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Abstract

The growing concern over cyber risk has become a pivotal issue in the business world.

Firms can mitigate this risk through two primary strategies: investing in cybersecurity practices

and purchasing cyber insurance. Cybersecurity investments reduce the compromise probability,

while cyber insurance transfers potential losses to insurers. This study employs a network model

for the spread of infection among interconnected firms and investigates how each firm’s decisions

impact each other. We analyze a non-cooperative game in which each firm aims to optimize its

objective function through choices of cybersecurity level and insurance coverage ratio. We find

that each firm’s cybersecurity investment and insurance purchase are strategic complements.

Within this game, we derive sufficient conditions for the existence and uniqueness of Nash

equilibrium, and demonstrate its inefficiency. These theoretical results form the foundation

for our numerical studies, allowing us compute firms’ equilibrium decisions on cybersecurity

investments and insurance purchases across various network structures. The numerical results

shed light on the impact of network structure on equilibrium decisions and explore how varying

insurance premiums influence firms’ cybersecurity investments.

Keywords: Risk management; Nash equilibrium; Cybersecurity; Cyber insurance; Network

1 Introduction

Cyber risk has emerged as a major concern across various sectors and industries, including health-

care, finance, and technology, due to the increase in both frequency and financial consequences,

which are the two pillars of the underlying losses. Over the past decade, the number of cyberat-

tacks has tripled in terms of frequency, with the financial services sector being the primary target.1

As indicated in a report by IBM Security (2024), the number of data breaches and cybersecurity

incidents has increased with the growing number of devices connected to the internet, especially

during the COVID-19 pandemic years.2 In terms of severity, the same report also indicates that

the global average cost of a data breach has soared to an all-time high of $4.45 million, which

represents a 15% increase over three years.

Some high-profile cases illustrate the devastating impacts of cyber incidents. A report by

the Cybersecurity and Infrastructure Security Agency (CISA) for the year 2020 provides an in-

depth breakdown of the financial implications and demographic impacts of significant cybersecurity

incidents,3 and the same agency provides ongoing updates regarding the most substantial incidents

to date in another report.4 In 2022, mobile communications company T-Mobile announced a

settlement following a data breach that occurred in early 2021, impacting approximately 77 million

people. In 2023, Microsoft AI researchers accidentally exposed 38 terabytes of sensitive data. In

1See the article by the International Monetary Fund (IMF), available at https://www.imf.org/en/Blogs/

Articles/2024/04/09/rising-cyber-threats-pose-serious-concerns-for-financial-stability.
2See the 2024 report by IBM Security titled “Cost of Data Breach Report 2023” available at https://www.ibm.

com/reports/data-breach.
3See the report by CISA titled “2020 Year in Review” available at https://www.cisa.gov/resources-tools/

resources/cisa-2020-year-review.
4See the latest list of incidents by CISA available at https://csis-website-prod.s3.amazonaws.com/s3fs-

public/2024-06/240607_Significant_Cyber_Events.pdf?VersionId=E3Y46OOqM9GsO4KNWizmvg7aA2NYZ2a6.
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April 2024, over 4.1 billion records of 600 million users of Discord, a popular gaming platform, were

breached and were sold over the internet. These incidents highlight the far-reaching consequences

of cyberattacks, which extends beyond immediate financial losses. As Agrafiotis et al. (2018)

point out, the repercussions also include long-term reputation damage, business disruptions, lost

opportunities, and eroded trust.

IT systems foster interconnectivity among users, and this interconnected nature of IT systems

acts as a double-edged sword, greatly enhancing productivity while simultaneously contributing to

the spread of cyber threats. A report by the European Systemic Risk Board (2020) highlights that in

an increasingly digitalized world where critical infrastructure, businesses, and individuals heavily

depend on interconnected networks, the potential for cyber threats to proliferate and intensify

is significant.5 On a separate note, Eisenbach et al. (2022) conduct an analysis of the financial

system, which is heavily reliant on the wholesale payments network, and find that cyberattacks may

significantly disrupt the operation of the financial system. As IT systems grow more interdependent,

a breach or disruption in one system can rapidly spread to others, making it difficult to contain

the scope and severity of cyber incidents.

In the face of challenges brought about by cyber risk, firms and organizations need to thor-

oughly evaluate the costs and benefits of implementing robust cybersecurity practices, such as

advanced firewalls and intrusion detection systems. These cybersecurity practices can mainly help

to reduce the frequency of cyberattacks. Complementing these practices is the purchase of cyber

insurance, which reduces exposure at compromise and hence mitigates the financial consequences

of cyberattacks. Cyber insurance has emerged as a powerful and popular tool for managing cyber

risk. As discussed by the U.S. Government Accountability Office (2020), cyber insurance typically

covers expenses due to common cyber incidents, including data breaches, ransomware attacks, and

business interruptions resulting from cyberattacks.6

In our work, we investigate the decisions of interconnected firms faced with the choice between

investing in cybersecurity practices and purchasing cyber insurance. Under our framework, the

more a firm invests in cybersecurity, the higher its cybersecurity level becomes, and the less likely

it is to be compromised when an infection reaches it, ex ante. A firm can also buy proportional cyber

insurance to receive ex post reimbursement if a cyber loss occurs. In a network of interconnected

firms, in which a firm’s own cybersecurity level impacts the overall resilience of the entire network,

firms’ decisions interact with each other. Naturally, game theory becomes a suitable tool for

studying cyber risk decision-making problems. We focus on a pure-strategy Nash equilibrium

framework, where each firm aims to optimize its own objective function through decisions on

cybersecurity level and insurance coverage. We characterize the equilibrium decisions and find that

each firm’s cybersecurity investment and insurance purchase are strategic complements. To be

more specific, keeping everything else unchanged, the more a firm’s insurance coverage, the less

5See the 2020 report by European Systemic Risk Board titled “Systemic Cyber Risk” available at https://www.
esrb.europa.eu/pub/pdf/reports/esrb.report200219_systemiccyberrisk~101a09685e.en.pdf.

6See the 2022 report by U.S. Government Accountability Office titled “Cyber Insurance: Action Needed to Assess
Potential Federal Response to Catastrophic Attacks” available at https://www.gao.gov/products/gao-22-104256.
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it invests in cybersecurity, and vice versa. We derive sufficient conditions for the existence and

uniqueness of equilibrium, which allows us to conduct extensive numerical studies to compute the

equilibrium decisions and illustrate the impacts of network structure and insurance premiums on

the equilibrium decisions. We also establish two results that show the inefficiency of the Nash

equilibrium. The first result, established under certain homogeneity and symmetry assumptions,

indicates that firms tend to underinvest in the Nash equilibrium, which leads to less beneficial

outcomes for all firms collectively. The second result, established under mild conditions, shows

that the Nash equilibrium is not Pareto efficient.

In order to derive these findings, we make several foundational assumptions. First, insurance

is assumed to be of a proportional type, meaning that the insured pays a premium proportional

to the coverage ratio, and the pricing is assumed to be linear with exogenous premium rates. This

assumption is consistent with the framework employed by Boonen and Liu (2022) in a general

insurance context. Additionally, we examine expected utility preferences of firms. The dis-utility

or cost associated with increasing cybersecurity practices is modeled using a convex cost function,

reflecting the realistic scenario that additional cybersecurity investments yield diminishing benefits

as the cybersecurity level increases. This cost function is assumed to be separable from the ex-

pected utility function, allowing for a clearer analysis of its impact. Furthermore, while realistically

cybersecurity practices can affect both the frequency and severity of losses, our study focuses solely

on their impact on the frequency of cyber incidents. This restriction, although a simplification,

enables us to provide a more focused and tractable analysis, serving as a foundation for future re-

search that might incorporate the impact on severity as well. Besides, among the numerous network

contagion models, we adopt the random attack model detailed by Acemoglu et al. (2016), where a

firm’s compromise probability can be decomposed into one part concerning its own cybersecurity

level and another concerning others. This model assumes that during any given time period, there

is exactly one cyber incident, in which an attacker randomly selects a firm within the network

as the initial target. If this firm is breached, the contagion can spread to other connected firms.

This model is elegantly simple, yet captures the essence of contagion and allows for a manageable

analysis.

1.1 Literature review

This subsection provides a curated and focused literature review of the extensive research on cyber

risk with a concentration on those studies most pertinent to our work. Driven by rising concerns

regarding cyber risk, recent years have seen a significant uptick in research on this topic. Eling

(2020) and Awiszus et al. (2023b) review the academic literature on cyber risk and cyber insur-

ance, and call for more research to understand the characteristics in the distribution of cyber risk,

including its frequency, severity, and dependency structure. Eling et al. (2021) show the historical

evolution of cybersecurity research as well as the current state of cyber risk management. They

point out the critical challenge of incorporating cyber risk into broader enterprise risk management

strategies. Dacorogna and Kratz (2023) further provide a comprehensive discussion on the risk
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management of cyber risk, including the implications for actuaries.

A potential solution to cyber risk is insurance, which provides essential services and funding

to help resume operations quickly and is thus important for recovery from cyberattacks. However,

conflicting views exist on whether cyber insurance exacerbates the cyber crisis by potentially en-

couraging ransom payments. Some argue that it actually worsens the crisis, with reports suggesting

that organizations with such policies are increasingly targeted by ransomware gangs. See Mott et

al. (2023) for a more in-depth discussion.

Driven by increasing demand and dynamic risk exposures, the cyber insurance market continues

to mature; see, for example, the survey by Munich Re (2024).7 Related papers include Biener et al.

(2015), who explore the insurability of cyber risk through an empirical analysis, and Marotta et al.

(2017), who provide an in-depth overview of the cyber insurance market, examining both supply and

demand perspectives. More recently, Awiszus et al. (2024) study the design of systemic cyber risk

obligations and measure the corresponding systemic risk contributions of individual policyholders.

In the face of cyber risk, firms may purchase cyber insurance to hedge against losses due to

cyberattacks, and/or they may invest in cybersecurity practices to reduce the likelihood of being

breached or to constrain the scope of breaches. There has been extensive literature on cyber risk

decision problems, for which a comprehensive review can be found in Marotta et al. (2017) and

Awiszus et al. (2023). In particular, a common theme in existing works has focused on how to

design or price insurance contracts to mitigate moral hazard and asymmetric information or the

marketability of cyber insurance; see, for example, Pal (2012), Pal et al. (2014), Pal et al. (2019),

Khalili et al. (2017), and Xiang et al. (2024). For analytical tractability, a majority of cyber

decision problems are performed with rather stylized network structures or are derived from a

rather ad-hoc scheme where the probability of a firm being compromised depends on the average

security level of the other firms in the network; see, for example, Ogut et al. (2005) and Shetty et

al. (2010).

Our work contributes to the literature by studying interactions among firms whose decisions

depend on each other due to the contagious nature of cyber risk. Within this framework, game-

theoretic approaches naturally become a handy tool. Along this stream of literature, the two works

most related to ours are Acemoglu et al. (2016) and Nagurney and Shukla (2017). Acemoglu et

al. (2016) also investigate the Nash equilibrium and compare it with the social optimum, exploring

how a novel set of network centrality measures influences these investment levels. Nagurney and

Shukla (2017) explore three distinct game-theoretic models of cybersecurity investments in various

non-cooperative and cooperative situations: the Nash equilibrium model, the Nash bargaining

model, and the system optimization model. To properly study the game between firms and their

decisions, it is necessary to use an appropriate contagion model that reflects their influence on each

other. We adopt the model of Acemoglu et al. (2016), which provides a natural factorization of

the probability of a firm being eventually compromised into a product of its own decision and the

7See the 2024 survey by Munich Re titled “Global Cyber Risk and Insurance Survey 2024” available at https:

//www.munichre.com/en/insights/cyber/global-cyber-risk-and-insurance-survey.html.
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decisions of others. This model is more appropriate than the one employed by Nagurney and Shukla

(2017), which was proposed by Shetty et al. (2010). The latter assumes that a firm’s likelihood

of being compromised is determined by its own cybersecurity level and the average security level

of all firms, without considering the intricacies of network structure. Both works do not consider

the possibility of purchasing cyber insurance as a loss mitigation tool. An important addition in

our work to these two main references is the incorporation of cyber insurance as a decision variable

alongside cybersecurity investment. This novel aspect allows us to explore the interplay between

investment in cybersecurity and the purchase of insurance.

There are multiple other works within the game-theoretical framework that also address cyber

risk decision problems, yet their focuses differ from ours. For example, both Ogut et al. (2005)

and Shetty et al. (2010) consider decision-making problems involving both cyber insurance and

cybersecurity. The focus of Ogut et al. (2005) is on the implications of interdependence on de-

cision making, and the focus of Shetty et al. (2010) is on the marketability of insurance and the

competition between insurers. Some studies have sparked debates on whether the provision of

cyber insurance can incentivize cybersecurity investment or actually exacerbate a cyber crisis by

potentially encouraging ransom payments. For example, Yang and Lui (2014) and Schwartz and

Sastry (2014) both analyze the optimal decision of firms on cybersecurity in environments both

with and without cyber insurers. Yang and Lui (2014) employ a Bayesian network game to capture

situations in which firms in heterogeneous networks have only local information. They find that

cyber insurance is more likely to be a beneficial incentive for firms with higher degrees in these

networks. On the other hand, Schwartz and Sastry (2014) study the Nash equilibrium between

firms and find that in the presence of cyber insurers, equilibrium network security is lower than if

no cyber coverage is available. A recent paper by Zeller and Scherer (2023) studies a Stackelberg

game in which firms seek to minimize specific risk measures. In this game, an insurer acts as the

leader and provides both insurance and risk mitigation services.

We conclude the literature review with some recent developments in actuarial modeling of cyber

risk. Recognizing the unique high-dependency characteristic of cyber risk, Peng et al. (2018) use

copulas to model the multivariate dependence exhibited by real-world cyberattack data. Jevtić

and Lanchier (2020) propose a tree-based model for the spread of infection and investigate the

distribution of aggregate losses due to breaches. Da et al. (2021), Xu and Hua (2019), and Zhang

et al. (2023) propose models that capture the unique cybersecurity features of fog networks and

address the important issue of cybersecurity risk pricing. Fahrenwaldt et al. (2018) explore the

implications of network structure on the pricing of cyber insurance contracts, and Hillairet et al.

(2022) introduce a model that takes network structure into consideration to capture the cyber-

contagion process, illustrating the impact of a massive cyberattack on an insurance portfolio. A

recent study of Braun et al. (2023) explores the feasibility and challenges of transferring cyber risk

through insurance-linked securities. By analyzing the preferences of both insurers and investors

under various sources of risk, they emphasize the importance of building mature cyber risk models.

The rest of the paper is organized as follows. In Section 2, we show the optimal decisions for
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a firm from a stand-alone perspective. Section 3 extends this to the setting with competition in a

network. Section 4 presents the conditions for the existence and uniqueness of Nash equilibrium

and discusses the inefficiency of Nash equilibrium. Section 5 conducts numerical studies to examine

firms’ equilibrium decisions under various network structures and explore the interplay between the

two decision variables. Section 6 provides concluding remarks, and the proofs are delegated to the

appendix.

2 A firm in isolation

We start our study by considering a firm operating as an isolated entity. Our goal is to characterize

the firm’s decisions regarding cybersecurity investment and insurance purchase. In the next section,

we will extend our analysis to a network of firms where their decisions influence each other.

Denote by Y the indicator of the firm being compromised in a cyber incident, and by p =

P (Y = 1), the compromise probability. For this firm to be compromised, the infection must first

reach the firm, and then the firm’s IT system must also lack the immunity to the infection. There-

fore, the compromise probability, p, can be factorized into the product of two terms:

p = p̃ (1− q) , (2.1)

where p̃ represents the probability of infection reaching the firm, and q is the probability that the

firm is immune to the infection. This probability q can be interpreted as the cybersecurity level of

the firm’s IT system. We assume that p̃ does not depend on q, ignoring the externality whereby

less protected firms might become more attractive targets for attackers. This simplifies the setup

and avoids the need to impose an ad-hoc dependency of p̃ on q.

Let W denote the revenue the firm derives if it remains uncompromised, and L denote the

loss at compromise. We allow both W and L to be random variables, and require 0 ≤ L ≤ W .

Throughout the paper, we assume that neither W nor L is degenerate at 0, which rules out the

possibility of zero cyber risk. The firm has two ways of mitigating the risk of being compromised

in cyber incidents: (i) invest in cybersecurity practices to enhance the cybersecurity level q, and

(ii) purchase cyber insurance to get compensated for part of the loss L. In practice, cybersecurity

practices can mitigate both the likelihood and severity of losses. However, our study specifically

limits the benefits of these practices to reducing the likelihood alone. Denote the cost (or dis-utility)

of establishing a cybersecurity level of q as c(q). Naturally, we require the function c(·) to be twice

differentiable, strictly increasing, and strictly convex, and also require it to satisfy the boundary

condition c(0) = 0.

In this paper, we consider a proportional insurance scheme in which an insurer covers a pro-

portion, denoted as a ∈ [0, 1], of the loss. Proportional insurance is often attractive, as it helps to

retain tractable outcomes. Reinsurance is an important application for proportional indemnities,

since “this form of reinsurance is popular in almost all insurance branches, particularly due to its

conceptual and administrative simplicity,” as argued by Albrecher et al. (2017). In homeowners
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insurance, proportional insurance is popular as it is related to the so-called coinsurance clause in

the United States. This means that when a house is insured, a minimal proportion of the house

value needs to be covered; see, for example, Boonen and Liu (2022). Let π > 0 be the premium

for full coverage, corresponding to a = 1. We treat π as exogenously given for two main reasons.

First, the insurer may not constantly observe a firm’s security level in practice, and the insurance

price may not instantly reflect any changes in a firm’s security level. More importantly, the focus

of this work is a non-cooperative game between firms in a network. Making the premium depend

on cybersecurity levels would require a separate study in which the insurer also becomes an active

player, as the insurer needs to adjust the premium as firms adjust their cybersecurity levels.

Under a linear pricing scheme, the cost of insurance for a coverage ratio of a is aπ. It is up

to the firm to determine a, which reflects the decision on how much of the loss the firm wants

to insure. Cyber risk, by its nature, is highly unpredictable and entails an enormous amount of

uncertainty. Unlike other popular insurable risk, quantifying the actual losses in a cyber incident is

challenging. Therefore, proportional insurance can be a useful contract to share the costs between

the insurer and policyholder in case of risk misspecification.

Using a utility function U : R+ 7→ R to reflect the firm’s risk aversion, the objective function

of this firm, defined as the expected utility of cash inflow at the end of the period minus the

cybersecurity investment and insurance purchase cost at the beginning, is given by

u (a, q) = E [U (W − (1− a)LY )]− c (q)− aπ, for (a, q) ∈ [0, 1]2 . (2.2)

This can be written as

u(a, q) = p̃ (1− q)E [U (W − (1− a)L)] + (1− p̃ (1− q))E [U (W )]− c (q)− aπ. (2.3)

The firm aims to maximize u(a, q) through choices of insurance coverage ratio a and cybersecurity

level q, over (a, q) ∈ [0, 1]2. Throughout the paper, all utility functions are assumed to be twice

differentiable, strictly increasing, and strictly concave. Note that the functional form of u above is

endowed with a quasi-linearity property; the utility function is additive in the time-0 measurable

cash payments c (q) + aπ, while expressing risk aversion through strict concavity.

2.1 The optimal insurance coverage ratio given the cybersecurity level and vice

versa

Recall from (2.1) and the discussions around it that the probability of infection reaching a firm,

p̃, does not concern the firm’s own cybersecurity level. Then, it is clear that when p̃ = 0, this

firm faces no cyber threats at all and, therefore, from (2.3), it will not invest in cybersecurity or

purchase cyber insurance. Thus, in this subsection, we assume p̃ > 0, which is the more interesting

and non-trivial situation.

The following lemma shows the uniqueness of the maximizer of u given q. We also identify

conditions for the maximizer to be at the boundaries or satisfy the first-order condition.
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Lemma 2.1 For any fixed q ∈ [0, 1], there is a unique a ∈ [0, 1] that maximizes u (a, q) defined in

(2.2). Let

â (q) = arg max
a∈[0,1]

u (a, q) . (2.4)

Denote by ã(q), for q ∈ [0, 1), the solution to the following equation for ã ∈ [0, 1] if it exists:

(1− q)p̃E[U ′(W − (1− ã)L)L] = π. (2.5)

Depending on the value of π, three cases are possible:

1. If π ≥ p̃E [U ′ (W − L)L], then â (q) = 0 for any q ∈ [0, 1].

2. If p̃E [U ′ (W )L] < π < p̃E [U ′ (W − L)L], then

â (q) =

 ã (q) , if q ∈
[
0, 1− π

p̃E[U ′(W−L)L]

)
;

0, if q ∈
[
1− π

p̃E[U ′(W−L)L] , 1
]
.

3. If π ≤ p̃E [U ′ (W )L], then

â (q) =


1, if q ∈

[
0, 1− π

p̃E[U ′(W )L]

]
;

ã (q) , if q ∈
(
1− π

p̃E[U ′(W )L] , 1−
π

p̃E[U ′(W−L)L]

)
;

0, if q ∈
[
1− π

p̃E[U ′(W−L)L] , 1
]
.

Lemma 2.1 states that, given a cybersecurity level q ∈ [0, 1], the optimal insurance coverage ratio

is unique, defining the function â (·). Therefore, the problem with two decision variables essentially

reduces to a problem with one decision variable. Namely, once the optimal cybersecurity level q̂ is

determined, the optimal coverage ratio â (q̂) follows accordingly.

Lemma 2.1 also shows that there are three distinct cases where the function â (·) takes on

different forms. These cases are decided by the range of the full-coverage insurance premium, π,

and some other factors including the probability of infection reaching the firm, p̃. In later sections

where a network of firms is studied, p̃ also depends on the cybersecurity levels of other firms. As a

result, the optimal coverage ratio of each firm depends on the decisions made by other firms.

Taking a closer look at the three cases reveals that, if π is excessively high, then regardless of

the cybersecurity level, the firm will not purchase any insurance coverage. Otherwise, the optimal

coverage ratio â (q) given q may be 0, 1, or ã (q), which solves the first-order condition (2.5). The

case when ã (q) is achieved only occurs when the cybersecurity level is strictly less than 1, i.e.,

q < 1. This is quite intuitive because when q = 1, the firm is completely immune to any infection,

which immediately implies that â (1) = 0.

For q away from 0, applying the implicit function theorem to (2.5) yields

ã′ (q) = − E [U ′ (W − (1− ã (q))L)L]

E [−U ′′ (W − (1− ã (q))L)L2]

1

1− q
< 0. (2.6)
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It is also straightforward to verify that â (q) is continuous in q ∈ [0, 1] in all three cases. This

leads to the following conclusion in Proposition 2.1, which shows that the more a firm invests in

cybersecurity, the less insurance coverage it purchases.

Proposition 2.1 The function â (·), defined in (2.4), is continuous and decreasing in q ∈ [0, 1].

In the above analysis, we take the cybersecurity level as fixed and study the optimal insurance

coverage ratio. We can also fix the coverage ratio and study the optimal cybersecurity level in

a similar manner. Notice that the objective function (2.3) is strictly concave in q, due to the

strict convexity of the cost function c(·). Therefore, given a coverage ratio a ∈ [0, 1], the optimal

cybersecurity level is unique, defining a function. This function is decreasing, also due to the strict

convexity of c(·). We present the following proposition to characterize this function.

Proposition 2.2 For any fixed a ∈ [0, 1], there is a unique q ∈ [0, 1] that maximizes u(a, q) defined

in (2.2). Let

q̂(a) = arg max
q∈[0,1]

u(a, q).

Then, q̂(a) is decreasing in a.

Propositions 2.1 and 2.2 jointly show that investment in cybersecurity and purchase of insurance

are strategic complements. That is, the greater a firm’s insurance coverage is, the less it invests in

cybersecurity, and vice versa.

2.2 Reducing to a single-variable decision problem

In the previous subsection, we have studied the problem of maximizing u(a, q) while taking q as

fixed, i.e., determining the optimal insurance coverage ratio, â(q). In this notation, â, we use the

hat to indicate the optimal decision. With a slight abuse of notation, we add a hat above u so

that û(q) represents the firm’s bivariate objective function u(a, q) with a set to the unique optimal

coverage ratio â(q). That is,

û (q) = u (â (q) , q) = E [U (W − (1− â (q))LY )]− c (q)− â (q)π, for q ∈ [0, 1] . (2.7)

We intentionally write the univariate objective function û (q) = u (â (q) , q) to distinguish it from

the original bivariate u (a, q). Maximizing u (a, q) via the choice of (a, q) ∈ [0, 1]2 is equivalent to

maximizing û (q) via the choice of q ∈ [0, 1].

Note that û(·) is a continuous function on the compact domain [0, 1], and so a maximum always

exists. It is easy to find the optimal cybersecurity level q and the corresponding maximum value

of the objective function numerically. Despite so, in later sections, we will explore a network of

firms and study their interactions. At that point, we often need û (·) to satisfy certain concavity

conditions so that a Nash equilibrium exists. For that purpose, we present the following lemma to

characterize the concavity of û(·).
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Lemma 2.2 Consider the function û(·) defined in (2.7).

1. If π ≥ p̃E [U ′ (W − L)L], then û(·) is concave.

2. If π < p̃E [U ′ (W − L)L], then û(·) is concave under the extra condition that

c′′ (q) >
π

R

1

(1− q)2
, for q ∈ [0, 1] , (2.8)

where R is a positive coefficient defined as

R = inf
a∈[0,1]

E
[
−U ′′ (W − (1− a)L)L2

]
E [U ′ (W − (1− a)L)L]

. (2.9)

A high convexity of the cost function reflects the realistic scenario that as the cybersecurity

level q increases, the marginal cost of further enhancing the cybersecurity level sharply rises. The

coefficientR, introduced in (2.9), is related to the Arrow-Pratt risk-aversion coefficients and depends

only on the utility function, as well as the revenue and loss distributions, as illustrated in the

following examples. This coefficient plays an important role in the conditions we derive in later

sections to ensure the existence and uniqueness of Nash equilibrium.

Example 2.1 (With deterministic revenue and loss). Suppose the revenue W without being com-

promised and the loss L at compromise are both deterministic. Considering the exponential utility

with constant absolute risk aversion ρ > 0, i.e.,

U (w) =
1− e−ρw

ρ
, w ≥ 0, (2.10)

the coefficient R is given by

R = ρL.

Considering the power utility function with constant relative risk aversion η > 0, i.e.,

U (w) =

{
w1−η

1−η , if η ̸= 1,

ln(w), if η = 1,

for w > 0, the coefficient R is given by

R = inf
a∈[0,1]

−U ′′ (W − (1− a)L)L

U ′ (W − (1− a)L)
= inf

a∈[0,1]

ηL

W − (1− a)L
= η

L

W
.

With both utility functions, R is proportional to the risk-aversion coefficients.

Example 2.2 (With random revenue and loss). Suppose the revenue W without being compromised

is distributed as the exponential distribution with a mean of 1, and the loss L at compromise is a
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fixed ratio θ ∈ (0, 1) of W . Considering the exponential utility in (2.10), we can verify that

E
[
−U ′′ (W − (1− a)L)L2

]
=

2ρθ2

[ρ (1− (1− a)θ) + 1]3
,

E
[
U ′ (W − (1− a)L)L

]
=

θ

[ρ (1− (1− a)θ) + 1]2
.

Consequently, the coefficient R is given by

R = inf
a∈[0,1]

2ρθ

ρ (1− (1− a)θ) + 1
=

2ρ

ρ+ 1
θ.

3 The network model for the spread of infection

The analysis of a single firm’s decisions in the previous section lays the foundation for the analysis

of the game involving multiple firms in the following sections. To this end, we need to employ

an appropriate contagion model that reflects their influence on each other. We extend the idea of

the factorization in (2.1), which leads to the formal introduction of the random attack model by

Acemoglu et al. (2016) below. This model provides a tractable decomposition of each individual

compromise probability into an own effect and an externality.

Consider d firms forming a network, each represented by an index from {1, . . . , d}. Following

Acemoglu et al. (2016), we assume that there is only one incident during the period, initiated

when a blind attacker randomly targets one of these d firms for an attack. In other words, each

firm is attacked with an equal probability of 1
d .

8 The cybersecurity system of the initially targeted

firm is either immune or susceptible to this specific attack. If the system is immune, nothing hap-

pens. Otherwise, the firm becomes compromised, and the infection spreads from this firm to its

connections, or “neighbors.” Once a firm is compromised, it immediately propagates the infection

to all neighbors, and these neighbors become susceptible.9 If a firm, say firm i, is immune to the

infection, which occurs with probability qi, representing its cybersecurity level, it remains uncom-

promised. This propagation continues from compromised firms to their neighbors and stops when

no new firms are compromised, and all these events occur instantaneously. In other words, a single

directly targeted firm (node) is sampled uniformly from a given graph, and its likelihood of being

compromised depends on its cybersecurity level. Nodes that are linked to any compromised nodes

constitute a subgraph of susceptible nodes. The likelihood that these nodes will be compromised

after becoming susceptible also depends on their cybersecurity levels.

8We can extend the model to allow for a probability of a cyberattack occurring during the period. In this case,
there could be one or no initial cyberattack in the network, and we could assume the probability of any attack during
the period is λ ∈ (0, 1], which may not necessarily be 1. If we still assume that the attacker randomly selects one
firm to target, conditional on an attack occurring, then the probability of infection reaching any firm is scaled by λ.
To avoid confusion by introducing a new parameter λ, we adhere to the approach of Acemoglu et al. (2016) and set
λ = 1.

9In this paper, we adopt the contagion model from Acemoglu et al. (2016), which assumes that the spread
probability from one compromised node to all its neighbors is 1. For other cyber risk models with spread probabilities
allowed to be below 1, see Da et al. (2021), Hillairet et al. (2022), and Zhang et al. (2023), among others.
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Using the same notations as in Section 2, but adding a subscript i to indicate firm i, pi repre-

sents the probability that firm i is eventually compromised, p̃i represents the probability of infection

reaching firm i, i.e., firm i becomes susceptible, and qi, as just explained, represents firm i’s cy-

bersecurity level and the probability that firm i is immune to the infection. For convenience, we

write q = (q1, . . . , qd), and q−i is the (d− 1)-dimensional vector which is q with the ith dimen-

sion removed. With these notations introduced, we further illustrate the model we adopt with the

following example.

Example 3.1 In this example, we illustrate the spread of infection within a network of five firms,

as plotted in Figure 3.1. Within this specific network, we derive an explicit expression for the

probability of infection reaching firm 1, as shown below:

p̃1 =
1

5
+

1

5
(1− q2) +

1

5
(1− q3) (1− q2) (1 + (1− q4) (1− q5))

+
1

5
(1− q4) (1− q2) ((1− q3) + (1− q5)) +

1

5
(1− q5)(1− q2)(1 + (1− q4)(1− q3)).

The right-hand side of the above equation consists of multiple terms, each representing a different

scenario in which the infection could reach firm 1. The first term represents the probability of firm

1 being directly attacked by the attacker. The subsequent terms calculate the probabilities that the

infection, initially affecting a different firm, eventually spreads to firm 1 through various network

paths. For example, the third term calculates the probability that firm 3 is initially compromised,

and then the infection reaches firm 2 either directly or via firms 4 and 5, before finally spreading

to firm 1.

4 2

3

5

1

Figure 3.1: This figure depicts a network of five firms, where firms 2 to 5 form a ring and firm 1 is
connected only to firm 2.

From the above discussion, it can be seen that the probability of firm i being the initial target

in the cyber incident has been incorporated into p̃i. Moreover, within a network of firms, the

probability p̃i does not depend on the cybersecurity level of firm i itself, but on those of the other

firms, for which we will write p̃i = p̃i (q−i). This will be violated if the assumption stated above

that the attacker randomly selects a firm as the initial target is removed. Then, the probability of

firm i being compromised in a network equals p̃i (q−i) times the probability that it is not immune
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to this infection, which depends on the security level of firm i itself. This leads to the following

decomposition:

pi = (1− qi) p̃i (q−i) , (3.1)

which is presented as Proposition 1 of Acemoglu et al. (2016). The probability p̃i decreases with

the security levels of the other firms, with the partial derivatives given by:

∂p̃i (q−i)

∂qj
= −Qij ≤ 0, (3.2)

where Qij is the probability of infection reaching firm i via a path that contains firm j, conditional

on firm j being susceptible. This is presented as Proposition 2 of Acemoglu et al. (2016). Applied

to Example 3.1, taking the partial derivative of p̃1 (q−1) with respect to q2 yields −Q12, where Q12

is the probability of infection reaching firm 1 via a path that contains firm 2, conditional on firm

2 being susceptible.

We adopt the model of Acemoglu et al. (2016) because the decomposition in (3.1) essentially

rephrases (2.1) within the context of a network of firms, based on the fundamental concept of

conditional probability. Other game-theoretical studies of cyber risk, such as Shetty et al. (2010)

and Nagurney and Shukla (2017), also use a contagion model. In these models, the probability of

a firm eventually being compromised decomposes into an own effect and an externality. However,

the term p̃i (q−i) in their model depends on the average security levels of the other firms, rather

than the detailed contagion mechanism proposed by Acemoglu et al. (2016).

4 Equilibrium cybersecurity investments and insurance purchases

4.1 Nash equilibrium

A single firm’s decision on cybersecurity investment depends on the probability of infection reaching

it, as seen in Section 2. This probability, in turn, depends on the cybersecurity levels of the

other firms in the network, which is discussed around (3.1). Therefore, firms’ decisions on their

cybersecurity investments interact with each other. There could be different types of interactions

among firms in a network, and in this work, we study a non-cooperative game in which each firm

aims at optimizing its own objective function.

By Lemma 2.1, firm i’s optimal insurance purchase is uniquely determined, if both qi and

p̃i = p̃i (q−i) are given. Write âi = âi (qi, q−i) = âi (q) ∈ [0, 1] to emphasize this relationship. From

this, we can also infer that in the non-cooperative game, each firm essentially only has one decision

variable, its investment in cybersecurity. Therefore, the game is characterized by each firm i aiming

to optimize ûi (qi, q−i), defined below, via a choice of qi ∈ [0, 1]:

ûi (qi, q−i) = (1− qi) p̃iE [Ui (Wi − (1− âi)Li)] + (1− (1− qi) p̃i)E [Ui (Wi)]− ci (qi)− âiπi. (4.1)

Based on (4.1), we present a formal definition of the pure-strategy Nash equilibrium of cyber-
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security investments and insurance purchases.

Definition 4.1 A vector qN ∈ [0, 1]d of cybersecurity levels is a pure-strategy Nash equilibrium if

it holds for all i ∈ {1, . . . , d} that

ûi
(
qNi , qN−i

)
≥ ûi

(
qi, q

N
−i

)
, for all qi ∈ [0, 1] .

The corresponding vector aN of equilibrium insurance coverage ratios is given by

aN =
(
â1

(
qN

)
, . . . , âd

(
qN

))
,

where each ai is a firm-specific version of the function introduced in (2.4).

Roughly speaking, a Nash equilibrium is achieved when no firm can unilaterally improve its

objective function by deviating from its current decisions. The following result presents the set of

equations that a Nash equilibrium must satisfy.

Theorem 4.1 (Characterization of Nash equilibrium). If for all i ∈ {1, . . . , d}, the following

boundary conditions hold

c′i (0) = 0 and lim
q→1

c′i (q) = ∞, (4.2)

and that ûi (qi, q−i) is concave in qi ∈ [0, 1], then qN is a pure-strategy Nash equilibrium as in

Definition 4.1 if and only if it solves the following system of equations:

c′i
(
qNi

)
= p̃i

(
qN−i

) (
E [Ui (Wi)]− E

[
Ui

(
Wi − (1− âi

(
qN

)
)Li

)])
, for i ∈ {1, . . . , d}. (4.3)

Note that the strategy space of each firm is compact and, according to Lemma 2.2, the objective

functions are concave under suitable conditions. The existence of a pure strategy Nash equilibrium

then follows directly from classical results in game theory; see, for example, Theorem 1 of Rosen

(1965). For this reason, we omit a formal proof for the following theorem.

Theorem 4.2 (Existence of Nash equilibrium). A pure strategy Nash equilibrium as in Definition

4.1 exists, if for all i ∈ {1, . . . , d}, the following inequality holds:

c′′i (q) >
πi
Ri

1

(1− q)2
, for q ∈ [0, 1) , (4.4)

where Ri is a coefficient defined as

Ri = inf
a∈[0,1]

E
[
−U ′′

i (Wi − (1− a)Li)L
2
i

]
E [U ′

i (Wi − (1− a)Li)Li]
, (4.5)

which is a firm-specific version of the coefficient introduced in (2.9).
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The existence of Nash equilibrium does not guarantee uniqueness, as illustrated by the well-

known example of the Battle of the Sexes, also known as Bach or Stravinsky; see Example 15.3 of

Osborne and Rubinstein (1994). It is straightforward to establish that a symmetric equilibrium,

where all firms make the same decisions, exists and is unique under the strict concavity condition

in (4.4). However, this does not imply that non-symmetric equilibria do not exist.

A slightly stronger condition than (4.4) ensures the uniqueness of equilibrium under certain

homogeneity conditions regarding objective functions, as shown in the following theorem.

Theorem 4.3 (Uniqueness of Nash equilibrium under homogeneity conditions). Assume that

(ci, πi, Ui,Wi, Li) for i ∈ {1, . . . , d} are copies of (c, π, U,W,L). If the following inequality holds:

c′′ (q) ≥ π

R

1

(1− q)2
+ E

[
U ′ (W − L)L

]
max

{
1,

1

R

}
, for q ∈ [0, 1) , (4.6)

where R is introduced in (2.9), then a pure-strategy Nash equilibrium as in Definition 4.1 exists

and is unique.

If homogeneity does not hold, a condition stronger than (4.6) is required to establish the unique-

ness of Nash equilibrium. The following uniqueness result for general setups builds upon Rosen’s

(1965) proof of equilibrium uniqueness based on diagonal strict concavity. The result implies that, if

the convexity of each ci is large enough, then there exists a unique pure-strategy Nash equilibrium.

Theorem 4.4 (Uniqueness of Nash equilibrium). If for all i ∈ {1, . . . , d}, the following inequality

holds:

c′′i (q) ≥ πi
Ri

1

(1− q)2
+

d− 1

2
E
[
U ′
i (Wi − Li)Li

]
max

{
1,

1

Ri

}

+
1

2

d∑
j=1,j ̸=i

E
[
U ′
j (Wj − Lj)Lj

]
max

{
1,

1

Rj

}
, for q ∈ [0, 1) , (4.7)

where each Ri is defined in (4.5), then a pure-strategy Nash equilibrium as in Definition 4.1 exists

and is unique.

Though seemingly strange, convexity conditions similar to (4.4), (4.6), and (4.7) are common

in the study of Nash equilibrium. For example, Acemoglu et al. (2016) and Nagurney and Shukla

(2017) impose similar convexity conditions on their cost functions to ensure the existence or unique-

ness of Nash equilibrium. That said, these conditions are easily verifiable in numerical examples,

which guarantees the feasibility of finding Nash equilibrium numerically.

We further provide Proposition 4.1 below as an extension of Proposition 2.1 under the network

setup, which follows directly from (A.8) in the proof of Theorem 4.3. It shows that a firm’s optimal

decision on its insurance coverage ratio decreases not only with its own cybersecurity level but also

with those of the other firms in the network. Intuitively, the higher any firm’s cybersecurity level,

the lower the probability of a compromise, and thus, the less demand for insurance coverage.
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Proposition 4.1 (Monotonicity of insurance coverage ratios with cybersecurity levels). Recall that

firm i’s optimal insurance coverage ratio âi = âi(q) is a function of all firms’ cybersecurity levels.

For any i, j ∈ {1, . . . , d}, it holds that ∂âi
∂qj

≤ 0.

4.2 Inefficiency of the Nash equilibrium

It is well known that in Nash equilibria, firms only optimize their own objective functions, which may

lead to inefficient outcomes for all firms as a collective (as in the well-known Prisoner’s Dilemma).

We now present two results regarding the inefficiency of the Nash equilibrium within our framework.

Proposition 4.2 (Underinvestment compared to a social optimum). Define a social welfare func-

tion as the sum of the objective functions of all d firms in the network:

ûS (q) =

d∑
i=1

ûi (qi, q−i) .

Under the conditions of Theorem 4.3, for any symmetric network, there exists a unique symmetric

Nash equilibrium with a uniform security level qN , and a unique symmetric social optimum with a

uniform security level qS, satisfying qN ≤ qS.

The first result above compares the Nash equilibrium to a social welfare optimum under homo-

geneity and symmetry conditions. It shows that firms underinvest in cybersecurity under the Nash

equilibrium, which is less beneficial for all firms as a collective. As a result, firms purchase more

insurance under the Nash equilibrium than under the social optimum, due to the monotonicity

of the optimal insurance coverage ratios in the cybersecurity levels established in Proposition 4.1.

The following result demonstrates that the Nash equilibria is not Pareto efficient in more general

settings.

Proposition 4.3 (Pareto inefficiency). For any Nash equilibrium, if there exists a linkage between

two firms whose insurance coverage ratios and cybersecurity levels under this equilibrium are all

strictly less than one, then this equilibrium is not Pareto efficient.

The inefficiency of a Nash equilibrium can be understood as follows. In a Nash equilibrium,

one offsets the cost of purchasing cybersecurity with the benefits from being protected itself. A

firm does not consider the positive side-effect of purchasing cybersecurity on other participants. A

social planner like in Proposition 4.2, however, is able to balance the costs of one firm with the

benefits on cybersecurity for the collective, which is more welfare improving.

5 Numerical studies

The existence and uniqueness results for the Nash equilibrium, as in Definition 4.1, allow us to nu-

merically gain insights into firms’ equilibrium decisions on cybersecurity investments and insurance
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purchases. In this section we present three numerical studies with five firms and different network

configurations. These considerations provide conveniences in terms of tractability without sacri-

ficing any insights. We assume some homogeneity among the firms. In particular, for illustration

purposes, we specify that

• Each firm has the same utility function (2.10) with a coefficient of absolute risk aversion of

ρ = 1.

• Each firm generates a terminal revenue of W = 1, and once compromised, it loses all its

revenue, that is, L = 1.

• The network structure, the cybersecurity cost function, and the insurance premium will vary

from one example to another and will be specified in later subsections.

Referring back to Example 2.1, the above specifications result in R = 1.

5.1 A homogeneous complete network

The first network structure we consider is a complete network, where all nodes are connected to

each other, as plotted in Figure 5.1. This type of network is arguably the most popular network

structure, where information can be exchanged conveniently. A real-world example is that financial

institutions perform trades with each other, allowing malware to spread from one to another through

email attachments, media, etc.

Figure 5.1: This figure depicts a complete network of five firms, with each firm connected to all the
others.

In this subsection, we also assume that a uniform cost function c(·) and a uniform full-coverage

premium π, which is less than or equal to the constant loss L = 1 at compromise, apply to all firms.

Due to the homogeneity, by Theorem 4.3, a sufficient condition for the game to have a unique Nash

equilibrium is

c′′ (q) >
π

R

1

(1− q)2
+ E

[
U ′ (W − L)L

]
max

{
1,

1

R

}
=

π

(1− q)2
+ 1, for q ∈ [0, 1) .
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Clearly, the cost function

c (q) = − ln (1− q)− q +
2

3
q2 (5.1)

satisfies the convexity condition.

Since the Nash equilibrium is unique under the cost function c(·) in (5.1), and the complete

network is symmetric, the unique equilibrium must also be symmetric. Otherwise, multiple non-

symmetric Nash equilibria would exist. Therefore, the equilibrium decision on the cybersecurity

levels is characterized by a vector qN with all elements identical to some constant, qN . Then the

equilibrium decisions on the insurance coverage ratios are subsequently determined and must also

be the same.

Now that we know the cybersecurity levels are identical in the equilibrium, for the complete

network of five firms, it is easy to see that the probability of infection reaching a firm is given by

p̃i
(
qN

)
=

1

5
+

4

5

(
1− qN

)
.

Substituting this into (4.1) leads to an objective function that can be easily optimized numeri-

cally. Table 5.1 summarizes the numerical values of the identical insurance coverage ratio, aN , and

the identical cybersecurity level, qN , in the unique equilibrium under different values of the full-

coverage premium, π. These results indicate that when premiums are lower, firms tend to purchase

more insurance and reduce investment in cybersecurity. Conversely, as cybersecurity investment

increases, the allocation to insurance coverage decreases, which is consistent with Propositions 2.1,

2.2, and 4.1.

Full-coverage premium π 0.3 0.4 0.5 0.6

Equilibrium insurance coverage ratio aN 1 0.820 0.213 0
Equilibrium cybersecurity level qN 0 0.0521 0.237 0.301

Table 5.1: Considering a complete network under homogeneity conditions, there exists a unique
symmetric Nash equilibrium for the cost function c(·) in (5.1). This table summarizes the equilib-
rium decisions across different values of the full-coverage premium.

5.2 Homogeneous networks of arbitrary structure

While complete networks have their advantages in terms of popularity and explicitness, it is often

the case that the exact structure of firm connections is unclear. Therefore, we next consider general

network structures in which firms may or may not be linked together.

Similar to the previous subsection, we assume a uniform cost function, c(·), and a uniform

full-coverage premium, π, that apply to all firms. Same as before, Theorem 4.3 is applicable, and

hence, under the cost function specified in (5.1), the Nash equilibrium exists and is unique. We then

explore all possible networks of five firms, resulting in a total of 2(
5
2) = 1, 024 possibilities. Among
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these possibilities, each firm has 0 connections in 64 cases, 1 connection in 256 cases, 2 connections

in 384 cases, 3 connections in 256 cases, and 4 connections in 64 cases. In short, the setup here can

be viewed as an extension of the previous example. The difference is that the network structure is

not restricted to a complete network, while everything else remains unchanged.

For a given, uniform full-coverage premium π, we use a recursive numerical algorithm to cal-

culate the equilibrium decisions for each firm. In this recursive algorithm, at each step, each firm

optimizes its own objective function by considering the decisions of the other firms from the previ-

ous step. The process continues until the values of the decision variables converge. The results of

equilibrium are then grouped and averaged based on the number of connections a firm has, as pre-

sented in Table 5.2. From this table, we observe that isolated firms do not purchase any insurance

at all for the four considered values of π. This is because these considered values all exceed 0.2,

which is the expected loss for a firm with no connection. We also notice that as premiums become

more expensive, firms tend to invest more in cybersecurity and purchase less insurance, consistent

with the previous numerical example. Additionally, firms with more connections, which are more

likely to be reached by the infection during a cyber incident, generally purchase more insurance

and invest less in protection.

π = 0.3 π = 0.4 π = 0.5 π = 0.6

Degree aN qN aN qN aN qN aN qN

0 0 0.0529 0 0.0529 0 0.0529 0 0.0529
1 0.854 0.0141 0.629 0.0477 0.291 0.107 0.0291 0.1580
2 0.972 0.00320 0.780 0.0327 0.430 0.0961 0.1343 0.1578
3 0.997 0.000395 0.841 0.0250 0.488 0.0901 0.1635 0.1593
4 1 0 0.881 0.0194 0.537 0.0833 0.2129 0.1535

Table 5.2: Considering networks of arbitrary structure under homogeneity conditions, there exists
a unique Nash equilibrium for the cost function c(·) in (5.1). This table summarizes the equilibrium
decisions of firms having the same number of connections, averaged over all network structures and
across different values of full-coverage premiums, along with additional data.

If the number of firms d increases, solving the equilibrium for all possible networks becomes

exponentially complex, since there are 2(
d
2) possible network configurations. A tractable solution

is to generate a smaller set of random networks, which have probabilistic contagion links. For a

further discussion on random networks, we refer to Acemoglu et al. (2016).

5.3 An example with differentiated insurance premiums

The insurance premium in the previous two subsections has been setup in an ad-hoc manner. It

applies uniformly to all firms, regardless of their network connections. However, firms with more

connections may face a higher risk of exposure and, consequently, could potentially be subject to

a higher premium. Therefore, it is also interesting to differentiate the premiums across firms and

examine the equilibrium decisions. Since the premiums may now differ among firms, violating the
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homogeneity condition in Theorem 4.3, we apply the more general Theorem 4.4 instead. We adopt

a cost function that satisfies the condition in (4.7) and is more convex than the one in (5.1) to

ensure the existence of a unique Nash equilibrium. More specifically, we consider the same cost

function for the central and peripheral firms, as follows:

c (q) = − ln (1− q)− q +
5

2
q2. (5.2)

We focus on a specific network type, a star network, which offers two main advantages. First, it

allows for heterogeneity between the central and peripheral nodes while maintaining homogeneity

among the peripheral nodes. Second, it is analytically tractable, allowing us to derive explicit

expressions for the compromise probabilities of the firms, as explained in more detail below. In

real-world context, there are numerous examples of star networks. For instance, businesses rely

on cloud-based services such as Amazon Web Services, and financial institutions often process

transactions through third-party clearinghouses.

A star network consisting of five firms includes a central firm and four peripheral firms, as

plotted in Figure 5.2. We continue to consider the same utility function, terminal revenue, and

potential cyber loss for all firms, as mentioned at the beginning of this section. Since the peripheral

firms are symmetric to each other in terms of network positions, it is reasonable to assume that

they are each charged the same full-coverage insurance premium. We use subscript 1 to indicate

the central firm and subscript 2 to indicate the peripheral firms. For example, π1 and π2 represent

the full-coverage insurance premiums for the central and peripheral firms, respectively.

Figure 5.2: This figure depicts a star network of five firms, including a central firm and four
peripheral firms.

Similar to the discussions in the Subsection 5.1 for a complete network, the peripheral firms

must make identical decisions in the unique equilibrium. Otherwise, multiple non-symmetric Nash

equilibria would exist. Consequently, the equilibrium decisions on the insurance coverage ratios are

also identical across the peripheral firms.

Denote by
(
aN1 , qN1

)
and

(
aN2 , qN2

)
the equilibrium decisions of the central firm and the peripheral

firms, respectively. Then the probability of infection reaching the central firm can be easily derived
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as

p̃1
(
qN2

)
=

1

5
+

4

5

(
1− qN2

)
,

and the probability of infection reaching the peripheral firms is given by

p̃2
(
qN1 , qN2

)
=

1

5
+

1

5

(
1− qN1

)
+

3

5

(
1− qN1

) (
1− qN2

)
.

Note that p̃2 depending on qN2 is not a mistake, but rather occurs because multiple peripheral firms

make the same equilibrium decision regarding the cybersecurity level.

By applying a recursive numerical algorithm, we obtain the Nash equilibrium strategies for

different values of π1 and π2, and we summarize the results in Table 5.3. The results suggest that

the lower the full-coverage premiums, the higher the insurance coverage that firms seek, and the less

they invest in cybersecurity. This leads to an increase in the risk borne by the insurer, potentially

leading to significant losses for the insurer. Conversely, charging higher premiums would result in

a contraction of the market for insurers. In particular, as the premium for the central firm, π1,

increases, it purchases less insurance but invests more in cybersecurity. Interestingly, the peripheral

firms also invest more in cybersecurity in response. Due to increased cybersecurity levels across

all firms, the optimal insurance coverage ratios are reduced, as implied by Proposition 4.1. These

results are consistent with our expectations: Firms tend to invest little in cybersecurity protection

due to the convexity of the cost function, which means that the provision of insurance is costly.

Full-coverage premiums (π1, π2) (0.5, 0.5) (0.8, 0.5) (0.8, 0.6)

Equilibrium insurance coverage ratios
(
aN1 , aN2

)
(0.663, 0.885) (0.111, 0.576) (0.0934, 0.360)

Equilibrium cybersecurity levels
(
qN1 , qN2

)
(0.0244, 0.00731) (0.0845, 0.0296) (0.0856, 0.0493)

Table 5.3: Consider a star network where homogeneity conditions are assumed for the peripheral
firms, while the premiums and cost functions differ across the central firm and the peripheral firms.
There exists a unique Nash equilibrium in which the peripheral firms make identical equilibrium
decisions for the cost function c(·) in (5.2). This table summarizes the equilibrium decisions across
different values of full-coverage premiums, with subscript 1 indicating the central firm and subscript
2 indicating the peripheral firms.

6 Concluding remarks

In this paper, we investigate a network of interconnected firms and analyze their cybersecurity

investments and insurance purchases. We employ the random attack model proposed by Acemoglu

et al. (2016), in which a cyber incident begins when an attacker randomly targets a firm and ends

when no further firms are compromised in a cascade of compromises starting from the targeted firm.

The probability of a firm being eventually compromised relies on its individual cybersecurity level

and the cybersecurity levels of other network members. Firms can choose to invest in cybersecurity

22



practices to reduce the probability of being breached and to purchase cyber insurance to receive ex-

post reimbursement if a cyber loss occurs. We show that, for a given cybersecurity level, the optimal

insurance coverage ratio is uniquely determined, thus simplifying the decision-making process from

a bivariate to a univariate decision game. We also find that cybersecurity investments and insurance

purchases act as strategic complements: Increased insurance coverage leads to reduced investment

in cybersecurity, and vice versa, increased investment in cybersecurity leads to reduced insurance

coverage. We then establish the existence and uniqueness of the Nash equilibrium and present two

results demonstrating its inefficiency. Finally, we conduct extensive numerical studies to examine

firms’ equilibrium decisions under various network structures and explore the interplay between the

two decision variables.

We conclude this paper with two future research directions. First, in our current study, the

insurer sets the price and does not adjust it based on the firms’ decisions, which can alter their risk

profile. Exploring a two-stage game in which the insurer actively optimizes its expected profit by

anticipating firms’ responses would be an interesting avenue. Second, in practice, cyber criminals

might be more incentivized to target firms with insurance protection and lower security levels.

Considering strategic criminals who tend to target more vulnerable firms would be an interesting

direction for future research.
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Appendix

Proof of Lemma 2.1

Taking the first and second partial derivatives of u (a, q) with respect to a yields

∂u

∂a
= E

[
U ′ (W − (1− a)LY ) (LY )

]
− π (A.1)

and
∂2u

∂a2
= E

[
U ′′ (W − (1− a)LY ) (LY )2

]
. (A.2)

Recalling that P (Y = 1) = p = (1− q) p̃, it is easy to see that the first-order condition ∂u
∂a = 0 is

equivalent to (2.5).

When q = 1, i.e., the firm is fully immune against cyberattacks, the compromise indicator Y

degenerates at 0, and hence ∂u
∂a < 0. This shows that u (a, 1) is strictly decreasing in a, and the

unique a ∈ [0, 1] that maximizes u (a, 1) is a = 0. When q < 1, it holds that P (Y = 1) = p =

(1− q) p̃ > 0, and hence ∂2u
∂a2

< 0. This shows that u (a, q), given a fixed q ∈ [0, 1), is strictly

concave over a ∈ [0, 1], thereby ensuring the uniqueness of the maximizer. In summary, for any

given q ∈ [0, 1], there exists a unique maximizer of u (a, q).

Now let us consider the first derivative ∂u
∂a at the boundaries. At a = 0, by (A.1),

∂u

∂a

∣∣∣∣
a=0

= E
[
U ′ (W − LY ) (LY )

]
− π = (1− q) p̃E

[
U ′ (W − L)L

]
− π,

which satisfies ∂u
∂a

∣∣
a=0

≤ 0 if and only if

q ≥ 1− π

p̃E [U ′ (W − L)L]
.

At a = 1, again by (A.1),

∂u

∂a

∣∣∣∣
a=1

= E
[
U ′ (W ) (LY )

]
− π = (1− q) p̃E

[
U ′ (W )L

]
− π,

which satisfies ∂u
∂a

∣∣
a=1

≥ 0 if and only if

q ≤ 1− π

p̃E [U ′ (W )L]
.

Basing on the above discussions, and recalling the concavity of u (a, q) in a, we conclude:

Case 1: π ≥ p̃E [U ′ (W − L)L]. For any q ∈ [0, 1], it holds that ∂u
∂a

∣∣
a=0

≤ 0, showing â(q) = 0.

Case 2: p̃E [U ′ (W )L] < π < p̃E [U ′ (W − L)L]. For any q ∈ [0, 1], it holds that ∂u
∂a

∣∣
a=1

< 0,

showing â(q) < 1. For q ∈
[
0, 1− π

p̃E[U ′(W−L)L]

)
, it holds that ∂u

∂a

∣∣
a=0

> 0, showing that â(q) solves

(2.5). For q ∈
[
1− π

p̃E[U ′(W−L)L] , 1
]
, it holds that ∂u

∂a

∣∣
a=0

≤ 0, showing â(q) = 0.
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Case 3: π ≤ p̃E [U ′ (W )L]. For q ∈
[
0, 1− π

p̃E[U ′(W )L]

]
, it holds that ∂u

∂a

∣∣
a=1

≥ 0, showing

â(q) = 1. For q ∈
(
1− π

p̃E[U ′(W )L] , 1−
π

p̃E[U ′(W−L)L]

)
, it holds that ∂u

∂a

∣∣
a=0

> 0 and ∂u
∂a

∣∣
a=1

< 0,

showing â(q) solves (2.5). For q ∈
[
1− π

p̃E[U ′(W−L)L] , 1
]
, it holds that ∂u

∂a

∣∣
a=0

≤ 0, showing â(q) = 0.

Proof of Lemma 2.2

By Lemma 2.1, we know that â (q) can be a piecewise function over different subintervals of [0, 1].

Nevertheless, it either satisfies the first-order condition (2.5) or is constant at 0 or 1. Therefore, for

q in the interior of the subintervals, either ∂u
∂a (â (q) , q) = 0 or â′ (q) = 0. Thus, the first derivative

of û (q) at any interior point of the subintervals is given by

û′ (q) =
∂u

∂a
(â (q) , q) â′ (q) +

∂u

∂q
(â (q) , q) =

∂u

∂q
(â (q) , q)

= −p̃E [U (W − (1− â (q))L)] + p̃E [U (W )]− c′ (q) , (A.3)

and consequently, the second derivative is given by

û′′ (q) = −p̃E
[
U ′ (W − (1− â (q))L)L

]
â′ (q)− c′′ (q) . (A.4)

If q is an interior point of a subinterval corresponding to â (q) = 0 or 1, then â′ (q) = 0, and

hence, û′′ (q) = −c′′ (q) < 0.

If q is an interior point of a subinterval corresponding to â (q) = ã (q), then by (2.5) and the

condition in (2.8),

û′′ (q) = −π
ã′ (q)

1− q
− c′′ (q) . (A.5)

For the first term on the right-hand side of (A.5), recall (2.6) and write

−π
ã′ (q)

1− q
= π

E [U ′ (W − (1− ã (q))L)L]

(1− q)2 E [−U ′′ (W − (1− ã (q))L)L2]
≤ π

R

1

(1− q)2
, (A.6)

showing that in this case û′′ (q) < 0 under the condition in (2.8).

The above analysis shows that û (q) is concave over each of the subintervals of [0, 1]. We further

claim that it is concave over [0, 1]. This can be seen from the fact that both û (q) and û′ (q) are

continuous in â (q), as shown by (A.3), and the fact that â (q) itself is continuous in q ∈ [0, 1], as

concluded in Proposition 2.1.

Proof of Theorem 4.1

By Definition 4.1, the equilibrium cybersecurity levels, qNi , for i ∈ {1, . . . , d}, must satisfy

qNi ∈ arg max
qi∈[0,1]

ûi
(
qi, q

N
−i

)
.
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Recalling (A.3), the first partial derivative of ûi (qi, q−i) with respect to qi is given by

∂ûi
∂qi

= −p̃iE [Ui (Wi − (1− âi)Li)] + p̃iE [Ui (Wi)]− c′i (qi) .

It is easy to see that under the boundary conditions in (4.2),

∂ûi
∂qi

∣∣∣∣
qi=0

≥ 0 and
∂ûi
∂qi

∣∣∣∣
qi→1

= −∞.

By the concavity of ûi (qi, q−i) in qi, as the maximizer of ûi, q
N
i must satisfy ∂ûi

∂qi

∣∣∣
qi=qNi

= 0 and

hence leads to (4.3).

Proof of Theorem 4.3

Considering the objective functions ûi (qi, q−i) in (4.1), according to Rosen (1965), a condition for

the game to have a unique pure-strategy Nash equilibrium is that (û1, . . . , ûd) is diagonally strictly

concave. Rosen (1965) also shows that a sufficient condition is that J + J⊺, where J is a d × d

matrix with (i, j)th element being ∂2ûi
∂qi∂qj

, is negative definite over the strategy space q ∈ [0, 1]d.

Our goal in this proof is to show that this holds.

We first derive a lower bound for the absolute value of the cross derivatives. Recalling (A.3),

the first partial derivative of ûi (qi, q−i) with respect to qi is given by

∂ûi
∂qi

= −p̃iE [Ui (Wi − (1− âi)Li)] + p̃iE [Ui (Wi)]− c′i (qi) .

Further taking the partial derivative with respect to qj yields

∂2ûi
∂qi∂qj

= Qij (E [Ui (Wi − (1− âi)Li)]− E [Ui (Wi)])− E
[
U ′
i (Wi − (1− âi)Li)Li

]
p̃i
∂âi
∂qj

. (A.7)

By Lemma 2.1 we have either ∂âi
∂qj

= 0 or

(1− qi) p̃iE
[
U ′
i (Wi − (1− âi)Li)Li

]
= πi.

Taking the partial derivative with respect to qj in the above equation yields

QijE
[
U ′
i (Wi − (1− âi)Li)Li

]
= E

[
U ′′
i (Wi − (1− âi)Li)L

2
i

]
p̃i
∂âi
∂qj

.

Thus,

0 ≥ p̃i
∂âi
∂qj

≥ −Qij
E [U ′

i (Wi − (1− âi)Li)Li]

E
[
−U ′′

i (Wi − (1− âi)Li)L2
i

] . (A.8)
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By the monotonicity of Ui,

E [Ui (Wi − (1− âi)Li)]− E [Ui (Wi)] < 0, (A.9)

and by the concavity of Ui,

|E [Ui (Wi − (1− âi)Li)]− E [Ui (Wi)]|

≤ E
[
U ′
i (Wi − (1− âi)Li) (1− âi)Li

]
≤ E

[
U ′
i (Wi − (1− âi)Li)Li

]
. (A.10)

Putting (A.7)–(A.10) together yields∣∣∣∣ ∂2ûi
∂qi∂qj

∣∣∣∣ ≤ E
[
U ′
i (Wi − (1− âi)Li)Li

]
max

{
1,

E [U ′
i (Wi − (1− âi)Li)Li]

E
[
−U ′′

i (Wi − (1− âi)Li)L2
i

]} .

Recalling the coefficient Ri introduced in (4.5), the inequality above can be rewritten as∣∣∣∣ ∂2ûi
∂qi∂qj

∣∣∣∣ ≤ E
[
U ′
i (Wi − Li)Li

]
max

{
1,

1

Ri

}
. (A.11)

Now, let us recall equality (A.5) and inequality (A.6), which are about the second derivative of

ûi (qi, q−i) with respect to qi obtained in the setup of a single firm’s decision problem. Using these

results, we can derive ∣∣∣∣∂2ûi
∂q2i

∣∣∣∣ ≥ c′′i (qi) +
π

1− qi

∂ãi
∂qi

≥ c′′i (qi)−
πi
Ri

1

(1− qi)
2 . (A.12)

According to the homogeneity condition, the matrix J + J⊺ has identical diagonal elements

and identical off-diagonal elements. Therefore, it is negative definite if the diagonal elements are

negative, i.e.,
∂2ûi
∂q2i

≤ 0,

and dominates the off-diagonal elements in terms of absolute value, i.e.,∣∣∣∣∂2ûi
∂q2i

∣∣∣∣ > ∣∣∣∣ ∂2ûi
∂qi∂qj

∣∣∣∣ .
The homogeneity condition and the discussions around (A.6), coupled with inequalities (A.11) and

(A.12), imply that (4.6) is a sufficient condition for the uniqueness of the equilibrium.

Proof of Theorem 4.4

The proof of this theorem also relies on Rosen (1965), and is largely similar to the proof in the

previous theorem. A sufficient condition for J + J⊺ to be negative definite is that for all i ∈
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{1, . . . , d},
∂2ûi
∂q2i

≤ 0,

and U is strictly diagonally dominant, i.e.,

∣∣∣∣∂2ûi
∂q2i

∣∣∣∣ > 1

2

d∑
j=1,j ̸=i

∣∣∣∣∂2 (ûi + ûj)

∂qi∂qj

∣∣∣∣ .
The non-negativity of ∂2ûi

∂q2i
under (4.7) can be observed from the discussions around (A.6). Substi-

tuting inequalities (A.11) and (A.12) in the second inequality above leads to the sufficient condition

(4.7) for the uniqueness of the equilibrium.

Proof of Proposition 4.2

Under the homogeneity condition in Theorem 4.3, there exists a unique Nash equilibrium. Further-

more, under the symmetry condition, the firms’ objective functions are interchangeable, implying

that, in this Nash equilibrium, all firms must have the same security level qN . Otherwise, multiple

equilibria would arise.

Recall that in the proof of Theorem 4.3 we have shown that the matrix with the (i, j)th element

given by
∂2(ûi+ûj)
∂qi∂qj

for any pairs (i, j), i, j ∈ {1, . . . , d}, is negative definite. Thus, the Hessian

matrix of ûS (q), which has the (i, j)th element given by
∂2(

∑
k ûk)

∂qi∂qj
, is also negative definite. This

implies that ûS (q) is a concave function, and therefore, has only one unique maximum. Again, due

to the interchangeability of the firms’ objective functions, this maximum must be achieved with a

uniform security level qS ; otherwise, multiple maxima would arise.

Notice also that, at the Nash equilibrium, the first derivative of ûS (q) with respect to qi is

given by
∂ûS
∂qi

∣∣∣∣
q1=···=qd=qN

=
∂ûi
∂qi

∣∣∣∣
q1=···=qd=qN

+
∑
j ̸=i

∂ûj
∂qi

∣∣∣∣
q1=···=qd=qN

.

Due to the Nash equilibrium condition, the first term on the right-hand side above is zero. For the

second term, (3.2) shows that an increase in the security level of firm j decreases the probability

of firm i eventually being compromised. This implies that
∂uj

∂qi
≥ 0, and furthermore,

∂ûj

∂qi
≥ 0.

Therefore, at the unique, symmetric Nash equilibrium q = (qN , . . . , qN ), the social welfare function

ûS(q) is non-decreasing in each qi, i ∈ {1, . . . , d}, implying qN ≤ qS .

Proof of Proposition 4.3

Without loss of generality, assume there is a linkage between firms i and j. With aNi , aNj , qNi , qNj <

1, consider a small increase ∆q ∈
(
0, 1−max{qNi , qNj }

)
from the security levels in the Nash

equilibrium, i.e.,
(
qNi +∆q, qNj +∆q

)
, while keeping the insurance coverage ratios unchanged at

aN . Then, the difference in firm i’s objective function, evaluated at this new profile versus the
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Nash equilibrium profile, is given by

ui
(
aNi , qN1 , . . . , qNi +∆q, . . . , qNj +∆q, . . . , qNd

)
− ui

(
aNi , qN

)
=

∂ui
∂qi

∣∣∣∣
(a,q)=(aN ,qN )

×∆q +
∂ui
∂qj

∣∣∣∣
(a,q)=(aN ,qN )

×∆q + o (∆q)

=
∂ui
∂qj

∣∣∣∣
(a,q)=(aN ,qN )

×∆q + o (∆q) .

The partial derivative of ui with respect to qj is given by

∂ui
∂qj

= (1− qi)Qij (E [Ui (Wi)]− E [Ui (Wi − (1− ai)Li)]) ,

which is strictly positive when ai, qi < 1 and firms i and j are linked, given the fundamental

assumption that the variables Wi and Li are not degenerate. Therefore, for suitably small but

positive ∆q, firm i’s objective function is higher at the new security profile
(
qNi +∆q, qNj +∆q

)
,

and the same can be shown for firm j. The utilities of the firms in {1, . . . , d}\{i, j} weakly increase

as well because ∆q > 0. In conclusion, we have identified a strategy profile that Pareto dominates

the Nash equilibrium, and thus, the Nash equilibrium is not Pareto efficient.
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