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Abstract

This paper revisits the study of insurance demand in the context of potential government
financial assistance, such as ex post disaster relief and ex ante premium subsidies. We impose
the incentive-compatibility condition on the indemnity, and assume that the premium is
determined by the actuarial-value-based premium principle. By applying Ohlin’s lemma, we
characterize the optimal forms of the indemnity function under independence between the
relief event and the insurable loss. The optimal parameters of the indemnity function are
derived, and both analytical and numerical comparative studies are conducted to demonstrate
the effects of disaster relief and premium subsidies on the demand for insurance. Furthermore,
we study two forms of dependence between the relief event and the insurable loss. First, we
study one specific yet common loss-dependent relief probability case. Second, we study special
cases of conditional insurable loss distributions using the hazard rate ordering. Also, we study
the effect of premium subsidies on the insurance demand, and show that premium subsidies
increase the demand for insurance under increasing absolute risk aversion. The results provide
new insights into the study of natural hazard insurance demand in the presence of government
interventions.
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1 Introduction

Each year, natural disasters, such as earthquakes, storms, and floods, cause significant personal
and economic losses globally. According to the 2023 report by Munich Re,1 these disasters resulted
in global losses of approximately $250 billion. Natural hazard insurance plays a central role in
providing individuals and businesses with financial protection against these losses. Such insurance
can be purchased from insurance companies to recover from specific natural hazards. However, for
some major systemic catastrophes, the government may provide assistance and broader support,
such as infrastructure reconstruction and essential services restoration. The benefits of natural
hazard insurance and government assistance are therefore related, and can be complementary
to each other. Government assistance programs are typically financed through tax revenue or
dedicated disaster relief funds, and governments may also subsidize insurance premiums to enhance
the affordability of insurance in high-risk areas.

To properly budget for ex ante premium subsidies and ex post disaster relief fund, it is crucial
for the government to understand the insurance demand of individuals or corporations with and
without any forms of government assistance. It is noteworthy that the government assistance can be
regarded as a special kind of background “risk” of the insurance buyer, and the literature on optimal
insurance contracting under background risks is rich. In the presence of the additive background
risk, Chi & Wei (2018) examine the optimality of the stop-loss function under the higher-order risk
attitudes of the insurance buyer. Chi & Tan (2021) study the effect of the stochastic dependence
between the background risk and the insurable risk on the optimal insurance contract under the
incentive-compatibility condition, and show that the optimal contract would change substantially
once the incentive-compatibility condition gets removed. Another background risk is often referred
to as the counterparty’s risk or insurer’s default risk. Some recent representative works are, for
example, Boonen & Jiang (2022) and Boonen & Jiang (2023).

Both disaster relief assistance and premium subsidies are government intervention measures,
which aim to address the rapid growth of perils caused by natural hazards in a public-private part-
nership context. In practice, if the government provides disaster relief funds to the policyholders,
it typically distributes a fixed amount or portion of funds to the insureds; see Kelly & Kleffner
(2003), Linnerooth-Bayer et al. (2005), and Raschky & Weck-Hannemann (2007), to name a few.
There exist various disaster-related programs in the United States that are coordinated by the
Federal Emergency Management Agency (FEMA), including the National Flood Insurance Pro-
gram (NFIP), the Individual Assistance (IA) program, and so on. FEMA offers subsidized rates
to reduce flood insurance premiums for policyholders in flood-prone regions. If a flood-related
disaster is federally declared, an NFIP policyholder may file a claim with the NFIP to receive
compensation for their flood-related losses and may also be eligible to apply for the IA program
to receive additional assistance. For example, Akbulut-Yuksel et al. (2023) show that the individ-
uals residing in flooded areas experience a rise in income from the floods that struck the state of
Queensland in Australia in 2010 with the government’s post-disaster relief funds. The role of gov-
ernment interventions has been extensively investigated in the literature on insurance economics
and policy making, particularly in flood and crop insurance markets where substantial empirical
analysis has already been conducted. Moreover, Deryugina & Kirwan (2018) show that disaster
relief anticipation is qualitatively and quantitatively important for insurance demand by studying
the US crop insurance markets. The authors also point out that eliminating disaster payments is

1See https://www.munichre.com/content/dam/munichre/mrwebsiteslaunches/2023-annual-report/

MunichRe-Group-Annual-Report-2023-en.pdf/_jcr_content/renditions/original.

/MunichRe-Group-Annual-Report-2023-en.pdf
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something the government has yet to commit to.
Despite the social benefit created by the government disaster relief assistance, the insurance

demand may be reduced as well. Anticipating public charitable assistance, individuals may inten-
tionally reduce their insurance spending. Such behavior is called “charity hazard”, which has been
shown by, for example, Browne & Hoyt (2000), Van Asseldonk et al. (2002), Raschky & Weck-
Hannemann (2007), Miglietta et al. (2020), and Robinson et al. (2021). While government relief
funds can generally be seen as a risk management tool for individuals, as addressed in Raschky
et al. (2013), the payment event and size are somewhat ad hoc, depending on the political and
societal circumstances, and generally do not cover all kinds of losses. Hence, government disaster
relief assistance is subject to uncertainty, leaving individuals in an uncertain position to seek other
risk-hedging tools.

It is worth mentioning that the provision of government relief usually depends on the severity
of natural disasters, which means that there is a possibility for the relief action. Inspired by this
fact, Hinck (2024) studies the design of optimal insurance contracts with government disaster relief
payments where the government’s relief event is modeled by a binary random variable. He derives
the shape of optimal insurance contracts within a framework with and without ambiguity on the
relief probability. In Hinck (2024), the relief payment function is required to be a twice continuously
differentiable function, which excludes some practical cases such as that the relief fund is capped
for each individual (or the population in a disaster area). Furthermore, the insurance compensation
function is not required to satisfy the incentive compatibility condition, which may result in ex
post moral hazard issues. Hinck (2024) identifies sufficient conditions, such as a constant relief
probability, under which the incentive compatibility condition is satisfied.

To improve the willingness of (catastrophe) insurance purchase, governments may take out a
portion (or the whole) of the relief fund as ex ante premium subsidies. Another reason is that
premium subsidies may perform better than relief payments in reducing the retained loss of indi-
viduals or insureds. For example, by analyzing frost insurance demand of German winegrowers,
Philippi & Schiller (2024) demonstrate that the implementation of a premium subsidy in an imma-
ture market with low levels of participation, presumably caused by strong anticipation of disaster
relief, is effective in increasing overall frost insurance demand. Hence, premium subsidies can be
used to address low demand for natural hazard insurance when it is partly caused by governmental
disaster relief payments. In particular, premium subsidies have been widely used in crop insurance
markets. For instance, the U.S. government has been actively shifting from providing ex post disas-
ter relief toward providing ex ante premium subsidies in crop insurance markets; see, for example,
Glauber (2013), Yu et al. (2018), and Tsiboe & Turner (2023).

This paper contributes to the literature in several ways. By incorporating the disaster relief
funds, a general bivariate function is applied to model the terminal retained loss of the decision
maker (DM) as a consequence of the combined action of the insurer and government. An optimal
insurance demand problem is studied in detail when the relief payment is modeled as a binary
random variable. Under the setting in which the loss is independent of the relief payment, the
deductible policy is proved optimal, with the optimal deductible levels derived for several special
cases. Besides that, the effect of the amount of payment and premium subsidies are analytically
studied, with surprising examples provided when the DM holds different risk attitudes. Moreover,
we study the insurance demand problem under the dependence of the relief payment and loss,
where the optimal parametric ceded loss function is derived for the case in which the relief payment
probability is increasing with the size of loss, and an improvement technique is proposed for the case
when the DM is faced with different loss distributions under different amounts of relief payment.
Compared with the two recent representative works on the coupling of insurance and government
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financial assistance, i.e., Hinck (2024) and Philippi & Schiller (2024), our paper focuses on a class
of indemnity functions that satisfy the incentive-compatibility condition, which is now popular in
many well-known research articles, and employs the stochastic ordering approach to derive the
optimal contract, which is proven more efficient in the absence of some differentiability conditions.
The economic implications of the results of Philippi & Schiller (2024) are also extended to a more
general class of indemnity functions.

This paper is set out as follows. Section 2 introduces the disaster relief mechanism and for-
mulates the insurance demand problem in the paper. When the relief event is independent of
the insurable loss, Section 3 shows that the solution is of the deductible form, and analyzes the
effect of the disaster relief fund and premium subsidy on the insurance demand. Section 4 studies
the case where the relief probability depends on the loss size via a particular step function. The
optimal retained loss function is proven to have multiple layers. Further, in the sense of stochastic
ordering, the insurance demand is studied when loss distribution varies with the amount of paid
relief fund. Section 5 concludes the paper and suggests potential research directions. A proof of
Theorem 2.1 is provided in Appendix A.

2 Problem formulation

We focus on a one-period economy that is built on the probability space (Ω,F ,P). Let X be a
non-negative random variable representing the loss faced by a DM, with continuous support [0,M ]
for some M > 0. The cumulative distribution function (CDF) and survival function of X are
denoted by FX and SX , respectively. In the case of eligible disasters occurring, the government
may provide disaster relief funds to individuals. Let Y denote the payment that the government
can pledge to the DM, which is a random variable with the following binary distribution:

Y =

{
0, if no relief is provided;

ℓ, if relief is provided.

where ℓ > 0 is a constant, representing the relief budget level. The decision of providing disaster
financial assistance is up to the government, and the relief probability p := P(Y = ℓ) ∈ [0, 1] can be
assumed to be either constant or dependent on X. Here, p = 0 results in no government disaster
relief payments and it becomes a standard insurance problem. The case of p = 1 indicates the
deterministic participation of government relief.

Suppose that the DM aims to protect herself via insurance. An insurance contract typically
consists of a ceded loss function I (also known as the indemnity function) and its associated
premium π(I). To alleviate potential ex post moral hazard, we exogenously impose the so-called
incentive compatibility condition on the indemnity function motivated by Huberman et al. (1983),
limiting I to the following set:

I := {I : [0,M ] 7→ [0,M ] | I(0) = 0, 0 ≤ I(x2)− I(x1) ≤ x2 − x1, ∀ 0 ≤ x1 ≤ x2 ≤M} .

The functions within I satisfy several desirable properties. For example, the ceded loss is always
increasing, and its increment does not exceed the increment of the total loss. It is worth noting
that the functions within I are 1-Lipschitz continuous.

We define G(x, y) as the bivariate function of the retained loss and the government’s relief fund,
representing the DM’s final retained loss after receiving the relief fund. In consideration of the
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government’s relief fund, the DM aims to seek the optimal ceded loss function I∗ from the insurer
by solving the following optimization problem:

max
I∈I

E [u (W0 −G(X − I(X), Y )− π(I(X)))] . (1)

Throughout this paper, we assume that

(a). The utility function u : R 7→ R is increasing, continuously differentiable, and concave;

(b). π(I(X)) = h(E[I(X)]) is an actuarial-value-based premium principle, where h is referred to
as the pricing function and satisfies h(0) = 0 and h′(x) ≥ 1 for x ∈ [0,M ];

(c). G(x, y) is a non-negative and convex function of x for each fixed y, and satisfies x − y ≤
G(x, y) ≤ x. Moreover, G(x, y) is decreasing in y, for any fixed x.

Note that the premium is charged based on the promised insurance indemnification instead of
the actual compensation since the disaster relief fund is paid (if any) after the insurance indem-
nification. Two special cases of the function h are h(x) = (1 + θ)x for θ ≥ 0, which yields the
expected value premium principle: π(I(X)) = (1 + θ)E[I(X)], and h(x) = ((1 + θ)x − s)+ for
θ, s ≥ 0, which yields π(I(X)) = ((1 + θ)E[I(X)]− s)+. Moreover, the assumptions on G imply
that

(i). the retained loss remains unchanged if no disaster relief funds are provided and reduces from
X − I(X) to G(X − I(X), ℓ) otherwise;

(ii). with the relief fund, the marginal increment of the final retained loss is increasing with
respect to the original amount of retained loss;

(iii). the final retained loss is further reduced after receiving a larger amount of relief fund.

Two special cases of the function G are G(x, y) = (x− y)+ and G(x, y) = x− (βx)∧ y, β ∈ (0, 1),
where we use the notation z+ := max{z, 0} and z1∧z2 := min{z1, z2}. Then, the terminal retained
loss can be written as

G(X − I(X), ℓ) = (X − I(X)− ℓ)+

and
G(X − I(X), ℓ) = X − I(X)− (β(X − I(X))) ∧ ℓ,

respectively. Here, in the first special case, the government pledges the amount ℓ, but this is
capped by the constraint that the government relief does not exceed the original retained risk.
Likewise, for the second special case with β = 1, the retained risk after government relief is at
most ℓ, but it is smaller if the original retained risk is already smaller than ℓ.

If ℓ = M , then the random variable G(X − I(X),M) is the same as the retained risk after
government relief in Hinck (2024), with the exception that we do not impose G being twice con-
tinuously differentiable (or even differentiable). This makes our setting more general than Hinck
(2024).

Let R(X) = X − I(X) be the retained loss of the DM after receiving the indemnity from the
insurer. Problem (1) can be written as

max
R∈I

E [u (W0 −G(R(X), Y )− π(X −R(X)))] . (2)

The following theorem shows the existence of solutions to (2), and provides a sufficient condition
for the uniqueness of solution.
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Theorem 2.1. There exists a solution R∗ ∈ I to Problem (2). If h is convex and at least one of
−u, G and h is strictly convex, then R∗ is unique P-almost surely, that is P(R∗(X) = R̃(X)) = 1
for all R̃ that also solve Problem (2).

The proof of Theorem 2.1 is similar to the proof of Theorem 2.1 in Liang et al. (2023). For
completeness, we provide a complete proof in Appendix A. In the proof of Theorem 2.1, we use
a compactness argument on I, for which we need X to be bounded. If existence of solutions to
Problem (2) happens to hold true, we remark that the results in the rest of the paper also hold
for M = ∞ provided that E[X] <∞.

3 Independence between the loss and government relief

3.1 General result

This section studies the case where there is independence between the government’s relief
decision and the size of loss X.

Assumption 1. The random variables X and Y are independent.

Under Assumption 1, Problem (2) can be written as:

max
R∈I

{
pE[u(W0 −G(R(X), ℓ)− π(X −R(X)))]

+ (1− p)E[u(W0 −R(X)− π(X −R(X)))]
}
,

(3)

where we recall that p is the government relief probability P(Y = ℓ).
We next provide the parametric solution to the problem (3). The proof of the following theorem

relies on an improvement technique based on the convex order proposed in Ohlin (1969). This
improvement technique shows that the deductible indemnity is optimal for any concave expected
utility objectives among all indemnities with a fixed expectation and premium. This technique is
also used by Cheung (2010), Sung et al. (2011), and Chi & Tan (2013), but is different from the
approach of Hinck (2024).

Theorem 3.1. Under Assumption 1, the solution to Problem (3) is of the form R∗(x) = x∧ d for
some d ≥ 0.

Proof: We start the proof with a definition. We say that a continuous function f up-crosses (resp.
down-crosses) another continuous function g at x0 if there exist ϵ1, ϵ2 > 0 such that f(x) ≤ g(x)
(resp. f(x) ≥ g(x)) for x ∈ (x0 − ϵ1, x0) and f(x) ≥ g(x) (resp. (f(x) ≤ g(x)) for x ∈ (x0, x0 + ϵ2)
with the inequalities being strict for some x ∈ (x0 − ϵ1, x0 + ϵ2).

Next, we proceed with the proof the theorem. To solve Problem (3), we consider its variant
with a fixed budget:

max
R∈I

pE[u(W0 −G(R(X), ℓ)− P )] + (1− p)E[u(W0 −R(X)− P )]

s.t. P = h(E[X −R(X)]).
(4)

Let v1(x) = E[u(W0 −G(x, ℓ)− P )] and v2(x) = u(W0 − x− P ), then it is easy to verify that
v1 and v2 are both concave functions. This simplifies Problem (4) as follows:

max
R∈I

pE[v1(R(X))] + (1− p)E[v2(R(X))],

s.t. E[R(X)] = E[X]− h−1(P ) = P̃ ≥ 0.
(5)
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Given any R ∈ I that satisfies E[R(X)] = P̃ , we can always find a d ≥ 0 such that E[X ∧ d] =
E[R(X)] = P̃ . Let R∗(x) = x ∧ d, it is straightforward that R(x) up-crosses R∗(x) at some point
x0 ∈ [0,M ]. As such, by applying Lemma 3 of Ohlin (1969), we have R∗(X) ≤cx R(X), where ≤cx

denotes the convex order. Since −v1 and −v2 are both convex functions, we have

E[−v1(R∗(X))] ≤ E[−v1(R(X))], E[−v2(R∗(X))] ≤ E[−v2(R(X))],

which leads to

pE[v1(R∗(X))] + (1− p)E[v2(R∗(X))] ≥ pE[v1(R(X))] + (1− p)E[v2(R(X))].

This completes the proof.

Theorem 3.1 indicates that the optimal form of the ceded loss function is a classical deductible
function I∗(x) = x−R∗(x) = (x− d)+, which simplifies Problem (3) as follows:

max
d≥0

{
pE[u(W0 −G(X ∧ d, ℓ)− π((X − d)+))]

+ (1− p)E[u(W0 −X ∧ d− π((X − d)+))]
}
.

(6)

In the next subsection, some analytical forms of the optimal deductible level will be presented for
special cases of (6).

Our problem (1) is comparable to the optimal insurance problem under background risk that
was considered by Dana & Scarsini (2007) or many other relevant literature:

max
I∈Ĩ

E[u(W0 −X1 −X2 + I(X1)− π(I(X1)))], (7)

where X1 is the insurable risk, X2 is a background risk that may depend on X1, and Ĩ is a more
general class of indemnity functions without considering the incentive-compatibility condition.
Dana & Scarsini (2007) show that if (a) X1 + X2 is stochastically increasing with respect to X1

and (b) X2 is stochastically decreasing with respect to X1, then a generalized deductible policy is
optimal to the problem (7), where I∗(x) = 0 for x ∈ [0, d] and I∗′(x) ∈ [0, 1] for x ∈ (d,M ]. Note
that in our case, X1 = X and X2 = G(X−I(X), ℓ)−X, and it is easy to check that the conditions
(a) and (b) hold for our case given I ∈ I. Hence, the optimal indemnity function for our problem
can be partially explained by the rationales from Dana & Scarsini (2007). Remarkably, the key
difference between our problem and that of Dana & Scarsini (2007) is that our X2 includes the
indemnity function, which justifies the optimality of the stop-loss function, since I∗′(x) = 1 for
x ∈ (d,M ] leads to the smallest X2 among all such generalized deductible policies.

3.2 Optimal deductible levels for special cases of (6)

Following Philippi & Schiller (2024), who studied the optimal proportion for the quota-share
insurance under a two-point loss distribution, we first investigate the optimal deductible level for
Problem (6) when p = 1, i.e., the case where the government always provides disaster relief fund:

max
d≥0

E[u(W0 −G(X ∧ d, ℓ)− π((X − d)+))]. (8)

For the ease of presentation, we write

ψ1(d) = E[u(W0 −G(X ∧ d, ℓ)− π((X − d)+))], ψ2(d) = E[u(W0 −X ∧ d− π((X − d)+)].

7



Since G(·, ℓ) is a convex function on a compact domain, it is absolutely continuous on the interior
of the domain. Thus, it is differentiable almost everywhere. The notation G′

1(x, y) denotes the
partial derivative of G with respect to its first component x for fixed y, whenever it exists.

Theorem 3.2. Let dℓ = inf{d ∈ [0,M ] : SX(d)h
′(E[(X − d)+]) ≤ G′

1(d, ℓ)} and

ϕℓ(d) =
E[u′(W0 −G(X ∧ d, ℓ)− π((X − d)+)]

u′(W0 −G(d, ℓ)− π((X − d)+))
.

The optimal deductible level for Problem (8) is

d∗ℓ = inf {d ∈ [dℓ,M ] : ϕℓ(d)h
′(E[(X − d)+]) ≤ G′

1(d, ℓ)} , (9)

where by convention inf ∅ is defined as the right-end point of the domain.

Proof: Note that

ψℓ(d) =

∫ d

0

u(W0 −G(x, ℓ)− π((X − d)+))dFX(x)

+

∫ M

d

u(W0 −G(d, ℓ)− π((X − d)+))dFX(x).

A simple calculation yields

ψ′
ℓ(d) =SX(d)

{
E[u′(W0 −G(X ∧ d, ℓ)− π((X − d)+))]h

′(E[(X − d)+])

− u′(W0 −G(d, ℓ)− π((X − d)+))G
′
1(d, ℓ)

}
=SX(d)u

′(W0 −G(d, ℓ)− π((X − d)+)) {ϕℓ(d)h
′(E[(X − d)+])−G′

1(d, ℓ)} .

Since h is an increasing convex function and G(x, y) is increasing convex in x, SX(d)h
′(E[(X −

d)+])−G′
1(d, ℓ) is decreasing in d. As such, by the definition of dℓ, we have

SX(d)h
′(E[(X − d)+])

{
> G′

1(d, ℓ), if d < dℓ,

≤ G′
1(d, ℓ), if d ≥ dℓ,

whenever G′
1(d, ℓ) exists. We note that

ϕℓ(d) =

∫ d

0
u′(W0 −G(x, ℓ)− π((X − d)+))dFX(x)

u′(W0 −G(d, ℓ)− π((X − d)+))

+

∫M

d
u′(W0 −G(d, ℓ)− π((X − d)+))dFX(x)

u′(W0 −G(d, ℓ)− π((X − d)+))
≥ SX(d).

Therefore, when d < dℓ, we have

ϕℓ(d)h
′(E[(X − d)+])−G′

1(d, ℓ) ≥ SX(d)h
′(E[(X − d)+])−G′(d, ℓ) > 0,

whenever G′(d, ℓ) exists, which leads to ψ′
ℓ(d) ≥ 0 over [0, dℓ). Thus, the optimal deductible level

is located within [dℓ,M ].
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The derivative of ϕℓ(d) is given by:

ϕ′
ℓ(d) =

∫ d

0
u′′(W0 −G(x, ℓ)− π((X − d)+))dFX(x) · h′(E[(X − d)+])SX(d)

u′(W0 −G(d, ℓ)− π((X − d)+))

+ ϕℓ(d) · AR(W0 −G(d, ℓ)− π((X − d)+)) [h
′(E[(X − d)+])SX(d)−G′

1(d, ℓ)] ,

where AR(x) = −u′′(x)
u′(x)

denotes the Arrow-Pratt absolute risk aversion of the utility function u. It

is apparent that ϕ′
ℓ(d) ≤ 0 for d ∈ [dℓ,M ]. Hence, ϕℓ(d)h

′(E[(X − d)+]) − G′
1(d, ℓ) is decreasing

for d ∈ [dℓ,M ]. As per the definition of d∗ℓ , we have ψ′
ℓ(d) ≥ 0 on [0, d∗ℓ) and ψ

′
ℓ(d) ≤ 0 on [d∗ℓ ,M ].

Thus, d∗ℓ is the optimal deductible level for Problem (8). This completes the proof.

Theorem 3.2 complements Theorem 4.2 of Chi (2019), where the optimal deductible level is
derived for the Arrow’s model but under heterogeneous beliefs between the policyholder and the
insurer. Furthermore, the proof of Theorem 3.2 shows that ψ1(d) is a unimodal quasi-concave
function. Similarly, ψ2(d) is also a unimodal quasi-concave function.2

We next presents the optimal deductible level for another special case of (6), specifically, the
one where the government provides no disaster relief fund:

max
d≥0

E[u(W0 −X ∧ d− π((X − d)+))]. (10)

This case corresponds to the scenario: ℓ = 0 or G(X ∧ d, ℓ) = X ∧ d. The following result is a
corollary of Theorem 3.2.

Corollary 3.1. Let d0 = inf{d ∈ [0,M ] : SX(d)h
′(E[(X − d)+]) ≤ 1} and

ϕ0(d) =
E[u′(W0 −X ∧ d− π((X − d)+)]

u′(W0 − d− π((X − d)+))
.

The optimal deductible level for Problem (10) is

d∗0 = inf {d ∈ [d0,M ] : ϕ0(d)h
′(E[(X − d)+]) ≤ 1} . (11)

3.3 The effect of disaster relief fund on the demand for insurance

Philippi & Schiller (2024) show that the presence of government’s disaster relief fund will lower
the demand for insurance in a simple setting (i.e., the setting where only quota-share insurance
is allowed, and the loss follows a two-point distribution). We will extend the result of Philippi &
Schiller (2024) to a more general setting. For that purpose, we adopt the following mild assumption
in this section.

Assumption 2. For 0 ≤ y2 ≤ y1 ≤M , G′
1(x, y1) ≤ G′

1(x, y2), whenever the derivatives exist.

Assumption 2 implies that: if the government increases the amount of relief fund, the marginal
increment of the retained loss gets lowered. This holds for a large class of G. For example, if
G(x, y) = (x− y)+, we have

G′
1(x, y) =

{
1, if y < x,

0, if y > x.

2A function f is called quasi-concave when f(λx + (1 − λ)y) ≥ min{f(x), f(y)} for all x, y on the domain and
all λ ∈ [0, 1].
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If G(x, y) = x− (βx) ∧ y for some β ∈ [0, 1], we have

G′
1(x, y) =

{
1, if y < βx,

1− β, if y > βx.

An extreme case is when y = 0, which yields G(x, 0) = x. Since G(x, y) is increasing and convex
in x and satisfies G(x, y) ≤ x, it naturally follows that G′

1(x, y) ≤ 1 = G′
1(x, 0). We next present

Theorem 3.3 to illustrate the relationship between the optimal deductible level and the disaster
relief fund level.

Theorem 3.3. If the absolute risk aversion coefficient AR(x) := −u′′(x)
u′(x)

is decreasing, then the

optimal deductible level to Problem (8) is increasing with respect to ℓ.

Proof: Denote by d∗1 and d∗2 the optimal deductible levels to Problem (8) when ℓ = ℓ1 and ℓ2,
respectively, where ℓ1 ≥ ℓ2. Under Assumption 2, we have

SX(d)h
′(E[(X − d)+])−G′

1(d, ℓ1) ≥ SX(d)h
′(E[(X − d)+])−G′

1(d, ℓ2),

whenever G′
1(d, ℓ1) and G

′
1(d, ℓ2) exist, which results in

d1 = inf {d ∈ [0,M ] : SX(d)h
′(E[(X − d)+]) ≤ G′

1(d, ℓ1)}
≥ inf {d ∈ [0,M ] : SX(d)h

′(E[(X − d)+]) ≤ G′
1(d, ℓ2)} = d2.

To prove d∗1 ≥ d∗2, it suffices to show that

ϕℓ1(d)h
′(E[(X − d)+])−G′

1(d, ℓ1) ≥ ϕℓ2(d)h
′(E[(X − d)+])−G′

1(d, ℓ2)

for d ∈ [d1,M ] whenever both G′
1(d, ℓ1) and G′

1(d, ℓ2) exist. In the following, we show that
ϕℓ1(d) ≥ ϕℓ2(d) for d ∈ [d1,M ] by employing the calculus of variation technique.

To shorten the notations, we let G1 := G(X ∧ d, ℓ1), G2 := G(X ∧ d, ℓ2), G̃1 := G(d, ℓ1),
G̃2 := G(d, ℓ2) and π := π((X − d)+). We consider the following function

φ(ϵ) =
E[u′(W0 −G1 − ϵ(G2 −G1)− π)]

u′(W0 − G̃1 − ϵ(G̃2 − G̃1)− π)
,

for ϵ ∈ [0, 1], and it is apparent that φ′(ϵ) ≤ 0 on [0, 1] implies

ϕℓ1(d) ≥ ϕℓ2(d).

A simple calculation yields φ′(ϵ) ≤ 0 if and only if

− E[u′′(W0 −G1 − ϵ(G2 −G1)− π)(G2 −G1)]u
′(W0 − G̃1 − ϵ(G̃2 − G̃1)− π)

+ E[u′(W0 −G1 − ϵ(G2 −G1)− π)]u′′(W0 − G̃1 − ϵ(G̃2 − G̃1))(G̃2 − G̃1) ≤ 0.

Since G′
1(x, ℓ2) − G′

1(x, ℓ1) ≥ 0, we have G(d, ℓ2) − G(d, ℓ1) ≥ G(X ∧ d, ℓ2) − G(X ∧ d, ℓ1). This
leads to

− E[u′′(W0 −G1 − ϵ(G2 −G1)− π)(G2 −G1)]u
′(W0 − G̃1 − ϵ(G̃2 − G̃1)− π)

+ E[u′(W0 −G1 − ϵ(G2 −G1)− π)]u′′(W0 − G̃1 − ϵ(G̃2 − G̃1))(G̃2 − G̃1)

≤
(
G̃2 − G̃1

){
− E[u′′(W0 −G1 − ϵ(G2 −G1)− π)]u′(W0 − G̃1 − ϵ(G̃2 − G̃1)− π)

+ E[u′(W0 −G1 − ϵ(G2 −G1)− π)]u′′(W0 − G̃1 − ϵ(G̃2 − G̃1))
}
. (12)
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Furthermore, since G(x, y) is increasing in x, we have

W0 −G1 − ϵ(G2 −G1)− π ≥ W0 − G̃1 − ϵ(G̃2 − G̃1)− π.

Due to the decreasingness of AR(x), we have

AR(W0 −G1 − ϵ(G2 −G1)− π) ≤ AR(W0 − G̃1 − ϵ(G̃2 − G̃1)− π),

which implies

− u′′(W0 −G1 − ϵ(G2 −G1)− π)u′(W0 − G̃1 − ϵ(G̃2 − G̃1)− π)

≤ −u′′(W0 − G̃1 − ϵ(G̃2 − G̃1)− π)− π)u′(W0 −G1 − ϵ(G2 −G1)− π).

Hence,

− E[u′′(W0 −G1 − ϵ(G2 −G1)− π)]u′(W0 − G̃1 − ϵ(G̃2 − G̃1)− π)

≤ −u′′(W0 − G̃1 − ϵ(G̃2 − G̃1)− π)E[u′(W0 −G1 − ϵ(G2 −G1)− π)].

Hence, (12) satisfies(
G̃2 − G̃1

){
− E[u′′(W0 −G1 − ϵ(G2 −G1)− π)]u′(W0 − G̃1 − ϵ(G̃2 − G̃1)− π)

+ E[u′(W0 −G1 − ϵ(G2 −G1)− π)]u′′(W0 − G̃1 − ϵ(G̃2 − G̃1))
}
≤ 0.

Therefore, we reach the conclusion that φ′(ϵ) ≤ 0 for ϵ ∈ [0, 1], which yields d∗1 ≥ d∗2. This com-
pletes the proof.

The interpretation for Theorem 3.3 is straightforward. The DM becomes wealthier with the
relief fund and thus less risk averse under the condition of Theorem 3.3, which leads to less demand
for insurance.

Theorem 3.3 also implies that d∗ℓ ≥ d∗0. Since ψℓ(d) and ψ0(d) are both unimodal quasi-concave
functions, it follows that

pψ′
ℓ(d

∗
0
−) + (1− p)ψ′

0(d
∗
0
−) ≥ 0 and pψ′

ℓ(d
∗
ℓ
+) + (1− p)ψ′

0(d
∗
ℓ
+) ≤ 0.

Hence, the following corollary is a direct consequence of Theorem 3.3.

Corollary 3.2. If the absolute risk aversion coefficient AR(x) := −u′′(x)
u′(x)

is decreasing, then the

optimal deductible level d∗ of Problem (6) satisfies d∗0 ≤ d∗ ≤ d∗ℓ .

The general analytical result for d∗ is difficult to obtain as the sum of two unimodal quasi-
concave functions is not necessarily a unimodal quasi-concave function, making the proof of The-
orem 3.3 not applicable to the general case.

We remark that decreasing absolute risk aversion (DARA) is quite common in practice, as it
shows the DM’s greater acceptance of risky situations when becoming wealthier. If the utility
function has an increasing absolute risk aversion (IARA) coefficient, then it is unclear whether
the DM would demand more insurance or not when provided the disaster relief fund. On the one
hand, providing the disaster relief fund incentivizes the so-called “charity hazard”, where the DM
enjoys the “free lunch” and lowers her demand for insurance. On the other hand, the DM would
probably increase her demand for insurance, since providing the disaster relief fund makes the
DM wealthier, leading to less willingness to accept the riskier situations. We close this section by
presenting the following example.
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Example 3.1. The quadratic utility function is endowed with IARA. In this example, the following
settings are adopted.

(a). The utility function is given by u(x) = x− β
2
x2, where β = 0.001.3

(b). The loss variable X1 has a truncated exponential distribution with parameter µ = 1/λ = 500,
truncated at M = 5000. Its CDF is given by FX1(x) = (1 − exp(−x/µ))/(1 − exp(−M/µ))
for x ∈ [0,M ]. Moreover, the loss variable X2 has a truncated gamma distribution with
parameters a = 20 and b = 25, also truncated at M = 5000, with CDF given by FX2(x) =
γ(a, bx)/γ(a, bM) for x ∈ [0,M ], where γ is the lower incomplete gamma function.

(c). The initial wealth is given by W0 = 500.

(d). The DM’s retained loss after receiving the disaster relief fund is G(R(X), ℓ) = (R(X)− ℓ)+.

(e). The expected-value premium principle is used i.e. π(I(X)) = (1+θ)E[I(X)], where θ = 0.05.

If the DM is faced with X1, then it is shown in the left panel of Figure 1 that the optimal deductible
level d∗ℓ is increasing with respect to ℓ, which is in line with the conclusion of Theorem 3.3. However,
if the DM is faced with X2, then it is shown in the right panel of Figure 1 that the optimal
deductible level d∗ℓ is decreasing with respect to ℓ. Thus, when the absolute risk aversion coefficient
is increasing, providing disaster relief may still enhance the DM’s demand for insurance, which does
not concur with the conclusion of Philippi & Schiller (2024) that “an increase in anticipation of
disaster relief payments leads to a reduction in the coverage level”. We note that our model setting
and that of Philippi & Schiller (2024) are different in several assumptions, one major difference
is the amount of relief fund. In this example, the relief fund is capped at ℓ, while in Philippi &
Schiller (2024) the relief fund is proportional to the DM’s retained loss without upper limit.

Figure 1: The optimal deductible levels for different ℓ under: (Left) exponential distribution;
(Right) gamma distribution.

3Here, β is chosen small enough to guarantee a sufficiently large saturation point such that u(x) is increasing
for relevant wealth levels.
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3.4 The effect of premium subsidy on the demand for insurance

In addition to the government’s relief fund, the DM can also be supported via the premium
subsidies. In the literature, insurance, such as micro-insurance or health insurance, can be sub-
sidized in different ways, among which lowering the safety loading factor for the expected-value
premium principle is quite often used; see Selden (1999), Kovacevic & Pflug (2011), and Philippi &
Schiller (2024), where the amount of subsidy is proportional to the expected insurance indemnity.
Fixed and varying amounts of subsidies can also be found in, for example, Janzen et al. (2021)
and Flores-Contró et al. (2024) when investigating the role of micro-insurance in social protection
and poverty reduction. Within the context of our paper, subsidizing the catastrophe insurance
seems to be a more efficient way to stimulate the growth of the catastrophe insurance market,
and in the meantime reduce the so-called “charity hazard”. For the Bernoulli-type loss variable,
Philippi & Schiller (2024) show that the DM who has increasing absolute risk aversion coefficient
will increase the demand for insurance when receiving the premium subsidy. This is also true under
our generalized setting with more general distributions of the loss variable. For that purpose, we
slightly abuse the notation and write ϕℓ in Theorem 3.2 as ϕh due to the variation in h. If h1 and
h2 denote the pricing functions before and after receiving the premium subsidy respectively, the
following assumption is adopted in this section.

Assumption 3. h′1(x) ≥ h′2(x) for x ∈ [0,M ].

Assumption 3 implies that the premium subsidy increases with respect to the expected indemnity,
which motivates the DM to seek more insurance coverage.

We provide two examples of premium subsidy functional forms satisfying Assumption 3. First,
the premium changes from (1 + θ1)E[I(X)] to (1 + θ2)E[I(X)] for some θ2 ∈ (0, θ1). Then,
h1(x) = (1+θ1)x and h2(x) = (1+θ2)x, and the government subsidizes the amount (θ1−θ2)E[I(X)].
Second, the premium changes from (1 + θ)E[I(X)] to ((1 + θ)E[I(X)]− s)+ for some s ∈ [0,∞).
Then, h1(x) = (1 + θ)x and h2(x) = ((1 + θ)x − s)+, and the government subsidizes the amount
(1 + θ)E[I(X)] ∧ s.

Theorem 3.4. Let h1, h2 be the pricing functions that satisfy Assumption 3. If the absolute risk
aversion coefficient is increasing, then for Problem (8) the optimal deductible level under h1 is
greater than that under h2.

Proof: Denote by d∗1 and d∗2 the optimal deductible levels under the pricing functions h1 and h2
respectively. Since h′1(x) ≥ h′2(x) for x ∈ [0,M ], and this leads to

d1 = inf {d ∈ [0,M ] : SX(d)h
′
1(E[(X − d)+]) ≤ G′

1(d, ℓ)}
≥ inf {d ∈ [0,M ] : SX(d)h

′
2(E[(X − d)+]) ≤ G′

1(d, ℓ)} = d2.

To show d∗1 ≥ d∗2, we need to show that

ϕh1(d)h
′
1(E[(X − d)+]) ≥ ϕh2(d)h

′
2(E[(X − d)+]) (13)

for d ∈ [d1,M ]. Define the function:

η(ϵ) = ϱ(ϵ) (h′1(E[(X − d)+]) + ϵ(h′2(E[(X − d)+])− h′1(E[(X − d)+]))) ,

where ϱ(ϵ) = ϕh1+ϵ(h2−h1)(d), then we have η′(ϵ) ≤ 0 for ϵ ∈ [0, 1], which implies (13).
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In the sequel, let π1 = h1(E[(X − d)+]) and π2 = h2(E[(X − d)+]). It is straightforward that
π1 ≥ π2 due to Assumption 3. We first show that ϱ′(ϵ) ≤ 0 for ϵ ∈ [0, 1]. Note that

ϱ′(ϵ) =
(π2 − π1)κ(ϵ)

[u′(W0 −G(d, ℓ)− π1 − ϵ(π2 − π1))]2
,

where

κ(ϵ) =− E[u′′(W0 −G(X ∧ d, ℓ)− π1 − ϵ(π2 − π1))]u
′(W0 −G(d, ℓ)− π1 − ϵ(π2 − π1))

+ E[u′(W0 −G(X ∧ d, ℓ)− π1 − ϵ(π2 − π1))]u
′′(W0 −G(d, ℓ)− π1 − ϵ(π2 − π1)).

If the DM is endowed with an IARA utility function, then by following the proof of Theorem 3.3,
we can show that κ(ϵ) ≥ 0 for ϵ ∈ [0, 1]. As such, ϱ′(ϵ) ≤ 0 for ϵ ∈ [0, 1].

Therefore, for any ϵ ∈ [0, 1]

η′(ϵ) =ϱ′(ϵ) [h′1(E[(X − d)+]) + ϵ(h′2(E[(X − d)+])− h′1(E[(X − d)+]))]

+ ϱ(ϵ) [h′2(E[(X − d)+])− h′1(E[(X − d)+])] ≤ 0.

The proof is finished.

The result of Theorem 3.4 is not surprising. The premium subsidy makes the DM wealthier,
who is thus more risk averse under the condition of Theorem 3.4, which leads to more demand for
insurance.

If the DM is endowed with a DARA utility function, then providing premium subsidy makes
the DM wealthier, which makes the DM less averse towards risk and thus lowers her demand for
insurance. On the other hand, Boonen & Jiang (2024) show that under mild conditions, premium
subsidies can still enhance the DM’s demand for insurance if her utility function is within a subclass
of the so-called Hyperbolic Absolute Risk Aversion (HARA) utility functions. In Boonen & Jiang
(2024), premium subsidies are provided by reducing the safety loading factor in the expected-
value premium principle. We present an interesting example below to show that the conclusion
of Boonen & Jiang (2024) does not hold true in the case the premium subsidies are provided via
other functional forms.

Example 3.2. In this example we investigate the effect of premium subsidies on the DM’s insur-
ance demand for DARA utility functions. The settings in the example are given as follows:

(a). The utility function is given by u(x) = log(x).

(b). The loss variable X1 has a truncated exponential distribution with parameter µ = 500. The
loss variable X2 has a truncated gamma distribution with a = 20 and b = 25. Here, distribu-
tions are truncated at M = 3000.

(c). The initial wealth is given by W0 = 5000.

(d). The type I premium subsidy is provided via reducing the safety loading factor for the expected-
value premium principle, such that the premium changes from (1 + θ1)E[I(X)] to (1 +
θ2)E[I(X)] for some θ2 ∈ (0, θ1).

(e). The type II premium subsidy is provided via direct premium reduction up to a certain amount,
such that the premium changes from (1 + θ)E[I(X)] to ((1 + θ)E[I(X)]− S)+ for some S ∈
[0,∞).
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(f). There is no disaster relief fund, i.e. ℓ = 0.

As shown by Figure 2, when provided the type I premium subsidy the optimal deductible level is
always increasing with θ, indicating that the demand for insurance increases with more premium
subsidy, which agrees with the implication of Theorem 3.4. However, when provided with the type
II premium subsidy, the left panel of Figure 3 shows that the optimal deductible level increases
with respect to S if the DM faces X1, indicating that the demand for insurance decreases with the
premium subsidy. This specific counter-intuitive example complements the current results.

Figure 2: The optimal deductible levels for varying θ under the: (Left) exponential distribution;
(Right) gamma distribution.

Figure 3: The optimal deductible levels for different S under: (Left) exponential distribution;
(Right) gamma distribution.

Our result confirms the finding of Philippi & Schiller (2024), where the change of insurance
demand with respect to the premium subsidy is uncertain under general settings due to the pos-
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sibility of insurance being a Giffen good.4 The conditions for insurance to be a Giffen good are
studied in Hoy & Robson (1981). Philippi & Schiller (2024) also presented several examples show-
ing that insurance is an ordinary good in most real-life situations, under which a reduction in
premium would increase the demand for insurance, mitigating the potential “charity hazard” that
arises from receiving the disaster relief fund.

We close this section by looking at one specific example for the joint effect of relief fund and
premium subsidy on the demand of insurance. Note that the exponential utility function, i.e.,
u(x) = e−αx for some α > 0, has the constant absolute risk aversion coefficient, which is the only
member belonging to both the DARA and IARA classes. If we further assume that the premium
subsidy is provided by reducing the premium by a fixed proportion s ∈ (0, 1), such that the actual
ex ante payment of the DM is (1− s)π(I(X)), the optimal deductible level for the problem (8), as
per Theorem 3.2, is given by

d∗ = inf{d ∈ [dℓ,M ] : Φ(d; ℓ, s) ≤ 0},

where
Φ(d; ℓ, s) = (1− s)E[eα(G(d,ℓ)−G(X∧d,ℓ))]h′(E[(X − d)+])−G′

1(d, ℓ).

By Theorems 3.3 and 3.4, Φ(d; ℓ, s) is increasing with respect to ℓ but decreasing with respect to s.
By comparing with the case without the disaster relief fund and premium subsidy, i.e. ℓ = s = 0,
it is straightforward that the deductible level is larger if Φ(d; ℓ, s) ≥ Φ(d; 0, 0), and is smaller if
Φ(d; ℓ, s) ≤ Φ(d; 0, 0).

It is notable that our model only concerns the decision of the DM, which makes it irrelevant to
know where the premium subsidy comes from. This, however, does matter to the counter-parties
who are providing the support to the DM, as their decisions would greatly affect the decisions
of the DM. If a cheaper premium is offered by the insurer, then the insurer’s decision could be
driven by the fact that the increased insurance demand may lead to more profits. If the premium
subsidy is provided by the government, then the intention of the government is to reduce the ex
post disaster relief fund when insurance is more involved. These incentives give rise to different
decision-making problems from the counter-parties’ perspectives. For example, we assume that the
government provides both the disaster relief fund and premium subsidy. To maintain the utility
level of the DM under her chosen deductible level d, the indifference curve of (ℓ, s), where s denotes
the subsidized portion of the premium, is depicted by

E[u(W0 −G(X ∧ d, ℓ)− (1− s)π((X − d)+))] = constant,

from which one can easily calculate the marginal substitution rate between ℓ and s:

dℓ

ds
=

E[u′(W0 −G(X ∧ d, ℓ)− (1− s)π((X − d)+))π((X − d)+)]

E[u′(W0 −G(X ∧ d, ℓ)− (1− s)π((X − d)+))G′
2(X ∧ d, ℓ)]

≤ 0,

where G′
2(·, ·) denotes the partial derivative of G with respect to y, and G′

2(X ∧ d, ℓ) ≤ 0 is due
the assumption (c) after Eq. (1). Thus, the government can reserve a smaller relief fund if more
premium subsidies are provided. The optimal budgeting for the ex ante premium subsidies and
the ex post relief fund under the changing demand for insurance is a complicated but interesting
and meaningful problem for future research.

4A Giffen good is a product that people purchase or consume more when its price rises and vice versa, which
violates the law of demand. An ordinary good is a product that people purchase or consume less when its price
rises and vice versa, which follows the law of demand.
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4 Dependence between the loss and government relief

4.1 Loss-increasing relief probability

It is realistic to assume that the size of loss X and the government’s relief decision Y are
positively dependent. In this section, we propose a specific dependence structure between X and
Y . If the underlying loss variable is large, it may be more likely that a disaster is taking place,
and this thus makes the likelihood of receiving disaster relief higher. For example, in the context
of homeowner’s insurance, disaster relief is most likely to be granted following extreme events such
as major floods or earthquakes. To be specific, we assume that the probability of receiving disaster
relief payments is linked to the actual magnitude of the loss, as a larger personal loss signifies
a greater likelihood of a major event occurring and, consequently, increases the probability of
receiving relief payments. This yields a specific structure for the distribution of Y |X, and we focus
on the following step function for modeling relief probability:

Assumption 4. The government’s relief decision Y is such that P(Y = ℓ|X) = p(X) and P(Y =
0|X) = 1− p(X), where

p(X) =
n∑

i=1

pi1(ai−1,ai](X), (14)

with 0 ≤ p1 ≤ · · · ≤ pn ≤ 1, and 0 = a0 < a1 < · · · < an−1 < an =M .

It can be calculated that E[Y ] = E[E[Y |X]] = ℓE[p(X)] and E[XY ] = E[E[XY |X]] = E[XE[Y |X]] =
ℓE[Xp(X)]. Hence

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = ℓ (E[Xp(X)]− E[X]E[p(X)]) = ℓCov(X, p(X)) ≥ 0,

where the inequality follows from the Assumption 4 as p(x) is an increasing function. Therefore,
X and Y are (weakly) positively dependent.

Theorem 4.1. Under Assumption 4, the solution to Problem (3) is of the form

R∗(x) =
n−1∑
i=1

R∗
i (x)1(ai−1,ai](x) +R∗

n(x)1(an−1,an](x), (15)

where

R∗
i (x) = R∗(ai−1) + (x− ai−1) ∧ d1i + (x− ai−1 − d2i )+,

R∗
n(x) = R∗(an−1) + (x− an−1) ∧ dn,

with

d1i ∈ [0, R∗(ai)−R∗(ai−1)], d
2
i − d1i = (ai − ai−1)− (R∗(ai)−R∗(ai−1)), and dn ≥ 0.

Proof: Under Assumption 4, Problem (3) can be written as

max
R∈I

E
[
p(X)u(W0 −G(R(X), ℓ)− π(X −R(X)))

+ (1− p(X))u(W0 −R(X)− π(X −R(X)))
]
.

(16)
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Note that

E[p(X)u(W0 −G(R(X), ℓ)− π(X −R(X)))]

=
n∑

i=1

piE[u(W0 −G(R(X), ℓ)− π(X −R(X)))1(ai−1,ai](X)]

=
n∑

i=1

pi(F (ai)− F (ai−1))E[u(W0 −G(R(X), ℓ)− π(X −R(X))
∣∣X ∈ (ai−1, ai]].

This simplifies Problem (16) as follows:

max
R∈I

n∑
i=1

(F (ai)− F (ai−1))E
[
piu(W0 −G(R(X), ℓ)− π(X −R(X)))

+ (1− pi)u(W0 −R(X)− π(X −R(X)))
∣∣∣X ∈ (ai−1, ai]

]
.

(17)

Let P ≥ 0. Under the actuarial-value-based premium principle, we can write P = h(E[X−R(X)])
as

E[R(X)] = E[X]− h−1(P ) = P̃ ,

and so
n∑

i=1

E[R(X)1(ai−1,ai](X)] = P̃ ,

or
n∑

i=1

(F (ai)− F (ai−1))E[R(X)|X ∈ (ai−1, ai]] = P̃ .

Hence, for the fixed budget P , Problem (17) can be written as

max
R∈I

n∑
i=1

(F (ai)− F (ai−1))E
[
piu(W0 −G(R(X), ℓ)− P ) + (1− pi)u(W0 −R(X)− P )

∣∣X ∈ (ai−1, ai]
]
,

s.t.
n∑

i=1

(F (ai)− F (ai−1))E[R(X)|X ∈ (ai−1, ai]] = P̃ .

(18)
To use the arguments of Lemma 3 of Ohlin (1969), we consider an arbitrary R̃ ∈ I that

satisfies E[R̃(X)] = P̃ . Then, there exists another R ∈ I such that the following conditions hold
simultaneously over the interval (ai−1, ai] for i = 1, 2, . . . , n− 1:

R(ai−1) = R̃(ai−1), R(ai) = R̃(ai),

R(x) = R(ai−1) + (x− ai−1) ∧ d1i + (x− ai−1 − d2i )+,

d2i − d1i = (ai − ai−1)− (R(ai)−R(ai−1)),

d1i ∈ [0, R(ai)−R(ai−1)],

E [R(X)|X ∈ (ai−1, ai]] = E[R̃(X)|X ∈ (ai−1, ai]].

(19)

and the following conditions hold over the interval (an−1, an]:{
R(x) = R(an−1) + (x− an−1) ∧ dn
E [R(X)|X ∈ (an−1, an]] = E[R̃(X)|X ∈ (an−1, an]].

(20)
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It is easy to find that R̃ up-crosses R over each sub-interval, and as such, by using Lemma 3 of
Ohlin (1969), we have

E
[
piu(W0 −G(R̃(X), ℓ)− P ) + (1− pi)u(W0 − R̃(X)− P )

∣∣X ∈ (ai−1, ai]
]

≤E
[
piu(W0 −G(R(X), ℓ)− P ) + (1− pi)u(W0 −R(X)− P )

∣∣X ∈ (ai−1, ai]
]

for i = 1, 2, . . . , n. This leads to the optimal form of R(x) as given by Eqs. (19) and (20). An
illustrative comparison between R∗ and R is given by Figure 4.

(a) n = 1. (b) n = 2.

(c) n = 3.

Figure 4: Comparison between R∗ and R.

Under a much more general dependence structure between the insurable loss and the back-
ground loss, Chi & Wei (2020) show that the optimal indemnity function to the problem (7) is
of the multi-layered form, which is consistent with our finding in this section. The multi-layered
form is attributed to Assumption 4, under which the DM would like to cede out part of the small-
or medium-size losses due to the smaller probabilities of getting the relief fund.

As shown by Theorem 4.1, there are two parameters, i.e. d1i and R∗(ai), to be optimized over
each of the intervals (ai−1, ai] for i = 1, 2, . . . , n−1, and one parameter dn to be optimized over the
last interval. Thus, through Theorem 4.1 the original infinite-dimensional optimization problem is
reduced to a (2n− 1)-dimensional optimization problem.
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Example 4.1. We present several examples to study the sensitivity of R∗ with respect to the model
parameters in (4), focusing on a simple case where n = 2. We define the common settings for all
the examples as follows:

(a). The utility function is given by u(x) = − exp(−x/1000).

(b). The loss variable X has the same distribution as X1 in Example 3.2.

(c). The initial wealth of the DM is irrelevant for exponential utility functions and is normalized
such that W0 = 0.

(d). The premium principle is as same as that for Example 3.1.

Figure 5 shows the optimal retained loss functions for different values of a1, where p1 = 0.3
and p2 = 0.6. Note that the constant relief probability case with p = 0.3 can be treated as a special
case of (14) with a1 = M . When a1 becomes smaller, it is more likely for the DM to receive the
relief fund, which therefore reduces her demand for insurance. Interestingly, when a1 ∈ (0,M), the
DM would retain one layer of losses that covers a1.

Figure 5: The optimal retained loss function for different values of a1.

Figure 6 shows the optimal retained loss functions under different p2 and p1. With p1 = 0.3
and a1 = 450, the left panel of 6 shows that if p2 increases, the DM would retain more losses
around a1 without changing her demand for insurance for other layers of losses. With p2 = 0.3
and a1 = 450, the right panel of 6 shows that if p1 increases, the DM would cede out more small
losses while retaining more losses around a1.

We close this section by comparing the values of the objective function (2) under Assumptions 1
and 4, where in the former case the relief probability is taken as E[p(X)] where p(X) is as shown in
(14). In such a case, the expected relief probabilities are the same under the two different assump-
tions. The following proposition shows that the DM will benefit from Assumption 4 regarding the
dependence between Y and X.
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Figure 6: The optimal retained loss function under: (Left) varying p2; and (Right) varying p1.

Proposition 4.1. Under Assumption 4, the following inequality holds:

E
[
p(X)u(W0 −G(R(X), ℓ)− π(X −R(X)))

+ (1− p(X))u(W0 −R(X)− π(X −R(X)))
]

≥ E
[
E[p(X)]u(W0 −G(R(X), ℓ)− π(X −R(X)))

]
+ E

[
(1− E[p(X)])u(W0 −R(X)− π(X −R(X)))

]
.

Proof: Let w(x) = W0−G(R(x), ℓ)−π(X−R(X)) and w̃(x) = W0−R(x)−π(X−R(X)). Both
w and w̃ are decreasing functions. Due to the concavity of u, G(x, y) ≤ x, and G′

1(x, y) ≤ 1, if
x1 < x2 and G(R(x2), ℓ)−G(R(x1), ℓ) > 0, we have

u(w(x1))− u(w(x2))

w(x1)− w(x2)
≤ u(w̃(x1))− u(w̃(x2))

w̃(x1)− w̃(x2)
,

which implies

u(w(x1))− u(w(x2))

G(R(x2), ℓ)−G(R(x1), ℓ)
≤ u(w̃(x1))− u(w̃(x2))

R(x2)−R(x1)
≤ u(w̃(x1))− u(w̃(x2))

G(R(x2), ℓ)−G(R(x1), ℓ)
.

From this, it follows that u(w(x1)) − u(w(x2)) ≤ u(w̃(x1)) − u(w̃(x2)), and thus u(w(x1)) −
u(w̃(x1)) ≤ u(w(x2))− u(w̃(x2)).

If x1 < x2 and G(R(x2), ℓ) − G(R(x1), ℓ) = 0, then it is straightforward that u(w(x1)) −
u(w̃(x1)) ≤ u(w(x2))− u(w̃(x2)). Hence, u(w(x))− u(w̃(x)) is an increasing function.

Since p(x) is also an increasing function, p(X) and u(w(X))− u(w̃(X)) are comonotonic. The
positive correlation between p(X) and u(w(X))− u(w̃(X)) leads to

E[p(X) (u(w(X))− u(w̃(X)))] ≥ E[p(X)]E[u(w(X))− u(w̃(X))].
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Therefore,

E
[
p(X)u(W0 −G(R(X), ℓ)− π(X −R(X)))

+ (1− p(X))u(W0 −R(X)− π(X −R(X)))
]

= E[u(w̃(X))] + E[p(X) (u(w(X))− u(w̃(X)))]

≥ E[u(w̃(X))] + E[p(X)]E (u(w(X))− u(w̃(X)))]

= E
[
E[p(X)]u(W0 −G(R(X), ℓ)− π(X −R(X)))

]
+ E

[
(1− E[p(X)])u(W0 −R(X)− π(X −R(X)))

]
.

The proof is complete.

The above proposition shows that the DM prefers to obtain more chance of relief in case the
insurable loss X is high. From this, we conclude that Assumption 4 is not only more practical but
also more advantageous to the DM.

4.2 Different loss distributions for different relief funds

Though the decision of paying relief fund is up to the government, the decision highly depends
on the number and sizes of the losses. It is often the case that the government provides financial
assistance or recovery programs if most individuals are suffering severe losses, and may provide
less assistance or no assistance if losses are not severe. In other words, the bivariate distribution of
(X, Y ) exhibits positive dependence. By standard conditional probility arguments, we can write
the bivariate distribution of (X, Y ) as (X|Y, Y ), and defining a particular distribution for Y and
X|Y separately. Note that such decomposition is without loss of generality, and does not assume
any causality of Y on X. The following assumption will be adopted throughout this section.

Assumption 5. The conditional distribution function of X given Y is given by P(X ≤ x|Y =
ℓ) = FX1(x) and P(X ≤ x|Y = 0) = FX2(x), with the probability density functions fX1 and fX2

respectively. Furthermore, X2 ≤hr X1 where “≤hr” denotes the hazard rate order.5

In Assumption 5, we use X1 and X2 to denote the loss variables that are faced by the DM
when the paid relief funds are ℓ and 0, respectively. Due to the well-known relationships between
the following stochastic orders, see Shaked & Shanthikumar (2007):6

Z1 ≤lr Z2 =⇒ Z1 ≤hr Z2 =⇒ Z1 ≤st Z2,

the hazard rate order is more general than the commonly assumed likelihood ratio order (see also
Chi (2019) for related discussions), and implies the usual stochastic order, meaning that X1 is
riskier than X2. Under the model setup of this paper, X2 ≤hr X1 is equivalent to saying that
SX1(x)/SX2(x) is increasing over [0,M ].

5For two random variables Z1, Z2 whose hazard functions are well defined, Z1 ≤hr Z2 if
fZ1

(z)

SZ1
(z) ≥ fZ2

(z)

SZ2
(z) for all

z within the support of Z1 and Z2.
6For two random variables Z1, Z2, Z1 ≤lr Z2 if fZ2

(z)/fZ1
(z) is increasing over the union of the supports of Z1

and Z2, and Z1 ≤st Z2 if SZ1
(z) ≤ SZ2

(z) for all z within the support of Z1 and Z2.
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Under Assumption 5, Problem (2) can be written as

max
R∈I

{
pE[u(W0 −G(R(X1), ℓ)− π(X3 −R(X3)))]

+ (1− p)E[u(W0 −R(X2)− π(X3 −R(X3)))]
}
,

(21)

where π(X3−R(X3)) is the premium charged by the insurer as per its knowledge regarding the loss.7

The following theorem presents the solution to Problem (21) for a special case of the distribution
of X3. The proof is similar to that for Theorem 4.1 of Chi (2019), and we provide a proof here for
completeness.

Theorem 4.2. Let Assumption 5 hold. If X3 ≤hr X2, then the solution to Problem (21) is of the
form Rd(x) = x ∧ d for some d ≥ 0.

Proof: Since X2 ≤hr X1, we have X3 ≤hr Xi for i = 1, 2. This implies that SXi
(x)/SX3(x) is

increasing over [0,M ].
For any given R ∈ I, there must exist a d ≥ 0 such that E[X3 ∧ d] = E[R(X3)]. As such,

applying Rd(x) := x ∧ d leads to the same premium as R. Furthermore, for i = 1, 2,

E[R(Xi)]− E[Rd(Xi)] =

∫ M

0

SXi
(x)dR(x)−

∫ M

0

SXi
dRd(x)

=

∫ M

0

SXi
(x)

[
R′

d(x)− 1{x≤d}(x)
]
dx

=

∫ M

0

SXi
(x)

SX3(x)
SX3(x)

[
R′(x)− 1{x≤d}(x)

]
dx

≥SXi
(d)

SX3(d)

∫ M

0

SX3(x)
[
R′(x)− 1{x≤d}(x)

]
dx

=
SXi

(d)

SX3(d)
[E[R(X3)]− E[X3 ∧ d]] = 0.

It is apparent that R up-crosses Rd only once, which leads to that FRd(Xi) up-crosses FR(Xi) only
once, for i = 1, 2. Define x0 = inf{x ∈ [0, d] : x ≥ R(x)}. By the definition of up-crossing, we
have x0 < d. Thus, FRd(Xi)(t) < FR(Xi)(t) for t ∈ (x0, d). Applying Theorem 2.3 of Cheung et al.
(2015), we get that Rd(Xi) ≤icx R(Xi), where “≤icx” denotes the increasing convex (or stop-loss)
order.8

Let P = π(X3 −R(X3)) = π(X3 −Rd(X3)). Since both functions

v1(x) := −u(W0 −G(x, ℓ)− P ) and v2(x) := −u(W0 − x− P )

are increasing and convex, we have

E[v1(Rd(X1))] ≤ E[v1(R(X1)] and E[v2(Rd(X2))] ≤ E[v2(R(X2))].

7Regarding the financial subsidy of the government on the insurance premium, it can be in general assumed
that X3 ≤st X1, meaning that the premium is charged based on a smaller loss compared with the loss when the
government would like to provide relief payment. In this case, we have X3−R(X3) ≤st X1−R(X1) as the function
x−R(x) is increasing and the usual stochastic order is preserved under the increasing transform. Hence, it follows
that π(X3 − R(X3)) ≤ π(X1 − R(X1)), which implies that the premium charged based on X3 can be thought as
provided with some amount of subsidy from the government.

8For two random variables Z1, Z2, Z1 ≤icx Z2 if E[ϕ(Z1)] ≤ E[ϕ(Z2)] for all increasing convex function ϕ : R 7→ R.
Or equivalently, E[(Z1 − d)+] ≤ E[(Z2 − d)+] for all d ∈ R.
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This leads to

pE[u(W0 −G(Rd(X1), ℓ)− π(X3 −Rd(X3)))] + (1− p)E[u(W0 −Rd(X2)− π(X3 −Rd(X3)))]

≥ pE[u(W0 −G(R(X1), ℓ)− π(X3 −R(X3)))] + (1− p)E[u(W0 −R(X2)− π(X3 −R(X3)))].

The proof is complete.

In practice, the insurer would also consider a mixture distribution of FX1 and FX2 , with possibly
different weights assigned to these two distributions, that is

FX3 = p̃FX1 + (1− p̃)FX2 , (22)

where p̃ is not necessarily equal to p. In such a setting, the parameter p can be understood as the
DM’s subjective perception of the probability of receiving the relief fund. It is easy to find that
SX3

(x)

SX1
(x)

is decreasing while
SX3

(x)

SX2
(x)

is increasing, indicating that X2 ≤hr X3 ≤hr X1.

If X3 is modeled via (22), then we have E[R(X3)] = p̃E[R(X1)] + (1− p̃)E[R(X2)]. If one fixes
the premium P > 0, solving the problem (21) is equivalent to solving

max
R∈I

pE[u(W0 −G(R(X1), ℓ)− P ] + (1− p)E[u(W0 −R(X2)− P )]

s.t. p̃E[R(X1)] + (1− p̃)E[R(X2)] = P̃ := E[X3]− h−1(P ).
(23)

However, it is difficult to obtain the closed-form solution to Problem (23). For example, if p =
0, p̃ = 1, and π(·) is the expected-value premium principle, then the main problem studied in
Ghossoub et al. (2023) with an increasing likelihood ratio is a special case of (23), for which the
optimal ceded loss function takes on either a multi-layered or a general coinsurance form.

Though the general solution is difficult to obtain, we propose the following “improvement
technique” to seek a solution that outperforms the given one under certain conditions. To do this,
we define the following layered retained loss function

Rd1,d2,d3(x) = x ∧ d1 + (x ∧ d3 − d2)+, (24)

where 0 ≤ d1 ≤ d2 ≤ d3 ≤M .

Proposition 4.2. For any given R ∈ I that satisfies the constraint of (23), if one of the following
conditions hold, then applying Rd1,d2,d3 yields a higher expected utility for Problem (23) than R:

(i). the function R up-crosses Rd1,d2,d3, and the equation system

E[R(X1)] = E[Rd1,d2,d3(X1)], E[R(X2)] = E[Rd1,d2,d3(X2)] (25)

has one solution for (d1, d2, d3) that satisfies 0 ≤ d1 ≤ d2 ≤ d3 ≤M ;

(ii). the function R crosses Rd1,d2,d3 three times, and the equation system

E[R(X1)] = E[Rd1,d2,d3(X1)], E[R(X2)] = E[Rd1,d2,d3(X2)] (26)

has one solution for (d1, d2, d3) that satisfies 0 ≤ d1 ≤ d2 ≤ d3 ≤M and

E[(R(X2)−R(ξ2))+] ≥ E[(Rd1,d2,d3(X2)−R(ξ2))+], (27)

where ξ2 is the down-crossing point.
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Proof: By applying Ohlin’s lemma, (i) can be proved directly.
To prove (ii), we note that if R crosses Rd1,d2,d3 three times, it can only up-cross Rd1,d2,d3

at some x ∈ [d1, d2], then down-cross Rd1,d2,d3 at some x ∈ [d2, d3], and up-cross Rd1,d2,d3 at some
x ∈ [d3,M ]. Denote by ξ1, ξ2, ξ3 the three distinctive crossing points, where ξ1 ∈ [d1, d2], ξ2 ∈ [d2, d3]
and ξ3 ∈ [d3,M ] (see Figure 7 for an illustrative plot). let

F1(x) = P(R(X1) ≤ x), F2(x) = P(Rd1,d2,d3(X1) ≤ x),

F̃1(x) = P(R(X2) ≤ x), F̃2(x) = P(Rd1,d2,d3(X2) ≤ x),

we directly have that F1 and F2 (as well as F̃1 and F̃2) also cross each other three times. Since R
up-crosses Rd1,d2,d3 at ξ1, we define

x1 = inf{x ∈ [0, ξ1] : Rd1,d2,d3(x) > R(x)}.

Then, as per the definition of up-crossing, we have x1 < ξ1. It is straightforward that F2(x) < F1(x)
and F̃2(x) < F̃1(x) for x ∈ (x1, ξ1).

Since E[(R(X2)−R(ξ2))+] ≥ E[(Rd1,d2,d3(X2)−R(ξ2))+], we have

E[(R(X1)−R(ξ2))+]− E[(Rd1,d2,d3(X1)−R(ξ2))+]

=

∫ M

0

SX1(x)d(R(x)−R(ξ2))+ −
∫ M

0

SX1(x)d(Rd1,d2,d3(x)−R(ξ2))+

=

∫ M

ξ2

SX1(x)R
′(x)dx−

∫ M

ξ2

SX1(x)1{x≤d3}(x)dx

=

∫ M

ξ2

SX1(x)
[
R′(x)− 1{x≤d3}(x)

]
dx

=

∫ M

ξ2

SX1(x)

SX2(x)
SX2(x)

[
R′(x)− 1{x≤d3}(x)

]
dx

≥ SX1(d3)

SX2(d3)

∫ M

ξ2

SX2(x)
[
R′(x)− 1{x≤d3}(x)

]
dx

=
SX1(d3)

SX2(d3)
{E[(R(X2)−R(ξ2))+]− E[(Rd1,d2,d3(X2)−R(ξ2))+]} ≥ 0.

Therefore, E[(Rd1,d2,d3(X1)−R(ξ2))+] ≤ E[(R(X1)−R(ξ2))+].
By applying the “Karlin-Novikoff-Stoyan-Taylor crossing conditions” (see Theorem 2.4 of Che-

ung et al. (2015)), we have Rd1,d2,d3(Xi) ≤icx R(Xi) for i = 1, 2. The rest of the proof follows the
same way as that for Theorem 4.2. The proof is complete.

Similar to most existent literature, the above “improvement technique” aims to reduce the orig-
inal infinite-dimensional optimization problem to a finite-dimensional one. It is worth mentioning
that the conditions presented in Proposition 4.2 are sufficient conditions, which may not cover all
the scenarios. In case such a Rd1,d2,d3 is not available, one can examine if there exists a retained
loss function that has more layers, i.e.

Rd1,d2,d3,d4,d5(x) = x ∧ d1 + (x ∧ d3 − d2)+ + (x ∧ d5 − d4)+

with 0 ≤ d1 ≤ d2 ≤ d3 ≤ d4 ≤ d5 ≤ M , satisfies the conditions of Theorem 2.4 Case 2 of Cheung
et al. (2015). This serves as an alternative approach if Proposition 4.2 cannot further improve the
given retained loss function.
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Figure 7: An illustrative plot for case (ii) of Proposition 4.2.

Example 4.2. In this example, we apply the improvement technique from Proposition 4.2 to the
following setting:

(a). The utility function is given by u(x) = − exp(−x/1000) and initial wealth is W0 = 0.

(b). The loss variables X1 and X2 have truncated exponential distributions with parameters µ1 =
400 and µ2 = 350, respectively. The truncation point is M = 3000.

(c). The expected-value premium principle is applied, i.e. π(I(X)) = (1 + θ)E[I(X)], where
θ = 0.1.

(d). The relief fund payment probabilities are p = 0.7 and p̃ = 0.8 from the perspectives of DM
and insurer, respectively.

(e). The DM’s retained loss after receiving the disaster relief fund is G(R(X), ℓ) = (R(X)− ℓ)+,
where ℓ = 100.

As proportional insurance is a widely used example in actuarial science, we assume that the DM
is initially suggested to purchase I(x) = (1 − α)x from the insurer, where α is the proportion of
the retained loss. This leads to the following optimization problem

max
α∈[0,1]

{
pE[u(W0 −G(αX1, ℓ)− (1 + θ)(1− α)E[X3])]

+ (1− p)E[u(W0 − αX2 − (1 + θ)(1− α)E[X3])]
}
,

for which the optimal proportion is given by α∗ ≈ 0.448.
In the next step, we apply Proposition 4.2 (ii) to identify Rd1,d2,d3 that outperforms R(x) := α∗x.

For that purpose, we solve the equation system
α∗E[X1] = E[Rd1,d2,d3(X1)],

α∗E[X2] = E[Rd1,d2,d3(X2)],

α∗E[(X2 − ξ2)+] = E[(Rd1,d2,d3(X2)− α∗ξ2)+],

(28)

where we set the inequality of (27) to be equality to figure out the three parameters d1, d2, d3.
However, the above system of equations is non-linear, and this makes the numerical search for a
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solution complicated. We therefore consider the following optimization problem instead of solving
the equation system

min
(d1,d2,d3)∈D

(α∗E[X1]− E[Rd1,d2,d3(X1)])
2 + (α∗E[X2]− E[Rd1,d2,d3(X2)])

2

+ (α∗E[(X2 − ξ2)+]− E[(Rd1,d2,d3(X2)− α∗ξ2)+])
2 ,

(29)

where
D :=

{
(d1, d2, d3) ∈ [0,M ]3 : A[d1, d2, d3]

T ≤ [0, 0,M, 0, 0]T
}
,

A =


1 −1 0
0 1 −1
1 −1 1
1 −α∗ 0
−1 1 α∗ − 1

 .
Here, restricting (d1, d2, d3) to D is to guarantee that R crosses Rd1,d2,d3 three times.

Figure 8: The comparison between R(x) := α∗x and Rd1,d2,d3(x).

Using the “fmincon” function in MATLAB, we solve Problem (29), which yields

d∗1 = 126.71, d∗2 = 543.80, d∗3 = 976.57,

and the corresponding retained loss function is illustrated in Figure 8. It can be easily calculated
that

pE[α∗X1] + (1− p)E[α∗X2] ≈ pE[Rd∗1,d
∗
2,d

∗
3
(X1)] + (1− p)E[Rd∗1,d

∗
2,d

∗
3
(X2)]

and
α∗E[(X2 − ξ2)+] ≈ E[(Rd∗1,d

∗
2,d

∗
3
(X2)− α∗ξ2)+].

Finally, we verify that Rd∗1,d
∗
2,d

∗
3
indeed improves the expected utility:

pE[u(W0 −G(α∗X1, ℓ)− (1 + θ)(1− α∗)E[X3])]

+ (1− p)E[u(W0 − α∗X2 − (1 + θ)(1− α∗)E[X3])] ≈ −1.071,

pE[u(W0 −G(Rd∗1,d
∗
2,d

∗
3
(X1), ℓ)− (1 + θ)E[X3 −Rd∗1,d

∗
2,d

∗
3
(X3)])]

+ (1− p)E[u(W0 −Rd∗1,d
∗
2,d

∗
3
(X2)− (1 + θ)E[X3 −Rd∗1,d

∗
2,d

∗
3
(X3)])] ≈ −1.060.
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5 Conclusion

This paper studies the insurance demand in the presence of government financial assistance,
including disaster relief payment and premium subsidies. The optimal retained loss function is
proven to be of the deductible form when the relief event is independent of the insurable loss. The
effects of disaster relief assistance and premium subsidies on the demand for insurance have been
investigated, and the impact can be significantly different under different risk aversion attitudes.
We have also extended the results to cases in which the relief event and insurable loss are dependent,
where two general dependent settings are considered. The optimal ceded loss functions are proven
to be of the multiple-layered deductible treaties, which are rarely seen in the current literature on
catastrophe insurance design.

Note that the present study does not take into account the profit of the insurer. For future
works, it would be interesting to introduce the insurer’s profit when maximizing the DM’s termi-
nal expected utility. For example, the insurer might want to seek the optimal pricing strategy by
considering the Bowley solution; see, for example, Chan & Gerber (1985), Cheung et al. (2019).
Another potential future research direction is the problem of allocating a fixed amount of budget
relief fund from the perspective of the government. More specifically, let K be the capital reserved
by the government for upholding the subsistence of its citizens. Consider a city or country consist-
ing of m geographical regions suffering from some natural disaster such as flooding or storms. The
government aims at distributing the budget K to these m regions as relief payments. The govern-
ment is interested in seeking the best allocation policy by using, for example, the expected-shortfall
or mean-variance models; see, for example, Dhaene et al. (2012) and Xu & Mao (2013).

It is worth noting that few studies consider the joint performance of insurance premium sub-
sidies and relief funds. For example, Van Asseldonk et al. (2013) explore the trade-offs between
providing catastrophic assistance and subsidizing insurance premiums. They highlight policy op-
tions that successfully stabilize income while limiting distortions of public intervention. By ana-
lyzing EU crop insurance based on public-private partnership, Liesivaara & Myyrä (2017) show
that farmers’ willingness to pay for crop insurance is conditional on the prospect of government
disaster relief, and the possibility for disaster relief payments leads to extensive use of taxpayers’
money if crop insurance premiums are subsidized. Other relevant studies are Bulut (2017) and
Möllmann et al. (2019). The current coexistence of disaster relief funds and insurance premium
subsidies motivates us to consider a DM who wants to make an agreement on the disaster insur-
ance contract with an insurer by taking into account ex ante premium subsidies as well as the
possibility of the government’s ex post disaster relief payment. This issue is briefly addressed in
the final part of Section 3.4. However, when considered under more general conditions, such as
budget constraints for financial assistance or the use of general indemnity functions, the problem
becomes more complex, yet intriguing and significant. This topic remains open for future research.

Acknowledgements

The authors are listed in alphabetical order. Wenjun Jiang acknowledges the financial sup-
port received from the Natural Sciences and Engineering Research Council of Canada (grant
RGPIN-2020-04204), Alberta Innovates and the University of Calgary. Yiying Zhang acknowl-
edges the financial support from the National Natural Science Foundation of China (No. 12101336,
72311530687), GuangDong Basic and Applied Basic Research Foundation (No. 2023A1515011806),
and Shenzhen Science and Technology Program (No. JCYJ20230807093312026).

28



Declarations of interest

No potential competing or conflict interests were reported by the authors.

References
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A Proof of Theorem 2.1

Let the set I be equipped with the L∞ norm, then the objective function of Problem (2) is
continuous w.r.t R ∈ I. Similar to the proof of Theorem 2.1 of Liang et al. (2023), we note
that: (i) the set I is uniformly equicontinuous due to the 1-Lipschitz continuity; (ii) the set I is
uniformly bounded (by M); (iii) the 1-Lipschitz continuity can be preserved under the uniform
convergence. Hence, Arzelà-Ascoli theorem is applicable here, from which we can derive that the
set I is sequentially compact, and thus compact. Therefore, the maximum of the objective function
of (2) is attainable over I. This completes the proof of the existence.
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For the uniqueness, let R1, R2 ∈ I denote the solutions to (2), i.e.,

max
R∈I

E[u(W0 −G(R(X), Y )− h(E[X −R(X)]))]

= E[u(W0 −G(R1(X), Y )− h(E[X −R1(X)]))]

= E[u(W0 −G(R2(X), Y )− h(E[X −R2(X)]))],

where P(R1(X) = R2(X)) < 1. Let R3 = ϵR1 + (1 − ϵ)R2 for some ϵ ∈ (0, 1). If h is convex, the
following holds:

E[u(W0 −G(R3(X), Y )− h(E[X −R3(X)]))]

= E[u(W0 −G(ϵR1(X) + (1− ϵ)R2(X), Y )− h(E[X − ϵR1(X)− (1− ϵ)R2(X)]))]

≥ E
[
u(W0 − ϵG(R1(X), Y )− (1− ϵ)G(R2(X), Y )

− ϵh(E[X −R1(X)])− (1− ϵ)h(E[X −R2(X)]))
]

≥ ϵE[u(W0 −G(R1(X), Y )− h(E[X −R1(X)]))]

+ (1− ϵ)E[u(W0 −G(R2(X), Y )− h(E[X −R2(X)]))]

= max
R∈I

E[u(W0 −G(R(X), Y )− h(E[X −R(X)]))],

where the first inequality is due to the convexity of h, and the the second inequality is due to
the convexity of −u,G, and h. At least one of these two inequalities is strict due to the strict
convexity of −u,G, or h. This yields a direct contradiction to the fact that R1, R2 are the solutions
to Problem (2). As such, we have P(R1(X) = R2(X)) = 1. This completes the proof.
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