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Abstract

This paper studies economic pricing of reinsurance contracts via com-
petition of an insurer with multiple reinsurers. All firms are assumed to
be endowed with distortion risk measures or expected exponential utilities.
Reinsurance contracts are required to be Pareto optimal, individually ra-
tional, and satisfy a competition constraint that we call coalition stability.
As shown in the literature, it holds that Pareto optimality is equivalent to
a structure on the indemnities. This paper characterizes the corresponding
premiums by a competition argument. The competition among reinsurers
imposes constraints on the premiums that the reinsurers are able to charge
and this may lead to a strictly positive profit for the insurer. When the
firms use distortion risk measures, this constraint yields stability for sub-
coalitions, which is a condition akin to the core in cooperative game theory.
The premiums and the profit of the insurer are derived in closed-form. This
paper illustrates this premium function with the Mean Conditional Value-
at-Risk and the GlueVaR. If the firms use expected exponential utilities, the
premium is represented by an exponential premium.
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1 Introduction

Optimal reinsurance contract design is a very popular subject since the seminal
works of Borch (1960) and Arrow (1963). The problem is to determine optimal
reinsurance contracts for a given risk of the insurer. Under the assumption that the
reinsurance premium is calculated by the expected value principle, Borch (1960)
and Arrow (1963) both show that a stop-loss contract is optimal even though the
objective of the former paper is to minimize the variance of the retained loss of
the insurer and the latter paper is to maximize the expected utility of the terminal
wealth of a risk-averse insurer. Reinsurance contract design also gains popularity
in actuarial science in a more recent past. See, for example, Denuit and Vermandele
(1998), Young (1999), Gajek and Zagrodny (2000, 2004), Kaluszka (2001, 2005);
Cai and Tan (2007), Balbás et al. (2009), Chi (2012), Cui et al. (2013), Bernard
et al. (2015). These papers optimize a welfare criterion of the insurer who has
the option to reinsure a part of its risk. However, these works are predominantly
confined to study the optimal risk sharing between two parties, i.e., an insurer and
a reinsurer.

A more realistic situation should involve multiple reinsurers available in the
market. The insurer always could use more than one reinsurer to reinsure its
risk in a well established reinsurance market. To the best of our knowledge, very
few academic papers have been devoted to considering the optimal reinsurance
problem in the presence of multiple reinsurers. These works include Asimit et al.
(2013b), Chi and Meng (2014), Boonen et al. (2016b), and Cong and Tan (2016).
However, all of these have in common that the premium principles for reinsurance
are exogenously given. And they optimize a utility function of the insurer and
characterize the optimal reinsurance indemnity functions. But, a very important
aspect was ignored among these works. The multiple reinsurers in the real market
could compete with each other and that insurer could exploit such competition.
Therefore, an efficient reinsurance contract profile, and more importantly the wel-
fare gains distribution among them are missing from the economic point of view.
In this paper, we shed some light on this topic and introduce a novel economic
approach to characterize an optimal reinsurance profile that takes into account
competition among reinsurers. In particular, we study reinsurance profiles that
satisfy Pareto optimality, individual rationality and a stability property.

First, we assume that all firms use dual utility as introduced by Yaari (1987).
This is equivalent to firms minimizing distortion risk measures. Second, we study
the case where all firms use expected exponential utilities. The Pareto optimal
reinsurance contracts are given by a specific layering of the risk when the firms use
distortion risk measures. Any layer is allocated to the one specific party for which
the corresponding distortion function is minimal at a given quantile. When the
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firms use expected exponential utilities, the Pareto optimal reinsurance contracts
are proportional to the risk. Hence, for both distortion risk measures and expected
exponential utilities, Pareto optimality yields a structure on the indemnities, and
the corresponding premiums can be chosen freely. In this paper, we focus on the
corresponding premiums of these reinsurance indemnities by an economic stability
criterion. Specifically speaking, the insurer has the option to select the reinsurers
it wants to trade with. The insurer takes into account that there is an outside
option to move to other reinsurers. The reinsurers maximize their profit. We show
that this competition leads to a premium of the reinsurer. If the reinsurer charges
a larger premium, it will be priced out of the reinsurance market by the others
who behave rationally. For distortion risk measures, we derive this premium for
each reinsurer in closed-form. Moreover, we demonstrate that such a reinsurance
contract profile satisfies a core-type property (i.e. coalition stability), where the
core is a well-known concept in cooperative game theory (Gillies, 1953; Scarf,
1967). In other words, no subgroup of reinsurers (coalition) and the insurer have
a joint incentive to operate in the market without the other reinsurers.

While this paper is inspired by the work of Boonen et al. (2016a), it is im-
portant to point out the similarities and the differences between their work and
the present paper. The key similarities are as follows. First, both papers study
optimal risk sharing under the assumptions of Pareto optimality and individual
rationality. Second, by using the indifference pricing arguments, lower and upper
bounds of the Pareto optimal and individually rational contracts are similarly es-
tablished. Third, both paper analyze welfare gain (i.e. hedged benefits) among
the firms.

However the key differences (and hence highlighting the main contributions of
the present paper) are as follows. First and foremost is the model specification.
Boonen et al. (2016a) analyze optimal risk sharing between one insurer and one
reinsurer; i.e. bilateral bargaining for reinsurance. The present paper extends
Boonen et al. (2016a) by analyzing a more realistic setting with one insurer and
multiple reinsurers. Second, the present paper studies the case where all firms use
expected exponential utilities, in addition to distortion risk measures as in both
papers. A third important distinction is that while Boonen et al. (2016a) models
the behavior of the firms via bargaining, the present paper is based on competition.
Unlike Boonen et al. (2016a)’s setup, the competition and the presence of multiple
reinsurers imply that insurer in the present paper has the flexibility of trading with
any reinsurer and with one or more reinsurers. As a result, the competition among
reinsurers considerably complicates the pricing of reinsurance contracts. Because
of competition it is necessary to impose the property of coalition stability to ensure
the stability of market. Also, while bounds on the individual rational premiums
of a specific Pareto optimal contract are derived under both models of Boonen et

3



al. (2016a) and the present paper, the premium agreed upon by both insurer and
reinsurer for the former model ultimately depends on the firms’ relative bargaining
power. We demonstrate in this paper that there is a vector of premiums that the
firms will accept due to competition. Finally we show that if all reinsurers have the
same preferences, a race to the bottom leads to reinsurers offering their indifference
premiums (see, e.g., Bertrand, 1883). Therefore, all welfare gains in the market
go to the insurer. As a result, competition may affect the premiums substantially.
The current paper also provides a closed-form expression and the interpretation of
the welfare gains for the insurer, each reinsurer and the aggregate reinsurers. The
allocation of welfare gains among the insurer and multiple reinsurers is insightful
for understanding the competition in the market.

The remaining paper is organized as follows. In Section 2, we state the model
set-up. Section 3 shows the individual rational and Pareto optimal contracts.
Sections 4 to 8 study distortion risk measures. Section 4 provides a characterization
of the competitive premiums. Section 5 shows a characterization of stability, where
stability is shown to be equivalent to coalition stability if we focus on Pareto
optimal contracts. Section 6 characterizes the welfare gains. Sections 7 and 8
illustrate our premium function with the Mean Conditional Value-at-Risk and
the GlueVaR, respectively. Section 9 shows the competitive premiums in case of
expected exponential utilities and Section 10 concludes the paper.

2 Model Outline

Let (Ω,A,P) be a probability space. Moreover, we denote L1 as the class of
Lebesgue integrable random variables on (Ω,A,P). We assume that in this market
there exists an insurer and n reinsurers. The insurer is indexed by I and the
set of reinsurers is indexed by N = {1, . . . , n}. The insurer is seeking an optimal
reinsurance strategy to cede its risk to the n potential reinsurers. Any risk transfer
decision between insurer and the reinsurers is based on a monetary utility function
V̂k, which is defined as follows.

Definition 2.1 A preference relation V̂k, k = I, 1, 2, . . . , n, is monetary if it sat-

isfies the following properties:

• Monotonicity: V̂k(Y ) ≤ V̂k(Z) for all Y, Z ∈ L1 such that Y ≤ Z;

• Normalization: V̂k(0) = 0;

• Cash-invariance: V̂k(Y + a) = V̂k(Y ) + a for all Y ∈ L1 and a ∈ IR.
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For the sake of presentation, we assume that all firms minimize

Vk(Y ) := −V̂k(Y ).

Due to the cash-invariance property, we obtain that the initial deterministic
wealth of the insurer and reinsurers is irrelevant. Note that the value Vk(Y ) can
be interpreted as a monetary cost or value due to cash-invariance and Vk(0) = 0.
Another property of a preference relation Vk that plays an important role in this
paper is comonotonic additivity, and is defined as follows:

• Comonotonic additivity: for all X, Y ∈ L1 that are comonotonic, we have
Vk(X) + Vk(Y ) = Vk(X + Y ).

The insurer is endowed with a non-negative loss X ∈ L1 that is such that
Vk(X) < ∞ for all k = I, 1, . . . , n. The insurer seeks to reinsure a part of this risk
with some reinsurers. The insurer and the reinsurer i are bilaterally bargaining
to agree on optimal reinsurance contracts (fi, πi), i = 1, . . . , n, where fi(X) is the
indemnity; i.e. the ceded loss function, and πi ∈ IR is the premium paid by the
insurer to reinsurer i in exchange of the coverage fi(X). We assume that fi ∈ F ,
where

F = {f : IR+ → IR+ |f(0) = 0, 0 ≤ f(x)− f(y) ≤ x− y, ∀x ≥ y ≥ 0} .

The aggregate indemnities
∑n

i=1 fi in F account for ex post moral hazard of the
insurer (Huberman et al., 1983; Denuit and Vermandele, 1998; Young, 1999). For
this reason, aggregate indemnities are often exogenously imposed to belong to the
class F in the recent literature on reinsurance contract design (see, e.g., Asimit et
al., 2013b; Chi and Meng, 2014; Assa, 2015; Xu et al., 2019). Therefore, we also
assume

∑n
i=1 fi ∈ F to eliminate double insurance.

3 Individual rationality and Pareto optimality

Given that we are concerned with an optimal risk transfer strategy between an
insurer and N reinsurers, it is convenient to denote f as the tuple (fi)

n
i=1 where

fi ∈ F for all i, and
∑n

i=1 fi ∈ F , and π as the tuple (πi)
n
i=1 where πi represents

the premium charged by reinsurer i with corresponding indemnity contract fi. It
is also useful to use FN to denote the collection of all such indemnity contracts.
Before discussing the optimality of fi and its premium πi, the focus of this section
is to describe two important properties for which a reinsurance contract profile
(f, π) ∈ FN × IRn may satisfy. These two properties are known as individual
rationality and Pareto optimality.
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Individual rationality states that all firms are weakly better off from trading
compared to the status quo. Hence, the property of individual rationality for
the insurer I and all n reinsurers implies that the reinsurance contract profile
(f, π) ∈ FN × IRn satisfies the following conditions:

VI

(
X −

n∑

j=1

(fj(X)− πj)

)
≤ VI

(
X −

∑

j 6=i

(fj(X)− πj)

)
, i = 1, . . . , n, (1)

Vi(fi(X)− πi) ≤ 0, i = 1, . . . , n. (2)

Condition (1) ensures that the insurer’s welfare is no worse off if it trades with
all n reinsurers concurrently. Moreover, if VI is comonotonic additive, then (1)
implies VI(fi(X)− πi) ≥ 0 for all i = 1, . . . , n,. This in turn leads to

VI

(
X −

n∑

i=1

(fi(X)− πi)

)
≤ VI(X).

Hence, not only there is an incentive for the insurer to trade with all n reinsurers,
the above inequality further shows that the insurer’s welfare of not ceding its risk
cannot be better off.

Condition (2) focuses on the welfare of the reinsurers. Because of the normal-
ization condition Vi(0) = 0, condition (2) asserts that the welfare of each reinsurer
i, i = 1, . . . , n, for accepting the ceded risk fi is at least as great as not accepting
it. Hence, there is an incentive for the reinsurers to trade with the insurer. The
cash-invariance property also implies that πi ≥ Vi(fi(X)).

We now discuss the Pareto optimality. A reinsurance contract profile (f, π) ∈
FN × IRn is Pareto optimal if there does not exist another reinsurance contract
profile (f̂ , π̂) ∈ FN × IRn such that

VI

(
X −

n∑

j=1

(f̂j(X)− π̂j)

)
≤ VI

(
X −

n∑

j=1

(fj(X)− πj)

)
,

Vi(f̂i(X)− π̂i) ≤ Vi(fi(X)− πi), i = 1, . . . , n,

with at least one strict inequality. If a reinsurance contract profile is not Pareto
optimal, then all firms will (weakly) benefit from selecting another reinsurance
contract profile. Note that Pareto optimality does not imply individual rationality.
For example, Pareto optimal reinsurance contracts may include contracts with
some negative premiums, but it follows from (2) that such contracts are never
individually rational.

The next proposition characterizes Pareto optimality for monetary preferences.
It extends Proposition 2.2 of Boonen et al. (2016a) to the case with multiple
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reinsurers and to the case where the preferences do not need to be comonotonic
additive. The proof is similar to that proposition, but for completeness we provide
a self-contained proof in Appendix A.

Proposition 3.1 Let Vk, k ∈ {I, 1, . . . , n} as in Definition 2.1. Reinsurance con-

tract profile (f ∗, π) ∈ FN × IRn is Pareto optimal if and only if f ∗ solves

min
f∈FN

{
VI

(
X −

n∑

i=1

fi(X)

)
+

n∑

i=1

Vi(fi(X))

}
. (3)

Note that Vk(X) < ∞ for all k ∈ {I, 1, . . . , n}. This implies that solutions to
(3) are finite.

4 Competitive pricing of reinsurance with dis-

tortion risk measures

First, we assume that all firms use specific monetary preferences given by dual
utilities as introduced by Yaari (1987). In Section 9, we will extend our analysis
to another class of monetary preferences known as the exponential utilities. Max-
imizing dual utility is equivalent to minimizing a distortion risk measure (Wang
et al., 1997). Under the assumption that firms minimize distortion risk measures,
we obtain the following definition.

Definition 4.1 The preference relation Vk for firm k ∈ {I, 1, . . . , n} is a distor-

tion risk measure when

Vk(Y ) = E
gk [Y ] :=

∫ 0

−∞

[1−gk(SY (z))] dz+

∫ ∞

0

gk(SY (z)) dz, for all Y ∈ L1, (4)

where SY (z) = 1 − FY (z) is the survival function of stochastic loss Y , and gk :
[0, 1] → [0, 1] is a non-decreasing, and left-continuous function such that gk(0) = 0
and gk(1) = 1.

A non-decreasing, and left-continuous function g : [0, 1] → [0, 1] such that g(0) = 0
and g(1) = 1 is called a distortion function. When Y ≥ 0 a.s., equation (4) can
be written as

E
gk [Y ] =

∫ ∞

0

gk(SY (z)) dz. (5)

It is straightforward to see that g(s) ≥ g̃(s) for all s ∈ [0, 1] implies E
g[Y ] ≥

E
g̃[Y ] for all Y ∈ L1. The Value-at-Risk (VaR) and all coherent risk measures

satisfying law-invariance, comonotonic additivity, and a continuity-type property
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are distortion risk measures (Wang et al., 1997; Artzner et al., 1999). Wang et al.
(1997) show that distortion risk measures Eg satisfy comonotonic additivity.

The optimal indemnity contracts that solve problem (3) with distortion risk
measures and in the context of multiple reinsurers are given by the following pro-
portion. Similar results have also been established by Cui et al. (2013) and Assa
(2015) but for single reinsurer.1 For completeness, we provide a self-contained
proof in Appendix A.

Proposition 4.2 Let Vk, k ∈ {I, 1, . . . , n} be distortion risk measures, and define

A =
{
z ≥ 0 : min1≤i≤n

{
gi(SX(z)) − gI(SX(z))

}
< 0

}
and B =

{
z ≥ 0 :

min1≤i≤n

{
gi(SX(z))− gI(SX(z))

}
= 0
}
. Then, a profile f ∗ ∈ FN is a solution to

(3) if and only if it admits the following representation for i = 1, . . . , n:

(f ∗
i )

′(z) =





αi(z) if z ∈ A and i ∈ argmin1≤j≤n

{
gj(SX(z))− gI(SX(z))

}
,

βi(z) if z ∈ B and i ∈ argmin1≤j≤n

{
gj(SX(z))− gI(SX(z))

}
,

0 otherwise,

for all z ≥ 0 a.s., f ∗
i (0) = 0, αi(z) and βi(z) are measurable and [0, 1]-valued

functions such that

n∑

i=1

(f ∗
i )

′(z) =





1 if z ∈ A,

φ(z) if z ∈ B,

0 otherwise,

where φ is a measurable and [0, 1]-valued function.

The above proposition implies that there exist Pareto optimal contracts, and
it characterizes the corresponding indemnity contracts f ∗

i (X), i = 1, . . . , n. The
indemnities solving (3) are given by specific tranching of the insurer’s risk, where
every tranche is borne by the reinsurer that is endowed with the smallest distortion
function on the corresponding quantiles. From (3) and Proposition 4.2, we obtain
directly the reinsurance contract profile (f, π) ∈ FN × IRn is Pareto optimal if and
only if

E
gI

[
X −

n∑

i=1

fi(X)

]
+

n∑

i=1

E
gi[fi(X)] = E

h[X ], (6)

where h := min{gI , g1, . . . , gn}.

1Cui et al. (2013) and Assa (2015) both study bilateral reinsurance contract design with a
given distortion premium principle. Their objective function is however identical to (3), that
characterizes Pareto optimality.
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One of the objectives of this paper is to characterize the premiums correspond-
ing to the indemnities satisfying (6). To do this, we first establish the bounds
on the premiums that are acceptable to the reinsurer. From the bounds, we then
argue a plausible premium that is acceptable to the firms in this market.

Suppose reinsurer i underwrites fi(X), where fi ∈ F . The minimum premium
that is acceptable to the reinsurer is provided by the indifference premium; i.e. the
critical premium such that it is indifferent for the reinsurer to underwrite or not
underwrite the risk. By denoting πi(fi) as the minimum premium corresponding
to a given indemnity contract fi(X), then the indifference premium is obtained by
changing the inequality in (2) to equality so that

πi(fi) := E
gi[fi(X)].

The determination of the maximum reinsurance premium is considerably more
involved. The premium charged by reinsurer i cannot be arbitrary large due to
two reasons. First, it cannot exceed the maximum amount that the insurer is
willing to pay. Second, there is competition; the presence of competition implies
that the insurer can cede part or all of fi(X) to other reinsurers that offer better
competitive pricing. Hence, the premium determined by a reinsurer i must be in
such a way that prevents other reinsurers from rationally jointly offering a lower
premium for the same risk.

To determine πi(fi), the maximum competitive premium that can be offered
by reinsurer i for underwriting fi(X), let us consider the following feasible set of
ceded loss function in the absence of reinsurer i

F−i :=

{
(f̃j)j 6=i : f̃j ∈ F , j 6= i,

∑

j 6=i

f̃j ∈ F

}
,

and its Pareto optimality problem:

PO1 := min
f̃∈F−i

{
VI

(
X −

∑

j 6=i

f̃j(X)
)
+
∑

j 6=i

Vj

(
f̃j(X)

)}
. (7)

The above optimization problem is basically (3) except it seeks the Pareto optimal
risk sharing among n − 1 reinsurers by negating reinsurer i. Now let X−i =
X − fi(X) and consider the following optimization problem:

PO2 := min
f̃∈F−i

{
VI

(
X−i −

∑

j 6=i

f̃j(X−i)
)
+
∑

j 6=i

Vj

(
f̃j(X−i)

)}
. (8)

The above formulation also seeks the Pareto optimal risk sharing among n −
1 reinsurers without reinsurer i’s participation. The key difference is that (7)
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is concerned with risk sharing X while (8) focuses on risk sharing X − fi(X);
i.e. the residual risk assuming fi(X) is ceded to reinsurer i. As PO1 and PO2

correspond to the least cost of reinsuring the respective risk in the market, their
difference represents the incremental cost for reinsuring fi(X). Hence, if reinsurer
i were to be competitive in the market, its pricing on fi(X) cannot be more
than PO1 − PO2; otherwise the risk fi(X) that is supposedly ceded to reinsurer
i will be rationally jointly shared among the insurer and the remaining n − 1
reinsurers. Consequently in a competitive market the above argument implies
that the maximum competitive premium is provided by

πi(fi) = PO1 − PO2. (9)

The following proposition provides an additional characterization of πi(fi) un-
der the additional assumption that the preference relations are governed by dis-
tortion risk measures.

Proposition 4.3 Let Vk, k ∈ {I, 1, . . . , n} be distortion risk measures. The solu-

tion to (9) is given by

πi(fi) = E
hi[fi(X)], (10)

where hi := min{gI ,minj 6=i gj} and fi ∈ F .

Proof By fixing f ∈ FN , we have

PO1 − PO2 = min
f̃∈F−i

{
E
gI
[
X −

∑

j 6=i

f̃j(X)
]
+
∑

j 6=i

E
gj
[
f̃j(X)

]}

− min
f̃∈F−i

{
E
gI
[
X−i −

∑

j 6=i

f̃j(X−i)
]
+
∑

j 6=i

E
gj
[
f̃j(X−i)

]}

= E
hi[X ]− E

hi [X − fi(X)] (11)

= E
hi[fi(X)].

Here, the second equality follows from (6) and the last equality follows from
comonotonic additivity of the distortion risk measure E

hi . This concludes the
proof. �

Remark 1. Consider that the reinsurer i is offering fi(X), where fi ∈ F , to the
insurer. The insurer with distortion risk measure E

gI values this risk as

E
gI

[
X −

∑

j 6=i

fj(X)

]
− E

gI

[
X −

n∑

j=1

fj(X)

]
= E

gI [fi(X)]. (12)
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This follows immediately from the comonotonic additivity of the distortion risk
measure,

∑n
j=1 fj ∈ F and fi ∈ F for all i = 1, . . . , n, and that X −

∑n
j=1 fj(X)

and X −
∑

j 6=i fj(X) are comonotonic for any i. Therefore, the functional form of
the preferences of the insurer is similar to the ones of the reinsurers.

We now provide an alternate approach of justifying the maximum premium
πi(fi). Consider an initial risk allocation fj(X) to reinsurer j, for j = 1, . . . , n.
Now fixed i and suppose that fi(X) is to be re-distributed among the insurer I
and the remaining n−1 reinsurers. Then, the maximum premium that reinsurer i
determines is such that all other reinsurers have no incentive to underwrite a part
of the risk fi(X), nor the insurer wants to keep part of it. This leads to

min
f̃∈F−i

{[
E
gI
(
X −

∑

j 6=i

[fj(X) + f̃j(fi(X))]
)
− E

gI
(
X −

n∑

j=1

fj(X)
)]

+

[
∑

j 6=i

E
gj [fj(X) + f̃j(fi(X))]−

∑

j 6=i

E
gj [fj(X)]

]}

= min
f̃∈F−i

{
E
gI
(
fi(X)−

∑

j 6=i

f̃j(fi(X))
)
+
∑

j 6=i

E
gj [f̃j(fi(X))]

}

= E
hi [fi(X)] = πi(fi),

where the first equality follows from comonotonic additivity of the preferences,
and the second equality follows from (6). The difference in the first and second
bracket represent the incremental benefit to the insurer and to the remaining
n− 1 reinsurers, respectively. Therefore the sum of these differences captures the
incremental benefits to the market from absorbing fi(X) that is otherwise ceded to
reinsurer i. Hence, if reinsurer i were to capture the market share of underwriting
fi(X), its pricing cannot exceed the above maximum incremental benefit (i.e.
without reinsurer i’s participation). Thus we recover (10) in Proposition 4.3. Note
that the above premium upper bound depends on f ∈ FN via fi. In other words,
while we fix fj for j 6= i, the premium bound πi does not depend on it.

If reinsurer i sets a premium that is higher than πi(fi) for underwriting fi(X),
then this reinsurer will be phased out by the other reinsurers and insurer that
jointly behave rationally. This follows from the above competitive pricing ar-
gument. This is also the reason why πi(fi) has been denoted as the maximum
premium that can be charged by reinsurer i while still ensuring a “stable” mar-
ket among the insurer and the n reinsurers. This is a useful characteristic of a
reinsurance market and we highlight its importance by formally introducing the
following definition of stability.
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Definition 4.4 A reinsurance contract profile (f, π) ∈ FN × IRn is called stable

when πi ≤ πi(fi) for all i = 1, . . . , n.

We emphasize that the notion of stability property is attributed to the competition
among the multiple reinsurers. The condition πi ≤ πi(fi) for all i implies that the
pricing offered by all reinsurers are competitive. In the special case with only one
reinsurer, the stability property leads to individual rationality.

Due to the fact that gI(s) ≥ hi(s) for every s ∈ [0, 1], we have

πi(fi) ≤ E
gI [fi(X)], (13)

for every fi ∈ F . As EgI [fi(X)] is the insurer’s indifference premium, this implies
that whenever a reinsurer i charges a weakly smaller premium than πi(fi) for
covering fi(X), there is a welfare gain to the insurer. We will relegate the discussion
of the welfare gains among the insurer and the reinsurers to Section 6.

For a given fi ∈ F , we get in case of individual rationality and stability that the

premium of fi(X) is in the interval
[
E
gi[fi(X)],Ehi[fi(X)]

]
whenever Egi[fi(X)] ≤

E
hi [fi(X)]. Zhuang et al. (2016, Lemma 2.1 therein) show that

E
g[fi(X)] =

∫ ∞

0

g(SX(z))f
′
i(z) dz, (14)

for any distortion function g and fi ∈ F . Let f ∗ solve (3), i.e., the reinsurance
contract profile is Pareto optimal. It follows from Proposition 4.2 that

hi(SX(z)) ≥ h(SX(z)) = gi(SX(z)),

for all z ≥ 0 such that (f ∗
i )

′(z) > 0. Then, from this and (14), we get

E
hi [f ∗

i (X)] ≥ E
gi[f ∗

i (X)], (15)

i.e., πi(f
∗
i ) ≥ πi(f

∗
i ). From (2), (3), Definition 4.4, (13) and (15), we immediately

obtain the following result.

Theorem 4.5 Let Vk, k ∈ {I, 1, . . . , n} be distortion risk measures. A reinsurance

contract profile (f ∗, π) ∈ FN × IRn is Pareto optimal, individually rational and

stable if and only if f ∗ solves (3) and

πi ∈ [πi(f
∗
i ), πi(f

∗
i )], for all i = 1, . . . , n. (16)

This theorem characterizes a subset of reinsurance contract profiles that satisfy
three properties of a reinsurance market: Pareto optimal, individually rational
and stable. The following corollary follows directly from Propositions 4.2 and 4.3.
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Corollary 4.6 Let Vk, k ∈ {I, 1, . . . , n} be distortion risk measures. If there exists

two reinsurers i 6= j with gi(SX(z)) = gj(SX(z)) for all z, then πi(f
∗
i ) = πi(f

∗
i )

and πj(f
∗
j ) = πj(f

∗
j ) where f ∗ ∈ FN solves (3).

The above corollary states that if there are two reinsurers with the same prefer-
ences, then both reinsurers will make no welfare gain when the reinsurance con-
tracts are Pareto optimal, individual rational and stable. If they provide some
reinsurance coverage, they will charge their indifference premiums. However the
premiums, in general, are non-uniquely determined by Pareto optimality, individ-
ual rationality and stability.

To conclude this section, we introduce another important difference between
Boonen et al. (2016a) and the present paper. In the context of an insurer and one
reinsurer, Proportion 2.4 of Boonen et al. (2016a) establishes that there a range of
premium that leads to Pareto optimal and individually rational. Likewise, in the
context of one insurer and n reinsurers, the relation (16) in Theorem 4.5 affirms
that there is a range of premium for which a reinsurance contract profile (f ∗, π) ∈
FN × IRn can be Pareto optimal, individually rational and stable. However, as
opposed to Boonen et al. (2016a) which asserts that the final premium agreed
upon by both insurer and reinsurer ultimately depends on their relative bargaining
power, in the present paper we argue that there is a vector of premiums for which
all firms will agree upon and this does not depend on the relative bargaining
powers of the firms. More specifically, under the additional assumption that the
reinsurers jointly and rationally maximize their welfare while still mindful of the
competition, then each reinsurer i will seek an optimal reinsurance contract profile
(f ∗, π∗) ∈ FN×IRn in such a way that f ∗ solves (3), with the premium π∗ attaining
its premium upper bound. In other words,

π∗
i = πi(f

∗
i ) = E

hi[f ∗
i (X)] = E

ĝ[f ∗
i (X)] (17)

for any i = 1, . . . , n. Here, ĝ is the second-lowest distortion function of the set of
functions {gI , g1, . . . , gn}.

2 The last equality follows from (14) and the fact that

hi(SX(z)) ≥ gi(SX(z)),

for all i, z such that (f ∗
i )

′(z) > 0 (cf. Proposition 4.2). So, reinsurer i prices risk via
the second-lowest distortion function, i.e., the premium reinsurer i charges is the
maximum premium the insurer would be willing to pay or the minimum premium
the insurer would receive from a reinsurer when reinsurer i would not participate.

2The second-lowest function ĝ of the set of functions {gI , g1, . . . , gn} is defined as follows.
For all s ∈ [0, 1], there exist i, j ∈ {I, 1, . . . , n} such that i 6= j, ĝ(s) = gj(s), gi(s) ≤ ĝ(s) and
gk(s) ≥ ĝ(s) for all k 6= i, j.
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Hence, the reinsurers price their reinsurance contracts competitively, and the pre-
mium function mimics the premium principle of a hypothetical second-best agent.
This second-best agent is hypothetical because its distortion premium principle
uses the second-lowest distortion function in the market. This premium corre-
sponds with the Nash equilibrium in a Bertrand competition (Bertrand, 1883),
and is popular as a method to derive prices in welfare economics.

5 Coalition stability with distortion risk mea-

sures

In the preceding section, we define stability as a market phenomenon for which an
individual reinsurer will not be phased out immediately by competition. To attain
stability, each reinsurer’s indemnity contract needs to be priced competitively. This
translates into the condition that πi ≤ πi(fi) for every reinsurer i; i.e. imposing
a competition constraint on the premium of an individual indemnity fi ∈ F .
While this condition ensures the stability of each reinsurer, it says nothing about
the possibility of establishing partnership (or coalition) among reinsurers in such
a way that dominates the reinsurance market. By dominating we refer to the
situation for which the coalition can offer a joint reinsurance contract that makes
all its members and the insurer better off; thus phasing out other reinsurers who
are not part of the coalition. If it is not possible to find such a coalition, then the
market is said to attain coalition stability; i.e. the market is resilient to a coalition
effect. The formal definition of coalition stability is provided below. Note that
this property is related to the core in cooperative game theory (see, e.g., Gillies,
1953; Scarf, 1967).

Definition 5.1 Let Vk, k ∈ {I, 1, . . . , n} be distortion risk measures. A reinsur-

ance contract profile (f, π) ∈ FN × IRn is called coalitional stable if for any subset

S ⊆ {1, . . . , n} there does not exist (f̂ , π̂) ∈ FS × IRs such that

E
gI
[
X −

∑

i∈S

(f̂i(X)− π̂i)
]
≤ E

gI
[
X −

n∑

i=1

(fi(X)− πi)
]
, (18)

E
gi [f̂i(X)− π̂i] ≤ E

gi [fi(X)− πi], i ∈ S, (19)

with at least one strict inequality, where FS = {(f̃i)i∈S : f̃i ∈ F , i ∈ S,
∑

i∈S f̃i ∈
F} and |S| = s.

Inequality (18) stipulates that the insurer cannot be better off from the reinsurance
contract profile provided by any coalition. Similarly, inequality (19) ensures that

14



the welfare of any member of the coalition cannot be better off by trading the
coalition’s reinsurance contract profile.

Armed with the definition of coalition stability, it is therefore of interest to
provide a further analysis on the viability of this property in a given reinsurance
market. It turns out that the conditions of Pareto optimality and stability are
sufficient to establish coalition stability, as shown in the following proposition.

Proposition 5.2 Let Vk, k ∈ {I, 1, . . . , n} be distortion risk measures. Then,

(f, π) ∈ FN × IRn is Pareto optimal and stable if and only if (f, π) is coalitional

stable.

Proof We start with the “only if” part. Let (f, π) ∈ FN × IRn be Pareto optimal
and stable. We need to show that there does not exist a (f̂ , π̂) ∈ FS × IRs such
that

E
gI
[
X −

∑

i∈S

(f̂i(X)− π̂i)
]
≤ E

gI
[
X −

n∑

i=1

(fi(X)− πi)
]
,

E
gi [f̂i(X)− π̂i] ≤ E

gi [fi(X)− πi], i ∈ S,

for any coalition of reinsurers S ⊆ {1, . . . , n}, with at least one inequality strict.
By the cash-invariance property of Eg, coalition stability holds when the following
the inequality holds

E
gI
[
X−

∑

i∈S

f̂i(X)
]
+
∑

i∈S

E
gi[f̂i(X)] ≥ E

gI
[
X−

n∑

i=1

(fi(X))
]
+
∑

i∈S

E
gi [fi(X)]+

∑

i∈N\S

πi,

(20)
for all S ⊆ {1, . . . , n}.

Recall that N = {1, . . . , n}. This implies that (6) can equivalently be expressed
as

E
gI
[
X −

∑

i∈N

fi(X)
]
+
∑

i∈N

E
gi [fi(X)] = E

h[X ].

For any S ⊆ {1, . . . , n} and let hN\S := min{gI ,minj /∈S gj}, then we have

E
gI
[
X −

∑

i∈S

f̂i(X)
]
+
∑

i∈S

E
gi[f̂i(X)] ≥ E

hN\S [X ].

Furthermore, by adding and subtracting
∑

i∈N\S E
gi[fi(X)] from the right hand

side of (20), it is sufficient to show that

E
hN\S [X ] ≥ E

h[X ]−
∑

i∈N\S

E
gi[fi(X)] +

∑

i∈N\S

πi. (21)
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Since hN\S(s) ≥ h(s) for all s ∈ [0, 1], we can define the measurable and non-
negative function

∆h(s) := hN\S(s)− h(s), s ∈ [0, 1].

If ∆h(SX(z)) > 0, then the maximum of the functions gI(SX(z)), g1(SX(z)), . . . , gn(SX(z))
is not obtained by any firm in S nor I. By Proposition 4.2, this implies that∑

i∈N\S f
′
i(z) = 1 so that ∆h(SX(z)) = ∆h(SX(z))

∑
i∈N\S f

′
i(z) and that

E
hN\S [X ]− E

h[X ] =

∫ ∞

0

hN\S(SX(z))dz −

∫ ∞

0

h(SX(z))dz

=

∫ ∞

0

∆h(SX(z))dz

=

∫ ∞

0

∆h(SX(z))
∑

i∈N\S

f ′
i(z)dz

=

∫ ∞

0

hN\S(SX(z))
∑

i∈N\S

f ′
i(z)dz −

∫ ∞

0

h(SX(z))
∑

i∈N\S

f ′
i(z)dz

= E
hN\S

[ ∑

i∈N\S

fi(X)
]
− E

h
[ ∑

i∈N\S

fi(X)
]

= E
hN\S

[ ∑

i∈N\S

fi(X)
]
−
∑

i∈N\S

E
gi[fi(X)],

where the fifth equality is due to (14). Hence, (21) is equivalent to
∑

i∈N\S

πi ≤ E
hN\S

[ ∑

i∈N\S

fi(X)
]
.

It is easy to verify that the function hN\S is a distortion function and hence EhN\S

is comonotonic additive. Then, if (f, π) ∈ FN × IRn is stable, we have
∑

i∈N\S

πi ≤
∑

i∈N\S

E
hi [fi(X)] ≤

∑

i∈N\S

E
hN\S [fi(X)] = E

hN\S [
∑

i∈N\S

fi(X)].

where the first inequality follows from Proposition 4.3 and Definition 4.4, the
second inequality is due to hi(s) ≤ hN\S(s) for all s ∈ [0, 1] whenever i ∈ S. This
concludes the proof of the “only if” part.

We now focus on the “if” part of the proof. Let (f, π) ∈ FN×IRn be coalitional
stable. This immediately implies that it is Pareto optimal (take subcoalition S =
N in Definition 5.1). Then,

E
gI
[
X−

∑

i∈S

f̂i(X)
]
+
∑

i∈S

E
gi[f̂i(X)] ≥ E

gI
[
X−

n∑

i=1

(fi(X))
]
+
∑

i∈S

E
gi [fi(X)]+

∑

i∈N\S

πi,

(22)
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for all S ⊆ {1, . . . , n}, and all (f̂ , π̂) ∈ FS × IRs.
Take S = N\{j}. Then, from (22), we get

πj ≤ min
f̂∈FS

{
E
gI
[
X −

∑

i∈S

f̂i(X)
]
+
∑

i∈S

E
gi [f̂i(X)]

}

− E
gI
[
X −

n∑

i=1

(fi(X))
]
−

∑

i∈N\{j}

E
gi[fi(X)]

= E
hj [X ]− E

h[X ] + E
gj [fj(X)]

= E
hj [fj(X)],

where the first equality follows from (6). So, (f, π) is stable, and this completes
the proof. �

6 Welfare gains in closed form with distortion

risk measures

Whenever there is a risk transfer from an insurer to a reinsurer, it is reasonable
to assume that at least one party will benefit from the trade. As a result of the
trades and the competition among the multiple reinsurers, it is therefore of interest
to provide an in-depth understanding on the welfare gain, if any, to the insurer,
the reinsurers, as well as the market as a whole. To do this, we first assume
that the insurer I is trading with n reinsurers with respective indemnity contracts
fi ∈ F , i = 1, . . . , n, and that the insurer’s and reinsurers’ monetary preference
relations are given by the distortion risk measures. With this setup, we then study
the hedged benefits, the profit to the insurer, and the profits to the reinsurers. We
now explain these concepts in turn.

Recall that if the insurer were to hedge its risk via indemnity contracts fi, i =
1, . . . , n, then the welfare of the market from the trading is given by

E
gI

[
X −

n∑

j=1

fj(X)

]
+

n∑

j=1

E
gj [fj(X)]. (23)

What if the insurer decides not to trade with reinsurer i but still trade with the
remaining n− 1 reinsurers using the same indemnity contracts as before? In this
case, the welfare of the market becomes

E
gI

[
X −

∑

j 6=i

fj(X)

]
+
∑

j 6=i

E
gj [fj(X)]. (24)
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The difference between these two welfare must be the hedged benefit attributed
to the indemnity contract fi. By using HBi(fi) to represent the resulting hedged
benefit, we obtain

HBi(fi) = E
gI

[
X −

∑

j 6=i

fj(X)

]
− E

gI

[
X −

n∑

j=1

fj(X)

]
− E

gi[fi(X)]

= E
gI [fi(X)]− E

gi[fi(X)], (25)

for any fj, j 6= i such that f ∈ FN . Here, the second equality follows from
comonotonic additivity of the distortion risk measure E

gI . We emphasize that
the monetary amount HBi(fi) is the welfare gain (i.e. hedged benefit) that is
obtained when the insurer transfers the risk fi(X) to reinsurer i. Note that HBi

only depends on f ∈ FN via fi. Furthermore, HBi(fi) can be positive, zero, or
negative for arbitrary fi.

By summing up all the hedged benefits among all n reinsurers, we derive the
total hedged benefit of the market:

HB(f) :=
n∑

i=1

HBi(fi)

=
n∑

i=1

[EgI [fi(X)]− E
gi[fi(X)]]

= E
gI

[
n∑

i=1

fi(X)

]
−

n∑

i=1

E
gi[fi(X)], (26)

where f ∈ FN . Here, (26) follows from the comonotonic additivity of EgI . It should
be pointed out that (26) can alternatively be derived by subtracting E

gI [X ] from
(23). This is not surprising since EgI [X ] corresponds to the welfare of market when
there is no hedging.

Recall that Proposition 3.1 characterizes Pareto optimality as the optimal con-
tracts f ∗

i , i = 1, . . . , n that are the solutions to the optimization problem (3). The
characterization of the total hedged benefit (26) provides another (equivalent) for-
mulation of Pareto optimality. More specifically, the Pareto optimal contracts can
equivalently be defined as the contracts that solve

max
f∈FN

HB(f). (27)

We remark that the optimal contracts f ∗
i , i = 1, . . . , n are similarly given in Propo-

sition 4.2. Furthermore, the optimization problem (27) relies on the comonotonic
additivity property of the distortion risk measure E

gI .
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Substituting the optimal contracts f ∗ from Proposition 4.2 into (26) yields

HB∗ := HB(f ∗) = E
gI [X ]−

n∑

i=1

E
gi[f ∗

i (X)]− E
gI

[
X −

n∑

i=1

f ∗
i (X)

]

= E
gI [X ]− E

h[X ], (28)

where HB∗ corresponds to the maximum in (27). It is easy to see that HB∗

can equivalently be represented as HB∗ =
∫∞

0
∆g(SX(z)) dz, where ∆g(s) :=

gI(s)− h(s) for all s ∈ [0, 1]. Note that ∆g(s) ≥ 0, and hence HB∗ ≥ 0.

Next, we address the profit of the reinsurers. It is natural to define the rein-
surer’s profit corresponding to reinsurance indemnity fi ∈ F as follows:

RPi(fi) := πi(fi)− πi(fi) = E
hi[fi(X)]− E

gi [fi(X)], (29)

where i = 1, . . . , n. The profit of the reinsurer is the difference of the premium
charged and the indifference premium. From (14), we obtain

RPi(fi) =

∫ ∞

0

[
hi(SX(z))− gi(SX(z))

]
f ′
i(z) dz.

From this result it is not difficult to see that

max
fi∈F

RPi(fi) = RPi(f
∗
i ),

for any f ∗ solving (3). This follows from the fact that the function hi(SX(z)) is
the second-lowest value of the set {gI(SX(z)), g1(SX(z)), . . . , gn(SX(z))} for all z
such that (f ∗

i )
′(z) > 0 (see Proposition 4.2).3 We define RP ∗

i = RPi(f
∗
i ).

Let us define f̃ ∗
−i as the indemnities for Pareto optimal contracts when only

the reinsurers in N\{i} are in the market, and

HB(f̃ ∗
−i) :=

∑

j 6=i

HBj(f̃
∗
j )

as the aggregate hedge benefit in the market when the indemnities are given by f̃ ∗
−i.

The following proposition demonstrates that RP ∗
i has a specific interpretation.

Proposition 6.1 Let Vk, k ∈ {I, 1, . . . , n} be distortion risk measures. For all

i = 1, . . . , n, it holds that

RP ∗
i = HB∗ −HB(f̃ ∗

−i), (30)

where f̃ ∗
−i ∈ F−i solves (3) for the set of reinsurers given by N\{i}.

3Note that if the minimum of {gI(s), g1(s), . . . , gn(s)} is attained by two functions, then the
second-lowest and minimum function coincide at s.
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Proof Let f ∗ ∈ FN solve (3). From Proposition 4.2, we get that (f ∗
i )

′(z) > 0
implies

gi(SX(z)) = h(SX(z)) = hj(SX(z))

for all j 6= i. From this, we get

RP ∗
i = E

hi [f ∗
i (X)]− E

gi[f ∗
i (X)]

= E
hi [f ∗

i (X)] +
∑

j 6=i

E
gj [f ∗

j (X)]− E
gi [f ∗

i (X)]−
∑

j 6=i

E
gj [f ∗

j (X)]

= E
hi [f ∗

i (X)] +
∑

j 6=i

E
hi[f ∗

j (X)]− E
h[f ∗

i (X)]−
∑

j 6=i

E
h[f ∗

j (X)]

= E
hi

[
n∑

i=1

f ∗
i (X)

]
− E

h

[
n∑

i=1

f ∗
i (X)

]

= E
gI [X ]− E

h[X ]−
(
E
gI [X ]− E

hi [X ]
)

= HB∗ −HB(f̃ ∗
−i),

where the fourth equality follows from comonotonic additivity of Eg for any given
distortion function g, and the fifth equality follows from (14) and

h(SX(z)) = hi(SX(z)) = gI(SX(z)),

for all z ≥ 0 such that
∑n

i=1(f
∗
i )

′(z) < 1 (see Proposition 4.2), and the last equation
follows from (28). This concludes the proof. �

The expression of RP ∗
i in Proposition 6.1 provides us with an economic interpre-

tation. It is the aggregate hedge benefit that disappears if reinsurer i decides to
leave the market. This is the maximum welfare gain that reinsurer i can claim.
We next provide a closed-form expression of the maximum aggregate reinsurer’s
profit, which is defined by

RP ∗ :=
n∑

i=1

RP ∗
i .

Proposition 6.2 Let Vk, k ∈ {I, 1, . . . , n} be distortion risk measures. The max-

imum aggregate reinsurer’s profit is given by

RP ∗ = E
ĝ

[
n∑

i=1

f ∗
i (X)

]
−

n∑

i=1

E
gi[f ∗

i (X)]. (31)
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Proof The result follows directly from

RP ∗ =

n∑

i=1

E
hi [f ∗

i (X)]−

n∑

i=1

E
gi[f ∗

i (X)] (32)

=
n∑

i=1

E
ĝ[f ∗

i (X)]−
n∑

i=1

E
gi[f ∗

i (X)] (33)

= E
ĝ

[
n∑

i=1

f ∗
i (X)

]
−

n∑

i=1

E
gi[f ∗

i (X)], (34)

where (33) follows from (17), and (34) follows from comonotonic additivity of the
distortion risk measure E

ĝ. This concludes the proof. �

We now address the profit of the insurer. The insurer’s profit can be defined as
the difference between the insurer’s indifference premium and the premium charged
by the reinsurer. Let IPi(fi) be the insurer’s profit for ceding fi(X) to reinsurer
i. Assuming reinsurer i charges the maximal premium that yields stability and
individual rationality, we have

IPi(fi) = E
gI [fi(X)]− E

hi [fi(X)].

Under the additional assumption that f ∗
i solves (3), the above equation becomes

IP ∗
i := IPi(f

∗
i ) = E

gI [f ∗
i (X)]− E

ĝ[f ∗
i (X)] (35)

=

∫ ∞

0

[
gI(SX(z))− ĝ(SX(z))

]
(f ∗

i )
′(z) dz (36)

= HBi(f
∗
i )− RPi(f

∗
i ). (37)

Here, (36) follows from (14), and (37) follows trivially from the definitions of
HBi(f

∗
i ) and RPi(f

∗
i ). Analogously, the aggregate insurer’s profit by trading with

all n reinsurers, denoted by IP ∗, is easily shown to be

IP ∗ := HB∗ −RP ∗ = E
gI

[
n∑

i=1

f ∗
i (X)

]
− E

ĝ

[
n∑

i=1

f ∗
i (X)

]
. (38)

The following proposition asserts that IP ∗
i ≥ 0, and hence IP ∗ ≥ 0.

Proposition 6.3 Let Vk, k ∈ {I, 1, . . . , n} be distortion risk measures. We have

IP ∗
i ≥ 0 for all i = 1, . . . , n, and hence IP ∗ ≥ 0, where f ∗ ∈ FN solves (3).

Moreover, we have IP ∗ = 0 if and only if ĝ(SX(z)) ≥ gI(SX(z)) for all z ≥ 0
almost everywhere.
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Proof We start by proving the first result. Let i ∈ {1, . . . , n} and z ≥ 0. From
Proposition 4.2, we get that (f ∗

i )
′(z) > 0 implies gi(SX(z)) ≤ gI(SX(z)), which in

turn leads to

ĝ(SX(z)) ≤ gI(SX(z)).

Hence, IP ∗
i ≥ 0, which is an immediate consequence of this and (36).

We continue with proving the second result. If ĝ(SX(z)) ≥ gI(SX(z)) for all
z ≥ 0 almost everywhere, then we get Eĝ[f(X)] ≥ E

gI [f(X)] for any f ∈ F , and,
so,

E
ĝ

[
n∑

i=1

f ∗
i (X)

]
≥ E

gI

[
n∑

i=1

f ∗
i (X)

]
.

Hence, IP ∗ ≤ 0. Combining this with the first result yields IP ∗ = 0. If IP ∗ = 0,
we obtain

E
ĝ

[
n∑

i=1

f ∗
i (X)

]
= E

gI

[
n∑

i=1

f ∗
i (X)

]
.

Then, we get ĝ(SX(z)) = gI(SX(z)) for all z ≥ 0 such that
∑n

i=1(f
∗
i )

′(z) > 0. If∑n
i=1(f

∗
i )

′(z) = 0, then we get from Proposition 4.2 that

ĝ(SX(z)) ≥ gI(SX(z)).

Hence, we get ĝ(SX(z)) ≥ gI(SX(z)) for all z ≥ 0 almost everywhere. This
concludes the result. �

We conclude this section by drawing the following two observations:

• The decomposition (37) provides a useful insight to the allocation of hedged
benefit. Recall that HBi(f

∗
i ) denotes the welfare gain from optimally trading

f ∗
i between the insurer and reinsurer i. This also represents the maximum
hedged benefit can be jointly claimed by both insurer and reinsurer i. Conse-
quently IPi(f

∗
i ) and RPi(f

∗
i ) capture the welfare gain that is allocated to the

insurer and reinsurer i, respectively. Similar interpretation can be applied
to the decomposition (38) except at the aggregate level. In aggregate, rein-
surer i is allocated a welfare gain of RPi(f

∗
i ), i = 1, . . . , n while the insurer

is allocated IP ∗.

• Since IP ∗ ≥ 0, this implies that as the market adds more reinsurers, the
welfare gain to the insurer increases. This is to be expected due to the
increased competition aggravated by the additional reinsurers.
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7 Illustration with the Mean Conditional Value-

at-Risk

In this section, we provide some numerical results where we assume that there is
one insurer I, and reinsurers 1 and 2. All three firms are risk-neutral, but face
costs of holding capital given by CoCi(ρi(Y ) − E[Y ]) for holding risk Y ∈ L1,
where i = I, 1, 2, CoCi ∈ [0, 1] and ρi := CV aRβi

. Here, CoCi ∈ [0, 1] represents
the relative cost of capital for holding a buffer, and CV aRβi

with βi ∈ (0, 1) is
the Conditional Value-at-Risk which is the distortion risk measure with distortion
function ǧi(s) = min{ s

1−βi
, 1} (see Dhaene et al., 2006). The Conditional Value-at-

Risk, also called the Expected Shortfall, has received considerable attention after
the introduction of the Basel III regulations and the Swiss Solvency Test (see, e.g.,
Eling et al., 2008; Basel Committee on Banking Supervision, 2012). It is also often
used in the literature on optimal reinsurance contract design (see, e.g., Chi and
Tan, 2011; Chi, 2012; Asimit et al., 2013a; Cheung and Lo, 2017).

Define γi = 1 − CoCi. Let the preferences of reinsurer i ∈ {1, 2} be given
by a distortion risk measure Mean Conditional Value-at-Risk with the following
representation:

MCV aRβi,γi(Y ) := γiE[Y ] + (1− γi)CV aRβi
(Y ), for all Y ∈ L1. (39)

These preferences are generated by the distortion function

gi(s) = γis+ (1− γi)min

{
s

1− βi
, 1

}
, for all s ∈ [0, 1].

We study the distortion function min{gI , g1, g2} that is used in Proposition 4.2.
This is a piecewise linear function, where minimum is attained for small s by a
firm i∗ ∈ argmin{ βiγi

1−βi
: i = I, 1, 2}, and the minimum is attained for large s by a

firm j∗ ∈ argmin{γi : i = I, 1, 2}, where it is possible that i∗ = j∗. The only kink
of min{gI , g1, g2} is located at

s∗ =
γj∗

γj∗ + βi∗γi∗/(1− βi∗)
. (40)

Consequently gi∗(s) = min{gI(s), g1(s), g2(s)} for all 0 ≤ s ≤ s∗, and gj∗(s) =
min{gI(s), g1(s), g2(s)} for all s∗ ≤ s ≤ 1.

Let X ∈ L1 be a continuous random variable with cumulative distribution
function FX(·). From Proposition 4.2, we derive that (f ∗, π) ∈ F{1,2} × IR2 is
Pareto optimal when f ∗ ∈ F2 is given by

f ∗
1 (X) =






(X − F−1
X (s∗))+ if i∗ = 1, j∗ 6= 1,

min{X,F−1
X (s∗)} if i∗ 6= 1, j∗ = 1,

X if i∗ = 1, j∗ = 1,
0 if i∗ 6= 1, j∗ 6= 1,

(41)
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f ∗
2 (X) =





(X − F−1
X (s∗))+ if i∗ = 2, j∗ 6= 2,

min{X,F−1
X (s∗)} if i∗ 6= 2, j∗ = 2,

X if i∗ = 2, j∗ = 2,
0 if i∗ 6= 2, j∗ 6= 2,

(42)

where x+ = max{x, 0} for x ∈ IR, i.e., firm i∗ bears the risk (X − F−1
X (s∗))+ and

firm j∗ bears the risk min{X,F−1
X (s∗)}, where firm i∗ or j∗ may be the insurer

that retains the risk.
We conclude this section with the following example.

Example 7.1 LetX ∼ Exp(µ), EgI [Y ] = MCV aR0.8,0.8(Y ), Eg1 [Y ] = MCV aR0.5,0.5(Y ),
and E

g2 [Y ] = MCV aR0.2,0.2(Y ) for Y ∈ L1. Since the risk X is exponentially dis-
tributed with parameter µ > 0, we have

CV aRβi
(X)

=

∫ F−1

X
(βi)

0

1dz +

∫ ∞

F−1

X
(βi)

exp(−µz)

1− βi
dz = F−1

X (βi) +
exp(−µF−1

X (βi))

µ(1− βi)
(43)

= F−1
X (βi) + E[X ], (44)

where (43) follows from (5), and (44) follows from the fact that F−1
X (βi) = − ln(1−

βi)/µ. Note that the quantile F−1
X (βi) is also known as the Value-at-Risk.

The distortion functions gI , g1, g2, and ĝ are displayed in Figure 1. From (40),
we get s∗ = 0.5. In this example, the firms i∗ and j∗ are uniquely determined, and
given by i∗ = 2 and j∗ = I. Here, i∗ = 2 because g2(s) ≤ min{gI(s), g1(s)} for all
0 ≤ s ≤ s∗, and j∗ = I because gI(s) ≤ min{g1(s), g2(s)} for all s∗ ≤ s ≤ 1. The
second-lowest function is given by

ĝ(s) =





1.5s if 0 ≤ s ≤ 2/7,
0.2 + 0.8s if 2/7 < s ≤ 0.5,
1.2s if 0.5 < s ≤ 5/7,
0.5s+ 0.5 if 5/7 < s ≤ 1,

which is not concave. We get from (41)-(42) that (f ∗, π) ∈ F2 × IR2 is Pareto
optimal when f ∗

1 (X) = 0 and f ∗
2 (X) = (X − 1

µ
ln(2))+. We readily derive

π2(f
∗
2 ) = E

ĝ[f ∗
2 (X)] = MCV aR5/7,0.2[f

∗
2 (X)] = (0.6 + 0.2 ln(1.75))/µ.

By individual rationality of the insurer, we get that π1(f
∗
1 ) = 0. Moreover,

we obtain π2(f
∗
2 ) = E

g2 [f ∗
2 (X)] = MCV aR0.2,0.8[f

∗
2 (X)] = 0.6/µ. So, we readily

verify that π2(f
∗
2 ) ≤ π2(f

∗
2 ) and, also, π2(f

∗
2 ) ≤ E

gI [f ∗
2 (X)] = (0.6+0.2 ln(2.5))/µ.
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s →
0 1/3 2/3 1

g
i(
s
)
→

0

1/3

2/3

1

Figure 1: Construction of the function ĝ via the distortion functions gI , g1 and
g2 corresponding to Example 7.1. The function gI is the dotted line, g1 is the
dashed-dotted line, g2 is the dashed line, and ĝ is the solid line.

Hence, RP ∗
1 = 0 and RP ∗ = RP ∗

2 = 0.2 ln(1.75)/µ and the welfare gain for the
insurer is given by IP ∗ = HB∗ − RP ∗ = 0.2(ln(2.5)− ln(1.75))/µ > 0.

Let µ = 1. Then, we find that π2(f
∗
2 ) ≈ 0.6, π2(f

∗
2 ) ≈ 0.71 and E

gI [f ∗
2 (X)] ≈

0.78, so that IP ∗ ≈ 0.07 and RP ∗ ≈ 0.11. Note that in contrast to the case with
n = 1, this distortion function does not need to be concave whenever all distortion
functions gI , g1, . . . , gn are concave. So, the premium does not need to increase
when the indemnity is increased by mean-preserving spreads. The insurer makes
a welfare gain of approximately 0.13, which is significantly larger than the welfare
gain of Reinsurer 2, which is approximately 0.06. This difference follows from the
competition between the reinsurers, that leads to the insurer’s profit IP ∗ ≈ 0.07.
Hence, even when Reinsurer 1 is not reinsuring any risk, the presence of Reinsurer
1 in the market leads to a significant reduction in the welfare gain of Reinsurer 2.

8 Illustration with the GlueVaR risk measure

In this section, we study a particular choice of a non-coherent distortion risk
measure known as the GlueVaR (Belles-Sampera et al., 2014a). Formally GlueVaR

25



is defined by

GlueV aRh1,h2

β,α (Y ) := ω1CV aRβ(Y ) + ω2CV aRα(Y ) + ω3F
−1
Y (α), for all Y ∈ L1,

where 0 ≤ α ≤ β ≤ 1, 0 ≤ h1 ≤ h2 ≤ 1, ω1 := h1 − (h2 − h1)(1 − β)/(β − α),
ω2 := (h2 − h1)(1 − α)/(β − α), and ω3 := 1 − ω1 − ω2 = 1 − h2. Recall that
F−1
Y (α) is also called the Value-at-Risk. The GlueVaR is a distortion risk measure

(Belles-Sampera et al., 2014a), with distortion function:

g(s) =





h1

1−β
s if 0 ≤ s < 1− β,

h1 +
h2−h1

β−α
(s− (1− β)) if 1− β ≤ s < 1− α,

1 if 1− α ≤ s ≤ 1.

The GlueVaR is not coherent as defined in Artzner et al. (1999), since it is not
necessarily sub-additive.

As in the previous section, we assume there are two reinsurers: Reinsurers 1

and 2. Moreover, let EgI [Y ] = GlueV aR
h1,I ,h2,I

β,α (Y ), Eg1 [Y ] = GlueV aR
h1,1,h2,1

β,α (Y ),

and E
g2 [Y ] = GlueV aR

h1,2,h2,2

β,α (Y ) for Y ∈ L1 and a fixed 0 < α < β < 1. A
representation of the corresponding distortion functions is displayed in Figure 2.

g
(s
)
→

s →
0

h1

h2

1

1− β 1− α 1

Figure 2: Graphical illustration of the distortion function g(s) of GlueV aRh1,h2

β,α .

Note that over the interval [1 − α, 1] all distortions are identical. Let X ∈ L1

again be a continuous random variable with cumulative distribution function FX(·).
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It follows from Proposition 4.2 that the risk min{X,F−1
X (α)} is shared among the

three firms in any comonotonic way. Also, ĝ(s) = 1 for all s ∈ [1−α, 1]. Moreover,
for i∗ ∈ argmin{h1,i : i = I, 1, 2}, we obtain gi∗(s) = min{gI(s), g1(s), g2(s)} for
all 0 ≤ s ≤ 1 − β. This implies that the risk (X − F−1

X (β))+ is allocated to
firm i∗. Moreover, ĝ(s) = gj(s) for all s ∈ [0, 1 − β], where j ∈ {I, 1, 2} is the
firm that yields the second-lowest value of {h1,i : i = I, 1, 2}. For the risk-layer
(min{X,F−1

X (β)} − F−1
X (α))+, different indemnity patterns can be optimal.

To provide a more explicit numerical illustration, we now consider the following
example.

Example 8.1 In this example, the parameters h1,i, h2,i of the agents are chosen
to coincide with the parameter choices in Belles-Sampera et al. (2014b), and are
given by h1,I = 11/30, h2,I = 2/3, h1,1 = 0, h2,1 = 1, h1,2 = 1/20, and h2,2 = 1/4.
Moreover, we select the parameters β = 2/3 and α = 1/3. The distortion functions
gI , g1, g2, and ĝ are displayed in Figure 3.

g i
(s
)
→

s →
0

1

1/3 2/3 1

Figure 3: Construction of the function ĝ via the distortion functions gI , g1 and
g2 corresponding to Example 8.1. The function gI is the dotted line, g1 is the
dashed-dotted line, g2 is the dashed line, and ĝ is the solid line.

Let X ∼ Exp(1). Then, the indemnities f1(X) = (X − F−1
X (31/48))+ = (X −

ln(48/17))+ ≈ (X − 1.04)+ and f2(X) = (min{X,F−1
X (31/48)} − F−1

X (1/3))+ =
(min{X, ln(48/17)}− ln(3/2))+ ≈ (min{X, 1.04}−0.41)+ solve (3), and we assign
the risk min{X, ln(3/2)} ≈ min{X, 0.41} to the insurer. We obtain π1(f

∗
1 ) =
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E
g1 [f ∗

1 (X)] = GlueV aR0,1
2/3,1/3(f

∗
1 (X)) ≈ 0.002 and π1(f

∗
1 ) = E

ĝ[f ∗
1 (X)]) ≈ 0.053.

Moreover, π2(f
∗
2 ) = E

g2 [f ∗
2 (X)] = GlueV aR

1/20,1/4
2/3,1/3 (f ∗

2 (X)) ≈ 0.093 and π2(f
∗
2 ) =

E
ĝ[f ∗

2 (X)]) ≈ 0.262. So, we readily verify that πi(f
∗
i ) ≤ πi(f

∗
i ). We derive RP ∗

1 ≈
0.052, RP ∗

2 ≈ 0.169, RP ∗ = RP ∗
1 +RP ∗

2 = 0.221. For the insurer, we obtain from
(38) that IP ∗ = E

gI [f ∗
1 (X) + f ∗

2 (X)]− E
ĝ [f ∗

1 (X) + f ∗
2 (X)] ≈ E

gI [(X − 0.41)+]−
E
ĝ [(X − 0.41)+] ≈ 0.713− (0.053 + 0.262) = 0.398.

9 Exponential Utility Framework

In this section, we discuss another class of monetary preferences that is based on
the exponential utility. We derive the competitive premium π̄i(fi) as defined in
(9). Interestingly, we find that the premium π̄i(fi) does not only depend on fi but
also depend on X .

Formally the exponential utility is defined as Ui(z) = −γi exp(−
1
γi
z), where γi

captures the risk tolerance of firm i. Then, we have

U−1
i (E[Ui(Y + c)]) = U−1

i (E[Ui(Y )]) + c,

for any constant c ∈ R. Accordingly, we assume that the preference for firm
k, k ∈ {I, 1, 2, . . . , n}, is given by

Vk(Y ) = U−1
i (E[Ui(Y )]) = γk lnE

[
exp

(
1

γk
Y

)]
, (45)

which, as defined in Definition 2.1, is a monetary utility function. The risk mea-
sure (45) is also known as the entropic risk measure (see Barrieu and El Karoui,
2005). One of the key properties is that the cash-invariance property still holds,
i.e. Vk(Y + c) = Vk(Y ) + c. Note that this preference does not satisfy the comono-
tonic additivity, but it is additive for independent risks, and super-additive for
comonotonic risks (Wang and Dhaene, 1998). The comonotonic super-additivity
property is defined as follows:

• comonotonic super-additivity: for all X, Y ∈ L1 that are comonotonic, we
have Vk(X) + Vk(Y ) ≤ Vk(X + Y ).

By applying Theorem 3.9 of Barrieu and El Karoui (2005), it can be shown
that a solution to (3) is given by

f ∗
i (X) =

γi
γI +

∑n
j=1 γj

X, for all i = 1, 2, . . . , n.

Hence, the Pareto optimal reinsurance contracts are proportional.
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Similarly, the reinsurer i will charge a premium that avoids other reinsurers
jointly to rationally provide a lower premium for the same risk. Similar to (9), we
determine competitive premium of fi(X) as the minimum value that the insurer
and other reinsurers assign jointly to this risk. Then, we get

πi(fi) := min
f̃∈F−i

{
VI

(
X −

∑

j 6=i

f̃j(X)
)
+
∑

j 6=i

Vi

(
f̃j(X)

)}

− min
f̃∈F−i

{
VI

(
X−i −

∑

j 6=i

f̃j(X−i)
)
+
∑

j 6=i

Vi

(
f̃j(X−i)

)}

= VI

( γI
γI +

∑
j 6=i γj

X
)
+
∑

j 6=i

Vi

(
γj

γI +
∑

j 6=i γj
X

)

− VI

( γI
γI +

∑
j 6=i γj

(X − fi(X))
)
−
∑

j 6=i

Vi

(
γj

γI +
∑

j 6=i γj
(X − fi(X))

)

= (γI +
∑

j 6=i

γj) lnE
[
exp(

1

γI +
∑

j 6=i γj
X)
]

− (γI +
∑

j 6=i

γj) lnE
[
exp

( 1

γI +
∑

j 6=i γj
(X − fi(X))

)]

= (γI +
∑

j 6=i

γj) ln
E

[
exp

(
1

γI+
∑

j 6=i γj
X
)]

E

[
exp( 1

γI+
∑

j 6=i γj
(X − fi(X)))

] .

The above result can be simplified as

πi(fi) = Hαi
(X)−Hαi

(X − fi(X)), (46)

where Hα(X) = α lnE[exp( 1
α
X)] is the exponential premium principle and αi :=

γI +
∑

j 6=i γj.

Observe that (46) under the exponential utility framework is isomorphic to
(11) under the distortion risk measure framework. As the preference relation in
(45) does not satisfy comonotonic additivity, the competitive premium depends
not only on fi(X), but also on X . In (11), the competitive premium in the
distortion risk measure framework depends only on fi(X) by virtue of comonotonic
additivity. But due to the comonotonic super-additive property, it follows that
πi(fi) ≥ Hαi

(fi(X)).
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10 Conclusion

In practice, insurers can typically reinsure their risk with more than one rein-
surer. Optimal indemnities for reinsurance with fixed premium functions have
been studied in the literature (Asimit et al., 2013b; Chi and Meng, 2014; Boonen
et al., 2016b; Cong and Tan, 2016). This paper studies the case where premiums
are not pre-determined via a premium principle, but instead determined via mod-
eling the competition. We assume that all firms minimize distortion risk measures,
or maximize exponential utilities. Pareto optimality for insurance contracts leads
to a specific structure of the indemnities. When reinsurers are individually ratio-
nal and there is competitive pricing, we characterize the premiums by taking into
account potential competition among the reinsurers. This yields welfare gains for
the insurer and the reinsurers. In case of distortion risk measures, we show this
welfare gain in closed form. If all reinsurers have similar preferences, competition
leads to a large welfare gain for the insurer. This welfare gain is generated by
paying relatively low premiums.

As a suggestion for further research, we propose to study an appropriate defini-
tion of competition when there are multiple insurers, and their risks have a known
multivariate distribution. This problem is mathematically challenging, and akin
to the case of background risk for the reinsurers. Background risk is studied by
Dana and Scarsini (2007) in case the firms are endowed with expected utilities,
but it is to the best of our knowledge not studied for distortion risk measures.
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A Appendix A

In this appendix, we provide the detailed proofs for Proposition 3.1 and Proposi-
tion 4.2.

Proof of Proposition 3.1:

First, we prove for “only if” part. We suppose that (f, π) ∈ FN × IRn is Pareto
optimal, but f is not an element of the set (3). Then, there exists an f̂ ∈ FN such
that

VI

(
X −

n∑

i=1

fi(X)

)
+

n∑

i=1

Vi(fi(X)) > VI

(
X −

n∑

i=1

f̂i(X)

)
+

n∑

i=1

Vi(f̂i(X)).

Define π̂i := Vi(f̂i(X)) − Vi(fi(X) − πi) for i = 1, 2, · · · , n. The cash-invariance
property of Vi implies that

Vi(f̂i(X)− π̂i) = Vi(fi(X)− πi).

As π and π̂ will cancel out due to cash-invariance of VI and Vi, it follows that

VI

(
X −

n∑

i=1

fi(X) +

n∑

i=1

πi

)
> VI

(
X −

n∑

i=1

f̂i(X) +

n∑

i=1

π̂i

)
,

since Vi(f̂i(X)− π̂i) = Vi(fi(X)− πi) for all i = 1, . . . , n. This is a contradiction
with (f, π) ∈ FN × IRn being Pareto optimal and thus f must be an element of
the set (3).

Second, we show the “if” part. We suppose that f is an element of the set (3),
but (f, π) ∈ FN×IRn is not Pareto optimal. Then, there exists another reinsurance
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contract profile (f̂ , π̂) ∈ FN × IRn such that

VI

(
X −

n∑

j=1

(f̂j(X)− π̂j)

)
≤ VI

(
X −

n∑

j=1

(fj(X)− πj)

)
,

Vi(f̂i(X)− π̂i) ≤ Vi(fi(X)− πi), i = 1, . . . , n,

with at least one strict inequality. Thus, we obtain from cash-invariance of VI and
Vi that

VI

(
X −

n∑

i=1

f̂i(X)

)
+

n∑

i=1

Vi(f̂i(X)) < VI

(
X −

n∑

i=1

fi(X)

)
+

n∑

i=1

Vi(fi(X)),

which leads to a contradiction with f being an element of the set (3). The propo-
sition is thus proved. �

Proof of Proposition 4.2:

For any f ∈ FN , we have

VI

(
X −

n∑

i=1

fi(X)

)
+

n∑

i=1

Vi(fi(X))

= VI(X) +

n∑

i=1

(
Vi(fi(X))− VI(fi(X))

)

= VI(X) +
n∑

i=1

(
E
gi [fi(X)]− E

gI [fi(X)]
)

= VI(X) +

n∑

i=1

∫ ∞

0

(
gi(SX(z))− gI(SX(z)

)
dfi(z),

where the last equality is due to the fact that E
gk [fi(X)] =

∫∞

0
gk(SX(z))dfi(z)

(see Lemma 2.1 in Zhuang et al. (2016)).
We denote h∗

i as the density of f ∗
i for i = 1, 2, · · · , n, satisfying f ∗

i (z) =∫ z

0
h∗
i (x)dx for all z ≥ 0. Because f ∗

i ∈ F for all i and
∑n

i=1 f
∗
i ∈ F , we must have

h∗
i ∈ H for all i and

∑n
i=1 h

∗
i ∈ H, whereH :=

{
h : [0,∞) → [0, 1]

∣∣ 0 ≤ h(z) ≤ 1, a.s.
}
.

Then, a profile f ∗ ∈ FN is a solution to (3) if f ∗ (or equivalently h∗) solves the
following optimization problem

min
∫∞

0

∑n
i=1

(
gi(SX(z))− gI(SX(z)

)
h∗
i (z)dz

s.t. h∗
i ∈ H, ∀i = 1, . . . , n,

∑n
i=1 h

∗
i ∈ H.
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Notice that, if z ∈ A, we should set
∑n

i=1 h
∗
i (z) to be 1 and h∗

i (z) = 0 for i 6∈
argmin1≤j≤n

{
gj(SX(z))− gI(SX(z))

}
. And, if z ∈ B, we can set

∑n
i=1 h

∗
i (z) to be

any value in [0, 1], but h∗
i (z) = 0 for i 6∈ argmin1≤j≤n

{
gj(SX(z)) − gI(SX(z))

}
.

Finally, if z 6∈ A ∪ B, we should set h∗
i (z) to be 0 for all i. Therefore, h∗

i should
satisfy

h∗
i (z) =





αi(z) if z ∈ A and i ∈ argmin1≤j≤n

{
gj(SX(z))− gI(SX(z))

}
,

βi(z) if z ∈ B and i ∈ argmin1≤j≤n

{
gj(SX(z))− gI(SX(z))

}
,

0 otherwise,

for all z ≥ 0, where αi(z) and βi(z) are measurable and [0, 1]-valued functions such
that

n∑

i=1

h∗
i (z) =





1 if z ∈ A,

φ(z) if z ∈ B,

0 otherwise,

where φ is a measurable and [0, 1]-valued function. The proof is thus complete.�
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