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Abstract

This paper studies optimal insurance in partial equilibrium in case the insurer is
protected by limited liability, and the multivariate insured risk is exchangeable. We
focus on the optimal allocation of remaining assets in default. We show existence
of an equilibrium in the market. In such an equilibrium, we get perfect pooling of
the risk in the market, but a protection fund is needed to charge levies to policy-
holders with low realized losses. If policyholders cannot be forced ex post to pay a
levy, we show that the constrained equal loss rule is used in equilibrium. This rule
gained particular interest in the literature on bankruptcy problems. Moreover, in
the absence of a regulator, the insurer will always invest all its assets in the risky
technology. We illustrate the welfare losses if other recovery rules are used in case
of default; a different recovery rule can substantially effect the profit of the insurer.
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1 Introduction

This paper studies optimal recoveries in insurance, and their effects on prices in equilib-
rium. We use an agency model, where a non-life insurer is protected by limited liability.
In case of a default, the remaining assets of the insurer are (at least partially) allo-
cated to the policyholders. In practice, proportional methods are very popular (Araujo
and Páscoa, 2002; Sherris, 2006; Ibragimov et al., 2010; Laux and Muermann, 2010). we
show that using a proportional method to allocate the recoveries may yield welfare losses
in the economy. Moreover, when the multivariate insurance risk is exchangeable,1 we
characterize the optimal method instead. In the literature on deterministic bankruptcy
problems, this optimal method is called a constrained equal loss (CEL) rule. We study
stochastic bankruptcy problems that arise endogenously in insurance contract design.

In the literature on bankruptcy problems, a bankruptcy problem describes the de-
terministic situation in which we have to allocate a given amount (often referred to
as estate) among a group of claimants when the available amount is not sufficient to
cover all claims. A bankruptcy rule calculates shares for claimants such that 1) no
agent gets more than its claim, and 2) all get a non-negative share. For an overview
of bankruptcy problems in practice and bankruptcy rules, we refer to O’Neill (1982),
Aumann and Maschler (1985), Moulin (2000), or the overviews of Moulin (2002), and
Thomson (2003). In a natural way, any default situation in insurance with limited lia-
bility is related to a bankruptcy problem where the realized multivariate insurance risk
represents the claims and the realized asset value is the size of the estate. Then, any
bankruptcy rule can be taken to define a solution to allocate the remaining assets to the
policyholders ex post.

Habis and Herings (2013) study a stochastic bankruptcy problem, where they show
that stability among the claimants is possible. Moreover, Kıbrıs and Kıbrıs (2013) and
Karagözoğlu (2014) study investment problems, where bankruptcy rules are applied in
case of default. In all these papers, default is however an exogenous event, that is not
affected by the investment decisions of the economic agents. We apply the concept of
stochastic bankruptcy rules to a partial equilibrium setting in insurance with limited
liability, where default occurs endogenously.

Doherty and Schlesinger (1990), Cummins and Mahul (2003), Bernard and Ludkovski
(2012), and Peter and Ying (2019) study insurance contract design with limited liability
by modeling default as an exogenous event, which may be correlated with the insurance
risk of the policyholder. Moreover, Biffis and Millossovich (2011), Asimit et al. (2013),
Cai et al. (2014), and Filipović et al. (2015) all study optimal insurance contracts with
endogenous default risk. This means that default is affected by the design of insurance
contracts. All these approaches however rely on the assumption that there is one insurer
and one policyholder. We follow the approach of Filipović et al. (2015) to study optimal
risk taking and premia of an insurer in equilibrium, where default occurs endogenously.
We differ by allowing for multiple policyholders. In case there are multiple policyholders,

1The assumption of exchangeability implies that the distribution of the risk endowed by the policy-
holders is symmetric ex ante.
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the issue to allocate the remaining assets in default exists naturally. A bankruptcy rule is
then applied ex post, and we refer to such a stochastic bankruptcy rule as a recovery rule.
A recovery rule is used to allocate, ex post, the remaining assets in case of default. Such
recovery rules affect the insurance premiums that are paid ex ante, and determined by
the insurer. Rees et al. (1999) study optimal insurance regulation with a given recovery
rule. Moreover, Sherris (2006), Ibragimov et al. (2010), Laux and Muermann (2010)
and Bauer and Zanjani (2016) all assume a proportional recovery rule. An exception is
Araujo and Páscoa (2002), who focus on existence of general equilibria with a continuum
of policyholders. There are frequent real life deviations from the proportional rule, and
some are actually contemplated by law (Araujo and Páscoa, 2002).

This paper extends the model of Mahul and Wright (2004) to the setting of par-
tial equilibria in case the insurer is protected with limited liability. Mahul and Wright
(2004) study optimal risk-sharing among insurers via pools in the context of catastrophe
insurance. Their objective is to maximize a weighted utility of all insurers. Then, all
insurance risk is pooled ex post, and then redistributed among the insurers. The pre-
mium is allowed to be decided ex post as well. This problem is similar to the classical
Pareto optimal risk-sharing problem in Borch (1962), but it now includes exposure con-
straints. Mahul and Wright (2004) describe the constrained equal loss recovery rule and
characterize it via an ex post participation constraint. Our focus is different as we study
the effect of rules to allocate default losses in equilibrium, and their effects on insurance
premia and the risk taking behavior of the insurer.

Our key assumption is that the multiple policyholders are ex ante identical via an
exchangeability condition on the multivariate insurance risk. Popular examples of ex-
changeable risk are the case where risk is independent and identically distributed (i.i.d.),
and the case where risk is formulated as a common shock model (Marshall and Olkin,
1967). We show in this paper that a partial equilibrium exists under some regularity con-
ditions. Moreover, we find that it is optimal for the insurer to force some policyholders
to pay ex post levies to cover losses in default. This leads to a partial equilibrium with
perfect pooling of the insurance risk. If the insurer cannot force policyholders to pay ex
post a levy, we find that the constrained equal loss (CEL) recovery rule is the optimal
recovery rule in equilibrium. Proportional bankruptcy costs do not affect optimality of
the CEL rule, but it may lead to a different insurance premium and risk taking behavior
of the insurer. Our results also hold in the absence of a regulator (monitoring device).
Without a regulator, the insurer will invest in such a way that it maximizes its own
expected profit - not taking into account the utility of the policyholder. Then, in the
absence of leverage, we show that the insurer will always invest all its assets in the risky
technology. We illustrate in an example that welfare losses may be substantial if other
recovery rules are used. Moreover, bankruptcy costs do not affect optimality of the CEL
rule, but it may lead to a different insurance premium and risk taking behavior of the
insurer. In particular, we show that even providing insurance may not be optimal, which
would lead to a break-down of the market in equilibrium.

This paper is set out as follows. Section 2 defines the model set-up. Section 3
characterizes the optimal pooling and recovery rules. Section 4 shows existence of a
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partial equilibrium. Section 5 studies incentive compatibility. Section 6 shows in an
illustration the welfare losses of suboptimal recovery rules and the effect of the number
of policyholders on insurance contracts in equilibrium. Section 7 illustrates the effects
of positive dead-weight costs in default. Finally, Section 8 concludes. All proofs are
delegated to Appendix A.

2 Preferences

2.1 Preferences insurer

We consider a one-period economy with a given future reference period. The insurer has
initial wealth W ≥ 0. Let N = {1, . . . , n} be the finite set of policyholders. There is one
class of insurance policies, so that the insurer charges the same premium to everyone.
Every policyholder i ∈ N seeks insurance for a given risk Xi ∈ L1

+ by paying a single
premium π ≥ 0 to the insurer. Here, L1 is the set of random variables on a given
probability space for which the expectation exists, and L1

+ ⊂ L1 is its non-negative
cone. Denote the set of insurance risks as X := (Xi)

n
i=1. The risk-free rate is given by

r ≥ 0. The insurer can invest a fraction α ∈ [0, 1] of its wealth in a risky technology
that generates a stochastic excess return R ∈ L1, for which the support is a subset of
[−(1 + r),∞).

Before covering the insurance claims, the assets of the insurer at the given future
time are given by

A(α, π) := (W + nπ) (1 + r + αR),

which is non-negative and stochastic.2 The insurer remains solvent if the assets are
higher than the realized insurance claims, i.e., when the following event occurs:

S(α, π) :=

{
A(α, π) ≥

n∑
i=1

Xi

}
.

There is no opportunity cost of default included for the insurer, but the policyholders are
cut in their indemnities to cover the deficits. The objective of the insurer is to maximize

UI(α, π) := E

[(
A(α, π)−

n∑
i=1

Xi

)+
]
,

under participation constraints of the policyholders which we will specify in Subsection
2.2, where we define (y)+ := max{y, 0}. Hence, we assume that the insurer is risk-
neutral, and protected by limited liability.

2For a return R̂ := R + 1 + r, this can be written as A(α, π) = (W + nπ) ((1 − α)(1 + r) + αR̂), so
that we can see α as the fraction invested in the risky technology with return R̂.
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2.2 Preferences policyholders

In this paper, we study the effects of limited liability. In case of default, the remaining
assets are allocated to the policyholders. The way this should be done is non-trivial, and
the central topic of this paper. It is determined by a function f : IRn+1

+ → IRn that maps
realizations of (A,X) into n-dimensional vectors, where IR+ is the class of non-negative
real numbers.

Definition 2.1 Let F the collection of the mappings f : IRn+1
+ → IRn such that

n∑
i=1

fi
(
a, (xj)

n
j=1

)
=

{
(1− δ)a, if a <

∑n
i=1 xi,∑n

i=1 xi, otherwise,
(1)

and fi

(
a, (xj)

n
j=1

)
≤ xi for all i ∈ N . Moreover, let R ⊂ F the collection of mappings

f that are also such that fi(a, (xj)
n
j=1) ≥ 0 for all (a, (xj)

n
j=1) ∈ IRn+1

+ and all i ∈ N .

The proportion δ ∈ [0, 1] reflects the cost of default for the policyholders that is taken
from the remaining assets (see Biffis and Millossovich, 2011).3 With slight abuse of nota-
tion, we denote the mapping f̃ : (L1

+)n+1 → (L1)n, given by f̃(A,X)(ω) = f(A(ω), X(ω))
for all elements ω of the state space, by f as well. Then, f(A,X) is an n-dimensional
vector of stochastic variables that represent the payments from the insurer to the n pol-
icyholders. In other words, f(A,X) is the vector of insurance indemnities, and we refer
to f as a rule.

We assume that the rule f is common knowledge before the insurance contract is
sold. Therefore, it might influence the insurance premium in equilibrium. We model the
preferences of the policyholders by agents with expected utility function u and initial
wealth w0 ∈ IR, i.e., the utility of policyholder i is given by

U iPH(f, α, π) := E [u(w0 − π −Xi + fi(A(α, π), X))] .

Ideally, individuals should be differentiated according to their particular utility functions.
As argued by Young (1990), this is impossible in practice, and, even if it were possible,
would be based on false premises because it requires making fine-tuned interpersonal
utility comparisons. Instead, we consider u as a social norm: the utility function of a
“representative agent”.

The policyholders’ individual rationality constraints are given by

U iPH(f, α, π) ≥ ui, (2)

for all i ∈ N , where ui ≤ U iPH(f∗, α∗, π∗) for all i and for some (f∗, α∗, π∗). For instance,
we may set ui at the utility level in the status quo, i.e., ui = E [u(w0 −Xi)].

The effect of the rule f is key in the participation constraint (2). As the partici-
pation constraint (2) ensures individual rationality of the policyholders, we maximize

3In this context of an interbank market, this fixed proportion δ as cost of default is also imposed by
Rogers and Veraart (2013).
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the expected profit of the insurer UI(α, π) under this constraint. Possible sharing of
welfare gains is possible by choosing the values of ui wisely. Note that the utilities of
the policyholders in (2) are not necessarily decreasing in the premium π.

3 Optimal pooling and recovery rules

3.1 Assumptions and problem statement

We assume that the multivariate risk {X1, . . . , Xn}|R (in short, X|R) is exchangeable,
i.e., the distribution of {X1, . . . , Xn}|R is invariant under every permutation of the index
set {1, . . . , n}. In other words, for every natural number k ≤ n, the joint distribution
of any selection of k random variables from {X1, . . . , Xn}|R is the same (see, e.g., De-
nuit and Vermandele, 1998; Albrecht and Huggenberger, 2017). This implies that Xi

has the same marginal distribution function as Xj for i, j ∈ N . Exchangeability is a
generalization of the case where X is i.i.d..

Throughout this paper, we impose the following regularity assumptions.

Assumption 3.1: It holds that:

(i) E[R] > 0;

(ii) the no-default event S(α, π) happens with positive probability for all (α, π) ∈
[0, 1]×IR+, andR is non-negatively correlated with the event S(α, π): E[R|S(α, π)] ≥
E[R];

(iii) the utility function u : IR→ IR is such that u′(·) > 0, u′′(·) < 0, and limx→−∞ u(x) =
−∞;

(iv) the distribution of (R,X) ∈ L1 × (L1
+)n admits a jointly continuous density func-

tion, and is such that UI is partially differentiable in some neighborhood of the
domain [0, 1]× IR+ of (α, π).

Thus, we assume that the risky technology has a higher expected return than the
risk-free rate. Furthermore, we assume that the investment return is non-negatively cor-
related with the no-default event, so that a high investment return R is non-positively
correlated with low insurance risk realizations

∑n
i=1Xi, and vice versa. Under Sol-

vency II, investment returns (the additive inverse of market risk) and insurance risk are
assumed to have a negative linear correlation coefficient, that is given by -0.25. For
instance, X ∈ (L1

+)n may be generated by a common shock model (Marshall and Olkin,
1967):

Xi = Yi + Z, i ∈ N, (3)

where Yi, i ∈ N, are independent and identically distributed (i.i.d.), and independent
of Z. Then, we allow the common shock factor Z to be non-positively correlated with
R. A sufficient, but not necessary, condition for Assumption 3.1(iv) to hold is that the
support of (R,X) is compact.
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Due to the exchangeability of the insurance risk X|R (“ex ante symmetry”), we let
the reservation utilities be equal for all policyholders, i.e., ui = u for all i ∈ N . A tuple
(f, α, π) is called a partial equilibrium if it yields the highest expected profit for the
insurer, provided that the policyholders’ individual rationality constraints are satisfied.
More precisely, the set of partial equilibria is given by the solutions of the following
optimization problem:

maxf,α,π UI(α, π),
s. t. U iPH(f, α, π) ≥ u, for all i ∈ N,

(f, α, π) ∈ F̂ × [0, 1]× IR+,

(4)

where F̂ = F or F̂ = R, and u ≤ U iPH(f∗, α∗, π∗) for all i and some (f∗, α∗, π∗) ∈
F̂ × [0, 1] × IR+. In this section, we assume that the problem in (4) has a solution. In
Section 4, we will show existence of this solution formally in Theorem 4.2.

In the following lemma, we show the qualitative behavior of the preferences of the
insurer under Assumption 3.1.

Lemma 3.1 Let Assumption 3.1 hold. For all (α, π) ∈ (0, 1)× IR++, we have

∂

∂α
UI(α, π) > 0,

and for all (α, π) ∈ [0, 1]× IR++, we have

∂

∂π
UI(α, π) > 0,

where IR++ is the class of strictly positive real numbers.

From Lemma 3.1, we get that for a fixed α ∈ [0, 1] the utility of the insurer is strictly
increasing in the premium π. Moreover, for a given premium π > 0, we get that the
utility of the insurer is strictly increasing in the exposure α, which is a consequence of
E[R] > 0 and risk-neutrality of the insurer.

3.2 Optimal pooling

In this subsection, we consider the case that F̂ = F , i.e., the case where we allow
that fi(A(α, π), X) < 0. Then, an insurer in default can force policyholders with small
realized losses to sponsor the policyholders with large losses. This mechanism can for
instance be enforced by a protection fund, that charges levies in case of default. Charging
ex post levies is common practice in banking such as for deposit insurance (Schich and
Kim, 2011). Moreover, insurance guarantee funds exist, but the market is still limited
(European Commission, 2010).

In an optimal insurance contract, the total claims at default are pooled and, then,
the losses are pro rata shared among the policyholders. In other words, the assets are
allocated such that the risk Xi−fi(A(α, π), X) is the same for every policyholder i ∈ N .
We call this solution perfect pooling (PP), and we show this optimality result in the
following theorem.
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Theorem 3.2 Let Assumption 3.1 hold, and let (f, α, π) be a solution of (4) with F̂ =
F . Then f = PP , where

PPi(A(α, π), X) =

{
Xi + ((1− δ)A(α, π)−

∑n
j=1Xj)/n if A(α, π) <

∑n
j=1Xj ,

Xi otherwise,
(5)

for all i ∈ N .

The solution PP in (5) can be seen as perfect risk pooling as all insurance risk is pooled
and then shared equally among all policyholders. Because all policyholders are equal
ex ante, but not ex post, the solution PP resembles the concept of Harsanyi’s “veil of
ignorance” (Harsanyi, 1953). Because ex ante policyholders do not know whether the
realizations of their risks will be “good” or “bad”, they strive for egalitarianism ex post.

To enforce this egalitarian mechanism, some policyholders might need to pay a levy
after the risk is realized (ex post). This happens when fi (A,X) < 0. This may be
difficult to enforce, as it requires policyholders to pay a compensation on top of their
risk after the risks are realized. Therefore, we focus in the next subsection on the case
where we impose the constraint fi (A,X) ≥ 0. By construction, such a rule is ex ante
not necessarily optimal. However, the insurer does not need to enforce cross-payments
among policyholders at the future time period, and thus policyholders have no incentive
to leave the insurer and not pay the levy.

3.3 Optimal recovery rules

There is substantial literature on bankruptcy problems, which are also called rationing
problems. In a bankruptcy problem, there is one deterministic estate E > 0 and a
deterministic claim vector d ∈ IRn

+ such that
∑n

i=1 di > E. A bankruptcy rule ϕ :
IR++ × IRn

+ → IRn
+ is such that 0 ≤ ϕ(E, d) ≤ d and

∑n
i=1 ϕi(E, d) = E (see, e.g.,

O’Neill, 1982, or the overviews of Moulin, 2002, and Thomson, 2003).
In this paper, we apply the concept of bankruptcy rules to the case where the estate

and claims are stochastic. For a realization of the assets A and the claims X such
that A <

∑n
i=1Xi (default), we use the bankruptcy rule. Moreover, we extend the

bankruptcy rules to allow also for the case where A ≥
∑n

i=1Xi (no default); then all
claims are covered. We call such a rule a recovery rule, and it is given by a mapping in
R (see Definition 2.1).

For instance, the following recovery rules are inspired by well-known bankruptcy
rules:

• Proportional rule: for each (A,X),

fi (A,X) = PROPi(A,X) =

{
(1− δ) A∑n

j=1Xj
·Xi if

∑n
j=1Xi > A,

Xi otherwise,

for all i ∈ N .

8



• Constraint equal award (CEA) rule: for each (A,X), fi(A,X) = CEAi(A,X) =
min{Xi, γ}, where γ is such that

∑n
j=1 min{Xj , γ} = (1 − δ)A if A <

∑n
j=1Xj ,

and γ =∞ otherwise.

• Constraint equal loss (CEL) rule: for each (A,X), fi(A,X) = CELi(A,X) =
max{0, Xi − γ}, where γ is such that

∑n
j=1 max{0, Xj − γ} = (1 − δ)A if A <∑n

j=1Xj , and γ = 0 otherwise.

The proportional rule seems to be a natural rule to allocate assets in default, and this
rule is popular in the insurance literature (Sherris, 2006; Ibragimov et al., 2010; Laux and
Muermann, 2010). It is easy to communicate to the policyholders. The constrained equal
award rule strives to obtain egalitarianism in fi(A,X), i ∈ N (see Koster and Boonen,
2019, for an application in stochastic cost allocation problems). The constrained equal
loss rule strives to obtain egalitarianism for the dual problem, i.e., for the retained risks
Xi − fi(A,X), i ∈ N . In fact, Young (1988) shows for bankruptcy problems that the
CEL and CEA rules are dual of each other, whereas the proportional rule is self-dual.

For all these three recovery rules above, it holds that

fi(A(α, π), X)|R d
= fj(A(α, π), X)|R,

fi(A(α, π), X)
d
= fj(A(α, π), X),

Xi − fi(A(α, π), X)
d
= Xj − fj(A(α, π), X),

for all i, j ∈ N . So, there is an ex ante equal treatment of the policyholders. Note that
some recovery rules might yield the same posterior joint risk f(A,X). For instance,
if Xi = Z for all i ∈ N , we have that all recovery rules defined above yield the same
solution, which is fi(A,X) = (1−δ)A

n when A < nZ, and fi(A,X) = Z otherwise, for all
i ∈ N .

Theorem 3.3 Let Assumption 3.1 hold, X|R is exchangeable, and let (f, α, π) be a
solution of (4) with F̂ = R. Then

f(A(α, π), X) = CEL(A(α, π), X).

Note that if f = CEL and δ = 0, the participation constraint in (2) writes as

E [u(w0 − π −min{Xi, γ})] ≥ u, (6)

where γ is a random variable such that

n∑
i=1

min{Xi, γ} =

(
n∑
i=1

Xi − (W + nπ)(1 + r + αR)

)+

.

Hence, if δ = 0, the CEL rule resembles deductible insurance, but where the deductible
is random as well. In general. the CEL rule strives to ex post egalitarianism, but some
binding non-negativity constraints may prevent this.
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Remark The findings in this section are based on optimizing the expected profit of
the insurer under participation constraints of the policyholders. Optimality of f = PP
when F̂ = F and optimality of f = CEL when F̂ = R also hold when a social planner
maximizes a weighted sum of all utilities in the market. We formalize this setting and
findings in Appendix B.

4 Existence of a partial equilibrium

In this section, we show existence of a partial equilibrium. For the case where δ = 0,
we illustrate the qualitative behavior of utility functions of the insurer and policyholder.
We show convexity of the utility of the insurer, and concavity of the utility of the
policyholder, both with respect to α and π. This result holds straightforward in case
n = 1 (see Filipović et al., 2015), but concavity of the utility function of the policyholder
is more tedious to show in case n > 1. We assert this result in the following lemma.

Lemma 4.1 Let Assumption 3.1 hold, δ = 0, X|R is exchangeable, and f ∈ {PP,CEL}.
Then UI(f, α, π) is convex in α and π, and U iPH(f, α, π) is concave in α and strictly con-
cave in π, for all i ∈ N .

Assumption 4.1: The distribution of (R,X) is such that U iPH , i ∈ N, are real-valued
and partially differentiable in some neighborhood of the domain [0, 1] × IR+ of (α, π)
whenever f ∈ {PP,CEL}.

Theorem 4.2 Let Assumptions 3.1 and 4.1 hold, X|R is exchangeable, and F̂ = F or
F̂ = R. For any u, there exists at least one (f∗, α∗, π∗) that solves (4). It is such that
the participation constraints are binding. Moreover, for any given α ∈ [0, 1], there exists
at most one (f, α, π) solving (4). If δ = 0, then (f, α, π) is such that ∂

∂πU
i
PH(f, α, π) ≤ 0.

It is important to remark that if u is high, it may not be rational for the insurer to
issue the insurance contracts. Therefore, we need to verify ex post whether the solution
of (4) is rational for the insurer. If rationality is violated, then there is no insurance
issued in equilibrium.

Remark Background risk is an important topic in the literature on insurance contract
design (see Dana and Scarsini, 2007). We would like to point out that adding a bounded
background risk Y to the income of the insurer does not affect our results as long as
Assumption 3.1 still holds.

5 Incentive compatibility

In this section, we study incentive compatibility in insurance. For instance, suppose
that initial wealth W and the premium π are such that (W + nπ)(1 + r) >

∑n
i=1Xi

for any X, the policyholder would prefer the insurer to invest completely risk-free. The
policyholder is also willing to pay a higher premium to achieve this. In absence of a
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regulator, there is however no guarantee that the insurer will invest everything risk-free.
This is called counterparty risk, risk-shifting (see, e.g., Filipović et al., 2015) or incentive
compatibility in insurance.

Suppose the investment decision is not observed by the policyholder. After the
policyholders pay their insurance premia, the insurer will invest its assets in order to
maximize its own utility. This leads to the following incentive compatibility constraint:

α ∈ argmaxα′∈[0,1]UI(α
′, π).

Then, the set of partial equilibria with incentive compatibility is given by the solutions
of the following optimization problem:

maxf,α,π UI(α, π),
s. t. U iPH(f, α, π) ≥ u, for all i ∈ N,

(f, π) ∈ F̂ × IR++,
α ∈ argmaxα′∈[0,1]UI(α

′, π),

(7)

where F̂ = F or F̂ = R, and where u = U iPH(f∗, 1, π) for some π > 0, and where

f∗ = PP if F̂ = F and f∗ = CEL if F̂ = R. Note that we explicitly require π > 0 in
(7), which we assume to prove the following result.

Theorem 5.1 Let Assumptions 3.1 and 4.1 hold, X|R is exchangeable, and F̂ ∈ {F ,R}.
Then, there exists a unique solution (f, α, π) to (7). This is such that (f, α, π) =
(f∗, 1, π), where f∗ = PP if F̂ = F and f∗ = CEL if F̂ = R.

Theorem 5.1 states that if the insurer decides to maximize expected profit after it
received the premiums, then it will invest all assets in the risky technology. This is not in
the interest of the policyholders. Since the participation constraints for the policyholders
are binding, the utilities of the policyholders remain the same as in Sections 2-4. Hence,
regulation could be welfare-improving for insurer. In absence of regulation, the insurer
invests risky. In line with, e.g., Caillaud et al. (2000), a regulated market makes the
risk-neutral insurer more risk-averse.

6 Numerical example

In this section, we show the effect of recovery rules on equilibrium prices, and risk taking
behavior of the insurer. We provide an extensive example of an insurer whose financial
position is relatively poor. In this case, we show that the effect of the type of recovery
rules is important.

Let r = 0%, δ = 0, X1, . . . , Xn
i.i.d.∼ exp(1), and R = eG − 1, G ∼ N(µ, σ2), with µ =

0% and σ = 16%, and independent of Xi. Moreover, policyholders use the exponential
(Constant Absolute Risk Aversion) utility function u(x) = − exp(−λx) with λ = 0.2.
It is well-known that initial wealth w0 is irrelevant for exponential utilities. Clearly,
the assumptions Xi ∈ L1

+, E[R] > 0, u′(·) > 0, u′′(·) < 0, and limx→−∞ u(x) = −∞
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are satisfied. The initial assets of the insurer are set at W = 0, and moreover we have
n = 10. We set u = E[u(w0 −Xi)]. In absence of default, we get from straightforward
calculations that the indifference price for insurance is approximately 1.108, i.e., the risk
premium is given by 10.8%. We simulate the risks in the economy 100,000 times for
every case.

In the baseline model, we let f = CEL, but we first study different recovery rules
as well. For instance, and in line with Araujo and Páscoa (2002) and Ibragimov et
al. (2010), bankruptcy losses may be ex post pro rata shared among policyholders. In
this example, it turns out to be the case that the equilibrium is unique. We show the
outcome on prices and risk taking in Table 1. We find that the effects of the choice of the
recovery rule are substantial. For instance, when the insurer uses CEA instead of CEL,
then the insurance premium will drop from 0.96 to 0.88. As a result, the probability of
default increases and the expected profit for the insurer is smaller. For recovery rules,
the results in Table 1 confirm Theorem 3.3 in that CEL is optimal to use for the insurer.
It leads to a higher premium, and the utility for the insurer is highest. If it is possible
to have perfect pooling as in Section 3.2, we find that there exist additional expected
profits for the insurer, but the difference is rather small. For the optimal recovery rule
CEL, the insurer will invest less in the risky asset, which leads to the highest solvency
probability. Because insurer receives a higher premium π if it uses CEL than for any
other recovery rule, it does not need to invest very risky to guarantee solvency. On the
other hand, if the premium is much lower than the expected loss, the policyholders may
want the insurer to invest more risky in order to benefit from the risk premium.

f CEL CEA PROP TR PP

π 0.96 0.88 0.94 0.95 0.96
α 86% 94% 100% 90% 93%

P(S(α, π)) 49.8% 40.0% 47.5% 48.7% 49.8%
UI(α, π) 1.21 0.83 1.15 1.17 1.24

Table 1: Overview of numerical result corresponding to Section 6. This table displays
the effect of the recovery rule f . The definition of PP is provided in (5), and the other
alternatives of f are shown in Subsection 3.3. This table shows the equilibrium solution
(α, π) of (4) with given f , and the no-default probability and the utility of the insurer
in this equilibrium.

Next, we show the effect of the number of policyholders, which is given by n. We
display these effects in Table 2. If n = 10, we get that the premium in equilibrium is
rather low compared to the premium for larger n. The default event is less correlated
with Xi, but the risk aversion of the policyholders is such that they are not willing to pay
more than 1, which is the expected loss in the absence of limited liability. The profit per
contract for the insurer is therefore low. When n gets larger, the total insurance losses
get approximately normally distributed due to the central limit theorem. Then, default
particularly occurs when investment returns are low, which is assumed to be independent
of the insured risk. Since the insurer is risk-loving due to limited liability, it is not true
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that diversification of risk is good for the insurer. However, more policyholders lead to
more aggregately received premia that can be invested in the risky technology.

n 100 1, 000 10, 000

π 1.08 1.09 1.09
α 89% 95% 96%

P(S(α, π)) 68.2% 71.8% 71.6%
UI(α, π) 12.8 129.4 1,292
1
nUI(α, π) 0.13 0.13 0.13

Table 2: Overview of numerical results corresponding to Section 6, where we vary the
number of policyholders n. This table shows the equilibrium (α, π) as defined in (4)
with given f = CEL, and the no-default probability and the utility of the insurer in this
equilibrium.

Finally, we conclude this section with analyzing the effect of a common shock. Let
X be given by (3). Let n = 10, and the common shock be given by Z = γeḠ, with
Ḡ ∼ N(µγ , 1) and γ ∈ [0, 1]. Moreover, we assume Xi = Z + (1 − γ)Yi, i = 1, . . . , 10,

with Y1, . . . , Y10
i.i.d.∼ exp(1). For every γ, we let µγ be such that expectation of Xi is

the same. The marginal distribution of R is the same as above, but (Ḡ,G) are bivariate
normally distributed where the correlation coefficient is assumed to be -0.25.4 We adjust
the reservation utility u to be the utility of the policyholder in case it does not insure
its risk.

γ 0 0.25 0.5 0.75 1

π 0.96 0.80 0.71 0.85 1.87
α 86% 99% 95% 94% 100%

P(S(α, π)) 49.8% 34.9% 36.4% 59.2% 85.3%
UI(α, π) 1.21 0.67 0.69 2.12 11.07

Table 3: Overview of numerical results corresponding to Section 6 with the common
shock, where we vary the parameter γ. This table shows the equilibrium (α, π) as
defined in (4) with given f = CEL, and the no-default probability and the utility of the
insurer in this equilibrium.

From Table 3, we get that the common shock has substantial impact on the profits
in equilibrium. We get that the equilibrium premiums are U-shaped in the severity of
the common shock. In case of the common shock is high, the losses in default may be
substantial. These losses are borne by the policyholder. As a result, the policyholder
is willing to pay a higher premium in equilibrium if the common shock is severe. This
high premium prevents that the insurer is likely to become bankrupt. In particular, it
prevents bankruptcy in cases where the policyholder’s risk is high as well. On the other

4This yields an approximate linear correlation of 0.25 between −R and Xi. Under Solvency II, the
market and insurance risk are assumed to have a linear correlation coefficient of 0.25.
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hand, due to the risk-loving preferences of the insurer, the insurer benefits from the
systematic risk as the common shock increases the aggregate risk in the economy. When
the common shock is smaller (γ = 0.25 or 0.5), the policyholder is not willing to pay a
high premium anymore. The reason is that the risk of default is too high to justify the
premium, where the default event is less strongly correlated with the policyholder’s risk.

7 Effects bankruptcy costs

In this section, we discuss the effect of deadweight bankruptcy costs δ. Recall from (1)
how δ affects the insurance indemnities. Of course, when δ = 1, the choice for recovery
rules is irrelevant.

We study the effect of δ numerically in cases where the equilibrium exists. We
assume that the F = R, i.e., the recoveries need to be non-negative. The recovery rule
in equilibrium is due to Theorem 3.3 given by f = CEL. We use the same setting as in
Section 6, but vary δ. We find that the equilibrium exists and is unique. For δ larger
than approximately 30%, we obtain that the equilibrium is such that π = 0, i.e., there
is no trade. If the deadweight welfare losses are small, we find that there is an insurance
trade. We display the equilibrium contracts in Table 4. We find that the insurer will
ask a relatively low premium if δ is large, so that it is unlikely to be solvent. As a result,
it will gamble by investing all it assets in the risky technology. This effect diminishes
when δ gets closer to 0.

δ 5% 10% 15% 20% 25% 30%

π 0.90 0.81 0.64 0.43 0.30 0
α 88% 100% 100% 100% 100% -

P(S(α, π)) 42.7% 32.7% 13.7% 1.6% 0.3% 0
UI(α, π) 0.95 0.62 0.17 1.2 · 10−3 6.4 · 10−4 0

Table 4: Overview of the equilibrium (α, π) as defined in (4) corresponding to Section 7,
where the initial wealth is given by W = 0 and where we vary the value of bankruptcy
cost δ.

The results in Table 4 partially follow from the fact that we set W = 0, i.e., the
insurer has no initial wealth. Next, we assume that W = 5. We show the results in
Table 5. Note that we should compare the utility of the insurer with the utility in case
the insurer does not provide insurance, and only invests its initial assets. We find that
the reservation utility of the insurer in this case is given by approximately 5.06. Hence, if
δ is 90% or 100%, the insurer will not offer insurance to the policyholders. Moreover, we
find that if δ gets larger, the insurer will invest less in the risky technology. This follows
from the fact that bankruptcy gets more harmful for the policyholders. As a result, the
insurer has to charge a lower insurance premium, which leads to a lower profit.
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δ 0% 10% 25% 50% 75% 90% 100%

π 1.10 1.09 1.07 1.04 1.00 0.96 0.90
α 100% 100% 100% 64% 39% 40% 32%

P(S(α, π)) 93.8% 93.1% 92.4% 93.1% 92.9% 91.7% 89.5%
UI(α, π) 6.39 6.29 6.04 5.71 5.19 4.88 4.36

Table 5: Overview of the equilibrium (α, π) as defined in (4) corresponding to Section
7, where the initial wealth is given by W = 5 and where we vary the value of δ.

8 Conclusion

This paper studies the effect of recovery rules on insurance policies in partial equilib-
rium. We study the case where the insurance risk of the policyholders is exchangeable.
The insurer is protected by limited liability, and the cost of default is assumed to be
proportional to the remaining assets in default. Irrespective of the size of this cost of de-
fault proportion, we find that the constrained equal loss rule is optimal and leads to the
largest total profit in the market. This rule is popular in the literature on bankruptcy
problems. It is however not commonly studied in the literature on limited liability in
insurance, where proportionality is often assumed exogenously.

If there would exist a protection fund that can charge levies to policyholders with
small losses ex post, it is optimal to perfectly pool the risk. This yields the largest total
profit in the market.

We show existence of a partial equilibrium in the insurance market. Moreover, we
show that in the absence of a regulator, the insurer will always invest all its assets in
the risky technology. Therefore, the insurance price should include this risk-taking as it
affects likelihood and magnitude of a default event.

A very interesting extension of our proposed model would be to consider more gen-
eral distributions of the multivariate insurance risk of the policyholders. In this case,
asymmetric information will be important to consider, which may lead to separating or
pooling equilibria. As a result, the insurer needs to consider selection effects as well (see,
e.g., Finkelstein and Poterba, 2004). This may lead to optimal recovery rules that are ex
ante discriminating across policyholders. The design of such recovery rules is a question
we leave open for further research. Also, another suggestion for further research is to
consider alternative (non-proportional) cost of default functions or seniority claims.
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Appendices

A Proofs

Proof of Lemma 3.1 Let α ∈ [0, 1], and define Ω as the state space. Define g :
IR++×Ω→ IR+ as g(π, ω) = ((W +nπ)(1+r+αR(ω))−

∑n
i=1Xi(ω))+h(ω), where h is

the density function. It follows from R ∈ L1 and X ∈ (L1
+)n that UI(π, α) is real-valued

for each π > 0. From this and the fact that (R,X) admits a jointly continuous density
function by Assumption 3.1(iv), it follows that

1. g(π, ω) is an integrable function of ω.

Moreover, since (R,X) admits a jointly continuous density function, it holds that P((W+
nπ)(1 + r + αR) =

∑n
i=1Xi) = 0, and thus

2. ∂g
∂π (π, ω) exists for ω ∈ Ω almost surely.

Also, since R ∈ L1, it holds

3. for ω ∈ Ω almost surely, it holds ∂g
∂π (π, ω) = n(1 + r + αR(ω))1S(α,π)h(ω) ≤

n(1 + r+αR(ω))h(ω), where n(1 + r+αR(ω))h(ω) is an integrable function of ω.

Since Conditions 1-3 hold, we can apply Leibniz’s rule, so that ∂
∂π

∫
Ω g(π, ω)dω =∫

Ω
∂
∂πg(π, ω)dω. Thus,

∂

∂π
UI(α, π) =

∂

∂π
E

[
((W + nπ)(1 + r + αR)−

n∑
i=1

Xi)
+

]
= E[n(1 + r + αR)1S(α,π)]

= n(1 + r + αE[R|S(α, π)])P(S(α, π)) > 0,

where the inequality follows the assumptions that P(S(α, π)) > 0 and E[R|S(α, π)] ≥
E[R] > 0.

In a similar way, we get for any (α, π) ∈ (0, 1)× IR++ that:

∂

∂α
UI(α, π) =

∂

∂α
E

[
((W + nπ)(1 + r + αR)−

n∑
i=1

Xi)
+

]
= E[(W + nπ)R1S(α,π)]

= (W + nπ)E[R1S(α,π)]

= (W + nπ)E[R|S(α, π)]P(S(α, π)) > 0,

which is again due to the assumptions that P(S(α, π)) > 0 and E[R|S(α, π)] ≥ E[R] > 0.
This concludes the proof.
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Proof of Theorem 3.2 It holds by construction that
∑n

i=1 PPi(A(α, π), X) = (1 −
δ)A(α, π) if A(α, π) <

∑n
i=1Xi, and PPi(A(α, π), X) = Xi otherwise. Moreover, it

holds that PPi(A(α, π), X) ≤ Xi for all i ∈ N , and so we have PP ∈ F . Fix (α, π). Let
f ∈ F , and define

Ŵ :=

{
w0 − π − (

∑n
j=1Xj − (1− δ)A(α, π))/n if

∑n
j=1Xj > A(α, π),

w − π otherwise.

Clearly, Ŵ does not depend on i. We take a Taylor expansion of u around Ŵ to the
second order:

u(w0 − π −Xi + fi(A(α, π), X)) = u(Ŵ ) + u′(Ŵ )(w0 − π −Xi + fi(A(α, π), X)− Ŵ )

+
1

2
u′′(ζi)(w0 − π −Xi + fi(A(α, π), X)− Ŵ )2,

where ζi is in between w0 − π − Xi + fi(A(α, π), X) and Ŵ . Clearly, it holds that∑n
i=1(w0− π−Xi + fi(A(α, π), X)− Ŵ ) = 0, and so the second term vanishes when we

sum it over i ∈ N . Therefore, we get by summing over all policyholders and taking the
expectation that

n∑
i=1

E[u(w0 − π −Xi + fi(A(α, π), X))]

= nE[u(Ŵ )] +
1

2

n∑
i=1

E[u′′(ζi)(w0 − π −Xi + fi(A(α, π), X)− Ŵ )2]

≤ nE[u(Ŵ )],

which is due to u′′(·) < 0. If fi 6= PPi for some i ∈ N , we get a strict inequality. Hence,
PP , which is defined in (5), uniquely solves the following system:

maxf
∑n

i=1 U
i
PH(f, α, π),

s. t. f ∈ F . (8)

Suppose that f∗(A(α, π), X) is an optimal rule such that f∗ 6= PP . Since PP solves
(8) uniquely, we get that there exists a policyholder i ∈ N such that

U iPH(PP, α, π) > U iPH(f∗, α, π).

Then, we have for this policyholder i that

U iPH(PP, α, π) > U iPH(f∗, α, π) ≥ u.

By construction, we have that the utility level U iPH(PP, α, π) is the same for every
policyholder i ∈ N . So, if f∗(A(α, π), X) is optimal, then the participation constraint in
(4) is slack. Since PP is continuous in the first argument, the utility of the policyholder is
continuous in π. So, there exists a premium π̂ > π such that the participation constraint
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in (4) is still satisfied. Since the utility of the insurer is strictly increasing in the price
π, we get a higher utility for the insurer. This is a contradiction with the assumption
that f∗ is optimal. Hence, f∗ = PP is the unique rule for all solutions (f∗, α∗, π∗) to
the problem (4). This concludes the proof.

Proof of Theorem 3.3 Fix (π, α), and moreover fix a realization R = r̂ and X =
(xi)

n
i=1. Then, if (W +nπ)(1 + r+αr̂) ≥

∑n
i=1 xi, then the recovery rule f ∈ R is fixed.

So, let Â := (W + nπ)(1 + r + αr̂) <
∑n

i=1 xi. Define the following auxiliary problem:

maxb1,...,bn
∑n

i=1 u(w0 − π − xi + bi),
s. t. bi ≥ 0,∑n

i=1 bi = (1− δ)Â.
(9)

The objective function in (9) is concave and the constraints are affine. Hence, we get all
solutions of the following Karush-Kuhn-Tucker (KKT) conditions:

u′(w0 − π − xi + bi) + γi = u′(w0 − π − x1 + b1) + γ1, for all i ∈ N,∑n
i=1 bi = (1− δ)Â, (10)

where γibi = 0 and γi ≥ 0. If policyholder i ∈ N is such that bi > 0, then γi = 0. So,
due to u′′(·) < 0, we have that all xi + bi is the same for all policyholders i such that
bi > 0. If bi = 0, then γi ≥ 0 and, so, u′(w0 − π − xi) ≤ u′(w0 − π − x1 + b1) + γ1. So,
due to u′′(·) < 0, we get that if bi = 0, the utility of policyholder i is higher than the
utility of policyholder j with bj > 0: xi ≤ xj − bj . Moreover, (1 − δ)Â <

∑n
i=1 xi and

(10) guarantee that −xi + bi ≤ 0. Therefore, we directly get that b = CEL(Â, (xi)
n
i=1)

is the unique solution of (9). Hence, when we solve (9) for any realization of (R,X), we
get that f(A(α, π), X) = CEL(A(α, π), X) solves uniquely the problem

maxf
∑n

i=1 U
i
PH(f, α, π),

s. t. f ∈ R. (11)

Suppose that f∗(A(α, π), X) is an optimal recovery rule. Since f = CEL solves (9)
uniquely, we get that there exists a policyholder i ∈ N such that

U iPH(CEL,α, π) > U iPH(f∗, α, π).

Then, we have for this policyholder i that

U iPH(CEL,α, π) > U iPH(f∗, α, π) ≥ u,

where CEL is a recovery rule as well. Since X|R is exchangeable, we have Xi −
CELi(A(α, π), X)

d
= Xj − CELj(A(α, π), X) for all i, j ∈ N . So, we have that the

ex ante expected utility level U iPH(CEL,α, π) is the same for every policyholder i ∈ N .
So, we get that if f∗(A(α, π), X) is an optimal recovery rule, then the participation
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constraint in (4) is slack. Since the rule CEL is continuous in the first argument, the
utility of the policyholder is continuous in π. So, there exists a premium π̂ > π such
that the participation constraint in (4) is still satisfied. Since the utility of the insurer
is strictly increasing in the premium π, we get a higher utility for the insurer. This is a
contradiction with the assumption that the recovery rule f∗ is optimal. Hence, f = CEL
is the unique solution to (8). This concludes the proof.

Proof of Lemma 4.1 Let f = CEL. For fixed R = r̂ and X = (xi)
n
i=1, the function

((W +nπ)(1+r+αr̂)−
∑n

i=1 xi)
+ is convex in π and in α. Taking expectation preserves

these properties. Hence, the utility of the insurer is convex in α and π
Next, we show strict concavity of the utility of the policyholder with respect to

premium π. Let 0 ≤ π1 < π2, α ∈ [0, 1], and λ ∈ (0, 1). Then, we get

n∑
i=1

[λCELi(A(α, π1), X) + (1− λ)CELi(A(α, π2), X)]

= λmin{A(α, π1),
n∑
i=1

Xi}+ (1− λ) min{A(α, π2),
n∑
i=1

Xi}

≤ min{A(α, λπ1 + (1− λ)π2),
n∑
i=1

Xi}, (12)

which holds due to λA(α, π1) + (1− λ)A(α, π2) = A(α, λπ1 + (1− λ)π2). Moreover, we
get

0 ≤ λCELi(A(α, π1), X) + (1− λ)CELi(A(α, π2), X) ≤ Xi for all i ∈ N. (13)

Moreover, we get from Theorem 3.3 that for all f ∈ R there exists a policyholder i ∈ N
such that

E[u(w0 − (λπ1 + (1− λ)π2)−Xi + CELi(A(α, λπ1 + (1− λ)π2), X))]
≥ E[u(w0 − (λπ1 + (1− λ)π2)−Xi + fi(A(α, λπ1 + (1− λ)π2), X))].

(14)

From (12)-(13) and the assumption that u is increasing, we get that this also holds for
fi = f̂i, where f̂i = λCELi(A(α, π1), X) + (1 − λ)CELi(A(α, π2), X), i ∈ N . Since f̂
yields the same ex ante expected utility U iPH(f̂ , α, π) for all policyholders i ∈ N , we get

E[u(w0 − (λπ1 + (1− λ)π2)−Xi + CELi(A(α, λπ1 + (1− λ)π2), X))]

≥ E[u(w0 − (λπ1 + (1− λ)π2)−Xi + λCELi(A(α, π1), X) + (1− λ)CELi(A(α, π2), X))]

> λE[u(w0 − π1 −Xi + CELi(A(α, π1), X))]

+ (1− λ)E[u(w0 − π2 −Xi + CELi(A(α, π2), X))].

Here, the last inequality follows from strict concavity of u, and the fact that from π1 < π2,

S(α, π2) ≥ S(α, π1), and P(S(α, π1)) > 0 it follows that −π1−Xi+CELi(A(α, π1), X)
d
6=
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−π2−Xi +CELi(A(α, π2), X). Hence, the utility of the policyholder is strictly concave
in π.

Showing concavity of the utility of the policyholder with respect to parameter α is
analogous to the proof of concavity with respect to the premium π.

Next, we prove concavity of the utility of the policyholder when f = PP . This
follows directly from the fact that for any fixed R = r̂ and X = (xi)

n
i=1, it holds that

u(w0 − π − (
∑n

i=1 xi − (W + nπ)(1 + r + αr̂))+/n) is concave in α and π.

Proof of Theorem 4.2 Let F̂ = F or F̂ = R. If a solution to (4) exists, we get
f∗ = CEL if F̂ = R (Theorem 3.3), or f∗ = PP if F̂ = F (Theorem 3.2). Since the
objective UI(α, π) is strictly increasing in π, we aim for every α ∈ [0, 1] to find the largest
π such that the participation constraints in (4) are satisfied. Moreover, U iPH(f∗, α, π)
is the same for all i ∈ N , so that we fix i in the remainder of the proof. If π → ∞,
we get U iPH(f∗, α, π) < E[u(w0 − π)] → −∞ due to limx→−∞ u(x) = −∞. Then,
the participation constraint in (4) is violated. By Assumption 4.1, the policyholder’s
expected utility U iPH is continuous in the premium π. Since the utility of the insurer
is strictly increasing in π, we get that for any fixed α ∈ [0, 1] there can be at most
one optimal premium π solving (4). If it exists, (α, π) is such that the participation
constraint is binding. By strict concavity of the utility of the policyholder for given α
when δ = 0 (see Lemma 4.1), it is characterized by the fact that it must also satisfy
∂
∂πU

i
PH(f∗, α, π) ≤ 0.

By assumption on u, we have that there exist (f, α, π) ∈ F̂ × [0, 1] × IR+ with
U iPH(f, α, π) ≥ u. From Theorem 3.2 and Theorem 3.3, it follows that this also holds

for f = PP when F̂ = F and for f = CEL when F̂ = R.
By Assumption 4.1, we have that U iPH(f∗, ·, ·) is continuous on [0, 1] × IR+. From

this and limπ→∞ maxα∈[0,1] U
i
PH(f∗, α, π) = −∞, we get that the level set {(α, π) ∈

[0, 1] × IR+ : U iPH(f∗, α, π) ≥ u} is a compact subset of [0, 1] × IR+. Moreover, this set
is non-empty by assumption. Since UI is continuous on (α, π) ∈ [0, 1] × IR+ as well,
we conclude that the maximum in (4) for the respective reservation utility level u, is
attained in [0, 1]× IR+ due to Weierstrass’ extreme value theorem.

Proof of Theorem 5.1 Let F̂ ∈ {F ,R} and π > 0. From Lemma 3.1, we get for any
α ∈ (0, 1) that

∂

∂α
UI(α, π) > 0.

So, since the utility of the insurer is continuous, we get that the incentive compatibility
constraint in (7) yields α = 1. Hence, all optimal solutions to (7) are such that α = 1.

Then, (7) boils down to maximize for a fixed α = 1 the objective function over all
π ≥ 0 and f such that the participation constraints are satisfied. In line with Theorem
3.2 and Theorem 3.3, it holds that the optimal rule f is unique, and given by f∗ = PP if
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F̂ = F , and f∗ = CEL if F̂ = R. The objective function in (7) is continuous and strictly
increasing in the premium π ≥ 0. Moreover, by definition, there exists a π∗ > 0 such
that U iPH(f∗, 1, π∗) ≥ u, and moreover we have limπ→∞ U

i
PH(f∗, 1, π) = −∞. Hence,

there is a unique solution, and it is such that the participation constraints are binding.
This concludes the proof.

B Total social welfare

In this appendix, we briefly discuss social welfare. Suppose there is a social planner
that optimizes a weighted sum of the utilities of all agents (Harsanyi, 1955). Then, the
problem is given by

maxf,α,π UI(α, π) + k ·
∑n

i=1 U
i
PH(f, α, π),

s. t. (f, α, π) ∈ F̂ × [0, 1]× IR+,
(15)

where F̂ = F or F̂ = R, k > 0, and X|R is exchangeable. Here, the preferences of
the policyholders are weighted with factor k to compare the utilities with the expected
profit of the insurer.

Theorem B.1 Let X|R be exchangeable, and let (f, α, π) be a solution of (15) with
F̂ = F , then f = PP . Let X|R be exchangeable, and let (f, α, π) be a solution of (15)
with F̂ = R, then f = CEL.

Proof For given (α, π) ∈ [0, 1]× IR+, we get that the utility of the insurer is unaffected
by f ∈ F̂ . If F̂ = F (resp. F̂ = R),

maxf
∑n

i=1 U
i
PH(f, α, π),

s. t. f ∈ F̂ ,

is solved uniquely for the rule f = PP (resp. f = CEL) due to (8) (resp. (11)). This
concludes the proof.

Theorem B.1 shows that the results of Section 3 also hold if we focus on a social planner.
In other words, the total social welfare is optimal when the rule f = PP (f = CEL) is
used when F̂ = F (F̂ = R).
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