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Abstract. The notion of a Bowley optimum has gained recent popularity as an equilibrium con-
cept in problems of risk sharing and optimal reinsurance. In this paper, we examine the relationship
between Bowley optimality and Pareto efficiency in a problem of optimal reinsurance, under fairly
general preferences. Specifically, we show that Bowley-optimal contracts are indeed Pareto efficient
but they make the insurer indifferent with the status quo (hence providing a partial first welfare
theorem). Moreover, we show that only those Pareto-efficient contracts that make the insurer indif-
ferent between suffering the loss and entering into the reinsurance contract are Bowley optimal (hence
providing a partial second welfare theorem). We interpret these result as indicative of the limitations
of Bowley optimality as an equilibrium concept in this literature. We also discuss relationships with
competitive equilibria, and we provide illustrative examples.

1. Introduction

In the context of optimal contract design in reinsurance markets, Bowley solutions follow from a
sequential procedure: (i) first, the reinsurer selects a pricing kernel, and in response, the insurer will
select the indemnity function that minimizes their risk exposure given that pricing kernel; and (ii)
second, knowing the insurer’s demand as a function of the pricing kernel, the reinsurer then selects the
pricing kernel that minimizes their risk exposure. Bowley solutions were first introduced by Bowley
(1928) in the context of a bilateral monopoly, and then first applied to optimal reinsurance design
by Chan and Gerber (1985). This paper aims to examine micro-equilibrium properties of Bowley
solutions in problems of optimal reinsurance contracting. Specifically, we study the relationship
between Bowley optimality and Pareto efficiency for a broad class of risk measures, since the latter
is the standard notion of optimality typically used in the related literature.

Chan and Gerber (1985) characterize Bowley solutions when the insurer and reinsurer are risk-
averse Expected-Utility (EU) maximizers. These results are extended to more general risk exchanges
by Taylor (1992). Bowley solutions were then largely ignored in the literature until the recent work
of Cheung et al. (2019), who focused on preferences given by distortion risk measures rather than
EU-preferences. The work of Cheung et al. (2019) has reignited the interest in the Bowley solution
as an optimality concept in the optimal reinsurance literature. Indeed, Li and Young (2021) study
Bowley solutions with preferences and premiums given by a mean-variance form, and Boonen et al.
(2021) and Boonen and Zhang (2021) study Bowley solutions with asymmetric information about
the preferences of the insurer. Chi et al. (2020) construct a sequential game inspired by Bowley
solutions, in which the reinsurer determines the premium budget and the insurer optimizes an EU
objective under constraints on the first two moments of the indemnity.

Related to Bowley solutions, Stackelberg equilibria have gained popularity in industrial economics.
In a Stackelberg equilibrium, two competitive firms compete in setting quantities in a duopoly. As a
key difference with Bowley solutions, the two firms both set their quantities, and the policyholders
are jointly modelled via an inverse demand function that leads to the price. On the other hand,
in a Bowley solution, the monopolistic leader (reinsurer) and follower (insurer) bargain with each
other about a reinsurance contract, which consists of an indemnity and a corresponding premium.
Subsequently, the monopolistic leader sets the prices and the follower selects the optimal indemnity.
Using this terminology, the approaches of Chen and Shen (2018), Gavagan et al. (2022), and Yuan
et al. (2022) are closer to a Bowley solution than to a Stackelberg equilibrium.

The present work is closest in spirit to Cheung et al. (2019), but our main objective as well as
our class of preferences are different. Our focus is on preferences that are translation-invariant,
and sometimes also assumed convex, comonotonic-additive, and/or continuous; while the focus in
Cheung et al. (2019) is on the smaller class of convex distortion risk measures (i.e., concave distortion
functions). Convex distortion risk measures are known to be coherent (Artzner et al., 1999; Wang
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et al., 1997); and the minimization of risk measures plays a central role in the formulation of optimal
(re)insurance problems (Asimit et al., 2017; Assa et al., 2021; Balbás et al., 2011; Tan et al., 2020;
Torraca and Fanzeres, 2021). Moreover, whereas the objective of Cheung et al. (2019) is to construct
Bowley solutions explicitly, our primary concern is deriving some key properties of Bowley solutions
and examining how they relate to Pareto optima. Specifically, we show that Bowley solutions lead
to Pareto-efficient contracts that make the insurer indifferent with the status quo (Theorem 3.1),
but we also show the converse: only those Pareto-optimal solutions that make the insurer indifferent
with the status quo are Bowley solutions (Theorem 3.2).1 In other words, Bowley solutions are
precisely the solutions that are Pareto optimal and make the insurer indifferent with the status quo.
While Pareto optimality is a reasonable and well-accepted efficiency property, the indifference of the
insurer with the status quo can be perceived as undesirable. This paper thus also aims to provide
a warning about the applicability of Bowley solutions. In fact, if one wishes to design a market
mechanism such that the insurer strictly benefits from purchasing reinsurance, Bowley solutions may
not suffice.2 Instead, complete market and comonotone market competitive equilibria (as in Boonen,
2015; Boonen et al., 2021) lead to Pareto optima in which the insurer may strictly benefit from
the reinsurance arrangement. Additionally, one could consider the symmetric or asymmetric Nash
bargaining solution (see Kalai, 1977).

The rest of this paper is set out as follows. Section 2 presents the model setting, and defines
Bowley solutions and Pareto optima. Section 3 establishes a link between Bowley solutions and
Pareto optima. In the context of distortion risk measures, this is then compared with two notions
of competitive equilibria and the asymmetric Nash bargaining solution in Section 4. Sections 5 and
6 provide examples with distortion risk measures and the Tail Value-at-Risk (TVaR), respectively.
Section 7 concludes.

2. Setup

2.1. Feasible Indemnity Functions. An insurer faces a random loss X taken to be a bounded
nonnegative random variable on a given probability space pΩ,G,Pq, with supremum M ă `8. Let
F :“ σtXu denote the sigma-algebra generated by X on Ω, and let B pFq denote the vector space
of all bounded, R-valued, and F-measurable functions on pΩ,Fq, with positive cone B` pFq. When
endowed with the supnorm }.}sup, given by }Y }sup :“ supt|Y psq| : s P Su ă `8, B pFq is a Banach
space (Dunford and Schwartz, 1958, IV.5.1). By Doob’s Measurability Theorem (Aliprantis and
Border, 2006, Theorem 4.41), for any Y P B pFq there exists a bounded, Borel-measurable map
I : RÑ R such that Y “ I ˝X. Moreover, Y P B` pFq if and only if the function I is nonnegative.
Let L8 pΩ,F ,Pq denote the space of essentially bounded R-valued and F-measurable functions on
pΩ,Fq. For each p P r1,`8q, let Lp pΩ,F ,Pq denote the Banach space of R-valued and F-measurable

functions on pΩ,Fq with finite Lp-norm given by }Y }p :“

ˆ
ż

|Y |p dP
˙1{p

.

Let Cr0,M s denote the set of all continuous functions on r0,M s (and hence bounded), equipped
with the supnorm } ¨ }sup, and consider the set

(2.1) I0 :“
 

I : r0,M s ÞÑ r0,M s
ˇ

ˇ Ip0q “ 0, 0 ď Ipx1q ´ Ipx2q ď x1 ´ x2,@x2 ď x1 P r0,M s
(

.

1For the special case of convex distortion risk measures, Bowley solutions are constructed in Cheung et al. (2019). It
is easy to verify that the constructed Bowley solutions are Pareto optimal and make the insurer indifferent with the
status quo.

2With asymmetric information about the insurer’s risk preferences, one could obtain Bowley solutions in which both the
insurer and reinsurer strictly benefit (see Boonen et al., 2021; Boonen and Zhang, 2021). This paper however focuses
on the case of symmetric information, in which the preferences of the insurer and reinsurer are common knowledge.
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Then I0 is a convex and uniformly bounded subset of Cr0,M s consisting of Lipschitz-continuous
functions r0,M s Ñ r0,M s, with common Lipschitz constant K “ 1. Therefore, I0 is also equicon-
tinuous and hence (supnorm) compact by the Arzelà-Ascoli Theorem (Dunford and Schwartz, 1958,
Theorem IV.6.7).

The set I0 is the collection of indemnity functions that satisfy the so-called no-sabotage condition
of Carlier and Dana (2003b). If an indemnity is decreasing on some part of the domain of X, then
the insurer has an incentive to underreport the loss, and this hence leads to an ex post moral hazard
issue. Likewise, if the indemnity increases faster than the underlying loss, then the insurer may
have an incentive to create an incremental loss. Any stop-loss or proportional contracts, of the form
IpXq “ maxpX ´ d, 0q for d ě 0 and IpXq “ aX for a P r0, 1s, respectively, are elements of the set
I0. Any I P I0 is such that the mappings x ÞÑ Ipxq and x ÞÑ x´ Ipxq are nondecreasing. Moreover,
for each I P I0, 0 ď Ipxq ď x and 0 ď x´ Ipxq ď x, for each x P r0,M s. In particular, Ipxq P r0,M s
and x´ Ipxq P r0,M s, for all I P I0 and all x P r0,M s.

The insurer seeks an arrangement with a reinsurer, whereby the insurer pays a premium to purchase
a coverage I pXq against X. We assume that the set of ex ante admissible indemnity functions is
given by a (norm-)closed, and hence compact subset I of I0, such that 0 P I, where we use the
notation c P R to denote the constant function Ipxq “ c, for all x P R. The assumption that 0 P I
implies that a no-insurance indemnity is always feasible, and thus the status quo can be retained as
feasible. Note that

(2.2)
 

I pXq : I P I
(

Ă B pFq Ă Lp pΩ,F ,Pq , @ p P p0,`8s.

All throughout this paper, Id denotes the identity function Idpxq “ x, for all x P R.

2.2. Preferences and Pricing Kernels. Recall that, by the Riesz Representation Theorem (Alipran-
tis and Border, 2006, Theorems 13.26 & 13.28), for any p P r1,`8q and q P p1,`8s such that
1
p `

1
q “ 1, the norm dual of Lp pΩ,F ,Pq is (isometrically isomorphic to) Lq pΩ,F ,Pq, via the duality

ă φ, ψ ą :“

ż

φψ dP.

For a given q P p1,`8s, the reinsurer prices indemnity functions using a premium principle Π,
defined as the functional

Π : Lq pΩ,F ,Pq ˆ I0 Ñ R

pξ, Iq ÞÑ Π pξ, Iq :“

ż

I pXq ξ dP,
(2.3)

where ξ is interpreted as a pricing kernel. Note that we do not require that
ş

ξ dP “ 1. By eq.
(2.2), and without loss of generality, we assume all throughout that p “ 1 and q “ `8. By
abuse of notation, we also write Π pξ, Zq for any pξ, Zq P L8 pΩ,F ,Pq ˆ L1 pΩ,F ,Pq. Note that
Π p¨, 0q “ Π p0, ¨q “ 0, for all pξ, Iq P L8 pΩ,F ,Pq ˆ I, by definition of Π.

For a given I P I and ξ P L8 pΩ,F ,Pq, the risk exposure of the insurer is given by

X ´ I pXq `Π pξ, Iq ,

and the risk exposure of the reinsurer is given by

I pXq ´Π pξ, Iq .

We assume that the preferences of the insurer and the reinsurer are respectively represented by
finite monotone risk measures ρIn : L1 pΩ,F ,Pq Ñ R and ρRe : L1 pΩ,F ,Pq Ñ R, normalized so that
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ρInpcq “ ρRepcq “ c, for all c P R. By monotonicity, this normalization then implies that for all I P I,

ρIn
`

I pXq
˘

pďMq ă 8, ρIn
`

X ´ I pXq
˘

ă 8, ρRe
`

I pXq
˘

ă 8, and ρRe
`

X ´ I pXq
˘

ă 8.

Define the following auxiliary functionals ρIn1 , ρRe1 : RˆI Ñ R and ρIn2 , ρRe2 : L8 pΩ,F ,PqˆI Ñ R:

ρIn1 pp, Iq :“ ρIn
`

X ´ I pXq ` p
˘

;

ρIn2 pξ, Iq :“ ρIn
`

X ´ I pXq `Π pξ, Iq
˘

;

ρRe1 pp, Iq :“ ρRe
`

I pXq ´ p
˘

;

ρRe2 pξ, Iq :“ ρRe
`

I pXq ´Π pξ, Iq
˘

.

These functionals will be useful later in this paper. Here p P R is interpreted as a deterministic
premium payment, while ξ is the pricing kernel that is used to calculate the deterministic premium
of IpXq via the pricing functional Πpξ, Iq. Both p and Πpξ, Iq are thus the reinsurance premium, and
this premium is paid by the insurer to the reinsurer. Later, in the definition of Bowley and Pareto
optimality, the difference in determining the premium via p or ξ becomes clearer.

We make the assumption that there exists a large enough pricing kernel ξ0 such that, for each
feasible indemnity I P I, the insurer’s risk exposure X ´ I pXq ` Π pξ0, Iq is large enough, in the
following sense.

Assumption 2.1. There exists ξ0 P L
8 pΩ,F ,Pq such that for each I P I,

ρIn2 pξ0, Iq ě ρIn p0q .

Note that Assumption 2.1 implies that

0 P arg min
I P I

ρIn2 pξ0, Iq .

We recall below some basic properties of risk measures.

Definition 2.2. A risk measure ρ : L1 pΩ,F ,Pq Ñ R is said to be:

‚ Translation-invariant if ρ pY ` cq “ ρ pY q ` c, for all pY, cq P L1 pΩ,F ,Pq ˆ R.

‚ Convex if for all Y,Z P L1 pΩ,F ,Pq and all α P r0, 1s,

ρ
`

αY ` p1´ αqZ
˘

ď αρ pY q ` p1´ αq ρ pZq .

‚ Comonotonic-additive if ρ pY ` Zq “ ρ pY q ` ρ pZq, for all Y, Z P L1 pΩ,F ,Pq that are
comonotonic, that is, such that

“

Y pω1q ´ Y pω2q
‰ “

Z pω1q ´ Z pω2q
‰

ě 0, @ω1, ω2 P Ω.

‚ Continuous if it is continuous with respect to the L1-norm topology.

Remark 2.3. Note that:

‚ A monotone and comonotonic-additive risk measure ρ is positively homogeneous, that is, it
satisfies the property ρ pλY q “ λ ρpY q for all Y P L1 pΩ,F ,Pq and λ ą 0 (e.g., Schmeidler,
1986, Remark 1).
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‚ A monotone, translation-invariant, and finite convex risk measure is continuous (e.g., Rüschendorf,
2013, Corollary 7.10).

2.3. Individually Rational Reinsurance Contracts.

Definition 2.4 (Individual Rationality). A pair pp, Iq P R ˆ I is said to satisfy the individual
rationality constraints, if both the insurer and the reinsurer prefer the contract pp, Iq to the status
quo. That is,

ρIn1 pp, Iq ď ρIn1 p0, 0q “ ρIn pXq and ρRe1 pp, Iq ď ρRe1 p0, 0q “ ρRe p0q “ 0.

Let IR Ă R ˆ I denote the collection of all contracts that satisfy the individual rationality
constraints. Note that IR ‰ ∅, since p0, 0q P IR. As an immediate consequence of the above
definition, we obtain the following result.

Lemma 2.5 (Nonnegativity of Premia). If the risk measures ρIn and ρRe are translation-
invariant, then for any pp, Iq P IR, we have

ρRe
`

I pXq
˘

ď p ď ρIn pXq ´ ρIn
`

X ´ I pXq
˘

.

Moreover, p ě 0.

Proof. If the risk measures are translation-invariant, then for any pp, Iq P IR, we have

ρIn1 pp, Iq “ ρIn
`

X ´ I pXq ` p
˘

“ ρIn
`

X ´ I pXq
˘

` p ď ρIn1 p0, 0q “ ρIn pXq ;

ρRe1 pp, Iq “ ρRe
`

I pXq ´ p
˘

“ ρRe
`

I pXq
˘

´ p ď ρRe1 p0, 0q “ ρRe p0q “ 0.

Therefore,
ρRe

`

I pXq
˘

“ ρRe
`

I pXq
˘

´ ρRe p0q ď p ď ρIn pXq ´ ρIn
`

X ´ I pXq
˘

.

Moreover, since the risk measure ρRe is monotone by assumption, it follows that ρRe
`

I pXq
˘

ě

ρRe p0q , and hence p ě 0. �

Remark 2.6. An immediate implication of Lemma 2.5 is that for monotone and translation-invariant
risk measures, premia are nonnegative for any individually rational reinsurance contract. If, in
Lemma 2.5 the stronger assumption of comonotonic-additivity is imposed on ρIn instead of translation
invariance, then for any pp, Iq P IR, we have (by monotonicity and normalization)

0 ď ρRe
`

I pXq
˘

ď p ď ρIn pXq ´ ρIn
`

X ´ I pXq
˘

“ ρIn
`

I pXq
˘

ď ρIn pXq ďM.

In particular, p P
”

ρRe
`

I pXq
˘

, ρIn
`

I pXq
˘

ı

Ď r0,M s.

2.4. Optima. Two economic concepts that we focus on in this paper are defined next.

Definition 2.7.

(1) A pair pp˚, I˚q P IR is said to be Pareto-Optimal (PO) if there is no other pair
´

rp, rI
¯

P IR
such that

ρIn1

´

rp, rI
¯

ď ρIn1
`

p˚, I˚
˘

and ρRe1

´

rp, rI
¯

ď ρRe1

`

p˚, I˚
˘

,

with at least one strict inequality. We denote by PO the set of all PO.
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(2) A pair pξ˚, I˚q P L8 pΩ,F ,Pq ˆ I is said to be Bowley-Optimal (BO) if

(a) I˚ P arg min
I P I

ρIn2 pξ˚, Iq;

(b) ρRe2 pξ˚, I˚q ď ρRe2

´

rξ, rI
¯

for all rξ P L8 pΩ,F ,Pq and rI P arg min
I P I

ρIn2

´

rξ, I
¯

.

We denote by BO the set of all BO.

The following is related to a standard result for translation-invariant risk measures (e.g., Asimit
and Boonen, 2018, Theorem 3.1), and we provide a self-contained proof for completeness.

Lemma 2.8 (Pareto-Optimality). Suppose that ρIn and ρRe are translation-invariant. A pair
pp˚, I˚q P IR is PO if and only if it is optimal for the following optimization problem:

min
pp,Iq P IR

!

ρIn1 pp, Iq ` ρRe1 pp, Iq
)

.(2.4)

Proof. Suppose first that pp˚, I˚q is optimal for Problem (2.4) but not PO. Then there exists some
´

rp, rI
¯

P IR such that

ρIn1

´

rp, rI
¯

ď ρIn1
`

p˚, I˚
˘

and ρRe1

´

rp, rI
¯

ď ρRe1

`

p˚, I˚
˘

,

with at least one strict inequality. Therefore,

ρIn1

´

rp, rI
¯

` ρRe1

´

rp, rI
¯

ă ρIn1
`

p˚, I˚
˘

` ρRe1

`

p˚, I˚
˘

,

contradicting the optimality of pp˚, I˚q for Problem (2.4).

Conversely, suppose that pp˚, I˚q is PO but not optimal for Problem (2.4). Then there exists some
´

rp, rI
¯

P IR such that

ρIn1

´

rp, rI
¯

` ρRe1

´

rp, rI
¯

ă ρIn1
`

p˚, I˚
˘

` ρRe1

`

p˚, I˚
˘

.

Let ε :“ ρRe1

´

rp, rI
¯

´ρRe1 pp˚, I˚q, and p̂ :“ rp`ε. Then, by translation-invariance of the risk measure

ρRe, it follows that

ρRe1

´

p̂, rI
¯

“ ρRe
`

I pXq ´ rp´ ε
˘

“ ρRe
`

I pXq ´ rp
˘

´ ε

“ ρRe1

´

rp, rI
¯

´ ε “ ρRe1

´

rp, rI
¯

´ ρRe1

´

rp, rI
¯

` ρRe1

`

p˚, I˚
˘

“ ρRe1

`

p˚, I˚
˘

.

Moreover, by translation-invariance of the risk measure ρIn, we obtain

ρIn1

´

p̂, rI
¯

“ ρIn
`

X ´ I pXq ` rp` ε
˘

“ ρIn
`

X ´ I pXq ` rp
˘

` ε

“ ρIn1

´

rp, rI
¯

` ε “ ρIn1

´

rp, rI
¯

` ρRe1

´

rp, rI
¯

´ ρRe1

`

p˚, I˚
˘

ă ρIn1
`

p˚, I˚
˘

,

hence contradicting the fact that pp˚, I˚q is PO. �
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Lemma 2.9. Suppose that ρIn and ρRe are translation-invariant, and consider the following opti-
mization problem:

min
I P I

!

ρIn1 p0, Iq ` ρRe1 p0, Iq : pp, Iq P IR, for some p P R
)

.(2.5)

Then I˚ is optimal for Problem (2.5) if and only if pp˚, I˚q is optimal for Problem (2.4), for some
p˚ P R.

Proof. Suppose that pp˚, I˚q is optimal for Problem (2.4). Then I˚ is feasible for Problem (2.5), i.e.,
I˚ P I. Let I be any other feasible solution for Problem (2.5). Then there exists p P R such that
pp, Iq P IR, i.e., pp, Iq is feasible for Problem (2.4). Consequently,

ρIn1
`

p˚, I˚
˘

` ρRe1

`

p˚, I˚
˘

ď ρIn1 pp, Iq ` ρRe1 pp, Iq .

By translation-invariance, this leads to

ρIn1
`

0, I˚
˘

` ρRe1

`

0, I˚
˘

ď ρIn1
`

0, I˚
˘

` ρRe1

`

0, I˚
˘

,

and hence I˚ is optimal for Problem (2.5).

Conversely, suppose that I˚ is optimal for Problem (2.5). Then there exists some p˚ P R such that
pp˚, I˚q is feasible for Problem (2.4). Let pp, Iq P IR be another feasible solution for Problem (2.4).
Then I is feasible for Problem (2.5), and therefore

ρIn1
`

0, I˚
˘

` ρRe1

`

0, I˚
˘

ď ρIn1 p0, Iq ` ρRe1 p0, Iq .

By translation-invariance, this leads to

ρIn1
`

p˚, I˚
˘

` ρRe1

`

p˚, I˚
˘

ď ρIn1 pp, Iq ` ρRe1 pp, Iq ,

and hence pp˚, I˚q is optimal for Problem (2.4). �

The following result provides sufficient conditions for the existence of Pareto and Bowley optima.
Its proof is provided in Appendix A.

Theorem 2.10 (Existence of PO and BO).

(1) If ρIn and ρRe are continuous and translation-invariant, then PO ‰ ∅.

(2) If, in addition, ρIn is comonotonic-additive and convex, then BO ‰ ∅.

2.5. Pricing Kernels as Subgradients. Recall that the norm dual of L1 pΩ,F ,Pq is (isometrically
isomorphic to) L8 pΩ,F ,Pq. Using this standard duality, a subgradient of the risk measure ρIn at a
given Y P L1 pΩ,F ,Pq is some ξ P L8 pΩ,F ,Pq such that

ρIn pZq ě ρIn pY q ` E
“

ξ pZ ´ Y q
‰

, @Z P L1 pΩ,F ,Pq .

The subdifferential of ρIn at a given Y P L8 pΩ,F ,Pq, denoted by BρIn pY q, is the collection of all
subgradients of ρIn at Y :

(2.6) BρIn pY q :“
!

ξ P L8 pΩ,F ,Pq
ˇ

ˇ

ˇ
ρIn pZq ě ρIn pY q ` E

“

ξ pZ ´ Y q
‰

, @Z P L1 pΩ,F ,Pq
)

.

Hence, for a given Y P L1 pΩ,F ,Pq, ξ P BρIn pY q if and only if

(2.7) ρIn pZq ´Π pξ, Zq ě ρIn pY q ´Π pξ, Y q , @Z P L1 pΩ,F ,Pq .
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The subdifferential of ρRe at a given Y P L1 pΩ,F ,Pq is defined similarly. We refer to Ruszczyński
and Shapiro (2006a,b), and Wozabal (2014) for more information on subdifferentials of risk measures.

Hereafter, we consider collection Y Ă L1 pΩ,F ,Pq defined as follows:

(2.8) Y :“
 

Y “ I pXq
ˇ

ˇ I P I
(

.

If a risk measure ρ : L1 pΩ,F ,Pq Ñ R is convex, continuous, and finite on the set Y, then it
follows from Svindland (2009b, Lemma 2.2) or Ekeland and Témam (1999, Prop. 5.2, Chap. 1) that
Bρ pY q ‰ ∅ for all Y P Y. Note that, as stated earlier, ρIn and ρRe are finite on Y.

Remark 2.11. Suppose ρRe is translation-invariant and convex, and choose rξRe P BρRe
`

IpXq
˘

‰ ∅.

Then, by translation-invariance of ρRe,

arg min
I P I

ρRe2

´

rξRe, I
¯

“ arg min
I P I

ρRe
ˆ

I pXq ´Π
´

rξRe, I
¯

˙

“ arg min
I P I

„

ρRe
`

I pXq
˘

´Π
´

rξRe, I
¯



.

Now, by definition of BρRe
`

IpXq
˘

, we obtain that for all Z P L1 pΩ,F ,Pq,

ρRe pZq ´Π
´

rξRe, Z
¯

ě ρRe
`

IpXq
˘

´Π
´

rξRe, IpXq
¯

.

Hence, for every I P I, there exist rξRe P L8 pΩ,F ,Pq such that

I P arg min

„

ρRepIpXqq ´Π
´

rξRe, I
¯



“ arg min ρRe2

´

rξRe, I
¯

.

Lemma 2.12. If ρIn is translation-invariant and convex, then for all I˚ P I,

I˚ P arg min
I P I

ρIn2 pξ, Iq , @ ξ P BρIn
`

X ´ I˚pXq
˘

.

Similarly, if ρRe is translation-invariant and convex, then for all I˚ P I,

I˚ P arg min
I P I

ρRe2 pξ, Iq , @ ξ P BρRe
`

I˚pXq
˘

.

Proof. First, note that by Remark 2.3, both ρIn and ρRe are continuous. Therefore, BρIn pY q ‰ ∅
and BρRe pY q ‰ ∅ for all Y P Y, by convexity and continuity. By translation-invariance of ρIn, it
follows that for every pξ, Iq P L8 pΩ,F ,Pq ˆ I,

ρIn2 pξ, Iq “ ρIn
`

X ´ I pXq `Π pξ, Iq
˘

“ ρIn
`

X ´ I pXq
˘

`Π pξ,Xq ´Π
`

ξ,X ´ IpXq
˘

.

Hence,

arg min
I P I

ρIn2 pξ, Iq “ arg min
I P I

”

ρIn
`

X ´ I pXq
˘

`Π pξ,Xq ´Π
`

ξ,X ´ IpXq
˘

ı

“ arg min
I P I

”

ρIn
`

X ´ I pXq
˘

´Π
`

ξ,X ´ IpXq
˘

ı

.

Now, fix I˚ P I and choose rξIn P BρIn
`

X ´ I˚pXq
˘

‰ ∅. Then, from eq. (2.7) it follows that for all

Z P L1 pΩ,F ,Pq,

ρIn pZq ´Π
´

rξIn, Z
¯

ě ρIn
`

X ´ I˚pXq
˘

´Π
´

rξIn, X ´ I˚pXq
¯

.

Therefore,

I˚ P arg min

„

ρInpX ´ IpXqq ´Π
´

rξIn, X ´ IpXq
¯



“ arg min
I P I

ρIn2

´

rξIn, I
¯

.
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Similarly, fix I˚ P I and choose rξRe P BρRe
`

I˚pXq
˘

‰ ∅. Then by translation-invariance of ρRe,

arg min
I P I

ρRe2

´

rξRe, I
¯

“ arg min
I P I

ρRe
ˆ

I pXq ´Π
´

rξRe, I
¯

˙

“ arg min
I P I

„

ρRe
`

I pXq
˘

´Π
´

rξRe, I
¯



.

Now, by definition of BρRe
`

IpXq
˘

, we obtain that for all Z P L1 pΩ,F ,Pq,

ρRe pZq ´Π
´

rξRe, Z
¯

ě ρRe
`

I˚pXq
˘

´Π
´

rξRe, I˚pXq
¯

.

Hence,

I P arg min
I P I

„

ρRepIpXqq ´Π
´

rξRe, I
¯



“ arg min
I P I

ρRe2

´

rξRe, I
¯

.

�

Lemma 2.13. If ρIn is comonotonic-additive and convex, then for each I P I,

(1) Π
`

ξ,X ´ IpXq
˘

“ ρIn
`

X ´ IpXq
˘

, for all ξ P BρIn
`

X ´ IpXq
˘

;

(2) Π
`

ξ, IpXq
˘

“ ρIn
`

IpXq
˘

, for all ξ P BρIn
`

IpXq
˘

.

Proof. First, note that by Remark 2.3, ρIn is continuous since comonotonic-additivity implies translation-
invariance, by the normalization ρInpcq “ c, for c P R. We only show (1), as the proof of (2) is almost
identical. The subdifferential BρInpX ´ IpXqq is non-empty by convexity and continuity of ρIn.
Moreover, ρInp0q “ 0, by comonotonic-additivity of ρIn. Fix ξ P BρIn

`

X ´ IpXq
˘

and suppose first,

by way of contradiction, that Π
`

ξ,X ´ IpXq
˘

ă ρIn
`

X ´ IpXq
˘

. Then eq. (2.7) implies that for all

Z P L1 pΩ,F ,Pq,
ρInpZq ´Π pξ, Zq ě ρInpX ´ IpXqq ´Π

`

ξ,X ´ IpXq
˘

ą 0.

Hence, for Z “ 0, ρInpZq ´Π pξ, Zq “ ρInp0q ´Π pξ, 0q “ 0 ą 0, a contradiction.

Next, suppose that Π
`

ξ,X ´ IpXq
˘

ą ρIn
`

X ´ IpXq
˘

. Then by comonotonic-additivity of ρIn,
it follows that for each n P N,

ρIn
`

npX ´ IpXqq
˘

´Π
´

ξ, n
`

X ´ IpXq
˘

¯

“ n
”

ρIn
`

X ´ IpXq
˘

´Π
`

ξ,X ´ IpXq
˘

ı

.

In particular, letting Z “ 2
`

X ´ IpXq
˘

yields

ρInpZq ´Π pξ, Zq “ 2
”

ρInpX ´ IpXqq ´Π
`

ξ,X ´ IpXq
˘

ı

ă ρInpX ´ IpXqq ´Π
`

ξ,X ´ IpXq
˘

,

which contradicts the fact that for all Z P L1 pΩ,F ,Pq,
ρInpZq ´Π pξ, Zq ě ρInpX ´ IpXqq ´Π

`

ξ,X ´ IpXq
˘

,

by eq. (2.7). Therefore, Π
`

ξ,X ´ IpXq
˘

“ ρIn
`

X ´ IpXq
˘

. �

Remark 2.14. Fix I P I. By Lemma 2.13 it follows that if ρIn is comonotonic-additive and convex,
and if ξ P BρIn

`

X ´ IpXq
˘

, then

Π pξ,Xq ´Π
`

ξ, IpXq
˘

“ ρIn pXq ´ ρIn
`

IpXq
˘

.

If, moreover, ξ P BρIn
`

IpXq
˘

, then Π
`

ξ, IpXq
˘

“ ρIn
`

IpXq
˘

. Consequently,

(2.9) Π pξ,Xq “ ρInpXq and Π
`

ξ, IpXq
˘

“ ρIn
`

IpXq
˘

, @ ξ P BρIn
`

X ´ IpXq
˘

X BρIn
`

IpXq
˘

.
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Lemma 2.15. If ρIn is comonotonic-additive and convex, then for all I P I,

∅ ‰ BρInpXq Ă BρInpIpXqq X BρInpX ´ IpXqq,
and hence BρInpIpXqq X BρInpX ´ IpXqq ‰ ∅.

Proof. First, note that by Remark 2.3, ρIn is continuous since comonotonic-additivity implies translation-
invariance, by the normalization ρInpcq “ c, for c P R. Thus, BρIn pXq ‰ ∅ by convexity and
continuity of ρIn. Let ξ P BρInpXq. Then, by eq. (2.7),

(2.10) ρIn pZq ´Π pξ, Zq ě ρIn pXq ´Π pξ,Xq , @Z P L1 pΩ,F ,Pq .

Moreover, by Lemma 2.13, ρIn pXq ´Π pξ,Xq “ 0. Hence, for all Z P L1 pΩ,F ,Pq,
ρIn pZq ´Π pξ, Zq ě 0.

Furthermore, taking Z “ X ´ IpXq, eq. (2.10) implies that

ρIn
`

X ´ IpXq
˘

´Π
`

ξ,X ´ IpXq
˘

ě 0.

Hence, since ρIn is comonotonic-additive, it follows that for all Z P L1 pΩ,F ,Pq,
ρIn pZq ´Π pξ, Zq ě ρIn pXq ´Π pξ,Xq

“ ρIn
`

IpXq
˘

´Π
`

ξ, IpXq
˘

` ρIn
`

X ´ IpXq
˘

´Π
`

ξ,X ´ IpXq
˘

ě ρIn
`

IpXq
˘

´Π
`

ξ, IpXq
˘

,

which implies that ξ P BρInpIpXqq. By a similar proof, one can show that ξ P BρInpX ´ IpXqq, and
thus ξ P BρInpIpXqq X BρInpX ´ IpXqq ‰ ∅. �

3. Pareto Vs. Bowley Optima

In this section, we will link PO and BO. First, we show in the next theorem that every BO is
associated with a PO.

Theorem 3.1. Suppose that ρIn is comonotonic-additive and convex, and that ρRe is translation-
invariant. If pξ˚, I˚q is BO, then

`

Π pξ˚, I˚q , I˚
˘

is PO and ρIn2 pξ˚, I˚q “ ρIn2 pξ˚, 0q.

Proof. First, note that by Remark 2.3, ρIn is continuous since comonotonic-additivity implies translation-
invariance, by the normalization ρInpcq “ c, for c P R. Suppose that pξ˚, I˚q P L8 pΩ,F ,Pq ˆ I is
BO, and let p˚ :“ Π pξ˚, I˚q. Then

ρIn2
`

ξ˚, I˚
˘

ď ρIn2
`

ξ˚, I
˘

, for all I P I;

ρRe2

`

ξ˚, I˚
˘

ď ρRe2 pξ, Iq , for all ξ P L8 pΩ,F ,Pq and I P arg min
rI P I

ρIn2

´

ξ, rI
¯

.

We first show that pp˚, I˚q P IR. Note that since ρIn2 pξ˚, I˚q ď ρIn2 pξ˚, Iq ,@I P I, we have

ρIn1
`

p˚, I˚
˘

“ ρIn2
`

ξ˚, I˚
˘

ď ρIn2
`

ξ˚, 0
˘

“ ρIn1

´

Π
`

ξ˚, 0
˘

, 0
¯

“ ρIn1 p0, 0q .

Moreover, since ρRe2 pξ˚, I˚q ď ρRe2 pξ, Iq, for all ξ P L8 pΩ,F ,Pq and I P arg min
rI P I

ρIn2

´

ξ, rI
¯

, we have

ρRe1

`

p˚, I˚
˘

“ ρRe2

`

ξ˚, I˚
˘

ď ρRe2 pξ0, 0q “ ρRe p0q “ ρRe1 p0, 0q ,
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where ξ0 is as in Assumption 2.1, since 0 P arg min
I P I

ρIn2 pξ0, Iq. Therefore, pp˚, I˚q P IR.

Now, suppose, by way of contradiction, that pp˚, I˚q is not PO. Then there exists some
´

rp, rI
¯

P IR

with rI P I such that

ρIn1

´

rp, rI
¯

ď ρIn1
`

p˚, I˚
˘

“ ρIn2
`

ξ˚, I˚
˘

;

ρRe1

´

rp, rI
¯

ď ρRe1

`

p˚, I˚
˘

“ ρRe2

`

ξ˚, I˚
˘

,

with at least one strict inequality. Let

δ “ ρIn1 p0, 0q ´ ρIn1

´

rp, rI
¯

ě 0 and p̄ “ rp` δ.

Then, by translation-invariance, we obtain

ρIn1

´

p̄, rI
¯

“ ρIn1

´

rp, rI
¯

` δ “ ρIn1 p0, 0q “ ρIn pXq ;

ρRe1

´

p̄, rI
¯

“ ρRe1

´

rp, rI
¯

´ δ ď ρRe1

´

rp, rI
¯

ď ρRe1

`

p˚, I˚
˘

,

where one of the two inequalities is strict. Moreover, since ρRe1 pp˚, I˚q ď ρRe1 p0, 0q (by individual

rationality), it follows that ρRe1

´

p̄, rI
¯

ă ρRe1 p0, 0q, and hence p̄ ą ρReprIpXqq ´ ρRep0q.

Next, fix rξ P BρInpX ´ rIpXqq X BρInprIpXqq, where BρInpX ´ rIpXqq X BρInprIpXqq ‰ ∅ by Lemma

2.15. Then, by Lemma 2.12, rI P arg min
I P I

ρIn2

´

rξ, I
¯

, and by Lemma 2.13, Π
´

rξ, rI
¯

“ ρIn
´

rI pXq
¯

.

Hence,

ρIn2

´

rξ, rI
¯

“ ρIn
ˆ

X ´ rI pXq `Π
´

rξ, rI
¯

˙

“ ρIn pXq ´ ρIn
´

rI pXq
¯

`Π
´

rξ, rI
¯

“ ρIn pXq ´ ρIn
´

rI pXq
¯

` ρIn
´

rI pXq
¯

“ ρIn pXq “ ρIn1 p0, 0q

“ ρIn1

´

p̄, rI
¯

,

and so Π
´

rξ, rI
¯

“ p̄. Thus,

ρRe2

´

rξ, rI
¯

“ ρRe1

´

p̄, rI
¯

ă ρRe1

`

p˚, I˚
˘

“ ρRe2

`

ξ˚, I˚
˘

.

Consequently,
rI P arg min

I P I
ρIn2

´

rξ, I
¯

and ρRe2

´

rξ, rI
¯

ă ρRe2

`

ξ˚, I˚
˘

,

contradicting the fact that pξ˚, I˚q is BO. Hence, pξ˚, I˚q is PO.

Now, suppose that pξ˚, I˚q is BO but ρIn2 pξ˚, I˚q ‰ ρIn2 pξ˚, 0q. If ρIn2 pξ˚, I˚q ą ρIn2 pξ˚, 0q, then
`

Π pξ˚, I˚q , I˚
˘

R IR and hence pξ˚, I˚q is not BO (as per the first part of this proof), a contradic-

tion. If ρIn2 pξ˚, I˚q ă ρIn2 pξ˚, 0q, then by Lemmata 2.12 and 2.15 choose ξ̂ P BρInpX ´ I˚pXqq X

BρInpI˚pXqq, so that I˚ P arg min
I P I

ρIn2

´

ξ̂, I
¯

, and hence

I˚ P arg min
I P I

ρIn2
`

ξ˚, I
˘

X arg min
I P I

ρIn2

´

ξ̂, I
¯

.
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By Lemma 2.13-(2), it follows that Π
´

ξ̂, I˚pXq
¯

“ ρIn
`

I˚pXq
˘

, and therefore

ρIn2

´

ξ̂, I˚
¯

“ ρIn
ˆ

X ´ I˚ pXq `Π
´

ξ̂, I˚
¯

˙

“ ρIn
`

X ´ I˚ pXq
˘

`Π
´

ξ̂, I˚
¯

“ ρIn pXq ´ ρIn
`

I˚ pXq
˘

`Π
´

ξ̂, I˚
¯

“ ρInpXq “ ρIn2

´

ξ̂, 0
¯

.

Consequently

ρIn2
`

ξ˚, I˚
˘

ă ρIn2
`

ξ˚, 0
˘

“ ρIn2

´

ξ̂, 0
¯

“ ρInpXq “ ρIn2

´

ξ̂, I˚
¯

,

which implies that Πpξ˚, I˚q ă Πpξ̂, I˚q, and hence

ρRe2

`

ξ˚, I˚
˘

“ ρRepI˚pXq ´Πpξ˚, I˚qq ą ρRepI˚pXq ´Πpξ̂, I˚qq “ ρRe2

´

ξ̂, I˚
¯

.

This, together with I˚ P arg min
I P I

ρIn2

´

ξ̂, I
¯

, implies a contradiction with pξ˚, I˚q being BO. Conse-

quently, ρIn2 pξ˚, I˚q “ ρIn2 pξ˚, 0q. �

Theorem 3.1 states that if pξ˚, I˚q is BO, then it must hold that ρIn1 pΠpξ, I
˚q, I˚q “ ρIn1 p0, 0q; that

is, the insurer is indifferent with the status quo. Therefore, BO leads to very peculiar arrangements
that are not marketable. The following result provides a partial converse to Theorem 3.1, but PO is
then restricted to only those reinsurance contracts that make the insurer indifferent.

Theorem 3.2. Suppose that ρIn is comonotonic-additive and convex, and that ρRe is translation-
invariant. If pp˚, I˚q is PO and such that ρIn1 pp˚, I˚q “ ρIn1 p0, 0q, then there exists some ξ˚ P
BρIn

`

I˚pXq
˘

X BρIn
`

X ´ I˚pXq
˘

‰ ∅ such that pξ˚, I˚q is BO and p˚ “ Π pξ˚, I˚q.

Proof. First, note that by Remark 2.3, ρIn is continuous since comonotonic-additivity implies translation-
invariance, by the normalization ρInpcq “ c, for c P R. Let pp˚, I˚q be PO and such that ρIn1 pp˚, I˚q “
ρIn1 p0, 0q. By Lemmata 2.12 and 2.15, choose ξ˚ P BρIn

`

I˚pXq
˘

X BρIn
`

X ´ I˚pXq
˘

‰ ∅, so that

I˚ P arg min
I P I

ρIn2 pξ˚, Iq. Then, as in Remark 2.14, p˚ “ Π pξ˚, I˚q “ ρIn
`

I˚pXq
˘

.

Suppose that pξ˚, I˚q is not BO. Then, there exists
´

rξ, rI
¯

P L8 pΩ,F ,Pq ˆ I such that

ρRe2

´

rξ, rI
¯

ă ρRe2

`

ξ˚, I˚
˘

“ ρRe1

`

p˚, I˚
˘

;

ρIn2

´

rξ, rI
¯

ď ρIn2

´

rξ, I
¯

, for all I P I.

Letting rp :“ Π
´

rξ, rI
¯

, and recalling that pp˚, I˚q P IR since pp˚, I˚q is PO, the first inequality above

gives

ρRe1

´

rp, rI
¯

ă ρRe1

`

p˚, I˚
˘

ď ρRe1 p0, 0q “ ρRe p0q “ 0.

Moreover, since ρIn1 pp˚, I˚q “ ρIn1 p0, 0q, the second inequality implies that

ρIn1

´

rp, rI
¯

“ ρIn2

´

rξ, rI
¯

ď ρIn2

´

rξ, 0
¯

“ ρIn1 p0, 0q “ ρIn1
`

p˚, I˚
˘

.

Consequently,

ˆ

Π
´

rξ, rI
¯

, rI

˙

P IR and is such that

ρRe1

´

rp, rI
¯

ă ρRe1

`

p˚, I˚
˘

and ρIn1

´

rp, rI
¯

ď ρIn1
`

p˚, I˚
˘

,

contradicting the fact that pp˚, I˚q is PO. Hence, pξ˚, I˚q is BO. �
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In summary, when ρIn is comonotonic-additive and convex, and ρRe is translation-invariant, every
BO leads to a PO reinsurance contract in which the insurer is indifferent between reinsuring and not
reinsuring (Theorem 3.1). Moreover, every PO in which the insurer is indifferent between reinsuring
and not reinsuring can constitute a BO in which (by Lemmata 2.12 and 2.13) the reinsurer can select
any price in BρIn

`

I˚pXq
˘

X BρIn
`

X ´ I˚pXq
˘

, which is non-empty by Lemma 2.15 (Theorem 3.2).

4. Pareto-Optimality and Competitive Equilibria with
Convex Distortion Risk Measures

In this section, our focus is on convex distortion risk measures (DRMs), that is, risk measures of
the form

ρgpY q “

ż 0

´8

rgpSY pzqq ´ 1sdz `

ż 8

0
gpSY pzqqdz, @Y P L

1 pΩ,F ,Pq ,

where g : r0, 1s Ñ r0, 1s is a non-decreasing and concave function satisfying gp0q “ 0 and gp1q “ 1,
and SY denotes the decumulative distribution function of Y with respect to the probability measure
P (also called survival function). A convex DRM is monotone, comonotonic-additive, translation-
invariant, and convex (e.g., Marinacci and Montrucchio, 2004b). If, in addition it is finite, then it is
also continuous (e.g., Rüschendorf, 2013, Corollary 7.10). Hereafter, let ρIn “ ρg1 and ρRe “ ρg2 , for
given concave distortion functions g1, g2.

4.1. Competitive Equilibria. We consider competitive equilibria in two market settings involving
n economic agents. First, in a complete market, the set of admissible allocations is given by

ApXq :“

#

pX1, . . . , Xnq P pL
1 pΩ,F ,Pqqn :

n
ÿ

i“1

Xi “ X

+

.

Second, in a comonotone market (a special type of an incomplete market introduced by Boonen et al.
(2021)), allocations are confined to the set CpXq of comonotonic allocations, namely,

CpXq :“ tY P L1 pΩ,F ,Pq : pY,X ´ Y q is comonotonicu,

and the resulting set of admissible allocations is then given by

AcpXq :“

#

pX1, . . . , Xnq P pCpXqq
n :

n
ÿ

i“1

Xi “ X

+

.

Note that n “ 2 in the context of our optimal reinsurance problem. In that case, we use the
terminology “complete reinsurance market” and “comonotone reinsurance market”.

Definition 4.1 (Competitive Equilibria).

(1) In a complete reinsurance market, a competitive equilibrium is a pair
`

pX1, X2q , ξ
˘

P A pXqˆ
L8 pΩ,F ,Pq that satisfies:

(a) Π pξ,X1q ď Π pξ,Xq.

(b) Π pξ,X2q ď 0
`

“ Π pξ, 0q
˘

.

(c) ρIn pX1q “ min
!

ρIn pY1q : Π pξ, Y1q ď Π pξ,Xq
)

.

(d) ρRepX2q “ min
!

ρRepY2q : Πpξ, Y2q ď 0
)

.
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Such a competitive equilibrium is called an Unconstrained Competitive Equilibrium
(UCE).

(2) In a comonotone reinsurance market, a competitive equilibrium is a pair
`

pX1, X2q , ξ
˘

P

Ac pXq ˆ L8 pΩ,F ,Pq that satisfies:

(a) Π pξ,X1q ď Π pξ,Xq.

(b) Π pξ,X2q ď 0
`

“ Π pξ, 0q
˘

.

(c) ρIn pX1q “ min
!

ρIn pY1q : Y1 P CpXq, Π pξ, Y1q ď Π pξ,Xq
)

.

(d) ρRe pX2q “ min
!

ρRe pY2q : Y2 P CpXq, Πpξ, Y2q ď 0
)

.

Such a competitive equilibrium is called a Constrained Competitive Equilibrium (CCE).

4.2. Competitive Equilibria and Pareto Efficiency. If the distortion functions are strictly con-
cave, then it is known (e.g., Boonen, 2015) that the equilibrium price in UCE exists and is unique.3

Moreover, it is given by

ξ :“
dQ
dP

,

where Q is defined by

QpX ą zq :“ max
 

g1pSXpzqq, g2pSXpzqq
(

, @ z P R.

Furthermore, for any UCE
`

pX1, X2q , ξ
˘

, it follows that Πpξ,X2q “ Πpξ, 0q “ 0 (Boonen, 2015,
Proposition 4.1). A direct consequence of this is

ρRepX2q “ ρRep0q “ 0.

Indeed, if ρRepX2q ă 0 then ρRepcX˚2 q “ cρRepX2q ă ρRepX2q for any c ą 1, while Πpξ, cX2q “ 0
is still in the budget set: a contradiction. Also, ξ P BρInpX1q X Bρ

RepX2q (e.g., Fl̊am, 2011). In
conclusion, any UCE is PO and such that the reinsurer is indifferent between selling reinsurance and
not selling reinsurance. This is in sharp contrast with BO solutions, which are PO and such that the
insurer is indifferent, as per our Theorems 3.1 and 3.2.

Additionally, Boonen et al. (2021, Theorem 1) show that in a comonotone reinsurance market, the
pair ppX1, X2q, ξq is a CCE if and only if the following hold jointly:

(1) ξ “ dQ
dP and min

!

g1
`

SX pzq
˘

, g2
`

SX pzq
˘

)

ď Q pX ą zq ď max
!

g1
`

SX pzq
˘

, g2
`

SX pzq
˘

)

for all z;

(2) X2 “ f pXq ´Π
`

ξ, f pXq
˘

, a.s., where f satisfies

(4.1) f 1pzq “

#

1 if g1
`

SX pzq
˘

ą g2
`

SX pzq
˘

,

0 if g1
`

SX pzq
˘

ă g2
`

SX pzq
˘

,

and fpXq P CpXq.

3Boonen (2015) only shows this result for finite Ω, but the result is extendable to an infinite state space.
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Moreover, Boonen et al. (2021) show that a CCE always exists, but equilibrium prices might no
longer be unique.

Now, for a given X2 :“ fpXq P CpXq, one can construct a one-to-one mapping to a reinsurance
contract pp, Iq P Rˆ I as follows:

‚ Let p :“ fp0q.

‚ Let IpXq :“ fpXq ´ fp0q “ fpXq ´ p.

Proposition 4.2. The following two results hold:

‚ for any CCE
´

`

X˚1 , X
˚
2

˘

, ξ˚
¯

, the contract pp˚, I˚q is PO, where fpXq :“ X˚2 , p˚ :“ fp0q,

and I˚pXq :“ fpXq ´ fp0q;

‚ if pp˚, I˚q is PO, then there exists some ξ˚ such that
´

`

X˚1 , X
˚
2

˘

, ξ˚
¯

is a CCE, where X˚1 :“

X ´ I˚ pXq `Π pξ˚, I˚q and X˚2 :“ I˚ pXq ´Π pξ˚, I˚q.

Proof. The proof that any CCE is PO is given in Boonen et al. (2021, Theorem 3(i)). The second
result is proven by construction. Let pp˚, I˚q be a PO. By Lemmata 2.8 and 2.9, it then follows that
I˚ solves

min
IPI

!

ρIn1 p0, Iq ` ρRe1 p0, Iq : pp, Iq P IR, for some p P R
)

.

This implies that pI˚q1pxq coincides with (4.1) (see Asimit and Boonen, 2018, Proposition 4.1). Now,
define the function g : r0,M s ˆ r0, 1s Ñ r0, 1s by

gpz; γq :“ p1´ γq min
 

g1pSXpzqq, g2pSXpzqq
(

` γ max
 

g1pSXpzqq, g2pSXpzqq
(

,

for z P r0,M s and γ P r0, 1s. Then by (1) above, for any γ P r0, 1s, Q̂γpX ą zq :“ gpz; γq defines an
equilibrium price ξγ given by

ξγ :“
dQ̂γ

dP
.

Then, ρIn1 pξ
γ , I˚q is continuous and increasing in γ, and satisfies ρIn1 pξ

1, I˚q “ ρIn1 pξ
1, 0q and ρIn1 pξ

0, I˚q “

ρInpXq´ρInpX´ I˚pXqq´ρRepI˚pXqq. Therefore, there exists a γ˚ P r0, 1s such that ρIn1 pξ
γ˚

, I˚q “

ρIn2 pp
˚, I˚q. By (1)-(2) above, letting ξ˚ :“ ξγ

˚

, X˚1 :“ X ´ I˚ pXq ` Π pξ˚, I˚q, and X˚2 :“
I˚ pXq ´Π pξ˚, I˚q implies that ppX˚1 , X

˚
2 q, ξ

˚q is a CCE. �

4.3. Asymmetric Nash Bargaining and Pareto Efficiency. Asymmetric Nash bargaining so-
lutions are contracts pp, Iq P IR that are optimal for the following problem:

sup
pp,Iq P IR

´

ρIn pXq ´ ρIn
`

X ´ I pXq ` p
˘

¯γ ´

ρRe p0q ´ ρRe
`

I pXq ´ p
˘

¯1´γ
,

for some γ P r0, 1s. Here, one can interpret γ as the bargaining power of the insurer; γ “ 0 (γ “ 1)
represents the case of no (full) bargaining power of the insurer and γ “ 1

2 represents the case of
equal bargaining power leading to the (symmetric) Nash bargaining solution of Nash (1950). It is
shown by Kalai (1977) that asymmetric Nash bargaining solutions are PO. Moreover, Boonen et al.
(2016, Proposition 2.7, Eq. (19), Proposition 3.4) show that pp, Iq P R ˆ I is an asymmetric Nash
bargaining solution if and only if the following conditions hold jointly:
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‚ The indemnity function I P I is such that

I 1pxq “

#

1 if g1
`

SX pxq
˘

ă g2
`

SX pxq
˘

,

0 if g1
`

SX pxq
˘

ą g2
`

SX pxq
˘

.

‚ The premium p is such that

(4.2) p “ ρRe
`

I pXq
˘

` γpρIn
`

I pXq
˘

´ ρRe
`

I pXq
˘

.

In fact, eq. (4.2) implies that there is a one-to-one correspondence between the asymmetric Nash
bargaining solution and a premium p that lies in between the indifference premiums4, that is, p P
”

ρRepIpXqq, ρInpIpXqq
ı

. This means that asymmetric Nash bargaining solutions are only consistent

with BO solutions if γ “ 0 or ρInpIpXqq “ ρRepIpXqq.

4.4. PO, BO, UCE, CCE, and Nash Bargaining for Convex DRMs. To sum up, for convex
distortion risk measures, the following holds:

(1) In any UCE, the risk transfer is PO and the reinsurer will be indifferent.

(2) In any CCE, the risk transfer is PO and any premium in between the indifference prices will
constitute an equilibrium.

(3) The latter set of contracts can also be obtained via asymmetric Nash bargaining solutions.

Recall that by Theorem 3.2, in any BO the risk transfer is PO and the insurer will be indifferent.
This paper does not claim that UCE, CCE, or asymmetric Nash bargaining solutions are more
realistic to occur in bilateral reinsurance risk transfer. In fact, in a market with only two agents
(insurer and reinsurer), it may be problematic to assume that a competitive equilibrium holds. In
such competitive equilibria, it is namely assumed that individual agents have no bargaining power,
and cannot affect the prices in the market. We however find it useful to link our result on BO to this
literature.

5. An Example: Convex Distortion Risk Measures

Consider a non-atomic probability space pΩ,F ,Pq and a concave (hence a.e. differentiable) distor-
tion function g. By the Fenchel-Moreau theorem, the convex DRM ρg admits the dual representation
(e.g., Pflug, 2006)

ρg pY q “ sup
 

E pY Zq : Z “ g1 pUq , U has a uniform distribution on r0, 1s
(

.

Moreover, by the concavity of g, it follows from Carlier and Dana (2003a, Corollary 2)5 and Marinacci
and Montrucchio (2004a) that the subdifferential of ρg at Y P L1 pΩ,F ,Pq is given by

(5.1) Bρg pY q “ co
 

g1 p1´ Uq : U „ Unifp0, 1q, pU, Y q is comonotonic
(

,

where co denotes the L1 pΩ,F ,Pq-closed convex hull.

4Note that by Lemma 2.5, for any pp, Iq P IR, we have ρRe
`

I pXq
˘

ď p ď ρIn pXq ´ ρIn
`

X ´ I pXq
˘

. Moreover, by

comonotonic-additivity of distortion risk measures, it follows that ρIn pXq ´ ρIn
`

X ´ I pXq
˘

“ ρIn
`

I pXq
˘

, and so

p P
”

ρRepIpXqq, ρInpIpXqq
ı

.

5Note that Carlier and Dana (2003a) assume differentiability of the distortion function. However, this assumption can
be relaxed, as shown by Marinacci and Montrucchio (2004a).
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Next, we propose a parameterization of the concave distortion function for the class of convex
DRMs. This parameterization is inspired by Anthropelos and Boonen (2020). For a given γ P r0, 1s,
let g p¨; γq : r0, 1s Ñ r0, 1s be a concave distortion function. Moreover, for every s P p0, 1q, let
g ps; ¨q : r0, 1s Ñ r0, 1s be increasing in γ. We define ρpY ; γq :“ ρgp¨;γqpY q as a DRM with concave

distortion function gp¨; γq. Then, we parameterize ρIn and ρRe as follows:

(5.2) ρIn pY q :“ ρ
´

Y ; γIn
¯

and ρRe pY q :“ ρ
´

Y ; γRe
¯

, @Y P L1 pΩ,F ,Pq ,

with γIn, γRe P r0, 1s.

Special cases of such a class are discussed in Anthropelos and Boonen (2020), and they include the
case in which the insurer and reinsurer use a TVaR (see Section 6). Also, the function g ps; γq :“ s1´γ

is a special case, and this leads to the well-known proportional hazard (PH) transform of Wang (1995).

Proposition 5.1. Let I “ I0. Consider the optimization problem given by Problem (2.5) in Lemma
2.9, and assume that ρIn and ρRe are as in eq. (5.2). Then the indemnity function I˚ defined below
is optimal for Problem (2.5):

(5.3) I˚ “

$

’

&

’

%

0 if γIn ă γRe,

P I if γIn “ γRe,

Id if γIn ą γRe.

Proof. Note that by definition of a DRM, it holds that for each Y P L1 pΩ,F ,Pq the function γ ÞÑ
ρpY ; γq is non-decreasing. Thus, it follows that if γIn ă γRe then ρInpY q ď ρRepY q for all Y P

L1 pΩ,F ,Pq. Hence, if γIn ă γRe then the comonotonic-additivity of DRMs implies that for all
I P I,

ρIn1 p0, 0q ` ρRe1 p0, 0q “ ρIn pXq “ ρIn
`

X ´ IpXq
˘

` ρIn
`

IpXq
˘

ď ρIn
`

X ´ IpXq
˘

` ρRe
`

IpXq
˘

“ ρIn1 p0, Iq ` ρRe1 p0, Iq .

Similarly, if γIn ą γRe then ρIn1 p0, Xq ` ρRe1 p0, Xq ď ρIn1 p0, Iq ` ρRe1 p0, Iq for all I P I. Finally, if
γIn “ γRe, then it follows from comonotonic-additivity that for all I P I,

ρIn1 p0, Iq ` ρRe1 p0, Iq “ ρIn
`

X ´ IpXq
˘

` ρRe
`

IpXq
˘

“ ρIn
`

X ´ IpXq
˘

` ρIn
`

IpXq
˘

“ ρInpXq “ ρIn1 p0, 0q ` ρRe1 p0, 0q .

This concludes the proof. �

From Lemmata 2.8 and 2.9, Theorems 3.1 and 3.2, as well as Proposition 6.1, we obtain the
following result.

Proposition 5.2. Assume that ρIn and ρRe are as in eq. (5.2).

Then, the following holds:

‚ If γIn ă γRe, then p0, 0q is PO and pξ0, 0q is BO, where ξ0 P Bρ
In p0q as in Assumption 2.1.

‚ If γIn “ γRe, then for any I P I,
´

ρIn
`

I pXq
˘

, I
¯

is PO and pξ, Iq is BO, where ξ P BρIn pXq.
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‚ If γIn ą γRe, then
´

ρIn pXq , Id
¯

is PO and pξ, Idq is BO, where ξ P BρIn pXq.

Example 5.3. Let I :“
 

I “ a Id : a P r0, as
(

with 0 ă a ď 1, which is a closed subset of I0. Then,
for I P I,

ρIn1 p0, Iq ` ρRe1 p0, Iq “ p1´ aqρInpXq ` aρRepXq.

From this, we readily find that the indemnity function I˚ defined below is optimal for Problem (2.5):

(5.4) I˚ “

$

’

&

’

%

0 if γIn ă γRe,

P I if γIn “ γRe,

a Id if γIn ą γRe.

Moreover, Proposition 5.2 can directly be generalized as follows:

‚ if γIn ă γRe, then p0, 0q is PO and pξ0, 0q is BO, where ξ0 P Bρ
In p0q as in Assumption 2.1.

‚ If γIn “ γRe, then for any I P I,
´

ρIn
`

I pXq
˘

, I
¯

is PO and pξ, Iq is BO, where ξ P BρIn pXq.

‚ If γIn ą γRe, then
´

ρIn paXq , a Id
¯

is PO and pξ, a Idq is BO, where ξ P BρIn pXq.

6. An Example: PO and BO for TVaR

In this section, we provide an illustrative example for the special case in which the convex DRMs
are given by the Tail Value-at-Risk (TVaR) risk measure. The TVaR at level α P p0, 1q is a continuous
DRM (see, e.g., Svindland, 2009a,b) for which the (concave) distortion function is given by (e.g.,
Dhaene et al., 2006):

gα ptq :“ min

"

t

1´ α
, 1

*

, @t P r0, 1s.

First, note that since for each Y P L1 pΩ,F ,Pq the function α ÞÑ TV aRαpY q is non-decreasing
(e.g., Denuit et al., 2005, Property 2.4.5), it follows that if α ă β then ρInpY q ď ρRepY q for all
Y P L1 pΩ,F ,Pq.

Corollary 6.1. Let I “ I0. Consider the optimization problem given by Problem (2.5) in Lemma
2.9, and assume that ρIn and ρRe are TVaR risk measures at respective levels α, β P p0, 1q:

ρIn “ TV aRα and ρRe “ TV aRβ.

Then the indemnity function I˚ defined below is optimal for Problem (2.5):

(6.1) I˚ “

$

’

&

’

%

0 if α ă β,

P I if α “ β,

Id if α ą β.

The dual representation of TVaR is given by

TV aRα pXq “ sup

"

E pX Zq : E pZq “ 1, 0 ď Z ď
1

1´ α

*

,
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and thus

BTV aRα pXq “ arg max

"

E pX Zq : E pZq “ 1, 0 ď Z ď
1

1´ α

*

.

By eq. (5.1),

BTV aRα pXq “ co

#

ˆ

1

1´ α

˙

1rUă1´αs : U „ Unifp0, 1q, pU,Xq is comonotonic

+

.

Therefore, if X is a continuous random variable then FX pXq „ Unifp0, 1q and

BTV aRα pXq “

ˆ

1

1´ α

˙

1rXąV aRαpXqs.

More generally (e.g., Föllmer and Schied (2016, Remark 4.53) or Svindland (2009b, Section 6.2)),
BTV aRα pXq ‰ ∅ for α P p0, 1q, and ξ˚ P BTV aRα pXq, where

ξ˚ :“

ˆ

1

1´ α

˙

1rXąV aRαpXqs `

˜

1´ α´ P
`

X ą V aRα pXq
˘

P
`

X ě V aRα pXq
˘

´ P
`

X ą V aRα pXq
˘

¸

1rX“V aRαpXqs.

7. Conclusions

In this paper, we show that in the context of an optimal reinsurance design problem with translation-
invariant, convex, and comonotonic-additive risk measures (e.g., convex distortion risk measures),
the set of Bowley-optimal solutions is associated with the set of Pareto optima for which the insurer is
indifferent. Specifically, we show that every Bowley optimum leads to a Pareto-efficient reinsurance
contract in which the insurer is indifferent between reinsuring and not reinsuring (Theorem 3.1).
Moreover, only those Pareto-optimal contracts for which the insurer is indifferent between reinsuring
and not reinsuring can constitute a Bowley optimum (Theorem 3.2). Moreover, in such a Bowley
optimum, the reinsurer has some flexibility in selecting the pricing kernel.

Our results hence suggest that if the Bowley solution is to be taken as an optimality criterion in
problems of optimal reinsurance, then optimal contracts are characterized by the fact that the insurer
has no incentive to purchase reinsurance, as only the reinsurer strictly benefits from the reinsurance
transaction. Thus, we interpret our results as providing a warning about the applicability of the
Bowley solution in problems of optimal reinsurance.

Reinsurance contracts in which both the insurer and reinsurer strictly benefit cannot be obtained
with Bowley solutions. Alternatively, if one wishes to design a market mechanism that yields equilib-
ria with strictly positive welfare gains from trading for both the insurer and reinsurer, then comono-
tone market competitive equilibria or asymmetric Nash bargaining solutions could be studied, at
least for convex distortion risk measures. Also, other alternatives appear in the literature on optimal
reinsurance (Balbás et al., 2022) or optimal risk sharing (Chen and Xie, 2021).
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Appendix A. Proof of Theorem 2.10

(1) Let rI :“
 

I P I : pp, Iq P IR, for some p P R
(

. Since p0, 0q P IR, it follows that rI ‰ ∅.

Moreover, since I is a closed subset of I0, so is rI. Indeed, let tInuně1 be a sequence in rI
that converges to some I˚. Since I is closed, I˚ P I. Moreover, since In P rI, for each n ě 1,
there exists tpnuně1 Ă R such that ppn, Inq P IR, for each n ě 1. Since uniform convergence
implies L1 convergence, it follows from the continuity of the risk measures that

lim
nÑ`8

ρIn
`

X ´ In pXq
˘

“ ρIn
`

X ´ I˚ pXq
˘

and lim
nÑ`8

ρRe
`

In pXq
˘

“ ρRe
`

I˚ pXq
˘

.

Moreover, for each n ě 1, individual rationality yields

0 “ ρRe p0q ď ρRe
`

In pXq
˘

ď pn ď ρIn pXq ´ ρIn
`

X ´ In pXq
˘

ď ρIn pXq ďM,

and so the sequence tpnuně1 is a uniformly bounded sequence in r0,M s. Hence, by the
Bolzano-Weierstrass Theorem, it admits a convergent subsequence tpmumě1, with limit p˚ P

r0,M s. That is, lim
mÑ`8

pm “ p˚. Clearly, pp˚, I˚q P IR, and thus I˚ P rI. Hence, rI is closed.

Therefore, since I0 is (supnorm) compact, so is rI. Consequently, in light of Lemmata 2.8 and
2.9, the existence of Pareto optima follows from the continuity of ρIn and ρRe, since uniform
convergence implies L1 convergence.

(2) To show that the set of BO ‰ ∅, it suffices by Theorem 3.2 to show that at least one PO
makes the insurer indifferent with the status quo. That is, it suffices to show that there exists
pp˚, I˚q P PO such that ρIn1 pp˚, I˚q “ ρIn1 p0, 0q. Suppose, by way of contradiction, that for
any pp˚, I˚q P PO, we have ρIn1 pp˚, I˚q ‰ ρIn1 p0, 0q, and fix such a PO pp˚, I˚q. First note
that since pp˚, I˚q P PO, it follows from Lemmata 2.8 and 2.9 that I˚ is optimal for the
problem

min
I P I

!

ρIn1 p0, Iq ` ρRe1 p0, Iq : pp, Iq P IR, for some p P R
)

.

Since pp˚, I˚q P IR, it follows that

ρIn
`

X ´ I˚ pXq
˘

` p˚ “ ρIn
`

X ´ I˚ pXq ` p˚
˘

“ ρIn1
`

p˚, I˚
˘

ă ρIn1 p0, 0q “ ρIn pXq ;

and

ρRe
`

I˚ pXq
˘

´ p˚ “ ρRe
`

I˚ pXq ´ p˚
˘

“ ρRe1

`

p˚, I˚
˘

ď ρRe1 p0, 0q “ 0.

Hence,

p˚ ă ρIn pXq ´ ρIn
`

X ´ I˚ pXq
˘

“ ρIn
`

I˚ pXq
˘

and ρRe
`

I˚ pXq
˘

´ p˚ ď 0.

Therefore,
ρRe

`

I˚ pXq
˘

ď p˚ ă ρIn
`

I˚ pXq
˘

.

In particular, ρRe
`

I˚ pXq
˘

´ ρIn
`

I˚ pXq
˘

ă 0. Let rp :“ ρIn
`

I˚ pXq
˘

. Then

ρIn1
`

rp, I˚
˘

“ ρIn
´

X ´ I˚ pXq ` ρIn
`

I˚ pXq
˘

¯

“ ρIn pXq ´ ρIn
`

I˚ pXq
˘

` ρIn
`

I˚ pXq
˘

“ ρIn pXq ;

and
ρRe1

`

rp, I˚
˘

“ ρRe
`

I˚ pXq ´ rp
˘

“ ρRe
`

I˚ pXq
˘

´ ρIn
`

I˚ pXq
˘

ă 0.
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Consequently, prp, I˚q P IR. Suppose prp, I˚q R PO. Then there exists some
`

p̄, Ī
˘

P IR such
that

ρIn1
`

p̄, Ī
˘

` ρRe1

`

p̄, Ī
˘

“ ρIn1
`

0, Ī
˘

` ρRe1

`

0, Ī
˘

ă ρIn1
`

0, I˚
˘

` ρRe1

`

0, I˚
˘

“ ρIn1
`

rp, I˚
˘

` ρRe1

`

rp, I˚
˘

,

contradicting the optimality of I˚ for the problem

min
I P I

!

ρIn1 p0, Iq ` ρRe1 p0, Iq : pp, Iq P IR, for some p P R
)

.

Hence, prp, I˚q P PO and ρIn1 prp, I˚q “ ρIn1 p0, 0q, which contradicts the assumption that for
all pp˚, I˚q P PO, ρIn1 pp˚, I˚q ‰ ρIn1 p0, 0q. l
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