonicity. We provide a sufficient condition such that all Pareto optimal risk redistributions are
comonotone with the aggregate risk X .

We first define a risk measure ρ∗N that plays a central role in obtaining Pareto optimal risk
redistributions.
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Definition 3.4 The function g∗N : [0, 1] → [0, 1] of a risk redistribution problem R ∈ R is given
by g∗N (x) = min{gi(x) : i ∈ N} for all x ∈ [0, 1]. Moreover, ρ∗N is the risk measure as defined in
(1) with gρ

∗
N = g∗N .

The function g∗N is continuous, concave, increasing and such that g∗N(0) = 0 and g∗N(1) = 1.
Concavity of the function g∗N follows from the fact that the minimum of concave functions is
concave as well. This leads directly to the following proposition.

Proposition 3.5 For all R ∈ R, the risk measure ρ∗N is a distortion risk measure.

We show in the sequel of this section that the risk measure ρ∗N plays a central role in obtaining
Pareto optimal risk redistributions.

Next, we provide a closed-form expression of a set of Pareto optimal risk redistributions. To
do so, we first define the set of functions M(R) of a risk redistribution problem R ∈ R by

M(R) =

{
m : {1, . . . , p− 1} → N

∣∣∣∣m(k) ∈ argmin
j∈N

gj (P(Ωk)) for all k ∈ {1, . . . , p− 1}
}
. (15)

A function m ∈ M(R) assigns to every k ∈ {1, . . . , p−1} a firm i for which the distortion function
gi is minimal at P(Ωk), i.e., for all k ∈ {1, . . . , p − 1} it holds that gm(k)(P(Ωk)) = g∗N (P(Ωk)).
Ludkovski and Young (2009) determine some Pareto optimal risk redistributions as follows.
For all R ∈ R, m ∈ M(R) and d ∈ IRN with

∑
i∈N di = X(ωp) = minX , it holds that

(X̃i)i∈N ∈ PO(R) where

X̃i =

p−1∑
k=1

[X(ωk)−X(ωk+1)] · �m(k)=i · eΩk
+ di · eΩ, for all i ∈ N, (16)

and �m(k)=i = 1 if m(k) = i and zero otherwise. Via the risks di · eΩ, i ∈ N , the functional form

(16) allows for all side-payments that ensure (X̃i)i∈N ∈ F(R). The size of these side-payments
is a central topic in the next section.

In the following proposition, we characterize all Pareto optimal risk redistributions. This
result provides the minimum aggregate risk adjusted value of the liabilities in the market after
any Pareto optimal risk redistribution.

Proposition 3.6 For all R ∈ R, we have (X̃i)i∈N ∈ PO(R) if and only if (X̃i)i∈N ∈ F(R) and∑
i∈N

ρi(X̃i) = ρ∗N (X). (17)

From Proposition 3.6 it follows that the Pareto optimal aggregate risk adjusted value of
the liabilities depends on the risk measures ρi, i ∈ N , via ρ∗N only. One can interpret this as
that there exists a representative agent whose distortion risk measure equals ρ∗N . The agent
is representative in the sense that its preferences are sufficient to calculate the Pareto optimal
aggregate risk adjusted value of the liabilities in the market. In contrast to actuarial equilibrium
models with utility functions, the representative agent is a hypothetical firm with a risk measure
that is least risk-averse in the market instead of an average (cf. Bühlmann, 1980).

We observe that every risk redistribution of the form (16) is comonotone with the aggregate
risk X . If the following condition holds, we show that all Pareto optimal redistributions are
comonotone with the aggregate risk.
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Condition [SC]: The function g∗N is strictly concave, i.e.,

λg∗N (x) + (1− λ)g∗N (y) < g∗N(λx + (1− λ)y),

for all λ ∈ (0, 1) and x, y ∈ [0, 1] such that x �= y.
We next show our main contribution to the literature on Pareto optimal risk redistributions.

We will later use this to characterize uniqueness of Pareto optimal risk redistributions up to
side-payments.

Proposition 3.7 If R ∈ R is such that condition [SC] holds, all Pareto optimal risk redistribu-
tions are comonotone with each the aggregate risk X.

If the function g∗N is piecewise linear (e.g., if ρ∗N equals α-Expected Shortfall), comonotonicity
with the aggregate risk X is not guaranteed for Pareto optimal risk redistributions. However, if
the distortion functions gi, i ∈ N are all strictly concave, the function g∗N is strictly concave as
well. Wirch and Hardy (2001) show that strict concavity of a distortion function is a necessary
and sufficient condition for risk measures to strongly preserve second order stochastic dominance.
From Proposition 3.7 we get that if R ∈ R is such that condition [SC] holds and k ∈ {1, . . . , p−1}
is such that X(ωk) = X(ωk+1), it holds for all (X̃i)i∈N ∈ PO(R) that X̃i(ωk) = X̃i(ωk+1) for all
i ∈ N . So, when considering Pareto optimal risk redistributions, the states ωk, ωk+1 ∈ Ω such
that X(ωk) = X(ωk+1) are treated in the same manner.

3.4 Uniqueness up to side-payments

If there is a unique Pareto optimal risk redistribution up to side-payments, the only question left
is to determine the size of the side-payments. From (10), and Sub-additivity and Positive Homo-
geneity of the risk measures, it can be shown that the set of Pareto optimal risk redistributions
is convex, i.e., for all (X̃i)i∈N , (X̂i)i∈N ∈ PO(R), it holds that (λX̃i + (1− λ)X̂i)i∈N ∈ PO(R)
for all λ ∈ [0, 1]. Therefore, the set of Pareto optimal risk redistributions can be large even up
to side-payments. In this subsection, we identify two joint conditions under which the Pareto
optimal risk redistributions are, up to side-payments, unique.

Uniqueness up to side-payments of Pareto optimal risk redistributions would hold if the risk
measures are strictly concave (see Filipović and Svindland, 2008; Kiesel and Rüschendorf, 2010).
Distortion risk measures are, however, not strictly concave. This can be seen from the properties
Comonotonic Additivity and Positive Homogeneity of distortion risk measures as it holds that
αρ(X) + (1− α)ρ(Y ) = ρ(αX + (1− α)Y ) for all comonotone X,Y ∈ IRΩ such that X �= Y and
α ∈ (0, 1).

To show uniqueness up to side-payments of Pareto optimal risk redistributions, we first in-
troduce the following condition on R.

Condition [U]: For all k ∈ {1, . . . , p − 1} such that X(ωk) > X(ωk+1) there exists a firm
i ∈ N such that for all m ∈ M(R) it holds that m(k) = i.

If condition [SC] holds, we get from Proposition 3.7 that all Pareto optimal risk redistribu-
tions are comonotone with the aggregate risk. From this combined with Theorem 2 of Ludkovski
and Young (2009) follows the next result.

Theorem 3.8 If R ∈ R is such that condition [SC] holds, there exists a risk redistribution that
is, up to side payments, the unique element of PO(R) if and only if condition [U] holds
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The least risk-averse agent is the analogue to the risk-neutral agent under expected utility. If
there exists a globally least risk-averse firm, then this firm bears all the aggregate risk. If there
does not exist a globally least risk-averse firm, then it is Pareto optimal that the locally least
risk-averse firm bears the local aggregate risk. Under condition [SC], this risk redistribution is
unique if there exists a unique least strictly risk-averse firm for those states with local aggregate
risk.

Note that |M(R)| = 1 is a sufficient condition for condition [U] to hold. Hence, if |M(R)| = 1
and condition [SC] holds, it follows from Theorem 3.8 that all Pareto optimal risk redistribu-
tions are uniquely determined up to side-payments. One can determine a Pareto optimal risk
redistribution via (16). Condition [U] implies that all functions in M(R) differ only for k such
that X(ωk) = X(ωk+1).

Even if the function g∗N is not strictly concave, it might be possible to define a strict con-
cave distortion function such that it coincides with the function g∗N on the relevant subdomain.
This subdomain is the following finite collection of probabilities {P(Ωk) : k = 1, . . . , p− 1}. We
illustrate this special case in the following example, where we also illustrate the construction of
Pareto optimal risk redistributions.

Example 3.9 LetN = {1, 2}, Ω = {ω1, ω2, ω3}, P({ω}) = 1
3 for all ω ∈ Ω, g1(x) = min

{
1 1
2x, 1

}
,

g2(x) =
√
x, X(ω1) = 2, X(ω2) = 1, X(ω3) = 0 and X1 = X2 = 1

2X . So, we consider the case
where all benefits from risk redistributions arise from the use of different risk measures. Firm 1
uses 2

3 -Expected Shortfall and Firm 2 uses a so-called proportional hazard distortion risk measure
with parameter 1

2 . The function g∗N is given by:

g∗N(x) = min{gi(x) : i ∈ N} =

{
1 1
2x if x ≤ 4

9 ,√
x otherwise.

The distortion functions g1, g2 and g∗N are displayed in Figure 1. From this figure, we see that
there is a unique i ∈ argmax{gj(x) : j ∈ N} that is minimal at x = P({ω1}) = 1

3 and at
x = P({ω1, ω2}) = 2

3 . Hence, it holds that |M(R)| = 1 and, therefore, condition [U] holds.
Moreover, it holds that m(1) = 1 and m(2) = 2 for m ∈ M(R). According to (16) with

c1 = c2 = 0, a Pareto optimal risk redistribution is given by X̃1 and X̃2 such that X̃1(ω1) =

1, X̃1(ω2) = 0, X̃1(ω3) = 0, X̃2(ω1) = 1, X̃2(ω2) = 1 and X̃2(ω3) = 0. The construction of this
Pareto optimal risk redistribution is shown in Figure 2.

One can readily verify that ρ2(X̃2) > ρ2(X2) and, so, Firm 2 needs to receive a side-payment
from Firm 1 in order to be willing to trade. We investigate the size of this side-payment in
Section 4.

In this example, the function g∗N is not strictly concave. However, we can define a strictly
concave distortion function that coincides with the function g∗N on the subdomain {P(Ωk) : k =
1, . . . , p− 1} =

{
1
3 ,

2
3

}
. Since also condition [U] holds, we get from Theorem 3.8 that there is a

unique Pareto optimal risk redistribution up to side-payments.

The distortion functions g1 and g2 cross only once on the subdomain (0, 1), i.e., g1(x) <
g2(x) for x ∈ (0, x∗) and g1(x) > g2(x) for x ∈ (x∗, 1) with x∗ = 4

9 . This implies that every
Pareto optimal risk redistribution is a stop-loss contract or a deductible on the aggregate risk
X and a side-payment; every (X̃i)i∈N ∈ PO(R) is such that there exists a c ∈ IR such that

X̃1 = (X − 1)+ + c · eΩ and X̃2 = min{X, 1} − c · eΩ. 
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Figure 1: Construction of the function g∗N via the distortion functions g1 and g2 corresponding
to Example 3.9. The function g1 is the dashed-dotted line, g2 is the dashed line and g∗N is the
solid line.
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Figure 2: Graphical illustration of the construction of Pareto optimal risk redistributions cor-
responding to Example 3.9. The figure displays g(1 − FX(x)) for g equal to g1 (dotted line),
g2 (dashed line) or g∗N (solid line). If lines coincide, the solid line is shown. From (1) with
P(X < 0) = 0 it follows that the area under g∗N equals ρ∗N (X). The two shaded blocks are

assigned to the firms m(1) = 1 and m(2) = 2; the risk X̃1 = eΩ1 is assigned to Firm 1 and the

risk X̃2 = eΩ2 is assigned to Firm 2. The area of the shaded block with m(i) in it represents

ρi(X̃i) for i = 1, 2.
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4 Competitive equilibria

4.1 Uniqueness of the competitive equilibrium

In the previous section, we analyzed Pareto optimality of risk redistributions. Under the condi-
tions [SC] and [U] in Theorem 3.8, there exists a unique Pareto optimal risk redistribution up to
side-payments. In this section, we identify some Pareto optimal risk redistributions as the com-
petitive equilibria. Competitive equilibria in insurance markets are studied by, e.g., Aase (1993,
2010) for the case where firms use expected utility functions. Under three regularity conditions
on the utility functions, Aase (1993, 2010) proves existence and uniqueness of the equilibrium.
This result is inspired by Borch (1962), who shows this for special cases. For mean-variance
investors, the competitive equilibrium corresponds with the classical CAPM equilibrium price of
risk as derived by Sharpe (1964). Dana (2011) finds existence of a representative agent in the
market where firms use strictly concave risk measures. If firms use distortion risk measures, we
show in this subsection some conditions under which the market prices are unique.

Chateauneuf et al. (2000) and Tsanakas and Christofides (2006) analyze equilibria in the
case in which firms evaluate risk via ρi(ui(Xi)),

4 where ui is a strictly concave utility function
and ρi a risk measure. Here, the role of risk measures is to include ambiguity aversion via
max-min ambiguity-averse preferences. They assume strict concavity of the utility function as
a sufficient condition to have uniqueness of the competitive equilibrium. In this subsection, we
relax the assumption of a strictly concave utility function and obtain the competitive equilibria
and corresponding capital asset pricing model.

Let there be a complete market. This implies existence of state prices, i.e., prices for the
Arrow-Debreu assets e{ω} with ω ∈ Ω. The pricing formula is given by π(p̂, Y ) =

∑p
k=1 p̂kY (ωk)

for some price vector p̂ ∈ IRΩ
+. We assume that the risk-free rate is zero, i.e., π(p̂, eΩ) = 1.

A competitive equilibrium is a vector of prices p̂ ∈ IRΩ
+ and a risk redistribution (X̂i)i∈N ∈

(IRΩ)N such that given the prices, each firm i ∈ N individually minimizes ρi(X̂i) under a budget
constraint, i.e., X̂i solves

min
˜Xi∈IRΩ

ρi(X̃i), (18)

s.t. π(p̂, X̃i) ≥ π(p̂, Xi), (19)

and the price vector p̂ satisfies π(p̂, eΩ) = 1 and induces market-clearing by equating aggregate
supply and demand, i.e., (X̂i)i∈N ∈ F(R). Competitive equilibria rely on the assumption that
there is a competitive environment, where individual transactions have no influence on the prices.
So, the number of firms needs to be sufficiently large.

The following lemma follows directly from Theorem 3.2 of Filipović and Kupper (2008). This
result is an adjustment of the First Fundamental Welfare Theorem in case firms use distortion
risk measures. Filipović and Kupper (2008) show this for the class of monetary utility functions,
which include distortion risk measures as a subclass.

Lemma 4.1 For all risk redistribution problems in R, there exists a competitive equilibrium.
Moreover, every equilibrium risk redistribution is Pareto optimal.

Next, we focus on characterizing uniqueness of the competitive equilibrium. We introduce the
following condition, which assumes that there are no states in Ω in which the realization of the

4For a wider class of risk measures ρi, this is also called Choquet-, max-min- or rank-dependent expected
utility.
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aggregate risk X is the same.

Condition [SO]: X(ω1) > · · · > X(ωp).

The following theorem shows that the conditions [SC] and [SO] are jointly sufficient to guar-
antee uniqueness of the equilibrium prices.

Theorem 4.2 If R ∈ R is such that condition [SC] holds, it holds that

• an equilibrium price vector is given by

p̂k = g∗N(P(Ωk))− g∗N (P(Ωk−1)), for all k ∈ {1, . . . , p}; (20)

• the equilibrium price vector p̂ is unique if and only if condition [SO] holds.

If the conditions [SC] and [SO] hold, we have that p̂ is unique, and such that p̂ = QX ∈ Q(ρ∗N ),
where QX is as in (3) with gρ = g∗N , and Q(ρ∗N ) is defined in (5).5. If condition [SC] does not
hold, we can show that the vector p̂ in (20) is still the unique equilibrium price vector if condition
[SO] holds. However, the reversed statement does not necessarily hold true. If condition [SO]
does not hold, we get that the equilibrium risk redistribution is still unique if conditions [SC]
and [U] hold. However, the prices are not unique (see Theorem 4.2).

We show in the following proposition that under the conditions [SC] and [SO], the risk
adjusted value of the liabilities of every equilibrium risk redistribution equals the equilibrium
price of the prior risk of the firms.

Proposition 4.3 If R ∈ R is such that conditions [SC] and [SO] hold, every equilibrium risk
redistribution (X̂i)i∈N is such that

ρi(X̂i) = EQX [Xi] =

p∑
k=1

[g∗N (P(Ωk))− g∗N(P(Ωk−1))]Xi(ωk), (21)

for all i ∈ N .

Theorem 4.2 states the unique equilibrium prices under conditions [SC] and [SO]. Moreover,
Theorem 3.8 states that under the additional condition [U] these unique equilibrium prices cor-
respond with a unique risk redistribution. If firms use expected utilities, Aase (1993) shows
that under two regularity conditions on utility functions only, there is existence of the equilibria.
Existence of the equilibria in the risk redistribution problem is guaranteed. If firms use expected
utilities, there is a third regularity condition necessary to ensure uniqueness of the equilibrium
risk redistribution. All three regularity conditions in Aase (1993) are imposed on the utility
functions only. From Theorem 3.8 and Theorem 4.2, we get the following main result of this
paper.

Theorem 4.4 If R ∈ R is such that conditions [SC], [SO] and [U] hold, there is a unique
equilibrium risk redistribution.

5Note that QX is a probability measure whereas p̂ is a vector. Here, we mean that QX({ωk}) = p̂k for all
k ∈ {1, . . . , p}. In the sequel, we interpret p̂ as a probability measure as well.
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In contrary to the conditions of Aase (1993) for expected utilities, the two conditions [SO] and
[U] also depend on the aggregate risk.

The condition [SC] implies that the results in Theorem 4.2, Proposition 4.3 and Theorem 4.4
do not apply to Expected Shortfall. Suppose that condition [SC] does not hold. Ludkovski and
Rüschendorf (2008) show that there exists a Pareto optimal risk redistribution that is comonotone
with the aggregate risk. Then, we derive the following result in the same way as for Theorem
4.2.

Proposition 4.5 If R ∈ R is such that conditions [SO] and [U] hold, then there exists a unique

equilibrium (X̃i)i∈N that is comonotone with the aggregate risk.

Note that many authors explicitly assume that risk redistributions are comonotone with the
aggregate risk (see, e.g., Ludkovski and Young, 2009; Asimit et al., 2013).

In this paper, we assume that there is a finite space. This allows us to solve the competitive
equilibria in Theorem 4.2 via linear programming. Generalizing the characterization of the
uniqueness of competitive equilibria to an infinite state space would be an interesting topic for
future research. Whereas the condition [U] has a straightforward translation to the class of
continuous risks, the condition [SO] has not.

Next, we return to the problem in Example 3.9 and compute the equilibrium risk redistribu-
tion for this case.

Example 4.6 In this example, we provide the equilibrium risk redistribution problem in Exam-

ple 3.9. We get that QX =
(

1
2 ,

√
2
3 − 1

2 , 1−
√

2
3

)
. This leads to

ρi(X̂i) = EQX [Xi] =
1√
6
+

1

4
≈ 0.66, (22)

for all i ∈ N , where X̂i is the corresponding risk redistribution. This implies that for the risk
redistribution (X̃i)i∈N provided in Example 3.9, there is a side-payment of size 1√

6
− 1

4 ≈ 0.16

made by Firm 1 to Firm 2. Then, the risk redistribution X̂1 and X̂2 is given by X̂1(ω1) ≈
1.16, X̂1(ω2) ≈ 0.16, X̂1(ω3) ≈ 0.16, X̂2(ω1) ≈ 0.84, X̂2(ω2) ≈ 0.84, and X̂2(ω3) ≈ −0.16. 


Next, we proceed with a more complex example, in which we illustrate two issues with
uniqueness of the equilibrium.

Example 4.7 Let N = {1, 2, 3}, Ω = {ω1, ω2, ω3, ω4, ω5}, P({ω}) = 1
5 for all ω ∈ Ω, g1(x) =

min
{
1 1
2x, 1

}
, g2(x) =

√
x, g3(x) = min{1 1

2x,
1
2 + 1

2x} X(ω1) = 4, X(ω2) = 1, X(ω3) = 0,
X(ω4) = −1, X(ω5) = −4 and X1 = X2 = X and X3 = −X . Firm 3 uses the (12 ,

1
2 )−Mean-

Expected Shortfall risk measure. This example resembles a situation where firms face a system-
atic risk-factor, but have different exposure to it.

The distortion function g∗N is not strictly concave on the relevant subdomain. Moreover, the
condition [U] does not hold. We get for all m ∈ M(R) that m(3) = m(4) = 2. From this and
(16), we get that it is Pareto optimal if Firm 2 bears the risk 4 · eΩ +min{X, 0} = eΩ3 + 3 · eΩ4 .
Moreover, we get that m(1),m(2) ∈ {1, 3} for all m ∈ M(R). From (16) and the fact that the set
of Pareto optimal risk redistributions is convex, we get that any comonotone risk redistribution
of (X)+ = 3 · eΩ1 + eΩ2 to the firms in {1, 3} is Pareto optimal. However, since the distortion
function g∗N is linear on the sub-domain {0,P(Ω1),P(Ω2)}, we get that every non-negative risk
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redistribution of (X)+ to the firms in {1, 3} is Pareto optimal. Hence, a Pareto optimal risk
redistribution is not necessarily comonotone with the aggregate risk.

Now adjust the problem such that the distortion function of Firm 3 is strictly higher on
the sub-domain (0, 1) than before, i.e., ĝ3(x) > g3(x) for all x ∈ (0, 1), and let the rest remain
the same. Then, condition [U] is satisfied. We get that the Pareto optimal risk redistributions
are not unique up to side-payments (note that condition [SC] is still not satisfied). The only

risk redistribution that is comonotone with the aggregate risk is given by X̃1 = (X)+, X̃2 =
min{X, 0} and X3 = 0 · eΩ. The unique equilibrium prices are given by QX = (0.3, 0.3,

√
0.6 −

0.6,
√
0.8 − √

0.6, 1 − √
0.8). From Proposition 4.5, we get that the unique equilibrium risk

redistribution that is comonotone with the aggregate risk, denoted by (X̂i)i∈N , is such that
ρ1(X̂1) = EQX [X1] ≈ 0.96, ρ2(X̂2) ≈ 0.96, and ρ3(X̂3) = EQX [X3]− ≈ −0.96. This leads to

X̂1 ≈ (X)+ − 0.54 · eΩ, X̂2 = min{X, 0}+ 1.5 · eΩ, and X̂3 = −0.96 · eΩ.
Note that the equilibrium does not depend on the distortion function ĝ3 as long as we have

ĝ3(x) > g∗N (x) for all x ∈ {P(Ωk) : k = 1, . . . , p − 1}. Moreover, the risk adjusted value of the
liability corresponding to the equilibrium is lower for Firm 3 due to that the risk of this firm is
anti-comonotone with the aggregate risk, and hence useful for diversification. The fact that the
distortion function ĝ3 is never minimal on the interval (0, 1) does not influence this value. 


Next, we discuss some comparative statics of the equilibrium. Assume that the conditions
[SC], [SO] and [U] hold. Let m ∈ M(R) and pick a k ∈ {1, . . . , p − 1} and a firm i ∈ N . Now,
suppose that we increase the distortion function gi only in gi(P(Ωk)) such that it is still concave
on the subdomain {0} ∪ {P(Ωk) : k = 1, . . . , p}, ceteris paribus. Denote the new distortion

function for firm i by g̃i. This leads possibly to a different function m̃ ∈ M(R̃). We get the
following three possible effects:

• if m(k) = i and m̃(k) �= i, the risk [X(ωk) − X(ωk+1)] · eΩk
is now borne by firm m̃(k)

in equilibrium. Firm m(k) charges, however, a higher price for bearing this risk, i.e., the
equilibrium price for the state ωk increases with the amount gm̃(k)(P(Ωk))−gi(P(Ωk)). The
equilibrium price for state ωk+1 decreases with this amount. The aggregate risk adjusted
value of the liabilities in the market increases, but the sign of the individual effect on the
risk adjusted value of the liabilities for firm i is unknown;

• if m(k) = i and m̃(k) = i , then the risk [X(ωk) − X(ωk+1)] · eΩk
is still borne by firm

i in equilibrium. Firm i charges, however, a higher price for bearing this risk, i.e., the
equilibrium price for the state ωk increases with the amount g̃i(P(Ωk) − gi(P(Ωk)). The
equilibrium price for the state ωk−1 decreases with this amount. The aggregate risk ad-
justed value of the liabilities in the market increases, but the sign of the individual effect
on the risk adjusted value of the liabilities for firm i is unknown;

• if m(k) �= i, the equilibrium prices and risk redistributions are not changed.

4.2 Capital asset pricing model

In this subsection, we derive a capital asset pricing model under the conditions [SC], [SO] and [U].
One can interpret p̂ = QX in Proposition 4.3 as a risk neutral probability measure for obtaining
the price of all Xi. The Radon-Nikodym derivative is given by

dQX

dP
({ωk}) = g∗N (P(Ωk))− g∗N (P(Ωk−1))

P({ωk}) , (23)
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for all k ∈ {1, . . . , p}, which extends the Radon-Nikodym derivative used by Tsanakas (2004)
and De Giorgi and Post (2008) for heterogeneous risk measures. So, the equilibrium prices are
such that π(p̂, Xi) = EP

[
Xi

dQX

dP

]
for all i ∈ N . This leads to

π(p̂, Xi) = EP[Xi] + cov

(
Xi,

dQX

dP

)
, for all i ∈ N, (24)

where p̂ is the unique equilibrium price vector. So, if the risk Xi is independent of the aggregate
X , firm i only gets a risk where its risk adjusted value of the liabilities equals the expectation of
its prior risk Xi. The stochastic variable dQX

dP is comonotone with the risk X due to concavity
of the function g∗N . Therefore, only co-movements with the market risk X are priced. Also, the
equilibrium price depends on the aggregate risk X via the ordering on the state space Ω such
that X(ω1) ≥ · · · ≥ X(ωp) only.

If the equilibrium prices are unique, it follows from (24) that for allR ∈ R such that conditions
[SC] and [SO] hold, we have

EP[RRi]− 1 = βi (EP[RRm]− 1) , (25)

where i ∈ N , RRi =
Xi

π(p̂,Xi)
and RRm = X

π(p̂,X) and

βi =
cov

(
RRi,

dQX

dP

)
cov

(
RRm, dQX

dP

) . (26)

The factor βi in (25) is a market beta in a representation of the CAPM-model with distortion
risk measures. Note that the risk-free rate is assumed to be zero.

De Giorgi and Post (2008) empirically test the CAPM model for the case where all firms use
the same distortion risk measure using US stock returns and find a better fit than the CAPM
model with mean-variance investors. If we would test the equilibrium prices with distortion risk
measures, we would assume a functional form of the representative distortion function g∗N . De
Giorgi and Post (2008) assume a functional form of the distortion function that all firms use.
Hence, to test our model is analogue to the test of De Giorgi and Post (2008). Hence, our
model with distortion risk measures has a better fit than the CAPM model with mean-variance
investors as well.

5 Conclusion

This paper studies optimal risk redistribution between firms. In contrast to previous literature
on preferences given by distortion functions, we study uniqueness of the competitive equilibrium.
We provide three conditions that are jointly sufficient to have a unique equilibrium. Two out
of the three conditions that we propose do depend on the aggregate risk in the market. This
is in contrast to the literature on uniqueness of the equilibrium with expected utilities, where
sufficient conditions do typically depend on the utility functions only (Aase, 1993).

The equilibrium prices follow from the preferences of a hypothetical representative agent. In
contrast to when firms use expected utilities, this representative agent resembles a least risk-
averse agent in the market instead of an average risk-averse agent (cf. Bühlmann, 1980).

We derive the results in this paper for concave distortion functions. This assumption allows
us to study risk redistributions that are comonotone with the aggregate risk. Whereas the
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Expected Shortfall is a popular used distortion risk measure, this assumption excludes the use of
Value-at-Risk. Studying competitive equilibria with Value-at-Risk is a promising topic for future
research. Another topic for future research is to examine competitive equilibria in the presence
of agents that minimize distortion risk measures, and agents that maximize expected utilities.
Whereas distortion risk measures might be induced by regulation for firms, the preferences of
individual consumers are often modeled via expected utilities.

A Proofs

Proof of Proposition 3.2 The first part of the proof follows from Ludkovski and Young (2009).
Next, let R ∈ R be such that there exists a firm i ∈ N for which (12) holds. One can easily

verify that from (2)-(3) it follows that

ρi(Y ) ≤ ρj(Y ), for all Y ∈ IRΩ and j ∈ N. (27)

Suppose that there exists an (X̂j)j∈N ∈ PO(R) such that for at least one firm j �= i its risk X̂j

is not a side-payment. For every risk Y ∈ IRΩ that is not a side-payment, it holds that

ρi(Y ) =

p−1∑
k=1

gi(P({ω1, . . . , ωk}))[Y (ωk)− Y (ωk+1)] + Y (ωp) (28)

<

p−1∑
k=1

gj(P({ω1, . . . , ωk}))[Y (ωk)− Y (ωk+1)] + Y (ωp) (29)

= ρj(Y ), (30)

for all j �= i, where Y (ω1) ≥ · · · ≥ Y (ωp). Here, (28) follows from direct calculations with (1),
(29) follows from (12) and that there exists a k ∈ {1, . . . , p− 1} such that Y (ωk)− Y (ωk+1) > 0
and P({ω1, . . . , ωk}) ∈ (0, 1). From this it follows directly that

ρi(X) ≤
∑
j∈N

ρi(X̂j) (31)

<
∑
j∈N

ρj(X̂j), (32)

where (31) follows from Sub-additivity of ρi, and (32) follows from (27) and (28)-(30). Combining
(31)-(32) with ρj(0 · eΩ) = 0 for all j ∈ N\{i} yields a contradiction with (10). Hence, for all

(X̂j)j∈N ∈ PO(R) and j �= i it follows that X̂j is a side-payment. This concludes the second
part of the proof. �

Proof of Proposition 3.6 Let R ∈ R. From (10) we get that it is sufficient to show that∑
i∈N ρi(X̃i) = ρ∗N (X) for an (X̃i)i∈N ∈ PO(R). Pick (X̃i)i∈N ∈ PO(R) as in (16) with

m ∈ M(R) and d ∈ IRN such that
∑

i∈N di = X(ωp). The risk X̃i is constructed such that

X̃i(ωk)− X̃i(ωk+1) =

p−1∑
�=k

[X(ω�)−X(ω�+1)] · �m(�)=i + di (33)

−
(

p−1∑
�=k+1

[X(ω�)−X(ω�+1)] · �m(�)=i + di

)
= [X(ωk)−X(ωk+1)] · �m(k)=i, (34)
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for all k ∈ {1, . . . , p − 1} and i ∈ N and, moreover,
∑

i∈N X̃i(ωp) =
∑

i∈N di = X(ωp). So, it

holds that X̃i(ω1) ≥ · · · ≥ X̃i(ωp) for all i ∈ N . From this and (33)-(34) it follows that

∑
i∈N

ρi(X̃i) =
∑
i∈N

[
p−1∑
k=1

gi(P(Ωk))[X̃i(ωk)− X̃i(ωk+1)] + X̃i(ωp)

]

=
∑
i∈N

[
p−1∑
k=1

gi(P(Ωk))[X(ωk)−X(ωk+1)] · �m(k)=i + di

]

=

p−1∑
k=1

∑
i∈N

gi(P(Ωk))[X(ωk)−X(ωk+1)] · �m(k)=i +
∑
i∈N

di

=

p−1∑
k=1

[X(ωk)−X(ωk+1)]
∑
i∈N

gi(P(Ωk)) · �m(k)=i +X(ωp)

=

p−1∑
k=1

[X(ωk)−X(ωk+1)]min{gi(P(Ωk)) : i ∈ N}+X(ωp)

=

p−1∑
k=1

[X(ωk)−X(ωk+1)]g
∗
N (P(Ωk)) +X(ωp)

= ρ∗N (X).

This concludes the proof. �

Proof of Proposition 3.7 Let R ∈ R be such that condition [SC] holds and suppose that

(X̃j)j∈N ∈ PO(R) is such that there exist i ∈ N and k ∈ {1, . . . , p−1} where X̃i(ωk) < X̃i(ωk+1).
Recall from (2) and (3) that ρ∗N (X) = EQX [X ], where QX is the additive probability measure
such that QX({ω�}) = g∗N(P(Ω�))− g∗N(P(Ω�−1)) for all 	 ∈ {1, . . . , p}. One can verify that, due
to concavity of the function g∗N , it holds that QX ∈ Q(ρ∗N ) ⊆ Q(ρj) for all j ∈ N and, so,

ρj(X̃j) ≥ EQX [X̃j ], for all j ∈ N. (35)

Next, we show that

ρi(X̃i) > EQX [X̃i]. (36)

Since Q(ρ∗N ) ⊆ Q(ρi), it follows that ρi(X̃i) ≥ ρ∗N (X̃i) and, so, it is sufficient to show ρ∗N (X̃i) >

EQX [X̃i]. We will show that

[g∗N(P(Ωk−1 ∪ {ωk+1}))− g∗N (P(Ωk−1))]X̃i(ωk+1)

+ [g∗N (P(Ωk+1))− g∗N (P(Ωk−1 ∪ {ωk+1}))]X̃i(ωk)

> [g∗N (P(Ωk))− g∗N (P(Ωk−1))]X̃i(ωk) + [g∗N (P(Ωk+1))− g∗N (P(Ωk))]X̃i(ωk+1). (37)

Equivalently, (37) can be written as

X̃i(ωk+1)[g
∗
N (P(Ωk−1 ∪ {ωk+1}))− g∗N(P(Ωk−1))− g∗N(P(Ωk+1)) + g∗N (P(Ωk))]

> X̃i(ωk)[g
∗
N (P(Ωk−1 ∪ {ωk+1}))− g∗N(P(Ωk−1))− g∗N (P(Ωk+1)) + g∗N (P(Ωk))]. (38)
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Since the function g∗N is strictly concave and P({ω}) > 0 for all ω ∈ Ω, it follows that

g∗N (P(Ωk−1 ∪ {ωk+1}))− g∗N(P(Ωk−1))− g∗N (P(Ωk+1)) + g∗N (P(Ωk)) > 0.

From this it follows that (38) holds and, so, (37) holds.

From (37), we get that EQ′ [X̃i] > EQX [X̃i] where

Q′(ω) =

⎧⎨⎩
g∗N(P(Ωk+1))− g∗N(P(Ωk−1 ∪ {ωk+1})) if ω = ωk,
g∗N(P(Ωk−1 ∪ {ωk+1))− g∗N(P(Ωk−1)) if ω = ωk+1,
QX(ω) otherwise.

From Q′ ∈ Q(ρ∗N) it follows that ρ∗N (X̃i) ≥ EQ′ [X̃i]. So, we have shown that (36) holds. To
conclude, it follows that∑

j∈N

ρj(X̃j) ≥
∑

j∈N\{i}
EQX [X̃j ] + ρi(X̃i) (39)

>
∑
j∈N

EQX [X̃j ] (40)

= EQX [X ] (41)

= ρ∗N (X), (42)

where (39) follows from (35), (40) follows from (36), and (42) follows from (2) and (3). From
Proposition 3.6 we get that a risk redistribution (X̂j)j∈N ∈ F(R) is Pareto optimal only if∑

j∈N ρj(X̂j) = ρ∗N (X). So, it follows that (X̃j)j∈N is not Pareto optimal, which is a contra-

diction. Hence, we have X̃j(ω1) ≥ · · · ≥ X̃j(ωp) for all j ∈ N and (X̃j)j∈N ∈ PO(R). This
concludes the proof. �

Proof of Theorem 4.2 Let R ∈ R be such that condition [SC] holds. First, we show the
second result, i.e., that the equilibrium price vector p̂ is unique if and only if condition [SO]
holds. Next, we show the “⇐” (“if”) part of the proof. Let condition [SO] hold. According to
Lemma 4.1, there exists an equilibrium. Pick an equilibrium (p̂, (X̂i)i∈N ). Lemma 4.1 states that
every equilibrium risk redistribution is Pareto optimal and, so, we have (X̂i)i∈N ∈ PO(R). From
this, strict concavity of the function g∗N and Proposition 3.7 it follows that all risks X̂i, i ∈ N

are comonotone with the aggregate risk, i.e., X̂i(ω1) ≥ · · · ≥ X̂i(ωp) for all i ∈ N . Hence, the
objective function for firm i ∈ N in (18) can be written as

ρi(X̃i) =

p∑
k=1

[gi(P(Ωk))− gi(P(Ωk−1))]X̃i(ωk), (43)

which is minimized over all X̃i ∈ IRΩ such that X̃i(ω1) ≥ · · · ≥ X̃i(ωp) and π(p̂, X̃i) ≥ π(p̂, Xi).

A minimum is obtained in X̃i = X̂i.
Since the constraints and the objective function in (43) are all affine, we get that the equilib-

rium risk redistribution (X̂i)i∈N satisfies the Kuhn-Tucker conditions. The Kuhn-Tucker condi-

tions are obtained by the first-order conditions of the following function with respect to X̃i(ωk):

p∑
k=1

(
[gi(P(Ωk))− gi(P(Ωk−1))]X̃i(ωk)− λip̂k[X̃i(ωk)−Xi(ωk)]

)

−
p−1∑
k=1

γi,k

[
X̃i(ωk)− X̃i(ωk+1)

]
(44)
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in X̃i(ωk) = X̂i(ωk), for all k ∈ {1, . . . , p} and i ∈ N , where λi ≥ 0 and γi,k ≥ 0 are the Kuhn-

Tucker multipliers of the constraints π(p̂, X̃i) ≥ π(p̂, Xi) and X̃i(ωk) ≥ X̃i(ωk+1), respectively.
These Kuhn-Tucker conditions are then given by

gi(P(Ωk))− gi(P(Ωk−1)) =

⎧⎨⎩
λip̂k + γi,k if k = 1,
λip̂k + γi,k − γi,k−1 if k = 2, . . . , p− 1,
λip̂k − γi,k−1 if k = p,

(45)

for all k ∈ {1, . . . , p} and i ∈ N , which hold under the constraints λi[π(p̂, X̂i) − π(p̂, Xi)] =

0, λi ≥ 0, γi,k

[
X̂i(ωk)− X̂i(ωk+1)

]
= 0 and γi,k ≥ 0 for all k ∈ {1, . . . , p− 1} and i ∈ N . Since

gi(0) = 0 and gi(1) = 1, it holds that

p∑
k=1

[gi(P(Ωk))− gi(P(Ωk−1))] = 1, (46)

and, moreover, it holds that

p∑
k=1

p̂k = 1, (47)

since π(p̂, eΩ) = 1 and

γi,1 +

p−1∑
k=2

(γi,k − γi,k−1)− γi,p−1 = 0. (48)

From (45), (46), (47) and (48) it follows that λi = 1 for all i ∈ N and, so, we can write (45) as:

gi(P(Ωk))− gi(P(Ωk−1)) =

⎧⎨⎩
p̂k + γi,k if k = 1,
p̂k + γi,k − γi,k−1 if k = 2, . . . , p− 1,
p̂k − γi,k−1 if k = p,

(49)

for all k ∈ {1, . . . , p} and i ∈ N . Since X(ω1) > X(ω2), it holds that there exists at least one
firm i0 ∈ N such that γi0,1 = 0. From this and γj,1 ≥ 0 for all j ∈ N it follows that

p̂1 = gi0(P(Ω1)) = g∗N(P(Ω1)) and γi,1 = gi(P(Ω1))− g∗N (P(Ω1)), for all i ∈ N. (50)

If p > 2, it follows from (49) and (50) that for k = 2 we get

gi(P(Ω2))− g∗N (P(Ω1)) = p̂2 + γi,2, for all i ∈ N, (51)

and, so, we get

p̂2 = g∗N (P(Ω2))− g∗N (P(Ω1)) and γi,2 = gi(P(Ω2))− g∗N (P(Ω2)), (52)

for all i ∈ N . Continuing this procedure for all k ∈ {1, . . . , p}, we obtain by induction the unique
equilibrium price vector p̂. This concludes the first part of the proof.

Next, we show the “⇒” (“only if”) part of the proof. Let there exists a unique equilibrium
price vector p̂. Suppose condition [SO] does not hold. Then, there exists a k ∈ {1, . . . , p − 1}
such that X(ωk) = X(ωk+1). Construct the price vectors as in (20) for every ordering on the
state space Ω such that X(ω1) ≥ · · · ≥ X(ωp). These vectors are all equilibrium prices as they
satisfy the conditions in (45) for some Kuhn-Tucker multipliers. Due to strict concavity of the
function g∗N (condition [SC]), these price vectors are not identical. This is a contradiction with
the assumption that there is a unique equilibrium price vector.

The first result follows from the fact that p̂, as defined in (20), satisfies (49). This concludes
the proof. �
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Proof of Proposition 4.3 Let R ∈ R be such that conditions [SC] and [SO] hold. From
Theorem 4.2 it follows that p̂ = QX ∈ Q(ρ∗N), where QX({ωk}) = g∗N(P(Ωk))− g∗N (P(Ωk−1)) for
all k ∈ {1, . . . , p}. So, from (5) it follows that p̂ ∈ ⋂

j∈N Q(ρj) ⊆ Q(ρi) for all i ∈ N . From this

and (4) it follows that π(p̂, Y ) ≤ ρi(Y ) for all i ∈ N and all Y ∈ IRΩ. So, any risk X̂i ∈ IRΩ such
that ρi(X̂i) = π(p̂, X̂i) = π(p̂, Xi) = Ep̂[Xi] minimizes the system (18)-(19). �
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Kaina, M. and L. Rüschendorf (2009). On convex risk measures on Lp-spaces. Mathematical Methods of
Operations Research 69, 475–495.
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