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Abstract

This paper studies an optimal insurance contracting problem in which the preferences of the
decision maker are given by the sum of the expected loss and a convex, increasing function of a
deviation measure. As for the deviation measure, our focus is on convex signed Choquet integrals
(such as the Gini coefficient and a convex distortion risk measure minus the expected value) and
on the standard deviation. We find that if the expected value premium principle is used, then
stop-loss indemnities are optimal, and we provide a precise characterization of the corresponding
deductible. Moreover, if the premium principle is based on Value-at-Risk or Expected Shortfall,
then a particular layer-type indemnity is optimal, in which there is coverage for small losses up to a
limit, and additionally for losses beyond another deductible. The structure of these optimal indem-
nities remains unchanged if there is a limit on the insurance premium budget. If the unconstrained
solution is not feasible, then the deductible is increased to make the budget constraint binding. We
provide several examples of these results based on the Gini coefficient and the standard deviation.

Keywords: Deviation measures, mean-deviation measures, optimal insurance, stop-loss indemnities.

1 Introduction

Optimal insurance contract theory has gained substantial academic interest in recent years. In
this theory, a decision maker (DM) or policyholder optimizes an objective function based on his/her
terminal wealth, and insurance is priced using a well-defined premium principle. Early contributions
to this problem studied expected utility (Arrow, 1963) or a mean-variance function (Borch, 1960) as
objectives for the DM. More recent papers study more sophisticated objectives based on regulations
or decision-theoretic frameworks that have gained popularity in behavioral economics. To list a few
examples, researchers have considered distortion risk measures (Cui et al., 2013; Assa, 2015), expectiles
(Cai and Weng, 2016), rank-dependent utilities (Ghossoub, 2019; Xu et al., 2019; Liang et al., 2022),
regret-based objectives (Chi and Zhuang, 2022) and objectives with narrow framing (Zheng, 2020; Chi
et al., 2022; Liang et al., 2023). In this paper, our focus is on an objective that is new in the context
of optimal insurance contract theory: mean-deviation measures.

The class of generalized deviation measures was introduced by Rockafellar et al. (2006) via a set of
four axioms. It is characterized based on a modified set of axioms compared to Artzner et al. (1999); in
particular, the translation invariance property of a risk measure ρ is modified from ρ(X+c) = ρ(X)+c
(Artzner et al., 1999), which is also called cash additivity, to the property: ρ(X + c) = ρ(X), for all
random variables X and c ∈ R. This allows for a natural separation between the actuarial value of
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a loss (expected loss) and the risk of a loss (measured via deviation measures). Canonical examples
of deviation measures are the Gini coefficient and the standard deviation. The Gini coefficient ranges
from 0 to 1, where 0 represents no risk and 1 represents the case in which all losses are concentrated
in one state of the world (maximum dispersion in a distribution). It measures the extent to which the
distribution deviates from a constant, and can be used to measure the risk of a random variable. The
standard deviation is a more classical way to measure risk, and its use as risk measure is very popular
for Gaussian distributions.

We study a special class of preferences, which can be seen as a generalization of mean-variance
optimization in Markowitz (1952). In mean-variance optimization, an individual seeks to find a balance
between expected return (mean) and risk (measured by the variance). A key advantage of mean-
variance optimization is its simplicity, and this mean-variance structure allows us to explicitly reflect
an individual’s tolerance towards risk. In this paper, we keep such simple trade-off structure, and
replace the variance as a function to measure risk by a more general deviation measure. Deviation
measures preserve two key properties of variance: they are non-negative and translation invariant.
In this way, a deterministic loss is measured as zero deviation. Deviation measures are consequently
used to measure the “risk” within a mean-risk trade-off. While variance is not a special case of
a deviation measure as it is not positively homogeneous and sub-additive, the standard deviation
is. The objective that we study is called mean-deviation measures, and it considers the sum of a
convex function of a deviation measure plus the expectation. By taking the square-function as convex
function, the original mean-variance objective as in Markowitz (1952) is recovered as special case.
Some specific mean-deviation measures have been extensively studied in the literature on portfolio
selection problems, where the objective is to minimize the risk of a portfolio subject to a desired
expected return, or to maximize the return among all portfolios with the risk not exceeding some
threshold; see for example Sharpe (1964), Rockafellar et al. (2006) and Rockafellar and Uryasev
(2013). Mean-deviation measures are also studied in the context of risk measures, see for example
the mean-semideviation in Ogryczak and Ruszczyński (2001), mean-distortion risk measure mixtures
in De Giorgi and Post (2008) and Cheung and Lo (2017) and mean-Expected Shortfall mixtures in
Embrechts et al. (2021). For a general study on properties of mean-deviation risk measures, we refer
to Han et al. (2023). It is shown by Rockafellar et al. (2006) that, under some bounded conditions,
the generalized deviation measures are associated one-to-one with coherent risk measures (Artzner et
al., 1999) via an additive relationship. The additive structure is for us only a special case, as our focus
is on preferences given by the sum of the expected loss and a convex function a deviation measure.
This structure allows for preferences that cannot be represented by a coherent risk measure, such as
the mean-variance objective.

This paper contributes to the rapidly growing actuarial literature on optimal (re)insurance under
risk measures. For an overview of this literature, we refer to Cai and Chi (2020). Suppose the
insurance premium is given by the well-known expected value premium principle. Then, in the context
of expected utility, stop-loss indemnities are well-known to be optimal (Arrow, 1963). With coherent
distortion risk measures for the insurer, the stop-loss indemnity is also optimal (Lo, 2017), and the
same holds true if the objective of the insurer is replaced with a mean-variance objective (Borch, 1960).
This paper shows that the optimality of stop-loss indemnities holds true in a very general setting of
mean-deviation measures, in which the the deviation measure used is a convex signed Choquet integral
or the standard deviation. We note that the coherent distortion risk measures and the mean-variance
objective are special cases of such mean-deviation measures. The optimality of stop-loss indemnities
still holds true even if the insurance premium is constrained by a constant budget. These results
provide further evidence of the desirability of stop-loss insurance indemnities. In practice, stop-loss
insurance is provided in public health insurance in the Netherlands, where participants need to pay
their healthcare costs in a year up to a given deductible. Besides, we believe our setting retains a
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practical functional form that allows for a simple trade-off structure between the expected loss and
the deviation measure. If the premium principle is based on Value-at-Risk or Expected Shortfall, we
show in this paper that the optimal indemnity is generally a dual truncated stop-loss indemnity. In
such indemnity function, there is coverage for small losses up to a limit, and additionally for losses
beyond another deductible.

This paper is structured as follows. In Section 2, we formulate the precise problem that we study
in this paper. Section 3 presents our main results with the expected value premium principle. Section
4 examines two special cases with a distortion premium principle. Section 5 examines the impact
of a premium budget constraint, and Section 6 concludes. Appendix A provides some background
axioms of risk measures that are referred to in this paper, and Appendix B provides insights into
the monotonicity property of mean-deviation risk measures. Furthermore, Appendix C includes some
supplementary special cases corresponding to Section 3, and Appendix D provides a proof that was
omitted from Section 5.

2 Problem formulation

Let (Ω,F ,P) be a probability space, and Lp, p ∈ [1,∞) be the set of all random variables with
finite p-th moment and L∞ be the set of essentially bounded random variables. Each random variable
represents a random risk that is realized at a well-defined future period. Throughout the paper,
“increasing” and “decreasing” are in the non-strict (weak) sense, and all functionals we encounter are
law-invariant (see Appendix A for the definition). Let X be a convex cone of random variables. For
any Z ∈ X , the cumulative distribution function associated with Z is denoted by FZ . For any subset
of I that is clear from the context, we define inf ∅ = ess-sup{x : x ∈ I} and sup ∅ = ess-inf{x : x ∈ I}.

In decision-making, deviation measures are introduced and studied systematically for their ap-
plication to risk management in areas like portfolio optimization and engineering. Roughly speaking,
deviation measures evaluate the degree of non-constancy in a random variable, i.e., the extent to which
outcomes may deviate from expectations. One example of such measures is the standard deviation
(SD), which can be considered as a special case. Deviation measures do not necessarily need to be
symmetric with respect to upward and downward risk. Fix p ∈ [1,∞]. A mapping D : Lp → R, is
called a generalized deviation measure (see, e.g., Rockafellar et al., 2006) if it satisfies

(D1) (Translation invariance) D(Z + c) = D(Z) for all Z ∈ Lp and c ∈ R.

(D2) (Non-negativity) D(Z) ⩾ 0 for all Z ∈ Lp, with D(Z) > 0 for non-constant Z ∈ Lp.

(D3) (Positive homogeneity) D(λZ) = λD(Z) for all Z ∈ Lp and all λ ⩾ 0.

(D4) (Sub-additivity) D(Y + Z) ⩽ D(Y ) +D(Z) for all Y, Z ∈ Lp.

We can see that the combination of (D3) with (D4) implies convexity, thusD is a convex functional
(see Appendix A for the definition). The set of generalized deviation measures includes, for instance,
SD, semideviation, Expected Shortfall (ES) deviation and range-based deviation; see Examples 1 and 2
of Rockafellar et al. (2006) and Section 4.1 of Grechuk et al. (2012). Note that variance does not belong
to the generalized deviation measures since it is not positive homogeneous. For more discussions and
interpretations of these properties, we refer to Rockafellar et al. (2006). The continuity of D on Lp is
defined respect to Lp-norm. We denote Dp as the set of continuous generalized deviation measures.

Deviation measures are not risk measures in the sense of Artzner et al. (1999), but the connection
between deviation measures and risk measures is strong. It is shown in Theorem 2 of Rockafellar et al.
(2006) that under some bounded conditions, the generalized deviation measures correspond one-to-one
with coherent risk measures ρ with the relations that D(Z) = ρ(Z)−E[Z] or ρ(Z) = D(Z) +E[Z] for
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any Z ∈ X . Note that the additive structure ρ = D + E is only as a special form of the combination
of mean and deviation.

In the following definition, we state the mean-deviation (MD) preferences studied in this paper.

Definition 1. Fix p ∈ [1,∞], and let D ∈ Dp. A mapping MDD
g : Lp → R is defined by

MDD
g (Z) = g(D(Z)) + E[Z], (1)

where g : [0,∞) → R is a twice differentiable, strictly increasing, and convex function with g(0) = 0.
We denote the set of functions g by G.

The mapping MDD
g in Definition 1 is not necessarily monotonic, as defined as property (A2) in

Appendix A. Thus, MDD
g is generally not a monetary risk measure. Theorem 1 in Han et al. (2023)

showed that MDD
g demonstrates monotonicity only under the condition that g ∈ G also satisfies

1/K-Lipschitz continuity.1 Here,

K =: sup
Z∈Lp\C

D(Z)

ess-supZ − E[Z]
< ∞, (2)

where C ⊂ Lp is the set of constants, almost surely. However, we do not impose this requirement on g
in Definition 1 to accommodate classic objectives such as mean-variance or mean standard deviation.
Nevertheless, it is worth noting that we can make MDD

g a monotonic risk measure by imposing specific
constraints on g. For example, in Section 3, numerical examples are provided where g is assumed to
be a quadratic or exponential function, which ensures the monotonicity of MDD

g . For a more detailed

discussion of the monotonicity properties of MDD
g , we refer to Appendix B.

In the following, we aim to study the optimal insurance problems under MDD
g on X = Lp for

some fixed p ∈ [1,∞] such that MDD
g is finite. Note that MDD

g is a convex risk measure since the

expectation is linear and D is convex. Also, since g is strictly increasing, MDD
g yields an aversion

towards the deviation of Z, as measured by D(Z).
Suppose that a DM faces a random loss X ∈ X+, where X+ = {X ∈ X , X ⩾ 0}. Consistent

with the literature on optimal (re)insurance (Cai and Tan, 2007; Cai et al., 2008; Liu et al., 2020),
the survival function SX(x) of X is assumed to be continuous and strictly decreasing on (0,M ] \ {∞}
with a possible jump at 0, where M is the essential supremum of X (may be finite or infinite). For
simplicity, we denote α0 = SX(0). Note that α0 = 1 when the distribution function of X is continuous
at 0. Under an insurance contract, the insurer agrees to cover a part of the loss X and requires a
premium in return. The function I : [0,M ] \ {∞} → [0,M ] \ {∞} is commonly described as the
indemnity or ceded loss function, and R(x) := x − I(x) is known as the retained loss function. To
prevent potential ex post moral hazard, where the DM might be incentivized to manipulate the size
of the loss, we impose the incentive compatibility condition on the indemnity functions. We consider
insurance contract I ∈ I, where

I := {I : [0,M ] \ {∞} → [0,M ] \ {∞} | I(0) = 0 and 0 ⩽ I(x)− I(y) ⩽ x− y, for all 0 ⩽ y ⩽ x} .
(3)

Obviously, for any I ∈ I, I(x) and x− I(x) are increasing in x. The assumption that I ∈ I is common
in the literature; see, e.g., Assa (2015) and the review paper by Cai and Chi (2020).

Any I ∈ I is 1-Lipschitz continuous. Given that a Lipschitz-continuous function is absolutely
continuous, it is almost everywhere differentiable and its derivative is essentially bounded by its

1For λ > 0, a real function g is λ-Lipschitz if |g(x)− g(y)| ⩽ λ|x− y| for x, y in the domain of g.
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Lipschitz constant. Therefore, function I can be written as the integral of its derivative, and I can
be represented as

I =

{
I : [0,M ] \ {∞} → [0,M ] \ {∞} | I(x) =

∫ x

0
q(t)dt, 0 ⩽ q ⩽ 1

}
. (4)

We introduce the space of marginal indemnification functions as

Q = {q : [0,M ] \ {∞} → R+ | 0 ⩽ q ⩽ 1} .

For any indemnification function I ∈ I, the associated marginal indemnification is a function q ∈ Q
such that I(x) =

∫ x
0 q(t)dt, x ∈ [0,M ] \ {∞}.

For a given I ∈ I, the insurer prices indemnity functions using Π(I(X)), then the risk exposure
of the DM after purchasing insurance is given by

TI(X) = X − I(X) + Π(I(X)).

We assume that the DM would like to use MDD
g to measure the risk and aims to solve the following

problem
min
I∈I

MDD
g (TI). (5)

If Π is ∥ · ∥p-continuous, the problem (5) admits an optimal solution I∗ ∈ I. To be more precise, take
a sequence {In}∞n=1 ⊂ I such that

lim
n→∞

g(D(X − In(X))) + E[X] + Π[In(X)] = inf
I∈I

{g(D(X − I(X))) + Π(I(X))}.

Since there exists a subsequence {Ink
}∞k=1 that uniformly converges to I∗ ∈ I, we know that Ink

(X) →
I∗(X) in Lp as k → ∞. Since D and Π are ∥·∥p-continuous, and g is continuous, then I∗ is a minimizer
for (5). Note that continuity is a technical condition commonly satisfied by most risk measures. For
instance, VaR is continuous on L∞ whereas ES is continuous on L1. Below, we consider a set X such
that both D and Π are continuous.

3 Results under expected value premium principle

In this section, we assume that the insurer prices indemnity functions using a premium principle
defined by the expected value premium principle:

Π(I(X)) = (1 + θ)E[I(X)], (6)

where θ > 0 is the safety loading parameter.

3.1 Optimal solutions with convex signed Choquet integrals

To find an explicit solution of (5), we focus on a subset of generalized deviation measures Dp by
assuming that D is a convex signed Choquet integral. Denote by

H̃c = {h : h maps [0, 1] to R, h is of bounded variation, h(0) = 0 and h(1) = c}

with c ⩾ 0. Let

ρch(X) =

∫ ∞

0
h(SX(x))dx,
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where h ∈ H̃c. The function h is called the distortion function of ρch. For X ∈ X with its distribution
function given by F , the Value at Risk (VaR) of X at level p ∈ (0, 1] is defined, for x ∈ R, as

VaRp(X) = F−1
X (p) = inf {x ∈ R : F (x) ⩾ p} , (7)

which is the left-quantile of X. It is useful to note that if h is left-continuous, ρch admits a quantile
representation as follows

ρch(X) =

∫ 1

0
VaR1−p(X)dh(p); (8)

see Lemma 1 of of Wang et al. (2020b). Also, by Theorem 1 of Wang et al. (2020b), we know that if
h is concave, then ρch is convex and comonotonic additive (see Appendix A for the definitions). In the

following, we use Hc to denote the subset of H̃c where h is also concave. For h ∈ Hc, ρ
c
h is finite on

Lp for p ∈ [1,∞] if and only if ∥h′∥q < ∞, where ∥h′∥q = (
∫ 1
0 |h′(t)|qdt)1/q and q = (1 − 1/p)−1, and

ρch is always finite on L∞; see Lemma 2.1 of Liu et al. (2020).

There has been an extensive literature on a subclass of signed Choquet integrals, in which h ∈ H̃1

is increasing; we call this class of functionals distortion risk measures (DRM). Furthermore, the signed
Choquet integrals are also used as measures of distributional variability, where h ∈ H̃0. In this case,
h is not monotone. Note that ρ0h with h ∈ H0 satisfies all the four properties of (D1)-(D4), and thus
belong to the class of the generalized deviation measures. In particular, by Theorem 1 of Wang et al.
(2020b), if a generalized deviation measure D is comonotonic additive, then D can only be a signed
Choquet integral. When h ∈ H0, we refer to Appendix A for more specific examples.

Thus, when D is a signed Choquet integral, our objective in (5) can be rewritten as

min
I∈I

MDD
g (TI) = min

I∈I
{g(Dh(X)−Dh(I(X))) + E[X] + θE[I(X)]} , (9)

where

Dh(X) := ρ0h(X) =

∫ ∞

0
h(SX(x))dx, (10)

with h ∈ H0.
2 This is a direct consequence of Dh(X − I(X)) = Dh(X)−Dh(I(X)), which is due to

comonotonic additivity of Dh.

Theorem 1. Suppose that D is given by (10) and Π is given by (6). The following statements hold:

(i) For every I ∈ I, we can construct a stop-loss insurance treaty Id(x) = (x − d)+ for some
0 ⩽ d ⩽ M such that MDD

g (TId) ⩽ MDD
g (TI). Further, Id∗ with

d∗ = sup

{
x : g′

(∫ x

0
h(SX(t))dt

)
h(SX(x))− θSX(x) ⩽ 0, and 0 ⩽ x < M

}
, (11)

is a solution to problem (5).

(ii) If h′′(0) < 0, the optimal solution to problem (5) is unique on [0,M ], i.e., we have Id∗ =
argminI∈I MDD

g (TI).

Proof. To show (i), we first fix Dh(X−I(X)) = s ∈ [0, Dh(X)] and solve (5) subject to this constraint.
That is, we want to solve

min
I∈I

f(I) := g(s) + θE[I(X)] + E[X] + λ(Dh(X − I(X)))− s), (12)

2We remark that all convex signed Choquet integral on Lp are Lp-continuous; see Corollary 7.10 in Rüschendorf
(2013) for the Lp-continuity of the finite-valued convex risk measures on Lp.
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with λ ⩾ 0 being the Karush-Kuhn-Tucker (KKT) multiplier. By (4) and (8), we have

f(I) = θ

∫ 1

0
VaR1−t(I(X))dt+ λ

∫ 1

0
VaR1−t(X − I(X))dh(t) + g(s) + E[X]− λs

= θ

∫ 1

0
I(VaR1−t(X))dt+ λ

∫ 1

0
(VaR1−t(X)− I(VaR1−t(X)))dh(t) + g(s) + E[X]− λs

= θ

∫ M

0
SX(x)q(x)dx+ λ

∫ M

0
h(SX(x))(1− q(x))dx+ g(s) + E[X]− λs

=

∫ M

0
(θSX(x)− λh(SX(x)))q(x)dx+ λDh(X) + g(s) + E[X]− λs.

The second equality follows from comonotonic additivity of VaR and f(VaRt(X)) = VaRt(f(X)) for
any increasing function f and t ∈ (0, 1), and the third equality follows from a change of variable and
integration by parts. Define

dλ = sup{x : θSX(x)− λh(SX(x)) > 0, and 0 ⩽ x < M},

and
dλ = sup{x : θSX(x)− λh(SX(x)) ⩾ 0, and 0 ⩽ x < M}.

It is obvious that dλ ⩽ dλ for any fixed λ ∈ [0,∞). Define H(x) = θSX(x)−λh(SX(x)). It is clear that
H(0) = θα0 − λh(α0), limx→M H(x) = 0, and H ′(x) = (θ − λh′(SX(x)))S′

X(x). Since h is a concave
function with h(0) = h(1) = 0, if λ < θ/h′(0) (i.e., H ′(M) < 0), we have q(x) = 0 and dλ = dλ = M .
In this case, we have H(0) > 0 and I(x) = 0. Otherwise, if λ ⩾ θ/h′(0), it is clear that the following
q will minimize (12)

q(x) =


0, if θSX(x)− λh(SX(x)) > 0 (i.e., x < dλ),

1, if θSX(x)− λh(SX(x)) < 0 (i.e., x > dλ),

c(x), otherwise,

(13)

where c(x) could be any [0, 1]-valued function. In particular, if H(0) < 0, dλ = dλ = 0. Thus, we can
select the function c to be of the form c(x) = 1{x>d} for some d ∈ [dλ, dλ]. Then, I(x) = Id(X) :=∫ x
0 q(t)dt = (x − d)+. Now, λ is such that Dh(X − Idλ(X)) ⩾ s and Dh(X − Idλ(X)) ⩽ s, and since

Dh(X − Id(X)) is increasing in d, there exists d ∈ [dλ, dλ] such that

s = Dh(X − Id(X)) =

∫ d

0
h(SX(x))dx.

That is, for every s, there exists an Id(x) = (x− d)+ that does better than any I ∈ I.
We next show that for any I∗ that solves (5), there exists an Id(x) = (x − d)+ such that

MDD
g (TI∗) = MDD

g (TId). We fix I∗ that solves (5), and define s = Dh(X−I∗(X)). By the above steps,
for any given s, we can always construct an insurance treaty Id(x) = (x − d)+ for some 0 ⩽ d ⩽ M
such that MDD

g (TId) ⩽ MDD
g (TI∗). Since I

∗ is optimal, then we have MDD
g (TI∗) = MDD

g (TId). Hence,
there exists an optimal indemnity that is of a stop-loss form.

Finally, we aim to find the optimal d for problem (5) by assuming that the insurance contract is
given by Id for some d ∈ [0,M ], that is,

min
d∈[0,M ]

F (d) := g

(∫ d

0
h(SX(x))dx

)
+ θ

∫ M

d
SX(x)dx+ E[X]. (14)
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To find the optimal d, with the first-order condition, we use

F ′(d) = g′
(∫ d

0
h(SX(x))dx

)
h(SX(d))− θSX(d).

It is clear that F ′(M) = 0. Moreover,

F ′′(d) = g′′
(∫ d

0
h(SX(x))dx

)
h2(SX(d)) + g′

(∫ d

0
h(SX(x))dx

)
h′(SX(d))S′

X(d)− θS′
X(d).

Since g is convex, SX(d) decreases in d and h is concave, F ′′ has at most one intersection with the
x-axis. Let

d∗ = sup

{
x : g′

(∫ x

0
h(SX(t))dt

)
h(SX(x))− θSX(x) ⩽ 0, and 0 ⩽ x < M

}
,

then d∗ is the optimal solution to (14). This concludes the proof of (i).
To show (ii), if h′′(0) < 0, then it holds for any concave function with h(0) = 0 that h(s)/s

is strictly decreasing, and since SX is strictly decreasing on [0,M ], therefore it holds that the set
{x ∈ [0,M ]| θSX(x) − λh(SX(x)) = 0} has Lebesgue measure zero. In other words, if h′′(0+) < 0,
then dλ = dλ. Then, the necessary condition for optimality of the insurance contract Id∗ with (11)
becomes a sufficient condition. It implies that d∗ is a saddle point of the function f(d) on [0,M) or
d∗ = M , i.e. Id∗ = argminI∈I f(I).

Remark 1. In the proof of Theorem 1(i), we can also employ the convex ordering approach to show
the optimal insurance treaty is in a stop-loss form. Specifically, for any admissible ceded loss function
I ∈ I, we can construct an insurance treaty Id(x) = (x − d)+ for some 0 ⩽ d ⩽ M such that
E[I(X)] = E[(X − d)+]; the existence of such d is demonstrated in the proof of Theorem 2. According
to Lemma 1, we have I ⩽cx Id. Since h ∈ H0 and D(X − I(X)) = D(X)−D(I(X)), as per Theorem
2 of Wang et al. (2020a), we obtain D(Id(X)) ⩾ D(I(X)), implying that MDD

g (TId) ⩽ MDD
g (TI). In

other words, there exists an Id(x) = (x− d)+ that outperforms any I ∈ I.
Moreover, the problem in (9) can be linked to a constrained DRM-based problem (see, e.g., Lo,

2017). Instead of fixingDh(X−I(X)) = s in the proof of Theorem 1, if one fixes E[X−I(X)+Π(X)] =
L, then solving (9) is equivalent to solving

min
I∈I

g (Dh(X)−Dh(I(X))) ,

s.t. E[X − I(X) + Π(I(X))] = L.

Furthermore, for any h ∈ H0, we have Ih = Ih+ − Ih− , where h+ ∈ Hc and h− ∈ Hc are increasing
functions such that h = h+−h− via the Jordan decomposition (see Wang et al., 2020b). Consequently,
due to the monotonicity of g, the above problem can be further reduced to3

min
I∈I

ρh−(I(X))− ρh+(I(X)),

s.t. E[X − I(X) + Π(I(X))] = L,

which is a budget-constrained DRM-based minimization problem; see (2.4) in Lo (2017). Thus, follow-
ing the analysis in Lo (2017), we can also determine that the optimal insurance treaty is in a stop-loss

3While the decomposition may not be unique, each decomposition yields identical outcomes after the quantile refor-
mulation within a single integral.
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form. Thus, the optimality of a stop-loss contract can be shown in two alternative ways, and the first
part of our proof of Theorem 1(i) provides an alternative way to demonstrate this. Next, we still need
to derive the optimal d∗ and the uniqueness of the solution if h′′(0) < 0, and this is also shown in the
proof of Theorem 1.

In the following corollary, we consider g(x) = αx + βx2. Then we have g′(x) = a + 2βx and
g′′(x) = 2β. Since g ∈ G, we assume that α ⩾ 0 and β ⩾ 0, and at least one of the inequalities holds
strictly.

Corollary 1. Suppose that D is given by (10) with h′′(0) < 0. Let g(x) = αx+ βx2 with α ⩾ 0 and
β ⩾ 0. Then we have Id∗(x) = (x− d∗)+, where

d∗ = sup

{
x : h(SX(x))

(
α+ 2β

∫ x

0
h(SX(t))dt

)
− θSX(x) ⩽ 0, and 0 ⩽ x < M

}
.

In particular, if β = 0, we have

d∗ = sup{x : αh(SX(x))− θSX(x) ⩽ 0, and 0 ⩽ x < M}.

We remark that d∗ in Corollary 1 decreases as α and β increase, but increases as θ increases.
In fact, larger values of α and β mean that the DM is more concerned with the variability of the
risk exposure. Thus, it is to be expected that the DM is willing to buy more insurance when more
weight is given to the deviation. Specifically, we have d∗ → M as α → 0 and β → 0, which implies
the DM would like to buy no insurance. In this situation, the DM is risk neutral since MDD

g = E.
Here, we observe that the quadratic function g can be understood as the DM considering or penalizing
the second-order changes in the deviation. Furthermore, as the value of θ increases, the insurer sets
a relatively higher insurance premium, which consequently leads the DM to reduce the amount of
insurance purchased.

In the following, we show one special example by assuming that Dh(X) in Corollary 1 is the Gini
deviation. Let X ∈ L1 and X1, X2, X are i.i.d.,

Dh(X) = Gini(X) :=
1

2
E [|X1 −X2|] . (15)

The Gini deviation is a signed Choquet integral with a concave distortion function h given by h(t) =
t− t2, t ∈ [0, 1]. This is due to its alternative form (see, e.g., Denneberg, 1990)

Gini(X) =

∫ 1

0
F−1
X (t)(2t− 1)dt.

Since h′′(0) = −1 < 0 for Gini, by Theorem 1 (ii), Id∗ is the unique optimal solution. Moreover, we
find K = 1 for Gini (see Proposition S.1 in Appendix B), where K is defined in (2). As discussed below
Definition 1, to make MDD

g monotonic on the relevant domain, we must ensure that g′(D(X−I(X))) =
α+ 2β(D(X)−D(I(X))) ⩽ 1 for all I ∈ I. Thus, since D(I(X)) ⩾ 0 by the non-negativity property
(D2), we may define

A = {(α, β) : α ⩾ 0, β ⩾ 0, (α, β) ̸= (0, 0), and α+ 2βD(X) ⩽ 1}. (16)

In the parameter setting below, we will restrict the values of α and β to satisfy (16). Moreover, we
consider the performance when g is an exponential function or when Dh is in the form of mean median
difference. Since the findings are qualitatively similar, we include these examples in Appendix C.
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Example 1. Let D = Gini and g(x) = αx+ βx2 with (α, β) ∈ A. If β = 0, then

θSX(x)− α(SX(x)− S2
X(x)) = SX(x)(θ − α+ αSX(x)).

Thus, we can see that if θ < α, then d∗ = S−1
X (α−θ

α ); otherwise, d∗ = M . For the case of β ̸= 0, we
have

θSX(x)− h(SX(x))

(
α+ 2β

∫ x

0
h(SX(t))dt

)
= SX(x)

(
(θ − α+ αSX(x))− 2β(1− SX(x))

∫ x

0
(SX(t)− S2

X(t))dt

)
.

If X ∼ U [a, b],4 then Gini(X) = (b− a)/6. Take θ = 0.2, we can compute d∗ numerically by

d∗ = sup

{
x : α

x− a

b− a
− 2β

x− a

(b− a)3

(
x3 − a3

3
− (a+ b)(x2 − a2)

2
+ ab(x− a)

)
− θ ⩽ 0, and 0 ⩽ x < b

}
.
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Figure 1: Optimal deductible d∗ as a function of b for the uniform distribution with a = 0 (left figure) and as
a function of µ := 1/λ for the exponential distribution (right figure) with D = Gini and g(x) = αx+ βx2.

If X ∼ exp(λ) with any λ > 0, then Gini(X) = 1/(2λ). Again, we can compute d∗ numerically

d∗ = sup

{
x : α− αe−λx +

β

λ
(1− e−λx)3 − θ ⩽ 0, and x ⩾ 0

}
.

In Figure 1, we display the optimal deductible d∗ as a function of b for the uniform distribution
and as a function of µ := 1/λ for the exponential distribution. We find that increasing the expected
loss leads to a strict increase in the deductible. This pattern is linear when the function g is linear
(β = 0), and concave when the function g is strictly convex (β > 0). Also, the optimal deductible
d∗ is decreasing in both α and β. The reason is that both parameters lead to a larger weight of the
deviation in the optimization, and a more deviation-averse DM prefers a lower deductible and thus
more insurance coverage. For the uniform distribution and linear function g, we note that the expected
loss before insurance is b/2, and the deductible is approximately b/2 (α = 0.4) or 2b/3 (α = 0.3). Thus

4When a > 0, the uniform distribution is not covered by Theorem 1 because ess-infX can be larger than 0; however,
we can modify the proof of Theorem 1 to account for X with any bounded and non-negative support.
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the deductible is paid in full by the DM with a probability of around 0.5 or 1/3, respectively. For
the exponential distribution, the deductible generally around 0.7µ (α = 0.4) or 1.1µ (α = 0.3). Note
that here the deductible is paid in full by the DM with a probability of around exp(−0.7) ≈ 0.50 or
exp(−1.1) ≈ 1/3, respectively. This is similar as for the uniform distribution. Similar observations
holds true for the convex functions g (with β > 0).

3.2 Standard deviation based measures

As mentioned in Section 2, SD is a generalized deviation measure, but variance does not satisfy
(D3). Also, neither SD nor variance are convex signed Choquet integrals, so we cannot use Theorem 1
for SD. In particular, SD can be written as SD(X) = sup{

∫ 1
0 VaRt(X)dh(t) : h ∈ H0, ∥h′∥22 ⩽ 1}, X ∈

L∞; see Example 2.1 of Wang et al. (2020b) for a simple proof of this representation.
Since SD and variance are commonly used deviation measures, we also want to solve (9) with

D = SD:
min
I∈I

{g(SD(X − I(X))) + E[X] + θE[I(X)]} . (17)

In particular, if g(x) = γx2 for γ > 0, it is the mean-variance criterion. The following lemma is
well-known (see, e.g., Property 3.4.19 in Denuit et al. (2005) and Lemma A.2 in Chi (2012)).

Lemma 1. Provided that the random variables Y1 and Y2 have finite expectations, if they satisfy

E [Y1] = E [Y2] , FY1(t) ⩽ FY2(t), t < t0, SY1(t) ⩽ SY2(t), t ⩾ t0

for some t0 ∈ R, then Y1 ⩽cx Y2, i.e.

E [G (Y1)] ⩽ E [G (Y2)]

for any convex function G(x) provided the expectations exist.

Denote by

w1(d) =

∫ d

0
SX(x)dx, and w2(d) = 2

∫ d

0
xSX(x)dx.

Theorem 2. For problem (17), we can construct a stop-loss insurance treaty Id(x) = (x − d)+ for
some 0 ⩽ d ⩽ M such that MDD

g (TId) ⩽ MDD
g (TI) for any admissible ceded loss function I ∈ I.

Further, we have Id∗(x) = (x− d∗)+ with

d∗ = sup

{
x : g′

(√
w2(x)− w2

1(x)

)√
(x− w1(x))2

w2(x)− w2
1(x)

− θ ⩽ 0, and 0 ⩽ x < M

}
.

Proof. For any admissible ceded loss function I ∈ I, we can construct an insurance treaty Id(x) =
(x − d)+ for some 0 ⩽ d ⩽ M such that E[I(X)] = E[(X − d)+]. Since k(d) := E[(X − d)+] is a
decreasing function in d, and k(0) = E[X] and k(M) = 0 with 0 ⩽ E[I(X)] ⩽ E[X], the existence of d
can be verified. Furthermore, by taking t0 = d in Lemma 1, we have E[(X ∧ d)2] ⩽ E[(X − I(X))2].
Thus, we have SD(X−Id(X)) ⩽ SD(X−I(X)), which implies that MDD

g (TId) ⩽ MDD
g (TI). Therefore,

we have

g(SD(X ∧ d)) + E[X] + θE[(X − d)+] = g
((

w2(d)− w2
1(d)

)1/2)
+ E[X] + θ

∫ M

d
SX(x)dx.
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Let

f(d) = g(
√

w(d)) + E[X] + θ

∫ M

d
SX(x)dx,

where w(d) = w2(d)− w2
1(d). It is clear that

w′(d) = 2dSX(d)− 2SX(d)

∫ d

0
SX(x)dx = 2SX(d)(d− w1(d)) ⩾ 0.

Then we have

f ′(d) =
1

2
√
w(d)

g′(
√
w(d))w′(d)− θSX(d)

= SX(d)

(
g′(
√
w(d))√
w(d)

(d− w1(d))− θ

)

= SX(d)

(
g′(
√
w(d))

√
(d− w1(d))2

w(d)
− θ

)
.

Let F (d) = g′(
√
w(d))

√
ϕ(d)− θ, where ϕ(d) = (d−w1(d))2

w2(d)−w1(d)
. Note that

ϕ′(d) =
d− w1(d)

(w2(d)− w2
1(d))

2

(
2FX(d)(w2(d)− w2

1(d))− (d− w1(d))(w
′
2(d)− 2w1(d)w

′
1(d))

)
=

d− w1(d)

(w2(d)− w2
1(d))

2

(
2FX(d)(w2(d)− w2

1(d))− 2SX(d)(d− w1(d))
2
)

⩾
2(d− w1(d))

(w2(d)− w2
1(d))

2

(
FX(d)w2(d)− (w1(d)− SX(d)d)2

)
=

2(d− w1(d))

(w2(d)− w2
1(d))

2

(
FX(d)SX(d)d2 + FX(d)

∫ d

0
x2dFX(x)−

(∫ d

0
xdFX(x)

)2
)

=
2(d− w1(d))

(w2(d)− w2
1(d))

2

(
SX(d)FX(d)d2 − SX(d)

(∫ d

0
xdFX(x)

)2

+ FX(d)

∫ d

0
x2dFX(x)

−FX(d)

(∫ d

0
xdFX(x)

)2
)

⩾ 0.

Together with limd→0 ϕ(d) = 0, it follows that ϕ(d) ⩾ 0 for d ∈ [0,M ]. Also, we know that g′(
√
w(d))

increases in d as w increases in d and g is convex. Moreover, it is not difficult to verify that F (0) = −θ
and

F (M) = g′(SD(X))
M − E[X]

SD(X)
− θ.

Therefore, if F (M) < 0, then f is a decreasing function of d and thus d∗ = M . On the other hand, if
F (M) ⩾ 0, f first decreases and then increases in d, and thus

d∗ = sup

{
x : g′

(√
w2(x)− w2

1(x)

)√
(x− w1(x))2

w2(x)− w2
1(x)

− θ ⩽ 0, and 0 ⩽ x < M

}
.

Remark 2. For the same reasoning outlined in Remark 1, if one fixes E[X − I(X) + Π(X)] = L, then
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solving (17) is equivalent to solving the following optimization problem:

min
I∈I

Var(X − I(X)),

s.t. E[X − I(X) + Π(I(X))] = L,

which is a well-established problem investigated in Borch (1960), and the optimal insurance treaty
takes a stop-loss form. Consequently, the optimization problem can be simplified to determine the
optimal d∗, as demonstrated in the proof of Theorem 2.

Furthermore, problem (17) is intricately linked to the work of Chi (2012), which addressed the
optimal structure of reinsurance indemnities when the DM aims to minimize VaR or ES of the total
risk exposure. In their framework, the reinsurance premium is determined through a variance-related
principle, represented as Π(X) = E[X] + g(Var(X)). In contrast, we adopt this as our primary
objective. Furthermore, we extend this objective to include a budget constraint in Section 5. The
insight remains consistent: layer reinsurance generally emerges as an optimal strategy.

Note that, for the quadratic function g(x) = αx+βx2, if α > 0 and β = 0, then MDD
g corresponds

to mean-SD; and if α = 0 and β > 0, MDD
g embodies mean-variance, a pivotal objective investigated

in Li and Young (2021) and Liang et al. (2023). We cannot guarantee that MDD
g will be monotonic

when D = SD because SD does not satisfy (2) for any p ∈ [1,∞]; see Proposition S.1 in Appendix B

Corollary 2. If g(x) = αx+ βx2 with α ⩾ 0 and β ⩾ 0, we have Id∗(x) = (x− d∗)+ with

d∗ = sup

{
x : α

√
(x− w1(x))2

w2(x)− w2
1(x)

+ 2β(x− w1(x))− θ ⩽ 0, and 0 ⩽ x < M

}
.

Example 2. Let D = SD and g(x) = αx + βx2 with α ⩾ 0 and β ⩾ 0. For X ∼ U [0, b], we have
w1(x) = (2bx − x2)/(2b) and w2(x) = x2(3b− 2x)/(3b). By setting θ = 0.2, we can compute d∗

numerically by

d∗ = sup

{
x : α

(
3x

4b− 3x

)1/2

+
βx2

b
− θ ⩽ 0, and 0 ⩽ x < b

}
.

ForX ∼ exp(λ) with any λ > 0, we have w1(x) = (1−e−λx)/λ and w2(x) =
2
λ2 (1−e−λx)− 2

λxe
−λx.

By setting θ = 0.2, we can compute d∗ numerically by

d∗ = sup

{
x : α

(
(λx− 1 + e−λx)2

1− e−2λx − 2λxe−λx

)1/2

+ 2β(x− 1− e−λx

λ
)− θ ⩽ 0, and x ⩾ 0

}
.

In Figure 2, we display the optimal deductible d∗ as a function of b for the uniform distribution
and as a function of µ for the exponential distribution. Similar to Figure 1, we find that increasing
the expected loss leads to a strict increase in the deductible. Again, this graph is linear when the
function g is linear (β = 0), and concave when the function g is strictly convex (β > 0). We do find
that the size of the deductible is substantially smaller than Figure 1, which is an indication that SD
and variance make the DM more risk averse.
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Figure 2: Optimal deductible d
∗
as a function of b for the uniform distribution (left figure) and as a function of

µ := 1/λ for the exponential distribution (right figure) with D = SD and g(x) = αx+ βx2.

4 Results for two distortion premium principles

For h ∈ H̃1 being increasing, the distortion premium principle Πh is given by

Πh(I(X)) :=

∫ ∞

0
h(SI(X)(x))dx =

∫ ∞

0
h(SX(x))q(x)dx, (18)

where q is defined in (4), and the second equality above is shown in the proof of Theorem 1. When
the distortion function h is concave, the amount

∫∞
0 h(SX(x))dx − E[X] is non-negative and can be

interpreted as the risk loading that is added to the expected loss.
In this section, suppose that D = Dh1 with h1 ∈ H0, we aim to solve

min
I∈I

MDD
g (TI) = min

I∈I
{g(Dh1(X − I(X))) + E[X − I(X)] + Πh2(I(X))} , (19)

where h2 ∈ H̃1 is increasing. As we know, VaR and ES are special distortion risk measures, where the
ES at level p ∈ (0, 1) is the functional ESp : L

1 → R defined by

ESp(Z) =
1

1− p

∫ 1

p
VaRs(Z)ds,

where VaR is defined in (7), and ES1(Z) = ess-sup (Z) = VaR1(Z) which may be infinite. In
particular, we have h(t) = 1{t>1−p} for VaRp and h(t) = t

1−p ∧ 1 for ESp. The explicit solutions are
derived when the DM uses VaR and ES as the premium principles. For notational convenience, we
write xp := VaRp(X) for some p ∈ (0, 1).

4.1 Value-at-Risk

We give the optimal results for Π = VaRp for p ∈ (0, 1) in the following proposition.

Proposition 1. Suppose that D is given by (10), and h2(t) = 1{t>1−p} with p ∈ (0, 1), i.e., Πh2(X) =
VaRp(X). The unique solution to problem (19) is given by

Id∗,xp(x) = x ∧ d∗ + (x− xp)+,
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with

d∗ = sup

{
x : 1− SX(x)− g′

(∫ xp

x
h1(SX(x))dx

)
h1(SX(x)) ⩽ 0, and d∗0 ⩽ x ⩽ xp

}
. (20)

Proof. The proof is similar to the one of Theorem 1, so we only provide the major steps that highlight
the differences. We first fix Dh(X − I(X)) = s ∈ [0, Dh(X)] and solve problem (19) subject to this
constraint. That is, we want to solve

min
I∈I

f(I) := g(s) + E[X]− E[I(X)] + Πh2(I(X)) + λ(Dh1(X − I(X))− s)

with λ ⩾ 0 being the KKT multiplier. As shown in Theorem 1, f(I) can be written as

f(I) =

∫ M

0
(h2(SX(x))− SX(x)− λh1(SX(x)))q(x)dx+ λDh1(X) + g(s) + E[X]− λs, (21)

and it is clear that the following q will minimize (21):

q(x) =


0, if h2(SX(x))− SX(x)− λh1(SX(x)) > 0,

1, if h2(SX(x))− SX(x)− λh1(SX(x)) < 0,

c, otherwise,

(22)

where c could be any [0, 1]-valued function on h2(SX(x))− SX(x)− λh1(SX(x)) = 0. Define

H(x) = h2(SX(x))− SX(x)− λh1(SX(x)).

Let h2(t) = 1{t>1−p} with p ∈ (0, 1).

(i) For t < 1− p, or equivalently, xp < x ⩽ M , we always have H(x) = −SX(x)− λh1(SX(x)) ⩽ 0,
which implies q(x) = 1 for xp < x < M .

(ii) For t ⩾ 1 − p, or equivalently, x ⩽ xp, we have H(x) = 1 − SX(x) − λh1(SX(x)). Moreover, h1
is concave with h1(0) = h1(1) = 0, H ′(x) = −S′

X(x)(1 + λh′1(SX(x)), H(xp) = p − λh(1 − p)
and H(0) = 1− α0 − λh1(α0). The function H has one discontinuity at xp, and is differentiable
on (0, xp). On [0, xp), if H(x) > 0 and H ′(x) ⩽ 0, then h1(SX(x)) < (1 − SX(x))/λ and
h′1(SX(x)) ⩽ −1/λ. Combining this with concavity of h1 and h1(1) = 0 yields a contradiction.
Thus, if H(x) > 0, it must hold that H ′(x) > 0, making H increasing on (0, xp), and thus there
is no zero of H on [0, xp). If H(0) ⩽ 0, then H may first decrease and then increase on [0, xp).
Hence, there is at most one zero dλ on (0, xp).

Define
dλ = sup{x : 1− SX(x)− λh1(SX(x)) ⩽ 0, and 0 ⩽ x ⩽ xp},

then we have I(x) =
∫ x
0 q(t)dt = x ∧ dλ + (x − xp)+. That is, for every s, there exists an Id,xp(x) =

x ∧ d+ (x− xp)+ that does better than any I ∈ I.
Next, we aim to find the optimal d for problem (19) when the insurance contract is given by Id,xp

for some 0 ⩽ d ⩽ xp, that is,

min
0⩽d⩽xp

F (d) :=

∫ d

0
(1− SX(x))dx−

∫ M

xp

SX(x)dx+ E[X] + g

(∫ xp

d
h1(SX(x))dx

)
. (23)
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It is straightforward to show that

F ′(d) = −g′
(∫ xp

d
h1(SX(x))dx

)
h1(SX(d)) + (1− SX(d)),

and

F ′′(d) =g′′
(∫ xp

d
h1(SX(x))dx

)
h21(SX(d))− g′

(∫ xp

d
h1(SX(x))dx

)
h′1(SX(d))S′

X(d)− S′
X(d).

Since g is convex, SX(x) decreases in x and h is concave with h1(0) = h1(1) = 0, F ′′ has at most one
intersection with the x-axis, then d∗ in (20) is the unique optimal solution to (23).

So, if insurance premium is based on the VaR, the optimal indemnity is a dual truncated stop-loss
indemnity. To be precise, the optimal indemnity provides full coverage for small losses up to a limit,
and additionally for losses beyond another deductible that is based on VaRp(X). This implies that
the retained loss after insurer is bounded: X − I∗(X) ⩽ VaRp(X)− d∗. We remark that the optimal
solution for Π = VaRp with p ∈ (0, 1) is unique. This is because SX is strictly decreasing on [0,M ],
therefore it holds that the set {x ∈ [0,M ]| − SX(x)− λh(SX(x)) = 0} has Lebesgue measure zero.

Remark 3. From the proof of Proposition 1, we find that if

F ′(d)|d=0 = −g′
(∫ xp

0
h1(SX(x))dx

)
h1(α0) + (1− α0) ⩾ 0,

and

F ′′(d)|d=0 = g′′
(∫ xp

0
h1(SX(x))dx

)
h21(α0)− g′

(∫ xp

0
h1(SX(x))dx

)
h′1(α0)S

′
X(0)− S′

X(0) ⩾ 0,

then F ′(d) ⩾ 0 for all d ∈ [0, xp]. In this case, we have d∗ = 0 , and the optimal solution takes the
form of stop-loss. In particular, if α0 = 1, i.e., X is continuous, then we have F ′(d)|d=0 = 0 due to
h(1) = 0, and

F ′′(d) = −g′
(∫ xp

d
h1(SX(x))dx

)
h′1(1)S

′
X(0)− S′

X(0).

To ensure F ′′(d) ⩾ 0, together with the convexity of g, we have

g′
(∫ xp

0
h1(SX(x))dx

)
h′1(1) ⩾ −1. (24)

Since h′1(1) ⩽ 0 and g′ is increasing in xp, we can conclude that if p is sufficiently small such that (24)
holds, then the optimal solution is in the form of a stop-loss contract.

We once again focus on D = Gini to illustrate the behavior of d∗ when the premium is based on
the VaR. Since the behaviors under exponential distribution and uniform distribution are similar, we
only give the results of uniform distribution. Moreover, we have that h′(1) = −1 and K = 1 for Gini,
and g′ ⩽ 1 if MDD

g is monotonic, by (24), the optimal solution is in the form of stop-loss I = (x−xp)+.

Consequently, in the following example, we refrain from imposing constraints on MDD
g to adhere to

monotonicity, thus encompassing a broader range of scenarios.

Example 3. Let D = Gini and g(x) = αx + βx2 with α ⩾ 0 and β ⩾ 0. If X ∼ U [0, b], we have
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xp = pb. Then d∗ in (20) becomes

d∗ = sup

{
x :

x

b
− bx− x2

b2

(
α+

β

b2

(
bx2p −

2

3
x3p − bx2 +

2

3
x3
))

⩽ 0, and 0 ⩽ x ⩽ xp

}
.

In Figure 3, we display the threshold d∗ as a function of b (left figure) and the optimal indemnities
as a function of quantile p. Overall, we can see that the threshold d∗ is increasing in b, and strictly
increasing whenever the threshold is strictly positive. Also, we can see that a larger threshold d is
associated with larger values of α and β, because a larger weight on the Gini-deviation means that
the DM prefers to purchase more insurance.
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Figure 3: Optimal threshold d∗ with p = 0.8 (left figure) and optimal indemnity function I∗ with b = 10, α =
0.5, β = 0.2 (right figure) with D = Gini and g(x) = αx+ βx2.

4.2 Expected Shortfall

We next give the optimal results for Π = ESp for p ∈ (0, 1). The following proposition shows
that the optimal indemnity has a similar structure as for the case with Π = VaRp (see Proposition 1),
but with a more complex selection of the deductible parameter (denoted as d∗2 below) beyond which
the indemnity provides full marginal coverage.

Proposition 2. Suppose that D is given by (10), and h2(t) =
t

1−p ∧ 1 with p ∈ (0, 1), i.e., Πh2(X) =
ESp(X). The following statements hold:

(i) For every I ∈ I, we can construct a dual truncated stop-loss insurance treaty Id1,d2(x) = x∧d1+
(x − d2)+ for some 0 ⩽ d1 ⩽ xp < d2 ⩽ M such that MDD

g (TId1,d2
) ⩽ MDD

g (TI). Further, an
optimal solution to problem (19) is given by

Id∗1,d∗2(x) = x ∧ d∗1 + (x− d∗2)+,

where d∗1 and d∗2 can be derived by solving

d∗1 = sup

{
x : 1− SX(x)− g′

(∫ d∗2

x
h1(SX(t))dt

)
h1(SX(x)) ⩽ 0, and 0 ⩽ x ⩽ xp

}
, (25)
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and

d∗2 = sup

{
x : g′

(∫ x

d∗1

h1(SX(x))dx

)
h1(SX(x))− p

1− p
SX(x) ⩽ 0, and xp < x < M

}
. (26)

(ii) If h′′1(0) < 0, the optimal solution to problem (19) is unique on [0,M ], i.e., we have Id∗1,d∗2 =
argminI∈I .

Proof. The steps are similar as in Proposition 1, and q in (22) minimizes (21) when h2(t) =
t

1−p ∧ 1

since it holds for a general h2 ∈ H̃1. Again, let H(x) = h2(SX(x))− SX(x)− λh1(SX(x)).

(i) For t ⩾ 1− p, or equivalently, x ⩽ xp, the analysis is similar to the case of VaR.

(ii) For t < 1 − p, or equivalently, x > xp, we have H(x) = p
1−pSX(x) − λh1(SX(x)) and thus

H(xp) = p − λh1(1 − p). When H(xp) > 0, if H ′(M) = ( p
1−p − λh′1(0))S

′
X(M) > 0, then there

exists a unique d1λ such that H(x) > 0 for xp < x < d2λ, and H(x) < 0 for d2λ < x < M ; if
H ′(M) ⩽ 0, then H(x) ⩾ 0 for any x ∈ (xp,M ]. When H(xp) ⩽ 0, then we have H1(x) ⩽ 0 for
any xp < x < M .

Define
d1λ = sup {x : 1− SX(x)− λh1(SX(x)) ⩽ 0, and 0 ⩽ x ⩽ xp} ,

d2λ = sup

{
x :

p

1− p
SX(x)− λh1(SX(x)) > 0, and xp < x < M

}
,

and

d2λ = sup

{
x :

p

1− p
SX(x)− λh1(SX(x)) ⩾ 0, and xp < x < M

}
.

It is clear that 0 ⩽ d1λ ⩽ xp < d2λ ⩽ d2λ. Thus, similar to Theorem 1, we can select the function
c to be of the form c(x) = 1{x>d2λ} for some d2λ ∈ [d2λ, d2λ], and I(x) = Id1λ,d2λ(x) :=

∫ x
0 q(t)dt =

x∧ d1λ + (x− d2λ)+. Now, λ is such that Dh(X − Id1λ,d2λ(X)) ⩾ s and Dh(X − Id1λ,d2λ(X)) ⩽ s, and

since Dh(X − Id1λ,d2λ(X)) is increasing in d2λ, there exists d2λ ∈ [d2λ, d2λ] such that

s = Dh(X − Id1λ,d2λ(X)) =

∫ d2λ

d1λ

h(SX(x))dx.

That is, for every s, there exists an Id1,d2(x) = x ∧ d1 + (x− d2)+ that does better than any I ∈ I.
Next, we show that for any I∗ that solves (19), there exists an Id1,d2(x) = x ∧ d1 + (x − d2)+

such that MDD
g (TI∗) = MDD

g (TId1,d2
). We fix that s = Dh(X − I∗(X)). By the above steps, for

any given s, we can always construct an insurance treaty Id1,d2(x) = x ∧ d1 + (x − d2)+ for some
0 ⩽ d1 ⩽ xp < d2 ⩽ M such that MDD

g (TId1,d2
) ⩽ MDD

g (TI∗). Since I∗ is optimal, then we have

MDD
g (TI∗) = MDD

g (TId1,d2
).

Finally, we aim to find the optimal d1 and d2 for the problem (19), that is,

min
0⩽d1⩽xp<d2⩽M

F (d1, d2) :=

∫ d1

0
(1− SX(x))dx+

∫ M

d2

(
p

1− p
SX(x)

)
dx

+ g

(∫ d2

d1

h1(SX(x))dx

)
+ E[X].
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To use the first-order condition, we get

∂F (d1, d2)

∂d1
= −g′

(
+

∫ d2

d1

h1(SX(x))dx

)
h1(SX(d1)) + 1− SX(d1),

and

∂F (d1, d2)

∂d2
= g′

(∫ d2

d1

h1(SX(x))dx

)
h1(SX(d2))−

p

1− p
SX(d2).

Moreover,

∂F 2(d1, d2)

∂d21
=− g′

(∫ d2

d1

h1(SX(x))dx

)
h′1(SX(d1))S

′
X(d1)− S′

X(d1)

+ g′′
(∫ d2

d1

h1(SX(x))dx

)
h21(SX(d2)),

and
∂F 2(d1, d2)

∂d22
=g′

(∫ d2

d1

h1(SX(x))dx

)
h′1(SX(d1))S

′
X(d1)−

p

1− p
S′
X(d1)

+ g′′
(∫ d2

d1

h1(SX(x))dx

)
h21(SX(d1)).

Since g is convex, SX(x) decreases in x and h is concave with h1(0) = h1(1) = 0, we can check that
∂F 2(d1,d2)

∂d21
and ∂F 2(d1,d2)

∂d22
have at most one intersection point with the x-axis. Then, d∗1 and d∗2 are

solved by (25) and (26). This concludes the proof of (i). The proof of (ii) is similar to the one for
Theorem 1 (ii).

Remark 4. Note that if

∂F (d1, d2)

∂d1

∣∣∣∣
d1=0

= −g′
(∫ d2

0
h1(SX(x))dx

)
h1(α0) + (1− α0) ⩾ 0,

and

∂F 2(d1, d2)

∂d21

∣∣∣∣
d1=0

= g′′
(∫ d2

0
h1(SX(x))dx

)
h21(α0)−g′

(∫ d2

0
h1(SX(x))dx

)
h′1(α0)S

′
X(0)−S′

X(0) ⩾ 0,

then we will have ∂F (d1,d2)
∂d1

⩾ 0 for all d1 ⩾ 0. In this case, we have d∗1 = 0, and the optimal
solution takes the form of stop-loss. In particular, if α0 = 1, i.e., X is continuous, then we have
∂F (d1,d2)

∂d1

∣∣∣
d1=0

= 0 due to h(1) = 0, and

∂F 2(d1, d2)

∂d21

∣∣∣∣
d1=0

= −g′
(∫ d2

0
h1(SX(x))dx

)
h′1(1)S

′
X(0)− S′

X(0).

To ensure ∂F 2(d1,d2)
∂d21

∣∣∣
d1=0

⩾ 0, together with the convexity of g, we have

g′
(∫ d2

0
h1(SX(x))dx

)
h′1(1) ⩾ −1. (27)
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By (26), we know that d∗2 increases in p. Since h′1(1) ⩽ 0 and g′ is increasing in d2, we can conclude
that if p is sufficiently small such that (27) holds, then the optimal solution is in the form of a stop-loss
contract.

We next illustrate the optimal indemnity function for premium calculation using ES under D =
Gini. In line with the VaR case it holds that the optimal solution consistently appears as a stop-loss
with I(x) = (x− d∗2)+ due to the properties of the derivative of the Gini deviation and the condition
g′ ⩽ 1 as shown in (27), assuming MDD

g is monotonic. Here, in line with Example 3, we do not restrict

the monotonicity of MDD
g to show more cases.

Example 4. Let D = Gini and g(x) = αx+ βx2 with α ⩾ 0 and β ⩾ 0. Take θ = 0.2. If X ∼ U [0, b],
we have xp = pb. Then d∗1 and d∗2 in (25) and (26) become

d∗1 = sup

{
x :

x

b
− bx− x2

b2

(
α+

β

b2

(
bd21 −

2

3
d31 − bx2 +

2

3
x3
))

⩽ 0, and 0 ⩽ x ⩽ xp

}
,

and

d∗2 = sup

{
x :

x

b

(
α+

β

b2

(
bx2 − 2

3
x3 − bd22 +

2

3
d32

))
− p

(1− p)
⩽ 0, and xp < x < b

}
.

In Figure 4, we display these two thresholds as a function of b for two sets of parameters. We can
see that d∗1 = 0 for all b ∈ [0, 10] in the left figure, which suggests that the optimal indemnity is of a
stop-loss form. For larger values of b, this observation does not hold true in the middle figure. In both
figures, the parameters d∗1 and d∗2 are increasing in b, and strictly increasing whenever d∗1 is strictly
positive. Moreover, the right figure shows three optimal indemnity functions for three different choices
of p. Interestingly, we can see that for larger values of p, the second parameter d∗2 is larger, and thus
the indemnity functions provide less coverage in the right tail.
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Figure 4: Optimal parameters d∗1 and d∗2 corresponding to Example 4 for the cases p = 0.2, α = 0.5, β = 0.3
(left figure), and p = 0.3, α = 0.7, β = 0.5 (middle figure) with D = Gini and g(x) = αx+ βx2. The right figure
shows the optimal indemnity for three choices of the parameter p, with b = 10, α = 0.5, β = 0.3.
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5 The budget constraint problem

In this section, we assume that the insurer faces a fixed budget to purchase insurance. This yields
the following constraint:

Π(I(X)) ⩽ Π, for some budget threshold Π > 0. (28)

We refer to the minimization problem (5) subject to (28) as the budget constraint problem. For
simplicity, we focus in this section only on the cases under which we showed uniqueness of the optimal
solution in Sections 3 and 4.

Assume that an unconstrained optimal solution I∗ has premium equal to Π0 = Π(I∗(X)). To
avoid redundant arguments, we assume Π < Π0, that is, Π is no larger than the minimal premium
for optimal solutions without budget constraint. This means that the optimal solution to the uncon-
strained problem is no longer feasible in the constrained problem.

Proposition 3. When Π is calculated by the expected value premium principle in (6) or the distortion
premium principle in (18), the constraint (28) is binding to (5) for Π < Π0.

Proof. Suppose (5) with (28) admits a solution Ĩ for which the constraint (28) is slack. Note that

MDD
g (X − I∗(X) + Π(I∗(X))) < MDD

g (X − Ĩ(X) + Π(Ĩ(X))).

There exists λ ∈ (0, 1) such that Π(I(X)) = λΠ(Ĩ(X))+(1−λ)Π(I∗(X)) = Π, where I = λĨ+(1−λ)I∗

due to the fact that both the expected premium principle and the distortion premium principles are
comonotonic additive. Since MDD

g is convex, we have

MDD
g (X − I(X) + Π(I(X))) = MDD

g (λ(X − Ĩ(X) + Π(Ĩ(X))) + (1− λ)(X − I∗(X) + Π(I∗(X))))

⩽ λMDD
g (X − Ĩ(X) + Π(Ĩ(X))) + (1− λ)MDD

g (X − I∗(X) + Π(I∗(X)))

< MDD
g (X − Ĩ(X) + Π(Ĩ(X))),

,

which contradicts the optimality of Ĩ. Thus, the constraint (28) should be binding to (5).

Theorem 3. Suppose Π < Π0, Π is calculated by the expected value premium principle in (6), and
one of the following holds:

• D = Dh with h′′(0) < 0 as given by (10), or

• D = SD.

Then, the optimal indemnity Ĩd∗ ∈ I for (5) with constraint (28) is given by

Ĩd∗(x) = (x− d̃∗)+,

where d̃∗ is the solution to Π((X − d̃∗)+) = Π.

Proof. Case 1: D = Dh. We fix Dh(X − I(X)) = s ∈ [0, Dh(X)] and solve (5) subject to constraint
(28). We translate the constrained minimization problem to a non-constrained problem by using the
Lagrangian multiplier method. Consider the following minimization problem

min
I∈I

f̃(I) := g(s) + θE[I(X)] + E[X] + λ1(Dh(X − I(X)))− s) + λ2((1 + θ)E[I(X)]−Π)
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with λ1 ⩾ 0 and λ2 ⩾ 0 being the KKT multipliers. By similar arguments as in the proof of Theorem
1, we can write

f̃(I) =

∫ M

0
(θSX(x) + λ2(1 + θ)SX(x)− λ1h(SX(x)))q(x)dx

+ λ1Dh(X) + g(s) + E[X]− λ1s− λ2Π.

(29)

Let
H(x) = θSX(x) + λ2(1 + θ)SX(x)− λ1h(SX(x)).

For any λ1, λ2 ∈ [0,∞), we have H(0) = θα0 + λ2(1 + θ)α0 − λ1h(α0), limx→M H(x) = 0, and

H ′(x) = (θ + λ2(1 + θ)− λ1h
′(SX(x)))S′

X(x).

Since h is a concave function with h(0) = h(1) = 0, if θ + λ2(1 + θ) − λ1h
′(0) < 0, there exists

dλ1,λ2 ⩾ 0 such that H(x) ⩽ 0 for x ∈ [dλ1,λ2 ,M) and H(x) > 0 for x ∈ [0, dλ1,λ2). Thus, if
θ + λ2(1 + θ)− λ1h

′(0) < 0, then the following q̃ will minimize (29)

q̃(x) =


0, if H(x) > 0 (i.e., x < dλ1,λ2),

1, if H(x) < 0 (i.e., x > dλ1,λ2),

c, otherwise,

where c could be any [0, 1]-valued constant on H(x) = 0 (i.e., x = dλ1,λ2). On the other hand, if
θ + λ2(1 + θ) − λ1h

′(0) ⩾ 0, H ′(x) ⩽ 0 for all x ⩾ 0, which implies H(x) ⩾ 0 for all x ⩾ 0. In this
case, dλ1,λ2 = M. Then we have I(x) = Idλ1,λ2 (X) :=

∫ x
0 q(t)dt = (x− dλ1,λ2)+.

Next, we aim to find the optimal d for problem (5) subject to (28) when the insurance contract
is given by Id for some d ∈ [0,M ], that is,

min
d∈[0,M ]

F̃ (d) =

∫ M

d
(θSX(x) + λ2(1 + θ)SX(x)dx+ g

(∫ d

0
h(SX(x))dx

)
+ E[X]− λ2Π. (30)

To use the first-order condition, we get

F̃ ′(d) = g′
(∫ d

0
h(SX(x))dx

)
h(SX(d))− (θSX(d) + λ2(1 + θ)SX(d)).

Assume that there exists a constant λ∗
2 ⩾ 0 such that dλ∗

2
solves problem (30) for λ2 = λ∗

2 and∫M
dλ∗2

(1 + θ)SX(x)dx = Π. Then, we can show d̃∗ = d̃λ∗
2
solves problem (5) subject to the constraint

(28). We denote the optimal value of problem (5) with constraint (28) by V (Π). Then, it follows that

V (Π) = sup
d∈[0,M ]∫M

d (1+θ)SX(x)dx⩽Π

MDD
g (TI) ⩽ sup

d∈[0,M ]∫M
d (1+θ)SX(x)dx⩽Π

{
MDD

g (TI)− λ∗
2

(∫ M

d
(1 + θ)SX(x)dx−Π

)}

⩽ sup
d∈[0,M ]

{
MDD

g (TI)− λ∗
2

(∫ M

d
(1 + θ)SX(x)dx−Π

)}
= MDD

g (TI
d̃λ∗2

) ⩽ V (Π).

The last inequality is because I
d̃λ∗2

is feasible to problem (5) without the constraint. Hence, d̃∗ = d̃λ∗
2

solves problem (5) subject to (28). Thus, we have Π((X − d̃∗)+) = Π. In this case, λ2 can be solved
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by

λ∗
2 = inf

{
λ2 : g′

(∫ d̃∗

0
h(SX(x))dx

)
h(SX(x))− θSX(x) + λ2(1 + θ)SX(x) ⩽ 0, and λ2 ⩾ 0

}
.

Case 2: D = SD. With the budget constraint, we first consider the following minimization prob-
lem

inf
0⩽d<M

f̃(d) :=g(SD(X ∧ d)) + E[X] + θE[(X − d)+] + λ((1 + θ)E[(X − d)+]−Π)

=g

(√
w2(d)− w2

1(d)

)
+ E[X] + (θ + λ(1 + θ))

∫ M

d
SX(x)dx− λΠ.

(31)

We only need to replace θ in Theorem 2 with θ + λ(1 + θ). By the first order condition, we have

f̃ ′(d) =
1

2
√

w(d)
g′
(√

w(d)
)
w′(d)− (θ + λ(1 + θ))SX(d)

=SX(d)

(
g′(
√

w(d))

√
(d− w1(d))2

w(d)
− (θ + λ(1 + θ))

)
.

Again, assume that there exists a constant λ∗ ⩾ 0 such that dλ∗ solves problem (31) for λ = λ∗ and∫M
dλ∗

(1 + θ)SX(x)dx = Π. Then, we aim to show d̃∗ = d̃λ∗ solves problem (5) with constraint (28).

The process is similar to the first part, and we have Π((X − d̃∗)+) = Π. In this case, λ can be solved
by

λ∗ = inf

{
λ : g′(

√
w(d))

√
(d− w1(d))2

w(d)
− (θ + λ(1 + θ)) ⩽ 0, and λ ⩾ 0

}
,

which yields the result.

Recall Examples 1 and 2 in Section 3 where D = Gini or D = SD. In the next example, we
further assume that DM has a budget Π for purchasing insurance.

Example 5. Let g(x) = αx+ βx2 with α = 0.2 and β = 0.7 for D = Gini. Based on Example 1, we
can compute that d∗ = 1.27 for X ∼ U [0, 3]. Since θ = 0.2, we have Π(Id∗) = (1+ θ)E[Id∗(X)] = 0.60,
and thus we assume that Π < 0.60 in left panel of Figure 5. Similarly, we can compute d∗ = 0.73 for
X ∼ exp(1) and Π(Id∗) = (1 + θ)E[Id∗(X)] = 0.58; thus we assume that Π < 0.58 in right panel of
Figure 5.

Let g(x) = αx+ βx2 with α = 0.5 and β = 1 for D = SD, based on Example 2, we can compute
d∗ = 0.84 for X ∼ U [0, 10]. Since θ = 0.2, we have Π(Id∗) = 5.03, and thus we assume that Π < 5.03
in left panel of Figure 6. Similarly, we can compute d∗ = 0.54 for X ∼ exp(0.2) and Π(Id∗) = 5.39,
and thus we assume that Π < 5.39 in right panel of Figure 6.

We can see from Figure 5 that the optimal deductible increases as the constraint Π increases,
which implies that the DM chooses to retain more claims if the premium budget is relatively small. In
particular, when the budget is relatively larger, say Π > 0.60 in left panel of Figure 5 and Π > 0.58 in
right panel of Figure 5, the constraint is not binding. Thus, the optimal results are identical to those
without constraint in Figure 1. The same illustrations also apply to Figure 6.

We next present the optimal indemnity function with a budget constraint when the premium is
calculated by VaR or ES. We will show that the optimal indemnity remains a dual truncated stop-loss
indemnity when we add the budget constraint, but the corresponding parameters are modified. Since
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Figure 5: Optimal deductible d̃∗ for the uniform distribution (left figure) and exponential distribution (right
figure) with D = Gini and g(x) = 0.2x+ 0.7x2.
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Figure 6: Optimal deductible d̃∗ for the uniform distribution (left figure) and the exponential distribution (right
figure) with D = SD and g(x) = 0.5x+ x2.

the proof is similar to Propositions 1-2 and Theorem 3, we only present the major steps that highlight
the differences. Also, the proof is relatively lengthy, so we put it in Appendix D. Let

L(a, b, c) = g′
(∫ a

0
h1(SX(x))dx+

∫ c

b
h1(SX(x))dx

)
. (32)

Theorem 4. Suppose Π < Π0 and D = Dh1 with h1 ∈ H0 and h′′1(0) < 0, when Π = VaRp or ESp
for some p ∈ [0, 1), the optimal indemnity Ĩ

d̃∗0,d̃
∗
1,d̃

∗
2
∈ I for (5) with constraint Π(Ĩ

d̃∗0,d̃
∗
1,d̃

∗
2
(X)) ⩽ Π is

given by
Ĩ
d̃∗0,d̃

∗
1,d̃

∗
2
(x) = (x− d̃∗0)+ ∧ (d̃∗1 − d̃∗0) + (x− d̃∗2)+,
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where d̃∗0, d̃
∗
1 and d̃∗2 and can be derived by solving d̃∗1, d̃

∗
2 and d̃∗3 can be derived by solving

d̃∗0 = inf{x : (1 + λ2 − SX(x))− L(x, d̃∗1, d̃∗2)h1(SX(x)) ⩽ 0, and 0 ⩽ x ⩽ xp},

d̃∗1 = sup{x : (1 + λ2 − SX(x))− L(d̃∗1, x, d̃∗2)h1(SX(x)) ⩽ 0, and d̃∗1 ⩽ x ⩽ xp},

d̃∗2 =

{
xp if Π = VaRp,

sup
{
x : p+λ2

1−p SX(x)− L(d̃∗0, d̃∗1, x)h1(SX(x)) ⩽ 0, and xp < x < M
}

if Π = ESp,

(33)

where λ2 is determined by

λ2 = inf
{
λ2 : Π(Ĩd̃∗0,d̃∗1,d̃∗2

(X))−Π ⩽ 0, and λ2 ⩾ 0
}
.

Note that for the VaR, the parameter d̃∗2 does not change after we add the budget constraint. The
reason is that increasing this parameter beyond xp reduces the coverage, but not the corresponding
premium. Also note that if Π is large enough, it will hold that λ2 = 0, and then we recover the
structure of the indemnity function in the unconstrained case in Propositions 1-2.

6 Conclusion

This paper contributes to the field of optimal insurance contract theory by introducing and
analyzing the use of mean-deviation measures as an objective for decision-makers. The findings high-
light the desirability of stop-loss insurance indemnities and provide valuable insights into the optimal
design of insurance contracts under different premium principles. Further research can build upon
these results by exploring additional deviation measures and their implications for insurance contract
optimization.

We conclude this paper with several possible extensions. First, future research could explore the
use of other deviation measures. Our focus in this paper is on convex signed Choquet integrals and
the standard deviation. Second, the paper focuses on the case when the premium principle is either
based on expected value, Value-at-Risk, or Expected Shortfall. Future research could investigate other
premium principles and their implications on optimal insurance contract design. Finally, the paper
only considers a single policyholder that is used to determine the premium charged by the insurer.
Future research could examine the implications of multiple policyholders on optimal insurance contract
design and explore the use of game theory in this context.
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A Some background on risk measures

In this appendix we collect some common terminology and results on risk measures, which are
briefly mentioned in the text of the paper, but not essential to the presentation of our main results.
All random variables are tacitly assumed to be in the space X .

We next list some properties of risk measures. To do so, we first define comonotonicity. A
random vector (Z1, . . . , Zn) is comonotonic if there exists a random variable Z and increasing functions
f1, . . . , fn on R such that Zi = fi(Z) a.s. for every i = 1, . . . , n. We define the following properties for
a mapping ρ : X → R:

(A1) (Law invariant) ρ(Y ) = ρ(Z) for all Y, Z ∈ X if Y and Z follow the same distribution,

(A2) (Cash invariance) ρ(Y + c) = ρ(Y ) + c for all c ∈ R,

(A3) (Monotonicity) ρ(Y ) ⩽ ρ(Z) for all Y, Z ∈ X with Y ⩽ Z,

(A4) (Convexity) ρ(λY + (1− λ)Z) ⩽ λρ(Y ) + (1− λ)ρ(Z) for all Y,Z ∈ X and λ ∈ [0, 1],

(A5) (Comonotonic additive) ρ(Y + Z) = ρ(Y ) + ρ(Z) whenever Y and Z are comonotonic.

Here, (A1) states that the risk value depends on the loss via its distribution. Using the standard
terminology in Föllmer and Schied (2016), a risk measure is a monetary risk measure if it satisfies
(A2) and (A3), it is a convex risk measure if it is monetary and further satisfies (A4), and it is a
coherent risk measure if it is monetary and further satisfies (D3) and (D4). Clearly, (D3) together
with (D4) implies (A4). Thus, convex risk measures are more general than the coherent risk measures.

Below, we list some classic convex signed Choquet integrals with h ∈ H0, which are formulated on
their respective effective domains. In fact, with some bounded assumptions of ρch defined in (8), there
exists a one-to-one correspondence between deviation measures and distortion risk measures with the
relation ρ0h(X) = ρ1h(X)− E[X].

(i) The Gini deviation with h(t) = t− t2:

1

2
E [|X1 −X2|] , X ∈ L1, X1, X2, X are iid.

(ii) The mean median difference with h(t) = min{t, 1− t}:

min
x∈R

E[|X − x|], X ∈ L1.

(iii) The range with h(t) = 1{0<t<1}:

ess-sup(X)− ess-inf(X), X ∈ L∞.

(iv) The inter-ES range with h(t) = t
1−α ∧ 1 + α−t

1−α ∧ 0:

ESα(X) + ESα(−X), α ∈ (0, 1), X ∈ L1.

(v) The ES deviation with h(t) = αt
1−α ∧ (1− t):

ESα(X)− E(X), α ∈ (0, 1), X ∈ L1.
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B Monotonicity of MDD
g

The mapping MDD
g in Definition 1 is not necessarily monotonic, as defined as property (A2)

in Appendix A. Thus, MDD
g is generally not a monetary risk measure. In fact, MDD

g satisfies weak

monotonicity which implies that MDD
g (c1) ⩽ MDD

g (c2) if c1 ⩽ c2 for any c1, c2 ∈ R. Han et al. (2023)
characterized recently the mean-deviation measures which are monotonic in the general mean-deviation
model defined below.

Definition S.1 (Mean-deviation model). Fix p ∈ [1,∞]. A mean-deviation model is a continuous
functional U : Lp → (−∞,∞] defined by

U(X) = V (E[X], D(X)), (S.1)

where V : H → (−∞,∞] with H = {(x, y) ∈ R × [0,∞)} such that (i) V (m, d) is strictly increasing
in m for every d; (ii) V (m, d) is strictly increasing in d for every m; (ii) V (m, 0) = m for every m
(normalization).

For p ∈ [1,∞], we define

Dp
=

{
D ∈ Dp : sup

X∈Lp\C

D(X)

ess-supX − E[X]
= 1

}
.

Theorem S.1 (Theorem 1 of Han et al. (2023)). Fix p ∈ [1,∞]. Suppose that U : Lp → (−∞,∞] is
a mean-deviation model in (S.1) with D ∈ Dp. The following statements are equivalent.

(i) U is a monetary risk measure.

(ii) For some λ > 0, λD ∈ Dp
and U = g ◦D+E where g : [0,∞) → R is a non-constant increasing

and λ-Lipschitz function satisfying g(0) = 0.

Note that we use Gini in (15), the mean median difference (MMD) in (S.2) or SD for numerical
examples throughout the paper. In the next proposition, we demonstrate that K, as defined in (2),
equals 1 for both Gini and MMD. Therefore, in order to ensure that MDD

g is monotonic, the function
g should be 1-Lipschitz. Additionally, we show that SD does not satisfy (2) for any p ∈ [1,∞], and
thus we cannot ensure MDD

g to be monotonic when D is SD.

Proposition S.1. For D = Gini or D = MMD, we have K = 1; and for D = SD, we have K = ∞.

Proof. Let X ∈ L1 and X1, X2, X are i.i.d. For D = Gini, we have

sup
X∈L1\C

Gini(X)

ess-supX − E[X]
=

1

2
sup

X∈L1\C

E [|X1 −X2|]
ess-supX − E[X]

=
1

2
sup

X∈L1\C

E [|X1 − ess-supX + ess-supX −X2|]
ess-supX − E[X]

⩽
1

2
sup

X∈L1\C

E[|ess-supX −X1|] + E|ess-supX −X2|]
ess-supX − E[X]

= 1.

Furthermore, let {Xn}∞n=1 be a sequence with P [Xn = n] = 1 − 1/n and P [Xn = 0] = 1/n. Then
ess-supXn − E[Xn] = 1, and limn→∞Gini(Xn) = 1, so K = 1.
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For D = MMD, we have

sup
X∈L1\C

MMD(X)

ess-supX − E[X]
= sup

X∈L1\C

minx∈R E[|X − x|]
ess-supX − E[X]

⩽ sup
X∈L1\C

E[|X − ess-supX|]
ess-supX − E[X]

= 1.

Also, for a sequence {Xn}∞n=1 with P [Xn = n] = 1−1/n and P [Xn = 0] = 1/n, limn→∞MMD(Xn) = 1,
implying that K = 1 for D = MMD.

For D = SD, we use a proof by contradiction. Suppose there exists K < ∞ for D = SD. Let X
be the random variable with P[X = 0] = (K + 2)−2 and P

[
X = (K + 2)2

]
= 1 − (K + 2)−2. Then

ess-supX − E[X] = 1 and SD(X) = (K + 2)
√

K2 + 4K + 3− 1/(K + 2)2 > K, which leads to a
contradiction.

C Special cases corresponding to Section 3

We assume that Dh(X) is the mean median difference:

Dh(X) = MMD(X) := min
x∈R

E[|X − x|] = E
[∣∣∣∣X − F−1

X

(
1

2

)∣∣∣∣] , X ∈ L1. (S.2)

The MMD is a signed Choquet integral with a concave distortion function h given by h(t) = min{t, 1−
t)}, t ∈ [0, 1]. We recall that A is defined in (16).

Example S.1. Let D = MMD and g(x) = αx+ βx2 with (α, β) ∈ A. If β = 0, then

θSX(x)− α

2
min(SX(x), 1− SX(x)) = max

(
θSX(x)− α

2
SX(x), θSX(x) +

α

2
SX(x)− α

2

)
.

If θ < α/2, then d∗ = F−1
X ( 2θ

2θ+α); otherwise, d
∗ = M . For the case of β ̸= 0, we have

θSX(x)− h(SX(x))

(
α+ 2β

∫ x

0
h(SX(t))dt

)
= θSX(x)−min(SX(x), 1− SX(x))

(
α+ 2β

∫ x

0
min(SX(t), 1− SX(t))dt

)
.

Assume that X ∼ U [a, b], then MMD(X) = (b − a)/4. By taking θ = 0.2, we can compute d∗

numerically by

d∗ = sup

{
x : min

(
1,

x− a

b− x

)(
α(b− a) + 2β

∫ x

a
min(b− t, t− a)dt

)
− θ(b− a) ⩽ 0, and 0 ⩽ x < b

}
.

We assume that X ∼ exp(λ) with any λ > 0, then MMD(X) = ln(2)/λ. Again, we can compute d∗

numerically

d∗ = sup

{
x : min(1, eλx − 1)

(
α+ 2β

∫ x

0
min(e−λt, 1− e−λt)dt

)
− θ ⩽ 0, and x ⩾ 0

}
.

The optimal deductible d∗ as a function of parameter b for the uniform distribution and parameter µ
for the exponential distribution is displayed in Figure S.1. This figure shows similar patterns as those
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in Figure 1.
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Figure S.1: Optimal deductible d∗ for the uniform distribution with a = 0 (left panel) and exponential distri-
bution with µ (right panel) with D = MMD and g(x) = αx+ βx2.

In the next two examples, we further assume that g(x) = eβx − 1 with β > 0, as it is a common
choice for an increasing and convex function with g(0) = 0. Again, to ensure that MDD

g is monotonic
on the relevant domain, we must have g′(D(X − I(X))) = β exp{β(D(X) − D(I(X))} ⩽ 1 for all
I ∈ I. Define

B = {β : β > 0, and βD(X) + ln(β) ⩽ 0}.

Example S.2. Let D = Gini and g(x) = eβx − 1 with β ∈ B. Then we have

θSX(x)− βh(SX(x)) exp

{
β

∫ x

0
h(SX(t))dt

}
= SX(x)

(
θ − β(1− SX(x)) exp

{
β

∫ x

0
(SX(t)− S2

X(t))dt

})
.

If X ∼ U [a, b], then Gini(X) = (b− a)/6. Take θ = 0.2, we can compute d∗ numerically by

d∗ = sup

{
x : β

x− a

b− a
exp

{
− β

(b− a)2

(
x3 − a3

3
− (a+ b)(x2 − a2)

2
+ ab(x− a)

)}
− θ ⩽ 0, and 0 ⩽ x < b

}
.

If X ∼ exp(λ) with λ > 0, then Gini(X) = 1/(2λ). Again, we can compute d∗ numerically

d∗ = sup

{
x : β(1− e−λx) exp

{
1

2λ
(1− e−λx)2

}
− θ ⩽ 0, and x ⩾ 0

}
.

In Figure S.2, we once again examine the optimal deductible d∗ as it changes with b for the uniform
distribution, and with µ for the exponential distribution. We observe that as the expected loss
increases, the deductible also rises. When β is small, the DM tends to opt for a larger deductible,
while larger values of β indicate heightened aversion to risk deviations, leading to a preference for a
smaller deductible. The shape of the optimal deductible as a function of the underlying distribution
parameter appears qualitatively similar to Figure 1, when the function g is non-linear and quadratic.
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Figure S.2: Optimal deductible d∗ as a function of b for the uniform distribution with a = 0 (left figure) and as
a function of µ for the exponential distribution (right figure) with D = Gini and g(x) = eβx − 1.

Example S.3. Let D = MMD and g(x) = eβx − 1 with β ∈ B. Thus, we have

θSX(x)− βh(SX(x)) exp

{
β

∫ x

0
h(SX(t))dt

}
=θSX(x)− βmin(SX(x), 1− SX(x)) exp

{
β

∫ x

0
min(SX(t), 1− SX(t))dt

}
.

Assume that X ∼ U [a, b], then MMD(X) = (b − a)/4. By taking θ = 0.2, we can compute d∗

numerically by

d∗ = sup

{
x : βmin

(
1,

x− a

b− x

)
exp

{
β

b− a

∫ x

a
min(b− t, t− a)dt

}
− θ ⩽ 0, and 0 ⩽ x < b

}
.

We assume that X ∼ exp(λ) with λ > 0, then MMD(X) = ln(2)/λ. Again, we can compute d∗

numerically

d∗ = sup

{
x : βmin(1, eλx − 1) exp

{
β

∫ x

0
min(e−λt, 1− e−λt)dt

}
− θ ⩽ 0, and x ⩾ 0

}
.

The optimal deductible d∗ is reported in Figure S.3. The patterns have a similar explanation as in
Figure S.2.

Next, we give one more example corresponding to Section 3.2. We assume that g(x) = eβx − 1
with β > 0.

Example S.4. Let D = SD and g(x) = eβx − 1 with β > 0. For X ∼ U [0, b], we have w1(x) =
(2bx− x2)/(2b) and w2(x) = x2(3b− 2x)/(3b). By setting θ = 0.2, we can compute d∗ numerically by

d∗ = sup

{
x : β exp

{
β

(
4bx3 − 3x4

12b2

)1/2
}(

3x

4b− 3x

)1/2

− θ ⩽ 0, and 0 ⩽ x < b

}
.

ForX ∼ exp(λ) with any λ > 0, we have w1(x) = (1−e−λx)/λ and w2(x) =
2
λ2 (1−e−λx)− 2

λxe
−λx.
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Figure S.3: Optimal deductible d∗ for the uniform distribution with a = 0 (left panel) and exponential distri-
bution with µ (right panel) with D = MMD and g(x) = eβx − 1.

By setting θ = 0.2, we can compute d∗ numerically by

d∗ = sup

{
x : β exp

{
β

λ

(
1− 2λxe−λx − e−2λx

)1/2} λx− 1 + e−λx

(1− 2λxe−λx − e−2λx)1/2
− θ ⩽ 0, and x ⩾ 0

}
.

The optimal deductible d∗ is reported in Figure S.4. Again, the shape of the optimal deductible as a
function of the underlying distribution parameter is similar to the case with a non-linear and quadratic
function g (cf. Figure 2).
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Figure S.4: Optimal deductible d∗ as a function of b for the uniform distribution (left figure) and as a function
of µ for the exponential distribution (right figure) with D = SD and g(x) = eβx − 1.
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D Proof of Theorem 4

Proof. Case 1: Π = VaRp. Along similar lines in the proof of Proposition 2 and Theorem 3, we consider
the following minimization problem

min
I∈I

f̃(I) :=

∫ M

0
((1 + λ2)h2(SX(x))− SX(x)− λ1h1(SX(x)))q(x)dx

+ λ1Dh1(X) + g(s) + E[X]− λ1s− λ2Π,

(S.3)

where λ1 ⩾ 0 and λ2 ⩾ 0 are the KKT multipliers, and the following q will minimize (S.3)

q(x) =


0, if (1 + λ2)h2(SX(x))− SX(x)− λ1h1(SX(x)) > 0,

1, if (1 + λ2)h2(SX(x))− SX(x)− λ1h1(SX(x)) < 0,

c, otherwise,

(S.4)

where c could be any [0, 1]-valued constant on (1 + λ2)h2(SX(x))− SX(x)− λ1h1(SX(x)) = 0. Define

H(x) = (1 + λ2)h2(SX(x))− SX(x)− λ1h1(SX(x)).

Let h2(t) = 1{t>1−p} with p ∈ (0, 1).

(i) For t < 1− p, or equivalently, xp < x ⩽ M , we always have H(x) = −SX(x)− λ1h1(SX(x)) < 0
for xp < x < M , which implies q(x) = 1.

(ii) For t ⩾ 1−p, or equivalently, x ⩽ xp, we have H(x) = 1+λ2−SX(x)−λ1h1(SX(x)). Since h1 is
concave with h1(0) = h1(1) = 0, H ′(x) = −S′

X(x)(1+λ1h
′
1(SX(x)), H(xp) = λ2+p−λ1h(1−p)

and H(0) = λ2 + 1− α0 − λ1h1(α0), there at most exists two zeros di,λ1,λ2 ⩽ xp (i = 1, 2) such
that H(di,λ1,λ2) = 0.

Define
d0,λ1,λ2 = inf{x : 1 + λ2 − SX(x)− λ1h1(SX(x)) ⩽ 0, and 0 ⩽ x ⩽ xp},

and
d1,λ1,λ2 = sup{x : 1 + λ2 − SX(x)− λ1h1(SX(x)) ⩽ 0, and d0,λ1,λ2 ⩽ x ⩽ xp}.

Then we have I(x) = Id0,λ1,λ2 ,d1,λ1,λ2 ,xp(X) :=
∫ x
0 q(t)dt = (x−d0,λ1,λ2)+∧(d1,λ1,λ2−d0,λ1,λ2)+(x−xp)+.

That is, for every s, there exists an Id0,d1,xp(x) = (x − d0)+ ∧ (d1 − d0) + (x − xp)+ that does better
than any I ∈ I.

Next, we aim to find the optimal d0 and d1 for problem (S.3) subject to (28) when the insurance
contract is given by Id0,d1,xp for some d0, d1 ∈ [0, xp], that is,

min
d0,d1∈[0,xp]

F̃ (d0, d1) :=

∫ d1

d0

(1 + λ2 − SX(x))dx−
∫ M

xp

SX(x)dx

+ g

(∫ d0

0
h1(SX(x))dx+

∫ xp

d1

h1(SX(x))dx

)
+ E[X]− λ2Π.

(S.5)

Assume that there exists a constant λ∗
2 ⩾ 0 such that d̃0λ∗

2
and d̃1λ∗

2
solve problem (S.5) for λ2 = λ∗

2

and VaRp(Id̃0λ∗2 ,d̃1λ∗2 ,xp
) = Π. Then, we aim to show d̃0λ∗

2
and d̃1λ∗

2
solve problem (5) with constraint
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(28). We denote the optimal value of problem (5) with constraint (28) by V (Π). Then, it follows that

V (Π) = inf
d0,d1∈[0,xp]

VaRp(Id0,d1,xp )⩽Π

MDD
g (TI) ⩽ inf

d0,d1∈[0,xp]

VaRp(Id0,d1,xp )⩽Π

{
MDD

g (TI)− λ∗
2

(
VaRp(Id0,d1,xp)−Π

)}
⩽ inf

d0,d1∈[0,xp]

{
MDD

g (TI)− λ∗
2

(
VaRp(Id0,d1,xp)−Π

)}
= MDD

g (TĨ
d0λ∗2

,d̃1λ∗2

) ⩽ V (Π).

The last inequality is because I
Ĩd0λ∗2

,d̃1λ∗2
is feasible to problem (5) without the constraint. Hence,

(d̃∗0, d̃
∗
1) = (d̃0λ∗

2
, d̃1λ∗

2
) solves problem (S.5). To use the first-order condition, we get

∂F̃ (d0, d1)

∂d0
= g′

(∫ d0

0
h1(SX(x))dx+

∫ xp

d1

h1(SX(x))dx

)
h1(SX(d0))− (1 + λ2 − SX(d0)),

and

∂F̃ (d0, d1)

∂d1
= −g′

(∫ d0

0
h1(SX(x))dx+

∫ xp

d1

h1(SX(x))dx

)
h1(SX(d1)) + (1 + λ2 − SX(d1)).

Then, we can solve d̃∗0, d̃
∗
1 and λ∗

2 by (33), and

λ∗
2 = inf

{
λ2 : VaRp(Id̃∗0,d̃∗1,xp

)−Π ⩽ 0, and λ2 ⩾ 0
}
. (S.6)

Case 2: Π = ESp. Let h2(t) =
t

1−p ∧ 1 with p ∈ (0, 1).

(i) For t ⩾ 1− p, or equivalently, x ⩽ xp, the analysis is similar to the case of VaR.

(ii) For t < 1− p, or equivalently, x > xp, we always have H(x) = p+λ2

1−p SX(x)−λ1h1(SX(x)). When

H(xp) = p + λ2 − λ1h1(1 − p) > 0, if H ′(M) = p+λ2

1−p − λ1h
′
1(0) < 0, then there exists a unique

d2,λ1,λ2 such that H1(x) > 0 for xp < x < d2,λ1,λ2 , and H1(x) < 0 for d2,λ1,λ2 < x < M ; if
H ′(0) > 0, then H(x) ⩾ 0 for any x ∈ [xp,M ]. When H(xp) = p− λh1(1− p) < 0, then we have
H1(x) ⩽ 0 for any x > xp.

Define

d2,λ1,λ2 = sup

{
x :

p+ λ2

1− p
SX(x)− λ1h1(SX(x)) ⩾ 0, and xp < x < M

}
. (S.7)

It is clear that d0,λ1,λ2 ⩽ d1,λ1,λ2 < xp ⩽ d2,λ1,λ2 . Then problem (S.3) can be minimized by I(x) =
Id0,λ1,λ2 ,d1,λ1,λ2 ,d2,λ1,λ2 (X) :=

∫ x
0 q(t)dt = (x − d0,λ1,λ2)+ ∧ (d1,λ1,λ2 − d0,λ1,λ2) + (x − d2,λ1,λ2)+. That

is, for every s, there exists an Id0,d1,d2(x) = (x − d0)+ ∧ (d1 − d0) + (x − d2)+ that does better than
any I ∈ I. Next, we aim to find the optimal d0, d1 and d2 for problem (S.3) subject to (28) when the
insurance contract is given by Id0,d1,d2 for some d0, d1 ∈ [0, xp] and d2 ∈ (xp,M ], that is,

min
d0,d1∈[0,xp],d2∈(xp,M ]

F̃ (d0, d1, d2) :=

∫ d1

d0

(1 + λ2 − SX(x)dx+

∫ M

d2

p+ λ2

1− p
SX(x)dx

+ g

(∫ d0

0
h1(SX(x))dx+

∫ d2

d1

h1(SX(x))dx

)
+ E[X]− λ2Π. (S.8)
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To use the first-order condition, we get

∂F̃ (d0, d1, d2)

∂d0
= g′

(∫ d0

0
h1(SX(x))dx+

∫ d2

d1

h1(SX(x))dx

)
h1(SX(d0))− (1 + λ2 − SX(d0)),

∂F̃ (d0, d1, d2)

∂d1
= −g′

(∫ d0

0
h1(SX(x))dx+

∫ d2

d1

h1(SX(x))dx

)
h1(SX(d1)) + (1 + λ2 − SX(d1)),

and

∂F̃ (d0, d1, d2)

∂d2
= g′

(∫ d0

0
h1(SX(x))dx+

∫ d2

d1

h1(SX(x))dx

)
h1(SX(d2))−

p+ λ2

1− p
SX(d2).

Assume that there exists a constant λ∗
2 ⩾ 0 such that d̃0λ∗

2
, d̃1λ∗

2
and d̃2λ∗

2
solve problem (S.8) for

λ2 = λ∗
2 and Π(I

d̃0λ∗2
,d̃1λ∗2

,d̃2λ∗2
) = Π. In this case, d̃∗0, d̃

∗
1, d̃

∗
2 and λ∗

2 can be solved by (33) and

λ∗
2 = inf

{
λ2 : VaRp(Id̃∗0,d̃∗1,d̃∗2

)−Π ⩽ 0, and λ2 ⩾ 0
}
.
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