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Abstract

This paper studies the optimal insurance contracting from the perspective of a decision maker

(DM) who has an ambiguous understanding of the loss distribution. The ambiguity set of loss

distributions is represented as a p-Wasserstein ball, with p ∈ Z+, centered around a specific

benchmark distribution. The DM selects the indemnity function that minimizes the worst-case

risk within the risk-minimization framework, considering the constraints of the Wasserstein ball.

Assuming that the DM is endowed with a convex distortion risk measure and that insurance

pricing follows the expected-value premium principle, we derive the explicit structures of both

the indemnity function and the worst-case distribution using a novel survival-function-based

representation of the Wasserstein distance. We examine a specific example where the DM em-

ploys the GlueVaR and provide numerical results to demonstrate the sensitivity of the worst-case

distribution concerning the model parameters.
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1 Introduction

Insurance is an effective risk-hedging tool which helps safeguard individuals against substantial fi-

nancial losses. An insurance contract typically consists of two components: the indemnity function,

which clarifies the insurer’s promised indemnity for different values of the decision maker’s (DM)

loss, and the premium, which is the ex ante compensation received by the insurer. In practice, the

premium is often a given function of the indemnity function, which is why the optimal insurance

contracting problem boils down to the determination of the optimal indemnity function only. Sub-

stantial research on optimal insurance contract theory has emerged in the recent decades. We refer

to Albrecher et al. (2017) or Cai and Chi (2020) for reviews of the most recent developments.

A fundamental concern in insurance contracting is the mechanism used to determine the shape

of the insurance indemnities. The insurer may offer a menu of possible contracts, or the DM can

freely select any feasible indemnity. Alternatively, the optimal contract may be designed from the

perspective of both parties, which yield the so-called Pareto optimal contracts that have gained

substantial popularity recently. Our focus is on the optimal insurance contracting that considers

the DM’s interest, who is able to purchase indemnity functions via a given premium principle.

Regarding the preferences of the DM, there are two main streams in the literature: maximizing

expected utility or minimizing a risk measure. This paper belongs to the second category, and we

assume that the DM is endowed with a convex distortion risk measure. The distortion risk measure

is now widely applied in optimal insurance contracting, and it includes the two prominent risk

measures Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) as special cases. Both risk measures

have been extensively applied and studied in the banking and insurance industry. For the readers

who are interested in the design of the optimal insurance under a distortion risk measure, we refer

to Cheung (2010); Chi and Tan (2011); Assa (2015); Zhuang et al. (2016); Boonen and Jiang (2022)

and the references therein.

A prevailing setting adopted by a vast literature on optimal insurance contracting is that the

DM possesses complete knowledge about her loss distribution. This assumption has been challenged

by many recent studies by considering an uncertainty set of loss distributions. However, a central

question needs to be answered before adopting such a setting: how to choose the uncertainty set

that can best depict the DM’s ambiguity and knowledge towards her loss distribution? Within

the realm of our topic, there are mainly three approaches for constructing such uncertainty sets.

A simple choice is to consider a finite set of candidate distributions, where the specification of

the candidate distributions is left to expert opinions. With such an uncertainty set, Asimit et al.

(2017) and Jiang et al. (2020) study the optimal insurance contract using the minimax theorem.

Alternatively, a second approach to generate the uncertainty set is via fixing some moments of

the distribution. Representative papers for this approach are Liu and Mao (2022) and Xie et al.

(2023), which investigated the optimal insurance under VaR, TVaR and expectile when the first

two moments of the loss distribution are exactly known. The third approach is to consider distance

metrics to determine an uncertainty set. The distance-based approach considers all distributions
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that are close enough to a given benchmark distribution, where the “closeness” is measured using

a particular metric. Birghila and Pflug (2019); Birghila et al. (2023) and Boonen and Jiang (2024)

study the related distributionally robust insurance problems with the 1-Wasserstein distance and

the L1 and L2 distance metrics. Recently, Cai et al. (2023) re-examined the optimal stop-loss

function under the distributional uncertainty, where the uncertainty set is specified by using both

the moment-based and distance-based approaches. This paper is situated in the third and last

stream, where we model the uncertainty set by using the p-Wasserstein distance, where p ∈ Z+.

We also adopt the minimax framework, and the focus of this paper is to derive expressions of the

worst-case distribution corresponding to the optimal insurance contract.

The Wasserstein distance is widely used in optimal transport and robustness for modeling dis-

tances between distributions, as it provides a meaningful and intuitive interpretation. It is a true

metric, and is robust against small perturbations in the distributions (Villani, 2009). Moreover, the

Wasserstein distance has desirable properties such as differentiability and strong convexity.

Compared to the existing literature, the contributions of this paper cover several aspects. First,

we develop a new representation for the p-Wasserstein distance of any positive integer p by using the

survival functions. Second, without assuming the parametric forms of the indemnity function, the

explicit structures of both the optimal indemnity function and the worst-case distribution are derived

using the minimax theorem and the Karush–Kuhn–Tucker (KKT) method. This generalizes the

work done by Birghila and Pflug (2019), which derived the optimal indemnity function numerically

under the 1-Wasserstein distance.

The rest of this paper is organized as follows. Section 2 reviews some basics of distortion risk

measures and sets up the main problem of this paper. Section 3 presents the main results of this

paper. Section 4 provides a detailed example with the GlueVaR. Section 5 concludes and provides

directions for potential future research. All proofs are delegated to Appendix B.

2 Distortion risk measures and problem formulation

Throughout the paper, we use the notations x ∧ y = min{x, y}, x ∨ y = max{x, y} and (x)+ =

max{x, 0}. Moreover, 1A(x) is the indicator function, which is equal to 1 if x ∈ A and 0 otherwise.

2.1 Distortion risk measures

Let there be a one-period economy. We fix a probability space (Ω,B,P) such that Ω is atom-less and

B is the Borel σ-algebra. A DM is facing an insurable, non-negative loss represented by a random

variable X. Let P be the collection of probability measures of X with support being a subset

of [0,M ], where M > 0. Let FP (x) be the cumulative distribution function (CDF) of X under

probability measure P ∈ P, for which the survival function is defined as SP (x) := 1 − FP (x) =

P (X > x).

The convex distortion risk measure of a random variable Z on the measurable space (Ω,B) is
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allowed to depend on a probability measure P , and is given by:

ρPg (Z) =

∫ ∞

0
g(P (Z > z))dz +

∫ 0

−∞
[g(P (Z > z))− 1]dz, (2.1)

where g is called the distortion function that is increasing1 and concave over [0, 1] and satisfies

g(0) = 0 and g(1) = 1. This implies that the function g is differentiable almost everywhere. For a

fixed probability measure P , the distortion risk measure ρPg satisfies the following properties (Wang

et al., 1997; Denuit et al., 2006):

• Comonotonic additivity: ρPg (Z + Y ) = ρPg (Z) + ρPg (Y ) for comonotonic random variables Z

and Y 2.

• Sub-additivity: ρPg (Z + Y ) ≤ ρPg (Z) + ρPg (Y ) for any two random variables Z and Y .

Note that Comonotonic additivity and the fact that ρPg (1) = 1 imply Translation invariance, which

is defined as ρPg (Z + c) = ρPg (Z) + c for all c ∈ R. Moreover, convex distortion risk measures are

coherent in the sense of Artzner et al. (1999), and are averse to mean-preserving spreads (Yaari,

1987).

2.2 Problem formulation

Let an insurance contract be given by a pair (I, π(I)), where I is the indemnity function and π(I)

is the corresponding premium. If the DM purchases (I, π(I)), its end-of-period loss can be written

as X − I(X) + π(I).

The insurer uses its selected probability measure Q ∈ P to price insurance, and we assume that

the premium π(I) is given by the expected value principle:

π(I) = (1 + θ)EQ[I(X)] = (1 + θ)

∫ M

0
I(x)dFQ(x), (2.2)

where θ ≥ 0 is called the safety loading factor.

For the indemnity function, we impose the so-called incentive compatibility condition. This

condition, first proposed by Huberman et al. (1983), requires that the losses borne by the DM and

insurer are both increasing. This reduces the DM’s motivation of manipulating or under-reporting

the losses and thus alleviates the ex post moral hazard issues. Under the incentive compatibility

condition, the indemnity function must be in the following set:

I =
{
I : [0,M ] 7→ [0,M ]

∣∣∣ I(0) = 0, 0 ≤ I(x2)− I(x1) ≤ x2 − x1 for any 0 ≤ x1 ≤ x2 ≤ M
}
.

Notably, if I ∈ I, then X − I(X) and I(X) are comonotonic. The set I is quite large and includes

many well known indemnity functions, such as the stop-loss, quota-share and truncated stop-loss

1We do not distinguish between “increasing” and “non-decreasing” in the paper.
2The random variables Z and Y are called comonotonic if Z = K1(T ) and Y = K2(T ) for some increasing functions

K1 and K2, where T is a random variable.
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functions3. Additionally, if I ∈ I, then I is 1-Lipschitz continuous and admits the following integral

representation

I(x) =

∫ x

0
η(t)dt, x ∈ [0,M ], (2.3)

where η is called the marginal indemnity function (MIF) (Assa, 2015; Zhuang et al., 2016).

Throughout the paper, we assume that the DM aims to choose the insurance contract that can

minimize its risk exposure, measured by a distortion risk measure. When distributional uncertainty

is absent and the probability measure P ∈ P is known, the following problem is faced by the DM,

which has been extensively studied in the literature:4

min
I∈I

ρPg (X − I(X) + π(I)). (2.4)

The DM is assumed to be uncertain about the underlying distribution P of X due to its limited

access to the market information and historical data. Then, it aims to minimize the worst-case risk

measure, that is, the largest risk measure among a given set of possible distributions. The DM will

consider a set of distributions around some benchmark distribution FB with B ∈ P. We use the

Wasserstein distance metric to measure the distance between the candidate distribution and the

benchmark distribution. As explained in Pesenti and Jaimungal (2023), an important reason for

using such metric in uncertainty modelling is that it allows comparison between distributions with

differing supports. The following definition is for the Wasserstein distance between two cumulative

distribution functions.

Definition 2.1. The p-Wasserstein distance, where p ∈ Z+, between FP1 , FP2 with P1, P2 ∈ P is

given by

W (FP1 , FP2) = inf
X∼FP1

,Y∼FP2

E
[
|X − Y |p

] 1
p ,

where X ∼ FP means that the CDF of the random variable X is FP .

The Wasserstein distance plays an important role in optimal transport (Villani, 2009), and it

has a closed-form representation (Panaretos and Zemel, 2019) using the quantile functions:

Wp(FP1 , FP2) =

(∫ 1

0

∣∣F−1
P1

(t)− F−1
P2

(t)
∣∣pdt) 1

p

, (2.5)

where the notation K−1(t) denotes the left-inverse of the function K at the point t:

K−1(t) = inf
{
x ∈ dom(K) : K(x) ≥ t

}
.

With the definition of the p-Wasserstein distance, the uncertainty set that will be studied in

this paper is a ball centering around a benchmark distribution FB:

Pϵ :=

{
P ∈ P : Wp(FP , FB) ≤ ϵ

1
p

}
. (2.6)

3The stop-loss function is given by I(x) = (x−d)+ for some d ≥ 0. The quota-share function is given by I(x) = cx

for some fraction c ∈ [0, 1]. The truncated stop-loss function is given by I(x) = (x− d1)+ ∧ d2 for some d1, d2 ≥ 0.
4If P = Q, we here refer to Assa (2015), Zhuang et al. (2016) and Lo (2017b), and for generic P ∈ P we refer to

Boonen (2016).
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If p = 2, as shown in Bernard et al. (2023), the constraint in (2.6) implies

ϵ ≥ W (FP , FB)
2 ≥ (µP − µB)2 + (σP − σB)2, (2.7)

where µP , µB denote the expectations ofX under the probability measures P and B respectively, and

σP , σB denote the standard deviations of X under the probability measures P and B respectively.

From this perspective, imposing the Wasserstein-type constraint also places some uncertainties on

the moments of X. This point of view will be further demonstrated in the later analyses.

If ϵ = 0, then the set P0 is a singleton, which yields the case without distributional uncertainty.

This case is solved by Cui et al. (2013), Assa (2015) and Boonen (2016), where the first two focus

on the homogeneous-belief-based problems (i.e., B = Q) and the last focuses on the heterogeneous-

belief-based problem (i.e., B ̸= Q). To avoid this case, we set ϵ > 0 in (2.6) in the rest of this paper.

Since M < ∞, it holds that EQ[X] < ∞ and supP∈Pϵ
ρPg (X) < ∞.

The main problem that we aim to solve is presented below.

Problem 1. For a given ϵ > 0, solve

inf
I∈I

sup
P∈Pϵ

ρPg (X − I(X) + π(I)).

Next section is devoted to obtain the full analytical solution to Problem 1.

3 The optimal indemnity function and the worst-case distribution

3.1 The structure of indemnity function

The set I is convex and bounded. By using the distance metric d(I1, I2) = maxt∈[0,M ] | I1(t) −
I2(t) |, for any I1, I2 ∈ I, the set I is compact under this metric d by Arzelà-Ascoli’s theorem.

As the distortion risk measure is translation invariant and comonotonic additive, it holds that

ρPg (X − I(X) + π(I)) is linear in I, for I ∈ I. Moreover, it is easy to verify that Pϵ is also convex,

and ρPg (X− I(X)+π(I)) is concave in FP due to the concavity of the distortion function g. Hence,

we can apply the minimax theorem (see Theorem A.1 in Appendix A for more details) to Problem 1,

and we then obtain the following problem:

sup
P∈Pϵ

inf
I∈I

ρPg (X − I(X) + π(I)). (3.1)

The inner problem of (3.1) coincides with Problem (2.4), for which the solution is well-known

in the literature (see, e.g., Boonen, 2016). We present its solution below.

Lemma 3.1. For a fixed P ∈ Pϵ, the optimal indemnity function to the inner problem of (3.1) is

given by I∗(x;P ) =
∫ x
0 η∗(t;P )dt where

η∗(t;P ) = 1{t:(1+θ)SQ(t)<g(SP (t))}(t) + γ(t) · 1{t:(1+θ)SQ(t)=g(SP (t))}(t),

where γ is a [0, 1]-valued and Lebesgue-measurable function.
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As shown in Lemma 3.1, the optimal indemnity function that solves the inner problem of (3.1)

may not be unique due to the non-uniqueness of γ(t). In this lemma, we can interpret the term

(1 + θ)SQ(x) − g(SP (x)) as the net price for purchasing the marginal coverage I ′(x) when the

realized loss is x. Lemma 3.1 tells that the DM will purchase the maximum marginal coverage (i.e.,

I ′(x) = 1) when this net price is negative and purchase zero marginal coverage (i.e., I ′(x) = 0) when

this net price is positive. Lemma 3.1 implies that if the worst-case survival function SP ∗ (written

as S∗ in the sequel) is known, then I∗(x;P ∗) is the solution to Problem 1. In the next section, we

derive the worst-case survival function S∗ analytically.

3.2 The worst-case distribution

With the optimal indemnity function in Lemma 3.1, the objective function for Problem (3.1) can

be written as

ρPg (X − I∗(X;P ) + π(I)) = ρPg (X)− ρPg (I
∗(X;P )) + π(I∗(·;P ))

= ρPg (X) +

∫ M

0

(
−g(SP (x)) + (1 + θ)SQ(x)

)
1{x:g(SP (x))>(1+θ)SQ(x)}(x)dx

= ρPg (X)−
∫ M

0

(
g(SP (x)− (1 + θ)SQ(x))

)
+
dx

=

∫ M

0

{
g(SP (x))− (g(SP (x))− (1 + θ)SQ(x))+

}
dx

=

∫ M

0

(
g(SP (x)) ∧ (1 + θ)SQ(x)

)
dx.

The focus now is to find the worst-case distribution that solves the outer problem of (3.1), or
sup
P∈P

∫ M

0

(
g(SP (x)) ∧ (1 + θ)SQ(x)

)
dx,

s.t.

∫ 1

0

∣∣F−1
P (t)− F−1

B (t)
∣∣pdt ≤ ϵ.

(3.2)

For convenience, let S be the class of all survival functions SP of X for P ∈ P. Since the

problem in (3.2) only depends on P via SP , it can be written as
sup
SP∈S

∫ M

0

(
g(SP (x)) ∧ (1 + θ)SQ(x)

)
dx,

s.t.

∫ 1

0

∣∣F−1
P (t)− F−1

B (t)
∣∣pdt ≤ ϵ.

(3.3)

In the following, we denote by P ∗ the worst-case measure for Problem (3.3) and by SP ∗ the associated

survival function. The formulation of Problem (3.3) tells that: if SP (x) = SB(x) for all x ∈ [0,M ],

then F−1
P (t) = F−1

B (t) for all t ∈ [0, 1]. As the objective function of (3.3) is increasing in SP , it

must hold that SP ∗(x) ≥ SB(x) for all x ∈ [0,M ], or equivalently, F−1
P ∗ (t) ≥ F−1

B (t) for all t ∈ [0, 1].

For the ease of discussing the main results, we conclude this finding in the next lemma.
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Lemma 3.2. There exists a worst-case survival function that satisfies SP ∗(x) ≥ SB(x) for all

x ∈ [0,M ], and the associated quantile function F−1
P ∗ (t) ≥ F−1

B (t) for all t ∈ [0, 1].

With Lemma 3.2, to solve Problem (3.2) it suffices to restrict ourselves to the set

P̃ϵ :=
{
P ∈ Pϵ : F−1

P (t) ≥ F−1
B (t) ∀ t ∈ [0, 1]

}
. (3.4)

By focusing on the set P̃ϵ, the left-hand-side of the constraint of (3.3) can be written as∫ 1

0

∣∣F−1
P (t)− F−1

B (t)
∣∣pdt = ∫ 1

0

(
F−1
P (t)− F−1

B (t)
)p

dt

=

p∑
k=0

(
p

k

)
(−1)p−k

∫ 1

0
(F−1

P (t))k(F−1
B (t))p−kdt. (3.5)

The following lemma will play a key role in the subsequent discussions.

Lemma 3.3. For any probability measures P1, P2 ∈ P and k1, k2 ∈ Z+, we have∫ 1

0
(F−1

P1
(t))k1(F−1

P2
(t))k2dt =

∫ M

0

∫ M

0

{
k1x

k1−1k2y
k2−1SP1(x) ∧ SP2(y)

}
dxdy. (3.6)

Thanks to the survival-function-based representation of moments (Chakraborti et al., 2018):

EP [Xk] =

∫ M

0
xkdFP (x) =

∫ 1

0

(
F−1
P (t)

)k
dt =

∫ M

0
kxk−1SP (x)dx, (3.7)

and Lemma 3.3, by some algebraic manipulations, Eq. (3.5) can be further written as

p∑
k=0

(
p

k

)
(−1)p−k

∫ 1

0
(F−1

P (t))k(F−1
B (t))p−kdt

=

∫ 1

0

(
F−1
P (t)

)p
dt+

p−1∑
k=1

(
p

k

)
(−1)p−k

∫ 1

0
(F−1

P (t))k(F−1
B (t))p−kdt+ (−1)p

∫ 1

0

(
F−1
B (t)

)p
dt

=

∫ M

0
pxp−1SP (x)dx− p(p− 1)

∫ M

0

∫ M

0

{
(x− y)p−2SP (x) ∧ SB(y)

}
dxdy + (−1)p

∫ M

0
pxp−1SB(x)dx.

(3.8)

With (3.8) the constraint of the problem (3.3) can be re-written as∫ M

0
xp−1SP (x)dx− (p− 1)

∫ M

0

∫ M

0

{
(x− y)p−2SP (x) ∧ SB(y)

}
dxdy ≤ ζ, (3.9)

where ζ = 1
pϵ − (−1)p

∫M
0 xp−1SB(x)dx. The following lemma shows that the left-hand side of the

above inequality is convex in SP for P ∈ P̃ϵ, which will be helpful for re-formulating the main

problem.

Lemma 3.4. The integral∫ M

0
xp−1SP (x)dx− (p− 1)

∫ M

0

∫ M

0

{
(x− y)p−2SP (x) ∧ SB(y)

}
dxdy

is convex in SP for P ∈ P̃ϵ.

8



With the aid of Lemma 3.4, since the objective function in (3.3) is concave in SP (x), and

furthermore SP = SB is strictly feasible to Problem (3.3) due to ϵ > 0, the Slater condition holds

(Boyd and Vandenberghe, 2004). Therefore, strong duality holds, and solving Problem (3.3) is

equivalent to solving

sup
SP∈S̃

∫ M

0

g(SP (x)) ∧ (1 + θ)SQ(x)− β

(
xp−1SP (x)−

∫ M

0
(p− 1)(x− y)p−2SP (x) ∧ SB(y)dy

) dx

(3.10)

for some β ≥ 0 such that the constraint of (3.9) is satisfied, where S̃ =
{
SP : P ∈ P̃ϵ

}
.

To state the main results, we define

x0 := sup

{
x ∈ [0,M) : SQ(x) ≥

1

1 + θ

}
. (3.11)

The following theorem summarizes the worst-case survival function for the case where β = 0, which

indicates a slack constraint. Its proof is similar to that of Theorem B.1 of Boonen and Jiang (2024)

and thus omitted.

Theorem 3.1. Let x0 be defined in (3.11), and let

A :=
{
x ∈ [x0,M ] : (1 + θ)SQ(x) ≥ g(SB(x))

}
,

B := [x0,M ]\A.

If ∫ M

0
xp−1S̃∗(x)dx− (p− 1)

∫ M

0

∫ M

0

{
(x− y)p−2S̃∗(x) ∧ SB(y)

}
dxdy ≤ ζ,

where

S̃∗(x) = (t0 ∨ SB(x))1[0,x0)(x) + g−1((1 + θ)SQ(x))1A(x) + SB(x)1B(x), (3.12)

and t0 := g−1(1), then the worst-case survival function that solves the problem (3.3) is SP ∗ = S̃∗.

To present the main result for the case where β > 0, which indicates a binding constraint, we

define

K(t;x) = g(t)− β

(
xp−1t−

∫ M

0
(p− 1)(x− y)p−2t ∧ SB(y)dy

)
, (3.13)

which is differentiable with respect to t almost everywhere over [SB(x), 1].

Theorem 3.2. Let x0 be defined in (3.11) and A and B be defined in Theorem 3.1. If β > 0 in

Problem (3.10), the worst-case survival function that solves Problem (3.10) is given by

SP ∗(x;β) = Ŝ(x;β)1[0,x0)(x) +
(
Ŝ(x;β) ∧ g−1((1 + θ)SQ(x))

)
1A(x) + SB(x)1B(x), (3.14)

where

Ŝ(x;β) = inf
{
t ∈ [SB(x), 1] : K

′(t;x) ≤ 0
}
, (3.15)

9



with inf ∅ being the right-end point of the interval. Here β is such that∫ M

0
xp−1SP ∗(x;β)dx− (p− 1)

∫ M

0

∫ M

0

{
(x− y)p−2SP ∗(x;β) ∧ SB(y)

}
dxdy = ζ. (3.16)

Similar results can be derived by replacing the p-Wasserstein distance with the Lp distance to

calculate the distance between distribution functions. We present those results in Appendix C,

those can be seen as an extension of the results in Boonen and Jiang (2024), who only study the

L1 and L2 distance metrics.

It is found that S̃∗(x) = SB(x) and SP ∗(x) = SB(x) for x ∈ B. Note that on B, we have

(1 + θ)SQ(x) < g(SB(x)) ≤ g(SP ∗(x)),

which leads to a negative net price for marginal coverage (see Section 3.1). As such, the DM has

no incentive to consider worse situation for the losses on B as they are ceded out to the insurer.

For x ∈ A, if β = 0, or β > 0 and Ŝ(x;β) ≥ g−1((1 + θ)SQ(x)), the worst-case survival function

SP ∗(x) = g−1((1+θ)SQ(x)) (or SP ∗(x;β) = g−1((1+θ)SQ(x))), the net price for marginal coverage

is equal to (1 + θ)SQ(x) − g(SP ∗(x)) = 0, indicating that the DM is indifferent between with

and without insurance. If β > 0 and Ŝ(x;β) < g−1((1 + θ)SQ(x)), then the net price becomes

(1 + θ)SQ(x)− g(Ŝ(x;β)) > 0, indicating that the DM would retain those losses.

Among different p-Wasserstein distances, p = 1 is of particular interest (Birghila and Pflug,

2019). In that case, for any P ∈ P̃ϵ, the constraint of the problem 3.3 becomes∫ 1

0

∣∣F−1
P (t)− F−1

B (t)|dt =
∫ M

0

∣∣FP (x)− FB(x)
∣∣dx

=

∫ 1

0

(
F−1
P (t)− F−1

B (t)
)
dt

=EP [X]− EB[X] ≤ ϵ.

In other words, considering the 1-Wasserstein distance ball is equivalent to considering the L1 ball

or the uncertainty of the first moment.

For p1, p2 ∈ Z+, if p1 < p2, then by Holder’s inequality we have

(∫ 1

0

∣∣∣F−1
P (t)− F−1

B (t)
∣∣∣p1) 1

p1

≤

(∫ 1

0

∣∣∣F−1
P (t)− F−1

B (t)
∣∣∣p2)

p1
p2

(∫ 1

0
1

p2
p2−p1 dt

) p2−p1
p2


1
p1

=

(∫ 1

0

∣∣∣F−1
P (t)− F−1

B (t)
∣∣∣p2) 1

p2

.

As such, a p-Wasserstein distance with a higher p leads to a smaller uncertainty set, and therefore

a less worse survival function.

Theorem 3.2 shows the worst-case survival function for the problem (3.1) (or Problem 1), where

the optimal indemnity function for the inner problem relies on the survival function of the outer

problem. In real-life applications, the inner problem of Problem 1, where the indemnity function

10



is given, is also interesting. It is not difficult to show that the inner problem of Problem 1 can be

written as
sup
P∈P̃ϵ

∫ M

0
g(SP (x))(1− I ′(x))dx,

s.t.

∫ M

0
xp−1SP (x)dx− (p− 1)

∫ M

0

∫ M

0

{
(x− y)p−2SP (x) ∧ SB(y)

}
dxdy ≤ ξ.

(3.17)

The Slater condition is again satisfied since the objective function of (3.17) is concave in SP , leading

to the equivalence between (3.17) and its dual problem

sup
SP∈S̃

∫ M

0

g(SP (x))(1− I ′(x))− β

(
xp−1SP (x)−

∫ M

0
(p− 1)(x− y)p−2SP (x) ∧ SB(y)

) dx

(3.18)

for some β ≥ 0. Now let

K̂(t;x) = g(t)(1− I ′(x))− β

(
xp−1t−

∫ M

0
(p− 1)(x− y)p−2t ∧ SB(y)dy

)
.

The following corollary presents the solution to the problem (3.18) when I belongs to a subset of I.

Corollary 3.1. If I ∈ I is convex, the worst-case survival function that solves the problem (3.18)

is given by

SP ∗(x;β) = inf{t ∈ [SB(x), 1] : K̂
′(t;x) ≤ 0},

where β is chosen to satisfy the Karush–Kuhn–Tucker (KKT) conditions:∫ M

0
xp−1SP ∗(x)dx− (p− 1)

∫ M

0

∫ M

0

{
(x− y)p−2SP ∗(x) ∧ SB(y)

}
dxdy ≤ ξ

and

β

(∫ M

0
xp−1SP ∗(x)dx− (p− 1)

∫ M

0

∫ M

0

{
(x− y)p−2SP ∗(x) ∧ SB(y)

}
dxdy − ξ

)
= 0.

Corollary 3.1 is applicable for the cases where the indemnity function is a stop-loss function or a

proportional-stop-loss function5. The convexity of the indemnity function can also guarantee that

the well-known Vajda condition is satisfied (Vajda, 1962) such that the proportion of the loss borne

by the insurer is increasing with respect to the total loss. We leave the study of the problem (3.18)

for other kinds of indemnity functions for future research.

We close this section by remarking the applicability of our methodology in solving other robust

optimization problems in the literature, for example, the one in Bernard et al. (2023). They worked

out the worst-case distortion risk measure by considering the uncertainty for the loss distribution,

5A proportional-stop-loss function is of the form I(x) = c(x− d)+ for some c ∈ [0, 1] and d ≥ 0.
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where the uncertainty set is depicted by a 2-Wasserstein ball and the fixed first- and second-order

moments of the loss variable. Their problem can be formulated as
sup
P∈Pϵ

ρPg (X),

s.t. EP [X] = µP , EP [X2] = (σP )2,

(3.19)

where µP , (σP )2 are fixed quantities that satisfy (2.7). If assuming a convex distortion risk measure

ρg, we can extend the results of Bernard et al. (2023) to the case with the p-Wasserstein ball, where

p ∈ Z+. By adopting the survival-function-based representation, the above problem can be written

as 

sup
SP∈S

∫ M

0
g
(
SP (x)

)
dx,

s.t.

∫ M

0
SP (x)dx = µp,

∫ M

0
2xSP (x)dx = (σP )2,∫ M

0
xp−1SP (x)dx− (p− 1)

∫ M

0

∫ M

0

{
(x− y)p−2SP (x) ∧ SB(y)

}
dxdy ≤ ζ,

(3.20)

where ζ is defined right after (3.9). Through the application of the KKT theorem, one can easily

solve the dual problem of (3.20) to get the worst-case survival function. Note that Bernard et al.

(2023) apply a quantile formulation for the problem (3.19) and characterizes the worst-case quantile

function via the isotonic projection. Our method provides a perspective alternative to theirs.

4 A concrete example when ρPg is GlueVaR

In this section, we study a concrete case where the DM applies GlueVaR as the risk measure. The

GlueVaR is first proposed by Belles-Sampera et al. (2014) as a generalization of the commonly used

risk measures – VaR and TVaR, all of which belong to the family of distortion risk measures. The

GlueVaR has four parameters, and its distortion function is given by

gr1,r2α,γ (x) =



r1
1− γ

x, if 0 ≤ x < 1− γ,

r1 +
r2 − r1
γ − α

[
x− (1− γ)

]
, if 1− γ ≤ x < 1− α,

1, if 1− α ≤ x ≤ 1,

(4.1)

where 0 ≤ α ≤ γ ≤ 1, r1 ∈ [0, 1] and r2 ∈ [r1, 1]. It is not difficult to verify that GlueVaR reduces

to VaR if gr1,r2α,γ = g0,0α,α, to TVaR if gr1,r2α,γ = g1,1α,α, and to Range VaR if gr1,r2α,γ = g0,1α,γ . We refer to Lv

and Wei (2023) for another study of a distributionally robust reinsurance problem under GlueVaR,

in which the uncertainty set is generated by the set of all probability measures with given first two

moments.

To adapt to the setting of our model, we will only focus on the case where r2 = 1 and 1−r1
γ−α < r1

1−γ ,

which results in gr1,r2α,γ being a concave function on [0, 1] (see Figure 1 for an illustration). For

simplicity in the discussion, we assume that the DM applies the probability measure Q of the
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insurer as the benchmark probability measure, i.e., B = Q. We also assume that FQ is continuous

and strictly increasing for the ease of later calculations. We note that if r1 = 1, then ρPg reduces

to TVaR, which has been studied in Boonen and Jiang (2024) for the L2 and L1 ball. Hence, we

assume that r1 < 1. For p-Wasserstein distance, we choose p ≥ 2.

Figure 1: The illustration of the distortion function gr1,1α,γ that is used in Section 4.1.

When B = Q, we define

x1 = sup{x ∈ [x0,M) : (1 + θ)SQ(x) ≥ g(SQ(x))},

and it can be easily shown that A = [x0, x1) and B = [x1,M ]. Note that the net price for marginal

coverage is always positive for x ∈ [0, x0) and negative for x ∈ [x1,M ]. According to Lemma 3.1, the

optimal indemnity function satisfies I ′(x) = 0 for x ∈ [0, x0) and I ′(x) = 1 for x ∈ [x1,M ]. When

x ∈ [x0, x1), the net price is non-negative. If the DM does not bother to pay the ex ante premiums

for the losses for which she is indifferent between with and without insurance, then I ′(x) = 0 for

x ∈ [x0, x1). In such a case, the optimal indemnity function is given by I∗(x) = (x− x1)+, which is

a classical stop-loss function. In the remainder of the section, our focus will be on the worst-case

survival function, first using an analytical approach and then a numerical one.

4.1 Analytical results

Following Theorems 3.1 and 3.2, we derive the worst-case survival functions for the cases where

β = 0 and β > 0.

Case 1. β = 0

In this case, using Eq. (3.11) we obtain x0 = F−1
Q

(
θ

1+θ

)
.
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• If 1 − α ≤ 1
1+θ , then it is easy to get that A is either ∅ or a singleton set {x0}. In this

case, we can get that: for any x ∈ [0, x0)

SQ(x) ≥ SQ(x0) =
1

1 + θ
≥ 1− α = g−1(1) = t0.

Thus, the worst-case survival function is given by

SP ∗(x) =
(
t0 ∨ SQ(x)

)
1[0,x0)(x) + SQ(x)1[x0,M ](x) = SQ(x).

• If 1−γ
r1

< 1
1+θ < 1− α, then we get

A =
{
x ∈ [x0,M ] : (1 + θ)SQ(x) ≥ g(SQ(x))

}
= [x0, x1] ,

where x1 = F−1
Q

(
αr1−α+θγ−θα

(γ−α)(1+θ)−(1−r1)

)
. In this case, the worst-case survival function is

given by

SP ∗(x) =
(
(1− α) ∨ SQ(x)

)
1[0,x0)(x) +

(
γ − α

1− r1

[
(1 + θ)SQ(x)− r1

]
+ (1− γ)

)
1[x0,x1)(x)

+ SQ(x)1[x1,M ](x).

• If 1
1+θ ≤ 1−γ

r1
, then it is easy to get A = [x0,M ]. Let x2 = F−1

Q (γ). If furthermore
1

1+θ > 1− γ, or equivalently x0 < x2, the worst-case survival function is then given by

SP ∗(x) =
(
(1− α) ∨ SQ(x)

)
1[0,x0)(x) +

(
γ − α

1− r1

[
(1 + θ)SQ(x)− r1

]
+ (1− γ)

)
1[x0,x2)(x)

+
(1− γ)(1 + θ)

r1
SQ(x)1[x2,M ](x).

Otherwise, the worst-case survival function is given by

SP ∗(x) =
(
(1− α) ∨ SQ(x)

)
1[0,x0)(x) +

(1− γ)(1 + θ)

r1
SQ(x)1[x0,M ](x).

Case 2. β > 0

For this case, we first calculate Ŝ(x;β) by using Eq. (3.15). Note that if t ∈ (1 − α, 1], then

H′(t;x) = 0− β
(
x− F−1

Q (1− t)
)p−1

, which results in Ŝ(x;β) = SQ(x). This further implies

that Ŝ(x;β) = SQ(x) when x ∈ [0, F−1
Q (α)). By combining the results for different values of

t, we obtain

Ŝ(x;β) =



SQ(x), x ∈ [0, x̃1),

1− α, x ∈ [x̃1, x̃2),

SQ

x−
(

1− r1
β(γ − α)

) 1
p−1

 , x ∈ [x̃2, x̃3),

1− γ, x ∈ [x̃3, x̃4),

SQ

x−
(

r1
β(1− γ)

) 1
p−1

 , x ∈ [x̃4,M ],

(4.2)
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where

x̃1 = F−1
Q (α), x̃2 =

F−1
Q (α) +

(
1− r1

β(γ − α)

) 1
p−1

 ∧M,

x̃3 =

F−1
Q (γ) +

(
1− r1

β(γ − α)

) 1
p−1

 ∧M, x̃4 =

F−1
Q (γ) +

(
r1

β(1− γ)

) 1
p−1

 ∧M.

• If 1−α ≤ 1
1+θ , then x0 = F−1

Q

(
θ

1+θ

)
≤ F−1

Q (α) = x̃1. Similar to the first bullet point of Case

1, the set A is either empty or a singleton set. Thus, the worst-case survival function is given

by

SP ∗(x;β) = Ŝ(x;β)1[0,x0)(x) + SQ(x)1[x0,M ](x) = SQ(x).

However, it should be noted that the worst-case survival function is equal to the benchmark

survival function, indicating that this case can never happen if the constraint is to be binding

for some ϵ > 0.

• If 1−γ
r1

< 1
1+θ < 1−α, then A = [x0, x1], where x1 has been defined in the second bullet point

of Case 1. It is straightforward that x0 > x̃1 and x1 ≤ F−1
Q (γ) < x̃3. Note that x̃2 approaches

to x̃1 if β → ∞ and to M if β → 0. Therefore, the order of x0, x1, and x̃2 must be considered

to fully identify the worst-case survival function.

- If x0 < x1 ≤ x̃2, the worst-case survival function is given by

SP ∗(x;β) =SQ(x)1[0,x̃1)(x) + (1− α)1[x̃1,x0)(x)

+

(
γ − α

1− r1

[
(1 + θ)SQ(x)− r1

]
+ (1− γ)

)
1[x0,x1)(x) + SQ(x)1[x1,M ](x).

As in the first bullet point, the worst-case survival function is equal to that when β = 0,

suggesting that this case cannot occur if the constraint is to be binding for some ϵ > 0.

- If x0 ≤ x̃2 < x1, the worst-case survival function is given by

SP ∗(x;β) =SQ(x)1[0,x̃1)(x) + (1− α)1[x̃1,x0)(x)

+

(
γ − α

1− r1

[
(1 + θ)SQ(x)− r1

]
+ (1− γ)

)
1[x0,x̃2)(x)

+

SQ

x−
(

1− r1
β(γ − α)

) 1
p−1

 ∧
(
γ − α

1− r1

[
(1 + θ)SQ(x)− r1

]
+ (1− γ)

)1[x̃2,x1)(x)

+ SQ(x)1[x1,M ](x).
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- If x̃2 < x0 < x1, the worst-case survival function is given by

SP ∗(x;β) =SQ(x)1[0,x̃1)(x) + (1− α)1[x̃1,x̃2)(x) + SQ

x−
(

1− r1
β(γ − α)

) 1
p−1

1[x̃2,x0)(x)

+

SQ

x−
(

1− r1
β(γ − α)

) 1
p−1

 ∧
(
γ − α

1− r1

[
(1 + θ)SQ(x)− r1

]
+ (1− γ)

)1[x0,x1)(x)

+ SQ(x)1[x1,M ](x).

• If 1
1+θ ≤ 1−γ

r1
, then A = [x0,M ]. Let x2 be defined in the third bullet point of Case 1, we

easily get x2 < x̃3. In order to identify the worst-case survival function, the order of x0, x2

and x̃2 needs to be discussed. Since a sufficiently large θ is required in this case, which is less

realistic in practice, we will only examine one sub-case without further discussion.

- If x0 < x2 ≤ x̃2, the worst-case survival function is given by

SP ∗(x;β) =SQ(x)1[0,x̃1)(x) + (1− α)1[x̃1,x0)(x)

+

(
γ − α

1− r1

[
(1 + θ)SQ(x)− r1

]
+ (1− γ)

)
1[x0,x2)(x)

+
(1− γ)(1 + θ)

r1
SQ(x)1[x2,x̃2)(x)

+

(
(1− γ)(1 + θ)

r1
SQ(x)

)
∧ Ŝ(x;β)1[x̃2,M ](x),

where we use Ŝ(x;β) for x ∈ [x̃2,M ] to shorten the lengthy expression.

Although the solution is complex, analytical forms of the worst-case survival function can be

derived if the DM has a convex GlueVaR preference. These results can be easily extended to

other distortion-risk-measure-based preferences, provided that the distortion function is concave

and piece-wise linear. This perspective enables the approximation of the worst-case distribution for

any convex distortion risk measure. A sensitivity analysis will be given in the next subsection.

4.2 Numerical results

The effect of the p of the p-Wasserstein distance on the worst-case survival function has been

analytically studied in Section 3.2. In this section, we mainly focus on the effect of the safety

loading factor θ, as well as the risk-aversion level of the DM, on the derived worst-case survival

function and the resulting net price, i.e., (1 + θ)SQ(x)− g(SP ∗(x)).

For the effect of the safety loading factor, given the GlueVaR preference of the DM, the following

settings are adopted.

• The loss variable X follows an exponential-type distribution, whose CDF is

FX(x) =

1− e−
x

100 , x ∈ [0, 5000],

1, x ∈ (5000,∞).
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• The parameters of the GlueVaR preference are r1 = 0.6, r2 = 1, α = 0.05 and γ = 0.7.

• We adopt a 2-Wasserstein distance throughout this section.

• To conduct the sensitivity test, we will test θ = 0.1, 0.5 and 0.9.

For the ease of presentation, we also denote by S∗
1 , S

∗
2 and S∗

3 the worst-case survival function

for the three cases of θ, and by X1, X2 and X3 the random variables whose survival functions are

S∗
1 , S

∗
2 and S∗

3 .

We choose ϵ
1
2 = 10 such that the case θ = 0.1 has a slack constraint, while the cases θ = 0.5

and θ = 0.9 both have binding constraints. The left plot of Figure 2 shows the resulting worst-case

survival functions for the three cases. The underlying intuition is straightforward: given a larger

safety loading factor, the DM tends to retain more losses, which leaves itself a larger room for

considering the worse distribution. Thus, the worst-case survival function under θ = 0.5 or 0.9

dominates that under θ = 0.1. Note that the constraint is binding for θ = 0.5 or 0.9, hence S∗
3

cannot dominate S∗
2 . However, by computing the expectations of X2 and X3 we get∫ 5000

0
S∗
2(x)dx = 106.59 < 107.78 =

∫ 5000

0
S∗
3(x)dx.

As per Definition 2.2 and Theorem 2.3 of Cheung et al. (2015), we have

X1 ≤st X2 ≤icx X3,

where ≤st and ≤icx denote respectively the first-order stochastic dominance and increasing convex

order.

The right plot of Figure 2 shows the net price of the marginal coverage, which is defined in

Section 3.1. The figure tells that a larger safety loading factor leads to higher net price, though the

DM’s deemed worst-case survival function becomes riskier, which therefore would reduce the DM’s

demand for insurance.

Next, we investigate the effect of the DM’s risk-aversion level on the worst-case survival function

and the net price. For that purpose, we fix the safety loading factor θ = 0.5, and try r1 = 0.6, 0.7

and 0.8. As shown by Figure 1, a larger r1 leads to a more concave distortion function, which

further leads to a more risk-averse DM. Under the same ϵ, the constraints for the three cases are

all binding. Figure 3 shows the worst-case survival functions, as well as the net price for marginal

coverage, under the different values of r1. Due to the same reasoning, none of the survival functions

dominate any of the others. By computing the expectations of X1, X2 and X3, we find∫ 5000

0
S∗
1(x)dx = 106.59 >

∫ 5000

0
S∗
2(x)dx = 105.99 >

∫ 5000

0
S∗
3(x)dx = 105.53,

which, as per Definition 2.2 and Theorem 2.3 of Cheung et al. (2015), indicates that X3 ≤icx X2 ≤icx

X1. Understandably, a more risk-averse DM, who applies a larger r1, would transfer more tail risk

to the insurer. This is also implied by the right plot of Figure 3, where the net price for marginal
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Figure 2: Under the 2-Wasserstein distance: (left) the worst-case survival functions under different

θ; (right) the net price under different θ.

coverage is lower for a more risk-averse DM, which leads to a higher demand for insurance. Hence,

there is no need for the DM to distort the distribution for the losses which have been ceded out.

This explains the seemingly counter-intuitive observation where a more risk-averse DM over-weighs

less the tail risk.

Figure 3: Under the 2-Wasserstein distance: (left) the worst-case survival functions under different

r1; (right) the net price under different r1.

4.3 Comparison with the L2 distance

In this section, we compare the 2-Wasserstein distance with the L2 distance, which was studied in

Boonen and Jiang (2024) (see also Appendix C), and show the worst-case survival functions and
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net prices when using the L2 distance. We readily compute the following:

max
θ∈{0.1,0.5,0.9},r1∈{0.6,0.7,0.8}

(∫ M

0

(
S̃∗(x)− SQ(x)

)2
dx

) 1
2

= 2.5779 < 10,

where S̃∗(x) is as shown in (3.12). Thus, for all the cases considered in this section the worst-case

survival function under the L2 distance is given by (3.12). As shown by Boonen and Jiang (2024)

(see the derivation below Equation (5.1) therein), the Lp distance between two distribution functions

is less than the p-Wasserstein distance, leaving the DM with more choices of the loss distribution if

the same distance ϵ is used. The worst-case survival functions and net price under the L2 distance

are presented in Figures 4 (for various risk loadings θ) and 5 (for various parameters r1). Comparing

Figure 4 with Figure 2 (or Figure 5 with Figure 3), the DM chooses the riskier survival functions

under the L2 distance as compared with under the 2-Wasserstein distance. Straightforwardly, the

net price for the marginal full coverage is lowered when the L2 distance is applied. Nevertheless, as

per the discussions at the beginning of Section 4, the optimal indemnity function remains the same

when switching from the 2-Wasserstein distance to the L2 distance if the DM buys zero insurance

when she is indifferent between with and without insurance.

Figure 4: Under the L2 distance: (left) the worst-case survival functions under different θ; (right)

the net price under different θ.

5 Concluding remarks and future research

This study conducts an in-depth examination of optimal insurance contracting from a decision-

maker’s (DM) perspective, specifically focusing on instances where the DM is endowed with a

convex distortion risk measure. This paper considers the case in which the DM has an ambiguous

understanding about her loss distribution. We model the set of possible loss distributions utilizing

the Wasserstein ball, which encompasses all distributions that are close to a given benchmark
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Figure 5: Under the L2 distance: (left) the worst-case survival functions under different r1; (right)

the net price under different r1.

distribution. To measure the distance, we study the p-Wasserstein distance. The optimal indemnity

function is selected by considering the worst-case distribution from such a Wasserstein ball, which

leads to the so-called distributionally robust insurance contract. For the pricing of the insurance

contract, we assume that the insurer adopts the expected-value premium principle. By applying the

well-known minimax theorem and the marginal indemnity function approach, the explicit structure

of the optimal indemnity function can be determined. With the help of the newly developed survival-

function-based representation of the Wasserstein distance, the explicit structure of the worst-case

distribution is also worked out. It is further found that the DM would apply the benchmark

distribution for the losses which have negative net price for marginal coverage under the benchmark

distribution. To showcase the applicability of our main results, a concrete case is studied in detail,

where the DM applies GlueVaR as her preference. Some numerical examples are also presented

to demonstrate the effects of safety loading factor and level of risk aversion on the worst-case

distribution.

Our research paves the way for numerous opportunities for further investigation. For example,

within the same framework, novel techniques are needed to derive the optimal indemnity function

and the worst-case distribution when the DM holds a non-convex distortion-risk-measure-based

preference. Another potential extension is to incorporate the optimal effort (Robert and Therond,

2014) into our framework. If the DM can lower her ambiguity level through investing more resources

in, for example, data collection, then another trade-off between the reduced ambiguity and the

increased ex ante monetary loss should be considered within our framework. Such topics are left

for future research.
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A Minimax theorem

In this appendix, we state the minimax theorem. To do so, we first define a Hausdorff topological

vector space. This is a topological vector space with the separation property, i.e., any two distinct

points in the space can be separated by disjoint open sets.

Theorem A.1 (Minimax theorem, Fan (1953)). Let Ξ1 be a non-empty compact convex Hausdorff

topological vector space and Ξ2 be a convex set. If H is a real-valued function defined on Ξ1 × Ξ2

such that

• ξ1 7→ H(ξ1, ξ2) is convex and lower semi-continuous on Ξ1 for each ξ2 ∈ Ξ2;

• ξ2 7→ H(ξ1, ξ2) is concave on Ξ2 for each ξ1 ∈ Ξ1,

then

inf
ξ1∈Ξ1

sup
ξ2∈Ξ2

H(ξ1, ξ2) = sup
ξ2∈Ξ2

inf
ξ1∈Ξ1

H(ξ1, ξ2).

B Proofs of the main results

Proof of Lemma 3.3

Let U denote a uniform random variable on (0, 1), then F−1
P (U) is a random variable whose CDF is

FP . Recall the Hoeffding’s formula on the covariance of two non-negative random variables X and
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Y which are defined on the probability space (Ω,B,P) (Lo, 2017a):

Cov[X,Y ] =

∫
R+

∫
R+

{
P(X > x, Y > y)− P(X > x)P(Y > y)

}
dxdy

=

∫
R+

∫
R+

P(X > x, Y > y)dxdy −
(∫

R+

P(X > x)dx

)(∫
R+

P(Y > y)dy

)
=

∫
R+

∫
R+

P(X > x, Y > y)dxdy − E[X]E[Y ].

We therefore have

E[XY ] =

∫
R+

∫
R+

P(X > x, Y > y)dxdy.

This leads to∫ 1

0
(F−1

P1
(t))k1(F−1

P2
(t))k2dt =E[(F−1

P1
(U))k1(F−1

P2
(U))k2 ]

=

∫ Mk2

0

∫ Mk1

0
P((F−1

P1
(U))k1 > x, (F−1

P2
(U))k2 > y)dxdy

=

∫ Mk2

0

∫ Mk1

0
P(F−1

P1
(U) > x

1
k1 , F−1

P2
(U) > y

1
k2 )dxdy

=

∫ M

0

∫ M

0
P(F−1

P1
(U) > s, F−1

P2
(U) > z)dsk1dzk2

=

∫ M

0

∫ M

0

{
k1s

k1−1k2z
k2−1P(F−1

P1
(U) > s, F−1

P2
(U) > z)

}
dsdz

=

∫ M

0

∫ M

0

{
k1s

k1−1k2z
k2−1P(U > FP1(s), U > FP2(z))

}
dsdz

=

∫ M

0

∫ M

0

{
k1s

k1−1k2z
k2−1P(U > FP1(s) ∨ FP2(z)

}
dsdz

=

∫ M

0

∫ M

0

{
k1s

k1−1k2z
k2−1

(
1− FP1(s) ∨ FP2(z)

)}
dsdz

=

∫ M

0

∫ M

0

{
k1s

k1−1k2z
k2−1(1− FP1(s)) ∧ (1− FP2(z))

}
dsdz

=

∫ M

0

∫ M

0

{
k1s

k1−1k2z
k2−1SP1(s) ∧ SP2(z)

}
dsdz.

The proof is complete.

Proof of Lemma 3.4

It suffices to prove the concavity of∫ M

0

∫ M

0

{
(x− y)p−2SP (x) ∧ SB(y)

}
dxdy

in SP . This is obvious if p ∈ Z+ is an even number. Our focus will be on the case where p ∈ Z+ is

an odd number.
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Note that if x ≤ y, then for any P ∈ P̃ϵ, we have SP (x) ≥ SB(x) ≥ SB(y). Thus, when x ≤ y,

given any λ ∈ (0, 1) and P1, P2 ∈ P̃ϵ, we have(
λSP1(x) + (1− λ)SP2(x)

)
≥ SB(y),

which leads to(
λSP1(x) + (1− λ)SP2(x)

)
∧ SB(y) = SB(y) = λSP1(x) ∧ SB(y) + (1− λ)SP2(x) ∧ SB(y).

Hence, for any P1, P2 ∈ P̃ϵ and λ ∈ (0, 1), we have∫ M

0

∫ M

0

{
(x− y)p−2

(
λSP1(x) + (1− λ)SP2(x)

)
∧ SB(y)

}
dxdy

=

∫ M

0

{∫ y

0
(x− y)p−2

(
λSP1(x) + (1− λ)SP2(x)

)
∧ SB(y)dx

}
dy

+

∫ M

0

{∫ M

y
(x− y)p−2

(
λSP1(x) + (1− λ)SP2(x)

)
∧ SB(y)dx

}
dy

≥
∫ M

0

{∫ y

0
(x− y)p−2

(
λSP1(x) ∧ SB(y) + (1− λ)SP2(x) ∧ SB(y)

)
dx

}
dy

+

∫ M

0

{∫ M

y
(x− y)p−2

(
λSP1(x) ∧ SB(y) + (1− λ)SP2(x) ∧ SB(y)

)
dx

}
dy

= λ

∫ M

0

∫ M

0

{
(x− y)p−2SP1(x) ∧ SB(y)

}
dxdy

+ (1− λ)

∫ M

0

∫ M

0

{
(x− y)p−2SP2(x) ∧ SB(y)

}
dxdy.

This ends the proof.

Proof of Theorem 3.2

Based on the definition of x0, we have g(SP (x)) ≤ (1 + θ)SQ(x) on [0, x0). Thus, the objective

function of (3.10) can be written as

sup
SP∈S

∫ x0

0

g(SP (x))− β

(
xp−1SP (x)−

∫ M

0
(p− 1)(x− y)p−2SP (x) ∧ SB(y)dy

) dx

+

∫ M

x0

g(SP (x)) ∧ (1 + θ)SQ(x)− β

(
xp−1SP (x)−

∫ M

0
(p− 1)(x− y)p−2SP (x) ∧ SB(y)dy

) dx.

(A.1)
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The following functions are defined to facilitate the later discussions:

K1(t;x) = g(t)− β

(
xp−1t−

∫ M

0
(p− 1)(x− y)p−2t ∧ SB(y)dy

)
,

K2(t;x) = (1 + θ)SQ(x)− β

(
xp−1t−

∫ M

0
(p− 1)(x− y)p−2t ∧ SB(y)dy

)
,

K3(t;x) = g(t) ∧ (1 + θ)SQ(x)− β

(
xp−1t−

∫ M

0
(p− 1)(x− y)p−2t ∧ SB(y)dy

)
.

We adopt the element-wise maximization approach. More specifically, we look at the following

cases.

Case 1. x ∈ [0, x0)

In this case, as per the element-wise maximization, we have

SP ∗(x) = argmax
t∈[0,1]

K1(t;x).

Since g is concave, it is straightforward that K1(t;x) is concave. Note that SB(y) ≤ t ⇐⇒
y ≥ F−1

B (1− t). Thus,

K1(t;x) = g(t)− βxp−1t+ β(p− 1)

∫ M

F−1
B (1−t)

(x− y)p−2SB(y)dy +

∫ F−1
B (1−t)

0
(x− y)p−2tdy

 ,

of which the derivative exists almost everywhere and is decreasing over [SB(x), 1]. As such,

SP ∗(x) for x ∈ [0, x0) is given by (3.15). Furthermore, note that FB(F
−1
B (1 − t)) ≥ 1 − t for

any t ∈ [0, 1], and (F−1
B )′(1 − t) = 0 when FB(F

−1
B (1 − t)) > 1 − t. It can easily be verified

that

K ′
1(t

+
0 ;x) = lim

t→t+0

K ′
1(t;x) = g′(t+0 )− β(x− F−1

B (1− t+0 ))
p−1

for any t0 ∈ (0, 1). If 0 ≤ x1 ≤ x2 < x0, we have K ′
1(t

+;x1) ≥ K ′
1(t

+;x2) for any t ∈
[SB(x1), 1]. Thus, SP ∗(x1) ≥ SP ∗(x2).

Case 2. x ∈ [x0,M ]

In this case, as per the element-wise maximization, we have

SP ∗(x) = argmax
t∈[0,1]

K3(t;x).

It is easy to check that K3(t;x) is concave in t. Denote t∗(x) = g−1((1 + θ)SQ(x)), which is

between 0 and 1 for x ∈ [x0,M ], then

K3(t;x) =

K1(t;x), t ∈ [0, t∗(x)],

K2(t;x), t ∈ (t∗(x), 1].
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Then, we have

K ′
3(t

∗(x)+;x) = g′(t∗(x)+)− β(x− F−1
B (1− t∗(x)+))p−1,

K ′
3(t

∗(x)+;x) = −β(x− F−1
B (1− t∗(x)+))p−1.

On A, we have

t∗(x) ≥ SB(x) =⇒ FB(x) ≥ 1− t∗(x)

=⇒ x ≥ F−1
B (FB(x)) ≥ F−1

B (1− t∗(x)).

Thus,

K ′
3(t

∗(x)+;x) =− β(x− F−1
B (1− t∗(x)+))p−1 ≤ 0

Hence, on A, the maximum of K3(t;x) over [SB(x), 1] is attained within [SB(x), t
∗(x)]. Note

that the maximum of K1(t;x) over [SB(x), 1] is attained when t = Ŝ(x;β), the worst-case

survival function SP ∗(x) = Ŝ(x;β) ∧ t∗(x) for x ∈ A.

Similarly, on B, we have t∗(x) < SB(x), which leads to K3(t;X) = K2(t;x) for t ∈ [SB(x), 1].

Since

K ′
2(t

+;x) = −β(x− F−1
B (1− t+)p−1 ≤ 0

for any t ∈ [SB(x), 1], the maximum of K3(t;x) is attained at SB(x).

The decreasing property of SP ∗(x) over [0, x0) ∪ A ∪ B can be proved similarly as that in the

proof of Theorem B.2 of Boonen and Jiang (2024). The existence of β > 0 for (3.16) to hold

is guaranteed by the Karush–Kuhn–Tucker conditions (see Chapter 5 in Boyd and Vandenberghe

(2004)). Alternatively, one can refer to Boonen and Jiang (2024) for a proof by using the Lebesgue

Dominated Theorem.

C Results under the Lp distance

The distributionally robust optimal insurance problem with the L1 or L2 distance metric is studied

by Boonen and Jiang (2024). In this appendix, we show that those results can be extended to

general p ∈ Z+ using the techniques used to prove Theorems 3.1 and 3.2

We first recall the definition of the Lp distance, where p ∈ Z+, between two CDFs FP1 and FP2

for any P1, P2 ∈ P:

Dp(FP1 , FP2) =

(∫
R

∣∣FP1(x)− FP2(x)
∣∣pdx) 1

p

=

(∫
R

∣∣SP1(x)− SP2(x)
∣∣pdx) 1

p

. (A.1)

By replacing the Wasserstein distance with Dp(·, ·) in Pϵ, the problem (3.3) can be formulated as
sup
SP∈S

∫ M

0

(
g(SP (x)) ∧ (1 + θ)SQ(x)

)
dx,

s.t.

∫ M

0

∣∣SP (x)− SB(x)
∣∣pdx ≤ ϵ.

(A.2)
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Due to the same reasoning, we note that Lemma 3.2 still holds for the problem (A.2). As such, to

solve the problem (A.2), it suffices to restrict our attention to the set P̃ϵ, which is defined in (3.4).

In other words, the constraint of (A.2) can now be written as∫ M

0

(
SP (x)− SB(x)

)p
dx ≤ ϵ and SP (x) ≥ SB(x) ∀ x ∈ [0,M ].

It is easy to verify that the integral
∫M
0

(
SP (x)− SB(x)

)p
dx is convex in SP for P ∈ P̃ϵ. As such,

the Slater condition holds for (A.2), which allows us to solve its dual problem to get the solution:

for some β ≥ 0,

sup
SP∈S

∫ M

0

{
g(SP (x)) ∧ (1 + θ)SQ(x)− β

(
SP (x)− SB(x)

)p}
dx. (A.3)

The following two theorems are quite similar to Theorems 3.1 and 3.2, with the only difference

that the distance metric is replaced by Dp(·, ·). Thus, we omit their proofs here.

Theorem C.1. Let x0 be defined in (3.11), and A and B be defined in Theorem 3.1. If∫ M

0

(
S̃∗(x)− SB(x)

)p
dx ≤ ϵ,

where

S̃∗(x) = (t0 ∨ SB(x))1[0,x0)(x) + g−1((1 + θ)SQ(x))1A(x) + SB(x)1B(x),

where t0 = g−1(1) is defined in Theorem 3.1, then the worst-case survival function that solves the

problem (A.3) with β = 0 is SP ∗ = S̃∗.

Theorem C.2. Let x0 be defined by (3.11) and A and B be defined by Theorem 3.1. If β > 0 in

Problem (A.3), the worst-case survival function that solves Problem (A.3) is given by

SP ∗(x;β) = Ŝ(x;β)1[0,x0)(x) +
(
Ŝ(x;β) ∧ g−1((1 + θ)SQ(x))

)
1A(x) + SB(x)1B(x), (A.4)

where

Ŝ(x;β) = inf
{
t ∈ [SB(x), 1] : g

′(t)− βp(t− SB(x))
p−1 ≤ 0

}
, (A.5)

with inf ∅ being the right-end point of the interval. Here β is such that∫ M

0

(
SP ∗(x;β)− SB(x)

)p
dx = ϵ. (A.6)
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