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Abstract

This paper examines the optimal design of peer-to-peer insurance models, which

combines outside insurance purchases with peer-to-peer risk sharing and heteroge-

neous risk. Participants contribute deposits to collectively cover the premium for

group-based insurance against tail risks and to share uncovered losses. We analyze

the cost structure by decomposing it into a fixed premium for outside coverage and a

variable component for shared losses, the latter of which may be partially refunded if

aggregate losses are sufficiently low. We derive closed-form solutions to the optimal

sharing rule that maximizes a mean-variance objective from the perspective of a

central or social planner, and we characterize its theoretical properties. Building on

this foundation, we further investigate the choice of deposit for the common fund.

Finally, we also provide numerical illustrations.
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1 Introduction

Peer-to-peer (P2P) insurance has established itself as an innovative risk-sharing model in

the InsurTech landscape since its introduction by Friendsurance in Germany during the

2010s. This model operates through a two-layer structure where participants collectively

cover small-to-moderate losses within their community pool, while transferring excess

losses beyond the pool’s capacity to a conventional insurer. While this basic framework

is well-documented in the existing literature, our study advances the field by examining

its implementation in heterogeneous risk pools.

The distinctive feature of our approach lies in recognizing that participants bear two

fundamentally different types of costs that require separate allocation rules. The fixed

cost component represents each member’s share of the total premium paid to the insurer,

transferring risk outside the pool. In contrast, the variable costs component consists of

refundable contributions to the common fund, embodying the risk-sharing nature of P2P

insurance. Previous work, including Chen et al. (2023), has primarily examined these cost

components in homogeneous groups where proportional sharing may suffice. However, this

approach encounters limitations when applied to pools with diverse risk profiles.

Our research addresses this gap by developing a framework that ensures actuarial

fairness in allocating both cost components across heterogeneous groups. Meanwhile,

we determine the optimal deposit for the common fund, which plays a crucial role in

determining the additional costs arising from risk loading and uncertainty derived from

risk sharing. This dual approach maintains the economic viability of the P2P structure

while properly accounting for differential risk exposures among participants. The practical

implementation of this framework resolves a longstanding challenge in designing equitable

P2P insurance schemes for diverse populations.

This paper makes the following theoretical contributions to the P2P insurance liter-

ature. We mathematically propose the actuarial fairness condition for multi-risk groups

in P2P insurance. This issue incorporates the extra profit loading of group-covered in-

surance, which has not been explored in the literature. We then formulate and solve a

mean-variance optimization problem for a central planner designing P2P insurance, which
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incorporates both a risk-sharing rule and a deposit. Our analysis suggests a trade-off and

negative relation between the participant’s nonrefundable contribution to the group in-

surance premium and the possibly refundable deposit to the common fund. We derive

analytical solutions for the optimal design of P2P insurance both with and without the

individual rationality (IR) constraints, and further characterize the theoretical properties.

Our research contributes to multiple areas of literature. First, we advance the liter-

ature on risk sharing. Prior work has extensively examined the conditional mean risk-

sharing rule proposed by Denuit and Dhaene (2012), where participants share losses based

on the conditional expectation of the participant’s own loss, conditional on the aggregate

loss. This rule satisfies some nice properties (Denuit et al., 2022; Jiao et al., 2023), and

it particularly leads to an improvement of the status quo in the convex order. Various

applications and extensions are proposed by Denuit (2019), Denuit et al. (2021), Denuit

and Robert (2021a,b, 2022), and Clemente and Marano (2020), such as individual reten-

tion levels, cash backs, and stop-loss premiums. In particular, Denuit and Robert (2022)

allows for outside insurance as well.

Second, this paper contributes to the literature on the optimal design of P2P insurance

(see, e.g., Von Bieberstein et al., 2019; Chen and Feng, 2021; Charpentier et al., 2022;

Levantesi and Piscopo, 2022). In heterogeneous settings, determining fair inter-personal

loss sharing among participants is a key challenge. A number of recent studies tried to

address this problem. For instance, Abdikerimova and Feng (2022) explores altruistic risk

sharing in P2P insurance, a concept that is further developed in Feng et al. (2023) for flood

risk pooling and extended to multi-period settings in Abdikerimova et al. (2024). Mutual

aid—a simplified form of P2P insurance—has also received attention. Several studies

provide formal analysis of mutual aid mechanisms and their theoretical foundations (see

Chen et al., 2020; Li et al., 2023; Zhao and Zeng, 2023).

Third, by enabling the collective purchase of insurance, this work also contributes to

the literature on optimal reinsurance. A rich body of research has examined optimal

reinsurance design, often balancing the interests of both insurers and reinsurers (e.g., Li

et al., 2014; Boonen et al., 2016; Chen et al., 2019). Some studies approach reinsurance
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from a risk-sharing or network perspective, such as Bäuerle and Glauner (2018). Further

developments in this area can be found in Cai et al. (2017), Chi et al. (2017), Cheung

et al. (2019), and Tang et al. (2022).

The subsequent sections of this paper are structured as follows. Section 2 outlines

the general theoretical framework. Section 3 examines the optimal risk-sharing rule and

deposit without the IR constraints, and Section 4 examines the optimal design under

the IR constraints. Section 5 presents numerical examples, and Section 6 presents the

conclusion. The proofs are delegated to the Appendix.

2 General framework

2.1 General setting

We consider a one-period setting. At time 0, each individual makes a payment and deposit

as specified by the rule. At time 1, those who suffer a loss receive the predetermined

compensation. During the period between time 0 and time 1, no participants join or

leave the pool. Throughout this paper, all random variables are defined on a common

probability space (Ω,F ,P). We consider a group of n heterogeneous individuals. Let Xi

be a non-negative, bounded random variable1 defined on R+ = [0,+∞), representing the

loss of the i-th participant. That is, Xi ∈ [0,Mi] almost surely for some constant Mi > 0.

If a loss occurs, any claimant will receive an amount of compensation equal to the amount

of the loss. Let X denote the aggregate loss incurred by the entire group, defined as

X =
n∑

i=1

Xi.

Let M denote the upper bound of X, with cumulative distribution function (CDF) FX ,

and survival function SX . Moreover, our analysis does not require the specification of a

1It is reasonable to assume that Xi is bounded, as pricing or regulatory practices often introduce

upper limits (e.g., compensation caps or reinsurance contracts) to bound unbounded random variables.

The assumption that Xi is unbounded does not affect the main results. Indeed, the results obtained

under the unbounded case can be regarded as a special instance of the present analysis, corresponding

to the limit as Mi → +∞.
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dependence structure among the losses.

2.2 Framework of P2P insurance

In the model of P2P insurance, participants’ risks are aggregated and separated into two

layers. The first layer of small-to-medium losses is retained within a common fund, and

the second layer of severe losses is covered by an insurer. Specifically, at the start of the

insurance period, all the participants contribute to a common fund by depositing D. At

the end of the insurance period, the participants’ losses are first covered by the common

fund, with the insurer stepping in for any excess losses. Moreover, any remaining balance

in the common fund is refunded to all participants (see Figure 1 for an illustration).

Figure 1: Overview of the framework of P2P insurance.

Under this arrangement, the insurer assumes liability for losses exceeding the deposit,

i.e., for X −D. The common fund’s risk-sharing responsibility is capped at D, ensuring

limited liability for participants. Thus, the common fund must purchase insurance cover-

age with a deductible equal to the deposit D. In setting the premium, the insurer adds a

risk loading θ > 0 to the fair premium. Consequently, the total premium2 is:

Π = (1 + θ)E[(X −D)+]. (1)

2Under the criterion of minimizing the variance of an insurer’s risk exposure, Borch (1960) demon-

strates that stop-loss reinsurance is optimal when the reinsurance premium is calculated by the expected

value principle.
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In the next section, we will decompose the costs involved in P2P insurance according

to its underlying risk-sharing arrangement.

2.3 Fixed and variable costs

In P2P insurance, the entire group initially contributes a total amount of Π + D. The

deposit D corresponds to the deductible, representing the portion of risk retained by the

community. Due to the presence of a refund mechanism and the absence of risk loading,

risk sharing within the common fund is typically more economical than the insurer’s

underwriting costs. However, the cost for risk sharing is variable, as it depends on the

actual loss outcomes. In contrast, the insurer’s underwriting cost Π is nonrefundable,

generally higher, and predetermined.

We now provide a mathematical decomposition of the cost structure in P2P insurance.

Let πk and dk for k = 1, . . . , n represent the portion of Π and D contributed by each

participant, respectively. Thus, we have D =
∑n

k=1 dk and Π =
∑n

k=1 πk. For simplicity

of notation, we define

αk =
πk
Π
, and βk =

dk
D
.

By the summation condition, it follows that
∑n

k=1 αk = 1 and
∑n

k=1 βk = 1. Here, αk

represents the ratio of the premium contributed by participant k to the total premium Π,

and βk represents the ratio of the deposit contributed to the total deposit D, reflecting

their share of the remaining deposit in the common fund.

At time 0, participant k contributes πk + dk, or equivalently αkΠ+ βkD, to the pool.

At time 1, the participant receive a partial refund βk(D − X)+ from the common fund,

where z+ = max{z, 0}. Under this decomposition, the cost allocation for each participant

consists of a fixed premium and a variable deposit. The premium contribution, πk = αkΠ,

is nonrefundable and fixed, whereas the deposit contribution, dk = βkD, is refundable

depending on the ultimate loss outcome within the common fund. Using the notation of

αk and βk, the cost for participant k in the P2P insurance is given by:

Ck = αkΠ+ βkD − βk(D −X)+. (2)
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To summarize, the costs of P2P insurance consist of two parts (see Figure 2): (1) the

fixed contribution, covering the group insurance premium paid to the insurer, and (2) the

variable sharing cost, arising from the variability in the risk-sharing component managed

by the common fund. This decomposition offers a flexible framework for adjusting each

participant’s share of both the premium and deposit according to their risk profile and

risk aversion, thereby enabling a reasonable approach for risk sharing within the group.

Figure 2: Decomposition of the cost in P2P insurance.

2.4 Actuarial fairness

In this section, we investigate actuarial fairness within the P2P insurance framework.

Given participant heterogeneity, actuarial fairness is crucial for effectively pooling diverse

risk types.

We begin with the expected cost for all participants in the P2P insurance model.

Based on the participant’s cost in Equation (2), we have:

n∑
k=1

Ck = (1 + θ)E[(X −D)+] + min {D,X} .

Using this result, the expected total cost of all participants is given by

E

[
n∑

k=1

Ck

]
= E[X] + ∆, (3)
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where ∆ = θE [(X −D)+]. Equation (3) shows that the sum of the participants’ expected

costs exceeds their expected income, with the additional cost component ∆ arising from

the insurer’s risk loading.

To obtain actuarial fairness among peers, we decompose both E[X] and ∆ among all

participants. We decompose each participant’s expected cost E[Ck] as his/her expected

loss E[Xk] and an additional extra cost ∆k. We have:

E[Ck] = E[Xk] + ∆k, (4)

where
∑n

k=1∆k = ∆. We define ρk = ∆k

∆
as the proportion of the total additional costs

paid by participant k, and we can obtain
∑n

k=1 ρk = 1. Substituting Equation (2) into

Equation (4) yields:

E [min {D,X}] βk = E[Xk] + ρkθE[(X −D)+]− αk(1 + θ)E[(X −D)+], (5)

which establishes the specified relationship between αk and βk. It is straightforward to

verify the summation condition
∑n

k=1 βk = 1 holds naturally if
∑n

k=1 αk = 1.

Remark 1. The fairness condition (4) requires that participants contribute an additional

expected cost ∆k on top of their own expected loss E[Xk]. This differs from the traditional

definition of actuarial fairness in the literature, where the additional costs incurred from

external insurance are not considered, that is,

E[C̃k] = E[Xk],

where

C̃k = αkE[(X −D)+] + βk min(D,X).

Our consideration of ρk stems from the fact that the additional cost ∆, arising from risk

loading θ, are additional expenses borne by the policyholders. In the P2P framework,

where all participants are treated equally, it is essential to ensure fairness among all

participants. Particularly under heterogeneous conditions, individuals with different risk

characteristics contribute differently to the aggregate risk, meaning that each participant

contributes a different proportion of the extra costs. Therefore, when examining actuarial
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fairness within the current framework, it is essential to account for the impact of these

additional costs. Moreover, the classical condition for actuarial fairness in risk sharing

(e.g., see Abdikerimova and Feng (2022)) emerges as a special case of of our proposed

formulation when ∆k = 0.

In addition, when D = 0, the P2P insurance model reduces to traditional insurance.

In this case, there is no variable cost, and the parameter βk becomes irrelevant. The

allocation parameter αk simplifies to:

αk =
E[Xk] + ρkθE[X]

(1 + θ)E[X]
,

which represents the distribution of the total premium among participants. Conversely,

when D =M , participants fully share all losses, rendering αk irrelevant. In this scenario,

βk is given by:

βk =
E[Xk]

E[X]
.

These two extreme cases illustrate that it is meaningful to consider both αk and βk

simultaneously only when D ∈ (0,M). Under this condition, the relationship between αk

and βk is characterized by the derivative:

dβk(αk)

dαk

= −(1 + θ)E[(X −D)+]

E[min{D,X}]
< 0.

This implies a substitution effect: as participant k increases their premium share αk, they

can reduce their required deposit βk. This trade-off aligns with intuitive expectations, as

each participant aims to balance their contributions to the nonrefundable premium pool

Π and the potentially refundable deposit D.

2.5 Optimization problem for central planner

In this study, we adopt a mean-variance framework, where the utility for participant k

is given by E[Wk] − γk Var[Wk], with γk > 0 and Wk is participant k’s wealth at time

1. In the mean-variance framework, any deterministic initial wealth is irrelevant and is

therefore normalized to zero. Thus, Wk can be expressed as

Wk = −Ck = −αk(1 + θ)E[(X −D)+]− βkD + βk(D −X)+.
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Suppose there exists a central planner whose objective is to maximize the collective

mean-variance utility of all participants. As discussed earlier, adjusting the (αk, βk) allows

for individual-level trade-offs between cost efficiency and variability, and further varying

the deposit D enables this trade-off to be made at the aggregate level across all par-

ticipants. Therefore, the central planner’s decision variables are the risk-sharing rules

(αk, βk) and the deposit level D. Thus, the central planner’s optimization problem can

be defined as follows:

max
{α1,...,αn}∈Rn

{β1,...,βn}∈Rn

D∈(0,M)

n∑
k=1

(E[Wk]− γk Var[Wk]) .

We solve this optimization problem through a step-by-step approach as follows:

Step 1. Solve (α∗
k, β

∗
k) for a given D, which we refer to as the optimal risk-sharing rule;

Step 2. Solve the optimal deposit D∗ ∈ (0,M), based on the results in Step 1.

In this way, we eventually determine the optimal parameters (α∗
1, . . . , α

∗
n, β

∗
1 , . . . , β

∗
n, D

∗).

In this paper, we analyze the optimization problem under two different scenarios: with-

out individual rationality (IR) constraints, and with IR constraints. The IR constraint,

which asserts that participation in the insurance should not be worse than maintaining

individual risk, is often a foundational assumption in the optimal design of commercial

insurance. In Section 3, we first derive the general optimal solution under the assumption

that all participants are either willing or required to join the P2P insurance plan, thus

disregarding the IR constraint. Subsequently, in Section 4, we introduce the IR constraint

and characterize the resulting optimal solution.

3 Optimal design of P2P insurance without IR con-

straints

3.1 Optimal risk-sharing rules
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First, we consider optimizing αk and βk for a given D. The corresponding optimization

problem for Step 1 is:

Problem 1.

max
{α1,...,αn}∈Rn

{β1,...,βn}∈Rn

n∑
k=1

(E[Wk]− γk Var[Wk]) , (6)

s.t.
n∑

k=1

αk = 1,
n∑

k=1

βk = 1, (7)

E[Xk] + ρkθE[(X −D)+]− αk(1 + θ)E[(X −D)+]

= E [min {D,X}] βk, ∀k ∈ {1, . . . , n}. (8)

Solving Problem 1 yields the optimal solutions α∗
k and β∗

k , which are characterized as

follows.

Theorem 1. For a given D, the solution of Problem 1 is given by:

α∗
k =

E [Xk] + ρkθE[(X −D)+]− β∗
kE [min {D,X}]

(1 + θ)E[(X −D)+]
, (9)

β∗
k =

1

γk
∑n

l=1
1
γl

. (10)

For the central planner, once the deposit D is determined, Theorem 1 provides the

optimal allocation rule. It can be readily verified that the optimal β∗
k is always constrained

within the interval (0, 1). In contrast, no such constraint applies to α∗
k and the only

requirements is that
∑n

k=1 α
∗
k = 1.

Remark 2. In the homogeneous case, where all participants have identical risk preferences

even if the risks are different, each individual equally shares the portion of risk not covered

by the insurer. Consequently, the optimal deposit ratio is given by β∗ = 1/N .

Remark 3. For the k-th participant, we have α∗
k < 0 if

E [Xk] + ρkθE[(X −D)+] < E [β∗
k min {D,X}] .

The condition suggests that α∗
k < 0 may arise either when the participants bear a low

ρk, indicating they bear a small share of the additional cost, or when the participants
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have a large β∗
k, meaning they assume the excessive uncertain costs. Interestingly, when

α∗
k < 0, the participant may initially receive a payment from the common fund, rather

than contributing to it. This situation, particularly when driven by a high β∗
k, implies that

the participant requires compensation for shouldering a larger share of risk.

The above facts reflect an interesting feature of P2P insurance that is different from

traditional insurance: participants can take on the roles of both insurance ‘buyer’ and

‘seller’:

(1) As the ‘buyer’ type, characterized by (α∗
k > 0, β∗

k > 0), the participant pays a positive

fixed cost, α∗
kΠ, and contributes β∗

kD to cover variable costs.

(2) As the ‘seller’ type, characterized by (α∗
k < 0, β∗

k > 0), the participant receives an

income cash inflow of −α∗
kΠ but is required to deposit β∗

kD into the common fund to cover

variable costs.

Now, we examine the effect of parameters related to α∗
k and β

∗
k . We begin by examining

the effects of γk and γℓ for ℓ ̸= k, on α∗
k and β∗

k in the following corollary.

Corollary 1. For a given D, the pair (α∗
k, β

∗
k) satisfies the following properties:

(1) α∗
k increases with respect to γk, and decreases with respect to γℓ for ℓ ̸= k,

(2) β∗
k decreases with respect to γk, and increases with respect to γℓ for ℓ ̸= k.

Corollary 1 shows that, an increase in the degree of risk aversion γk leads to an increase

in the participant’s optimal fixed premium payment ratio α∗
k and a corresponding decrease

in the optimal deposit ratio β∗
k . This outcome supports the idea that higher levels of risk

aversion correlate with a preference for fixed cost structures.

Remark 4. Considering a heterogeneous case where n = 2, we have:

1

β∗
1

= 1 +
γ1
γ2
,

1

β∗
2

= 1 +
γ2
γ1
.

It is straightforward to verify that β∗
1 < β∗

2 if γ1 > γ2, and vice versa. This example high-

lights the impact of risk aversion on β∗
k: participants with higher risk aversion contribute a
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smaller share. We extend this analysis by introducing two types of participants, high-risk

and low-risk, denoted by XH and XL, respectively. Let nH and nL denote the number of

high-risk and low-risk participants. In this case, the optimal deposit ratios are given by:

1

β∗
H

= nH + nL
γH
γL
,

1

β∗
L

= nL + nH
γL
γH

.

Corollary 2. For a given D, α∗
k satisfies the following properties:

(1) α∗
k increases with θ when α∗

k ⩽ ρk,

(2) α∗
k decreases with θ when α∗

k ⩾ ρk.

Corollary 2 states that α∗
k decreases with θ when ρk is below the threshold α∗

k. This

implies that the peers are required to contribute a smaller share of the premium. Once

ρk exceeds this threshold, α∗
k increases with θ, reflecting a greater required contribution.

Corollary 3. For a given D, α∗
k satisfies the following properties:

(1) α∗
k increases with D when β∗

k ≤ E[Xk]
E[X]

,

(2) α∗
k decreases with D when β∗

k ≥ E[Xk]
E[X]

.

This corollary shows that α∗
k increases with D when the deposit ratio β∗

k lower than

their proportional risk exposure in the entire pool, and decreases otherwise. This con-

clusion aligns with the fairness condition, as it suggests that a group should contribute a

larger share to the fixed premium when its deposit ratio is relatively lower, thus balancing

the overall contributions within the pool.

Remark 5. We consider a special case where n = 2. Suppose E [X2] = aE [X1], and

γ2 = bγ1. Then, if a = 1 and b > 1, we get

β∗
1 =

1

1 + γ1
γ2

=
1

1 + 1
b

>
1

2
=

E [X1]

E [X]
, β∗

2 =
1

1 + γ2
γ1

=
1

1 + b
<

1

2
=

E [X2]

E [X]
.

In this case, α∗
1 decreases with D and α∗

2 increases with D. If a > 1 and b = 1, then

β∗
1 =

1

1 + γ1
γ2

=
1

2
>

1

1 + a
=

E [X1]

E [X]
, β∗

2 =
1

1 + γ2
γ1

=
1

2
<

1

1 + 1
a

=
E [X2]

E [X]
.

In this case, α∗
1 decreases with D and α∗

2 increases with D.
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3.2 Optimal deposit

So far, we have solved (α∗
k, β

∗
k) for any given D. Building on this analysis, we now proceed

to determine the optimal deposit. The problem for Step 2 is formulated as follows:

Problem 2.

max
D∈(0,M)

n∑
k=1

(E[Wk]− γk Var[Wk]) . (11)

Based on Theorem 1, we derive the following theorem.

Theorem 2. The optimal deposit D∗ for Problem 2 is characterized as follows: If

θ <
2∑n

k=1
1
γk

(M − E[X]) ,

then D∗ is the unique solution to the equation

θ

2

n∑
k=1

1

γk
=

∫ D∗

0

FX(s) ds. (12)

Theorem 2 indicates that participants prefer to combine risk sharing with traditional

insurance coverage when the risk loading factor θ is below a certain threshold. In contrast,

when the insurance price is excessively high, the proof of Theorem 2 demonstrates that

the objective function is increasing in D. This implies that participants are inclined to

maximize their risk sharing within the common fund rather than relying on traditional

insurance.

4 Optimal design of P2P insurance with IR constraints

In this section, we consider the optimization problem with the IR constraints, which ensure

that participation in the P2P risk-sharing scheme is at least as favorable as retaining

individual risk. Specifically, for each participant k, the following constraint must hold:

E[Wk]− γk Var[Wk] ≥ E[−Xk]− γk Var[Xk], ∀k ∈ {1, . . . , n},
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which implies the following condition:

ρk ≤ γk
Var[Xk]− β2

k Var[min{X,D}]
θE[(X −D)+]

, ∀k ∈ {1, . . . , n}. (13)

Thus, the IR constraint can be equivalently formulated as a bound on the cost allocation

rule ρk, which is inherently related to considerations of fairness.

Remark 6. We introduce two common examples of ρk from a fairness perspective:

(1) Uniform sharing principle. This approach equally distributes the excess cost θE[(X −

D)+] among all participants, such that ρk =
1
n
for all k.

(2) Ex-ante mean proportion principle. This method allocates the additional cost in pro-

portion to each participant’s expected loss. For participant k, we have ρk =
E[Xk]
E[X]

.

Remark 7. Abdikerimova and Feng (2022) propose a foundational fairness condition re-

quiring that each participant’s expected loss remains invariant before and after risk shar-

ing. This corresponds to a specific case with θ = 0, and naturally emerges in pure P2P

risk-sharing pools where the absence of an insurer precludes additional costs.

Under the IR constraints (13), we solve the central planner’s problem:

max
{α1,...,αn}∈Rn

{β1,...,βn}∈Rn

D∈(0,M)

n∑
k=1

(E[Wk]− γk Var[Wk]) (14)

by finding the parameters (α∗, β∗) for a given deposit D at first, and then calculating the

optimal deposit D∗.

4.1 Optimal risk-sharing rules with IR constraints

Given ρ1, . . . , ρn and D, we have the following Step 1 optimization problem:

Problem 3.

max
{α1,...,αn}∈Rn

{β1,...,βn}∈Rn

n∑
k=1

(E[Wk]− γk Var[Wk]) , (15)
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s.t.

n∑
k=1

αk = 1,
n∑

k=1

βk = 1, (16)

ρk ≤
γk Var[Xk]− γkβ

2
k Var[min{X,D}]

θE[(X −D)+]
, ∀k ∈ {1, . . . , n}, (17)

E[Xk] + ρkθE[(X −D)+]− αk(1 + θ)E[(X −D)+]

= E [min {D,X}] βk, ∀k ∈ {1, . . . , n}. (18)

By solving Problem 3, we obtain the following results of α∗
k and β∗

k .

Theorem 3. Given ρ1, . . . , ρn and D, if ρk ≤ γk Var[Xk]
θE[(X−D)+]

for any k, then no solution for

Problem 3 exists. Otherwise, denote J be the set of all k satisfying:

ρk >
γk Var[Xk]− 1

γk(
∑n

k=1
1
γk

)2
Var[min{X,D}]

θE[(X −D)+]
, (19)

and K is given by K = {1, . . . , n} \ J . Then,

(1) If K is nonempty, and for all k ∈ K,

ρk ≤
γk Var[Xk]−

(
1−

∑
k∈J

√
γk Var[Xk]−ρkθE[(X−D)+]

γk Var[min{X,D}]

)2

γk

(∑
k∈K

1
γk

)2 Var[min{X,D}]

θE[(X −D)+]
, (20)

then the solution for Problem 3 is given by:

α∗
k =

E [Xk] + ρkθE[(X −D)+]− β∗
kE [min {D,X}]

(1 + θ)E[(X −D)+]
, (21)

β∗
k =

1−
∑

k∈J β
∗
k

γk
∑

k∈K
1
γk

, k ∈ K, (22)

β∗
k =

√
γk Var[Xk]− ρkθE[(X −D)+]

γk Var[min{X,D}]
, k ∈ J , (23)

where we note that if J is empty, then
∑

k∈J β
∗
k = 0.

(2) Otherwise, no solution exists for Problem 3.

Corollary 4. If a solution exists for Problem 3, then it holds that 0 < β∗
k < 1 for all

k ∈ {1, . . . , n}.
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For the central planner, once ρk andD are specified, Theorem 3 determines the optimal

risk-sharing rule. When both J and K are nonempty, we observe the following distinct

patterns: (1) For participants k ∈ J , β∗
k decreases with respect to ρk. This inverse

relationship indicates that the more additional cost a participant is allocated, the smaller

the random cost they should bear. (2) For participants in k ∈ K, β∗
k remains independent

of their corresponding ρk, demonstrating complete independence between these variables.

Figure 3: Schematic illustration of Theorem 3

Remark 8. We illustrate the results of Theorem 3 using a simple example where n = 2.

As depicted in Figure 3, the objective function forms an ellipse. The feasible solutions for

(β1, β2) lie at the intersections of the ellipse and the constraint β1+β2 = 1. The left panel

of Figure 3 illustrates the case where J is empty. Here, the unconstrained minimum of

the ellipse lies within the feasible region. The parameters (β∗
1 , β

∗
2) are given by: β∗

1 = 1
1+

γ1
γ2

and β∗
2 = 1

1+
γ2
γ1

.

The right panel of Figure 3 depicts the case where both J and K are nonempty. In

this case, the feasible region for β1 excludes the unconstrained minimizer. As a result,
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β∗
1 lies on the boundary. Although the feasible region for β2 includes the unconstrained

minimizer, the constraint β∗
2 = 1 − β∗

1 forces β∗
2 to exceed 1

1+
γ2
γ1

because β∗
1 is below its

unconstrained optimum.

4.2 Optimal deposit with IR constraints

4.2.1 Characterization of feasible region

Before we derive the optimal deposit D∗, we first characterize the feasible region D under

IR constraints in this section.

As established in Theorem 3, when both K and J are nonempty, the index set pair

(K,J ) admits a total of 2n−2 configurations. Including the special case where J is empty,

the total number of configurations becomes 2n − 1. Each configuration corresponds to a

(possibly overlapping) subinterval of the deposit domain (0,M), within which the solution

(α∗
k, β

∗
k) exists. Given the parameters ρ1, . . . , ρn, let

D =
2n−1⋃
t=1

Dt

denote the feasible region for deposits, where Dt denote the subinterval associated with

the t-th configuration. Before proceeding with the analysis, we distinguish between two

cases in Theorem 3:

• When J is empty: if ρk satisfies the following condition:

ρk ≤
γk Var[Xk]− 1

γk

(∑n
k=1

1
γk

)2 Var[min{X,D}]

θE[(X −D)+]
, ∀k ∈ {1, . . . , n}, (24)

then Problem 3 reduces to the unconstrained formulation in Problem 1. In this case,

the solution (α∗
k, β

∗
k) coincides with that in Theorem 1, where β∗

k depends only on

risk aversion and is independent of D, as shown in equation (10).

• When J is nonempty: if instead

γk Var[Xk]− 1

γk

(∑n
k=1

1
γk

)2 Var[min{X,D}]

θE[(X −D)+]
< ρk ≤

γk Var[Xk]

θE[(X −D)+]
, ∀k ∈ J , (25)
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and for all k ∈ K, ρk satisfy (20), then each β∗
k is determined at the boundary of

constraint (17). As shown in equations (22) and (23), β∗
k becomes a function of D.

This distinction is essential, as the relationship between β∗ and D fundamentally differs

between the two cases. For convenience, we label the subinterval corresponding to inequal-

ity (24) as D1, and those corresponding to inequality (25) as Dt, where t ∈ {2, . . . , 2n−1}.

In the following sections, we examine the structure of each subinterval Dt, and then

determine the existence and uniqueness of a local optimum D∗
t , and the closed-form

expression for D∗
t when it exists. Specifically, in Sections 4.2.2 and 4.2.3, we introduce

the local optimal D∗
1 within D1 and Dt for t ∈ {2, . . . , 2n − 1}, respectively. Finally, the

global optimal deposit D∗ over the entire feasible region D is determined as the one among

these D∗
t that yields the highest objective function value.

4.2.2 Local optimal D∗
1 within D1

In this section, we start from D1 where inequality (24) holds. For simplicity, we define

two tool functions as:

ϕk(D) =

γk Var[Xk]− 1

γk

(∑n
k=1

1
γk

)2 Var[min{X,D}]

θE[(X −D)+]
,

ψk(D) = −2(D − E[min{X,D}])E[(X −D)+] + Var[min{X,D}]

γ2k

(∑n
k=1

1
γk

)2 +Var[Xk].

Then, we characterize the structure of D1 through the following lemma:

Lemma 1. Given ρ1, . . . , ρn, the interval D1 is given by:

D1 =
n⋂

k=1

D̃k,

where each D̃k is determined according to the following cases:

(1) When

Var[Xk]−
Var[X]

γ2k

(∑n
j=1

1
γj

)2 ≥ 0,
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(a) If ρk >
γk Var[Xk]

θ E[X]
, there exists a unique D̂k such that ϕk(D̂k) = ρk, and we have

D̃k = [D̂k,M);

(b) If ρk ≤ γk Var[Xk]
θ E[X]

, we have D̃k = (0,M).

(2) When

Var[Xk]−
Var[X]

γ2k

(∑n
j=1

1
γj

)2 < 0,

then there exists a unique D̃k such that ψk(D̃k) = 0. Then,

(a) If ρk > ϕk(D̃k), we have D̃k = ∅;

(b) If γk Var[Xk]
θ E[X]

< ρk ≤ ϕk(D̃k), there exist D̂k ≤ D̂k such that ϕk(D̂k) = ϕk(D̂k) =

ρk, and we have D̃k = [D̂k, D̂k];

(c) If ρk ≤ γk Var[Xk]
θ E[X]

, we have D̃k = (0, D̂k].

In what follows, we identify the associated local optimal deposit D∗
1 within D1, if it

exists. Note that, for given ρ1, . . . , ρn, D1 is possibly empty. To proceed with the analysis,

we assume that D1 is a nonempty closed interval, ensuring the existence of a D∗
1. Then

we establish the following theorem.

Theorem 4. Assume that D1 is a nonempty closed interval, denoted by D1 = [D1, D1].

Given ρ1, . . . , ρn, D
∗
1 is given by:

(1) If

θ − 2∑n
k=1

1
γk

∫ D1

0

FX(s)ds ≤ 0,

then D∗
1 = D1.

(2) If

θ − 2∑n
k=1

1
γk

∫ D1

0

FX(s)ds ≥ 0,

then D∗
1 = D1.

(3) If

θ − 2∑n
k=1

1
γk

∫ D1

0

FX(s)ds > 0, and θ − 2∑n
k=1

1
γk

∫ D1

0

FX(s)ds < 0,
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then D∗
1 is determined as follows:

D∗
1 = D1 · I[Do < D1] +Do · I[D1 ≤ Do ≤ D1] +D1 · I[Do > D1], (26)

where Do is the unique solution to the equation:

θ

2

n∑
k=1

1

γk
=

∫ Do

0

FX(s) ds. (27)

4.2.3 Local optimal D∗
t within Dt for t ∈ {2, . . . , 2n − 1}

We now turn to Dt for t ∈ {2, . . . , 2n−1} where the inequality (25) holds. In what follows,

we analyze the structure of Dt for a given t. We denote the index sets corresponding to

the k-th configuration as Kt and Jt respectively. Similar to Lemma 1, we have

Dt = D̃Jt

⋂
D̃Kt ,

where

D̃Kt =
⋂
k∈Kt

D̃k, and D̃Jt =
⋂
k∈Jt

D̃k.

We first discuss the structure of D̃Jt . For simplicity, we define a tool function as:

ϕ̃k(D) =
γk Var[Xk]

θE[(X −D)+]
,

and then have the following lemma:

Lemma 2. Given ρ1, . . . , ρn, the interval D̃Jt can be expressed as:

D̃Jt =
⋂
k∈Jt

D̃k,

where each D̃k is determined according to the following cases:

(1) When

Var[Xk]−
Var[X]

γ2k

(∑n
j=1

1
γj

)2 ≥ 0,

(a) If ρk >
γk Var[Xk]

θ E[X]
, there exists a unique D̂k such that ϕk(D̂k) = ρk, and a unique

D♯
k such that ϕ̃k(D

♯
k) = ρk, and then we have D̃k = [D♯

k, D̂k];
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(b) If ρk ≤ γk Var[Xk]
θ E[X]

, we have D̃k = ∅.

(2) When

Var[Xk]−
Var[X]

γ2k

(∑n
j=1

1
γj

)2 < 0,

then there exists a unique D̃k such that ψk(D̃k) = 0. Then,

(a) If ρk > ϕk(D̃k), we have D̃k = [D♯
k,M);

(b) If γk Var[Xk]
θ E[X]

< ρk ≤ ϕk(D̃k), then there exist D̂k ≤ D̂k such that ϕk(D̂k) =

ϕk(D̂k) = ρk, and we have D̃k = [D♯
k, D̂k], or D̃k = [D̂k,M);

(c) If ρk ≤ γk Var[Xk]
θ E[X]

, we have D̃k = [D̂k,M).

Notice that the constraints associated with D̃Kt are inherently dependent on the struc-

ture of D̃Jt . As shown in the proof of Theorem 3, the inequality (20) is meaningful only

if the set D̃Jt is nonempty. To ensure the validity of the analysis for D̃Kt , D̃Jt must be

nonempty. Before delving into the structure of D̃Kt , we first introduce the following tool

functions:

κk(D) =

(
1−

∑
k∈J

√
γk Var[Xk]− ρkθE[(X −D)+]

γk Var[min{X,D}]

)2

Var[min{X,D}],

ηk(D) =

γk Var[Xk]− κk(D)

γk

(∑
k∈K

1
γk

)2

θE[(X −D)+]
,

h(D) = −
dκk(D)

dD
E[(X −D)+]

γk

(∑
k∈K

1
γk

)2 + SX(D)

γk Var[Xk]−
κk(D)

γk

(∑
k∈K

1
γk

)2
 .

Then, we can establish the following lemma:

Lemma 3. Assume that D̃Jt is a nonempty closed interval, denoted by D̃Jt = [DJt
, DJt ].

Given ρ1, . . . , ρn, then D̃Kt can be expressed as:

D̃Kt =
⋂
k∈Kt

D̃k,

where each D̃k is determined according to the following cases:
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(1) When hk(DJt
) ≥ 0 and hk(DJt) ≥ 0, then:

(a) If ρk > ηk(DJt), we have D̃k = ∅;

(b) If ρk < ηk(DJt
), we have D̃k = [DJt

, DJt ];

(c) If ηk(DJt
) ≤ ρk ≤ ηk(DJt), there uniquely exists D+

k such that ρk = ηk(D
+
k ),

and we have D̃k = [D+
k , DJt ].

(2) When hk(DJt
) ≤ 0 and hk(DJt) ≤ 0, then:

(a) If ρk > ηk(DJt
), we have D̃k = ∅;

(b) If ρk < ηk(DJt), we have D̃k = [DJt
, DJt ];

(c) If ηk(DJt) ≤ ρk ≤ ηk(DJt
), we have D̃k = [DJt

, D+
k ].

(3) When hk(DJt
) > 0 and hk(DJt) < 0, there uniquely exists Dη

k such that hk(D
η
k) = 0,

then:

(a) If ρk > ηk(D
η
k), we have D̃k = ∅;

(b) If max{ηk(DJt), ηk(DJt
)} ≤ ρk ≤ ηk(D

η
k), then there exist D+

k ≤ D
+

k such that

ρk = ηk(D
+
k ) = ηk(D

+

k ), and we have D̃k = [DJt
, D+

k ] or D̃k = [D
+

k , DJt ];

(c) If min{ηk(DJt), ηk(DJt
)} ≤ ρk < max{ηk(DJt), ηk(DJt

)}, then we have D̃k =

[DJt
, D+

k ] if ηk(DJt) > ηk(DJt
), and D̃k = [D+

k , DJt ] if ηk(DJt) < ηk(DJt
);

(d) If ρk < min{ηk(DJt), ηk(DJt
)}, we have D̃k = ∅.

Having characterized each Dt for t ∈ {2, . . . , 2n−1}, we now identify the local optimal

deposit D∗
t , when it exists. Similar to the approach in Theorem 4, we assume that Dt is a

nonempty closed interval, which guarantees the existence of a local optimum. We obtain

the following result.

Theorem 5. Assume that Dt is a nonempty closed interval, denoted by Dt = [Dt, Dt].

Given ρ1, . . . , ρn, if there exist Do
t ∈ Dt which is the solution to the following equation:

∑
k∈Kt

ρkθSX(D) =
2∑

k∈Kt

1
γk

(√
Var[min{X,D}]−

∑
k∈Jt

√
Var[Xk]−

ρk
γk
θE[(X −D)+]

)
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· SX(D)

D − E[min{X,D}]√
Var[min{X,D}]

−
∑
k∈Jt

ρk
γk
θ

2
√
Var[Xk]− ρk

γk
θE[(X −D)+]

 ,

then D∗
t = Do

t . Otherwise,

D∗
t = arg max

D∈{Dt,Dt}

n∑
k=1

(E[Wk]− γk Var[Wk]) .

4.2.4 Characterization of global optimal deposit D∗

In the previous sections, we have established that the global feasible region D is the union

of 2n − 1 subfeasible regions Dt, each corresponding to a configuration of the index sets

(K,J ). We also examined each Dt individually and identify the associated local optimal

deposit D∗
t , if it exists.

Once all potentially valid local optima D∗
t are obtained, the global optimal deposit D∗

is identified as the one maximizing the objective function. Specifically, D∗ = D∗
t∗ with

t∗ = argmax
t∈T

n∑
k=1

(E[Wk(D
∗
t )]− γk Var[Wk(D

∗
t )]) , (28)

and

T = {t ∈ {1, . . . , 2n − 1} |D∗
t exists} . (29)

In the following section, we illustrate our findings through numerical simulations.

5 Numerical illustration

In this section, we numerically illustrate the optimal design of rules, beginning with our

calibration approach and followed by a detailed analysis of the results.

5.1 Parameter selection

We consider a simplified case with two participants (n = 2): a high-risk type whose risk

is denoted by XH , and a low-risk type whose risk is denoted by XL. We assume that XH
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and XL are independent and follow a gamma distribution with the probability density

function:

f(x) =
1

Γ(k)ηk
xk−1e−

x
η , x > 0,

where Γ(k) is the gamma function.

In this illustration, we set the baseline parameters as kL = 2, kH = 3, ηL = 1, and

ηH = 2, yielding E[XH ] = 6, Var[XH ] = 12, E[XL] = 2, and Var[XL] = 2, while setting

the benchmark loading parameter at θ = 0.5. We use the ex-ante mean proportion

principle, which yields ρH = E[XH ]/E[X] = 0.75 and ρL = E[XL]/E[X] = 0.25, where

E[X] = E[XH ] + E[XL] represents the aggregate expected loss. For risk aversion, we

consider two scenarios:

Scenario 1. γH = 1, γL = 0.25, indicating that the low-risk group is less risk averse.

Scenario 2. γH = 0.25, γL = 1, indicating that the low-risk group is more risk averse.

5.2 Numerical results

Based on the above calibrations, we conduct a numerical analysis, presenting the opti-

mized parameters α∗, β∗, and D∗ across the considered scenarios in Table 1. In Scenario

1, α∗
H is positive, while α∗

L is negative, indicating that the low-risk type aligns with the

‘seller’ type discussed earlier. In Scenario 2, both α∗
H and α∗

L are positive, implying that

both high- and low-risk types exhibit ‘buyer’ type behavior. Comparing α∗, β∗, and D∗

with and without the IR constraints reveals that the IR condition is binding in Scenario

1, leading to distinct optimal solutions. In contrast, the IR condition is nonbinding in

Scenario 2, resulting in identical solutions.
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Table 1: α∗, β∗, and D∗ in considered scenarios

α∗
H α∗

L β∗
H β∗

L D∗

Scenario 1 (with IR) 2.0499 -1.0499 0.2105 0.7895 7.6338

Scenario 1 (without IR) 2.1781 -1.1781 0.2003 0.7997 7.6025

Scenario 2 (with IR) 0.6178 0.3822 0.7995 0.2005 7.6571

Scenario 2 (without IR) 0.6178 0.3822 0.7995 0.2005 7.6571

In the following, we further examine how the optimal parameters (α∗, β∗, D∗) vary

with respect to the loading parameter θ under Scenario 1. First, Figure 4 presents the

results without the IR constraint. We observe that α∗
H increases with the insurer’s loading

factor θ. As expected, since α∗
H + α∗

L = 1, α∗
L follows the opposite trend. Additionally,

we find that β∗
H and β∗

L remain independent of θ. This result is consistent with Equation

(10) in Theorem 1, as the optimal β∗ depends solely on the values of γs. Moreover, D∗

increases with θ, indicating the pool’s greater willingness to share risk.

Figure 4: Sensitivity analysis of θ without IR condition.

Second, Figure 5 presents the sensitivity analysis of the optimal contract parameters

(α∗, β∗, D∗) under the IR constraint with respect to the loading parameter θ. The analysis

reveals three distinct behavioral patterns. First, α∗
H exhibits a nonmonotonic relationship

with θ, initially increasing before decreasing, while α∗
L follows the opposite trajectory,
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first decreasing then increasing; this phase transition occurs precisely when θ crosses the

threshold at which the IR constraint becomes binding. Second, the β∗ parameters show

threshold-dependent behavior: both β∗
H and β∗

L remain constant in the unconstrained

regime but diverge significantly once the IR condition takes effect, with β∗
H decreasing

and β∗
L increasing monotonically with θ. Finally, the optimal deductible D∗ increases

monotonically with θ until the IR constraint becomes binding, after which it remains

relatively stable. These results collectively demonstrate how the IR condition serves as a

bifurcation point that fundamentally alters the sensitivity of optimal contract parameters

to the loading factor.

Figure 5: Sensitivity analysis of θ with IR condition.

6 Conclusion

This paper presents a comprehensive theoretical exploration of the optimal design of P2P

insurance models in the context of heterogeneous risk. In this context, we have discussed

actuarial fairness conditions and embarked on a step-by-step analytical journey to de-

termine optimal design features of the P2P insurance model. We have mathematically

formulated and solved an optimization problem, which includes the option to cede part

of the aggregate risk to an external insurer. We have examined the trade-off between two

key components of participants’ costs: the sharing of group insurance policy premiums
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and the potential refundable deposit. We have provided analytical solutions both with

and without the IR constraints, and then shed light on the intricacies of designing such

insurance models.

This study has extended its analysis to encompass scenarios in which the insurer im-

poses an extra profit requirement for undertaking tail risks. These findings advance our

understanding of designing P2P insurance systems that balance the interests of heteroge-

neous participants while maintaining fairness and risk-sharing principles. While this paper

adopts the widely-used mean-variance objectives that dominates both academic research

and practical applications, extending the results to other preference classes, such as ex-

pected utilities or risk measures, remains an important direction for future investigation.

Furthermore, although our current analysis treats fairness condition as exogenously deter-

mined, future research could productively explore endogenizing it within the optimization

framework, thereby extending the theoretical foundations in this study.
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A Appendix: Proofs

A.1 Proof for Theorem 1

Considering Problem 1, denote the objective function as J(·). Then we have

J(·) = −(1 + θ)E [(X −D)+]− E [min {D,X}]− Var [min {D,X}]
n∑

k=1

γkβ
2
k .

Therefore, solutions to Problem 1 coincide with solutions of the following problem:

min
{β1,...,βn}∈Rn

n∑
k=1

γkβ
2
k , s.t.

n∑
k=1

βk = 1.

The Lagrangian function is

L(·) =
n∑

k=1

γkβ
2
k − λ

(
n∑

k=1

βk − 1

)
.

Setting ∂L(·)
∂λ

= 0 and ∂L(·)
∂βk

= 0 for all k = 1, . . . , n leads to

β∗
k =

1

γk
∑n

k=1
1
γk

.

Moreover, Equation (8) implies that:

αk =
E [Xk] + ρkθE

[
(X −D)+

]
− E [min {D,X}] β∗

k

(1 + θ)E
[
(X −D)+

] .

A.2 Proof for Corollary 2

Differentiating α∗
k with respect to θ yields:

dα∗
k

dθ
=
ρkE

[
(X −D)+

]
− E [Xk] + β∗

kE [min {D,X}]
(1 + θ)2E

[
(X −D)+

]
=
ρkE

[
(X −D)+

]
− α∗

k(1 + θ)E[(X −D)+] + ρkθE[(X −D)+]

(1 + θ)2E
[
(X −D)+

]
=
ρk − α∗

k

1 + θ
.

It follows that if ρk ≥ α∗
k, α

∗
k increases with θ; and if ρk ≤ α∗

k, α
∗
k decreases with θ.
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A.3 Proof for Corollary 3

It is straightforward to check that:

dα∗
k

dD
=
SX(D) [E [Xk]− β∗

kE [X]]

(1 + θ)E
[
(X −D)+

] .

Thus, if E [Xk] − β∗
kE [X] ≥ 0, then α∗

k increases with D. If E [Xk] − β∗
kE [X] ≤ 0, then

α∗
k decreases with D.

A.4 Proof for Theorem 2

Problem 2 is equivalent to maximizing the following objective function J(D):

J(D) =
n∑

k=1

(E[−α∗
kΠ− β∗

kD + β∗
k(D −X)+]− γk Var[β

∗
k(D −X)+]) ,

which can be rewritten as:

J(D) = −(1 + θ)g1(D)− g2(D)− g3(D)∑n
k=1

1
γk

,

where the auxiliary functions are defined as:

g1(D) = E[(X −D)+] =

∫ +∞

D

x dFX(x)−DSX(D),

g2(D) = E[min{D,X}] =
∫ D

0

x dFX(x) +DSX(D),

g3(D) = Var[min{D,X}] =
∫ D

0

x2 dFX(x) +D2SX(D)−
(∫ D

0

x dFX(x) +DSX(D)

)2

.

Next, we compute the first derivative of J(D) with respect to D:

dJ(D)

dD
= −(1 + θ)

dg1(D)

dD
− dg2(D)

dD
− 1∑n

k=1
1
γk

dg3(D)

dD
= J1(D) · SX(D),

where

J1(D) = θ − 2

(
DFX(D)−

∫ D

0

x dFX(x)

)
·

(
1∑n

k=1
1
γk

)
= θ − 2∑n

k=1
1
γk

∫ D

0

FX(s) ds.

Since SX(D) ≥ 0, the sign of dJ(D)
dD

depends on the sign of J1(D). Therefore, we analyze

the properties of J1(D). Taking the derivative of J1(D) with respect to D, we get:

dJ1(D)

dD
= − 2FX(D)∑n

k=1
1
γk

≤ 0,
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which implies that J1(D) is decreasing in D. Consequently, we obtain in (0,M):

J1(D) < sup J1(D) = J1(0) = θ,

J1(D) > inf J1(D) = J1(M) = θ − 2∑n
k=1

1
γk

(M − E[X]) .

We now have two cases based on the value of θ:

(1) If θ ≥ 2∑n
k=1

1
γk

(M − E[X]), then J1(D) > 0 for all D, implying that dJ(D)
dD

> 0. In

this case, there are no maximums that exist in (0,M).

(2) If θ < 2∑n
k=1

1
γk

(sup(X)− E[X]), then there uniquely exists D̂ ∈ (0,M) such that

dJ(D)
dD

> 0 for D ∈ (0, D̂), and dJ(D)
dD

< 0 for D ∈ (D̂,M). In this case, D̂ is the unique

solution to J1(D) = 0, i.e.,

θ

2

n∑
k=1

1

γk
=

∫ D̂

0

FX(s) ds.

Thus, the optimal deposit is given by: D∗ = D̂.

A.5 Proof for Theorem 3

Problem 3 is equivalent to the following formulation:

min
{β1,...,βn}∈Rn

Var[(D −X)+]
n∑

k=1

γkβ
2
k , (30)

s.t.
n∑

k=1

βk = 1, (31)

ρk ≤
γk Var[Xk]− γkβ

2
k Var[min{X,D}]

θE[(X −D)+]
, ∀k ∈ {1, ..., n}. (32)

First, we consider the case where the constraint (32) is inactive for all k ∈ {1, . . . , n}. In

this case, we solve the unconstrained version of the problem. In this case, the Lagrangian

function is:

L = Var[(D −X)+]
n∑

k=1

γkβ
2
k + λ

(
n∑

k=1

βk − 1

)
.

Setting ∂L
∂λ

= 0 and ∂L
∂βk

= 0 for all k, we derive:

β∗
k =

1

γk
∑n

k=1
1
γk

.
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Since we assumed that (32) is inactive, we must ensure that, for all k ∈ {1, . . . , n},

ρk ≤
γk Var[Xk]− 1

γk(
∑n

k=1
1
γk

)2
Var[min{X,D}]

θE[(X −D)+]
.

This is holds true by (20), which concludes the proof for the case that J is empty.

Second, define two nonempty index sets K and J such that K ∩ J = ∅, K ∪ J =

{1, . . . , n}. Suppose that for all k ∈ J the constraint (17) is active , i.e.

ρk >
γk Var[Xk]− 1

γk(
∑n

k=1
1
γk

)2
Var[min{X,D}]

θE[(X −D)+]
.

This implies that all β∗
k for k ∈ J lies on the boundary. Meanwhile, we assume that for

all k ∈ K, the constraint (17) is inactive. Thus, the optimization problem becomes:

min
{β1,...,βn}∈Rn

Var[(D −X)+]
n∑

k=1

γkβ
2
k ,

s.t.
∑
k∈K

βk +
∑
k∈J

βk = 1,

ρk =
γk Var[Xk]− γkβ

2
k Var[min{X,D}]

θE[(X −D)+]
, k ∈ J .

The Lagrangian for this problem is:

L = Var[(D −X)+]

(∑
k∈K

γkβ
2
k +

∑
k∈J

γk Var[Xk]− ρkθE[(X −D)+]

γk Var[min{X,D}]

)

+ λ

(∑
k∈K

βk +
∑
k∈J

βk − 1

)
.

Setting ∂L
∂λ

= 0 and ∂L
∂βk

= 0 for k ∈ K, we can obtain:

βk =
1−

∑
k∈J βk

γk
∑

k∈K
1
γk

.

For k ∈ J , from the binding constraint we have:

γk Var[Xk]− 1
γk(

∑n
k=1

1
γk

)2
Var[min{X,D}]

θE[(X −D)+]
<
γk Var[Xk]− γkβ

2
k Var[min{X,D}]

θE[(X −D)+]
,

which leads to:

−1 < −
∑

k∈J
1
γk∑n

k=1
1
γk

<
∑
k∈J

βk <

∑
k∈J

1
γk∑n

k=1
1
γk

< 1.
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Thus, it holds for k ∈ K that βk > 0. For k ∈ J , from the constraints we can obtain:

βk = ±

√
γk Var[Xk]− ρkθE[(X −D)+]

γk Var[min{X,D}]
.

Now, substitute βk, k ∈ K, into the Lagrange function L, we get

L = Var[(D −X)+]

∑
k∈K

γk

(
1−

∑
k∈J βk

γk
∑

k∈K
1
γk

)2

+
∑
k∈J

γk Var[Xk]− ρkθE[(X −D)+]

Var[min{X,D}]

 .

As we have already shown, 1−
∑

k∈J βk > 0. Thus, to minimize L, we should maximize∑
k∈J βk, which implies that the optimal βk for k ∈ J should be positive, i.e. ,

β∗
k =

√
γk Var[Xk]− ρkθE[(X −D)+]

γk Var[min{X,D}]
.

Together with the inequality
∑

k∈J βk < 1, we get that for all k ∈ J , 0 < βk < 1, and

hence 0 <
∑

k∈J βk < 1. Therefore, for k ∈ K, we also have 0 < βk < 1.

Additionally, for β∗
k to be real and exist for all k, we must require:

ρk ≤
γk Var[Xk]

θE[(X −D)+]
, ∀k ∈ {1, . . . , n}.

Moreover, since

1−
∑
k∈J

βk > 1−
∑

k∈J
1
γk∑n

k=1
1
γk

=

∑
k∈K

1
γk∑n

k=1
1
γk

,

we get the lower bound for βk, k ∈ K, as:

βk =
1−

∑
j∈J βj

γk
∑

j∈K
1
γj

>
1

γk
· 1∑n

j=1
1
γj

.

This implies that in this case, compared with the unconstrained case, β∗
k for k ∈ K become

larger. To ensure that constraint (17) remains inactive for k ∈ K, we must have:

ρk ≤
γk Var[Xk]−

(1−
∑

k∈J β∗
k)

2

γk

(∑
k∈K

1
γk

)2 Var[min{X,D}]

θE[(X −D)+]
.

So far, (1) has been proved.

Finally, for (2), if J = {1, . . . , n}, then for all k ∈ {1, . . . , n}, β∗
k must satisfy the

binding constraint. However, it is straightforward to verify that in this case
∑n

k=1 β
∗
k < 1,

which violates the feasibility condition. Thus, no solution exists under this configuration.
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A.6 Proof for Lemma 1

In the beginning, condition (24) is equivalent to ρk ≤ ϕk(D) holds for all k ∈ {1, . . . , n}.

For each participant k, let D̃k denote the feasible region of D for which the constraint

(24) is satisfied. It then follows that:

D1 =
n⋂

k=1

D̃k.

To analyze the structure of D̃k, we examine the behavior of ϕk(D). First, note that:

dϕk(D)

dD
=
γkSX(D)ψk(D)

θE[(X −D)+]2
,

and
dψk(D)

dD
= −2FX(D)E[(X −D)+]

γ2k

(∑n
j=1

1
γj

)2 < 0.

Hence, ψk(D) is decreasing in D. Furthermore, the range of ψk(D) satisfies:

sup
D
ψk(D) = ψk(0) = Var[Xk], inf

D
ψk(D) = ψk(M) = Var[Xk]−

Var[X]

γ2k

(∑n
j=1

1
γj

)2 .
Now consider two cases: First, if

Var[Xk]−
Var[X]

γ2k

(∑n
j=1

1
γj

)2 ≥ 0,

then ψk(D) > 0 for all D ∈ (0,M), and hence ϕk(D) is increasing. In this case, we have:

inf
D
ϕk(D) = ϕk(0) =

γk Var[Xk]

θE[X]
, sup

D
ϕk(D) = ϕk(M) = +∞.

According to the monotonicity of ϕk(D), (1) in Lemma 1 is shown. Second, if

Var[Xk]−
Var[X]

γ2k

(∑n
j=1

1
γj

)2 < 0,

then ψk(D) is initially positive but eventually becomes negative as D increases. This im-

plies that ϕk(D) is increasing over a certain interval and decreasing afterward. According

to the monotonicity of ϕk(D), (2) in Lemma 1 is shown.
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A.7 Proof for Theorem 4

By the proof of Theorem 2, we get that the objective function J(·) satisfies dJ(D)
dD

=

J1(D)SX(D), where

J1(D) = θ − 2∑n
k=1

1
γk

∫ D

0

FX(s)ds,

and dJ1(D)
dD

< 0. Thus, we get

sup
D
J1(D) = J1(D1) = θ − 2∑n

k=1
1
γk

∫ D1

0

FX(s)ds.

inf
D
J1(D) = J1(D1) = θ − 2∑n

k=1
1
γk

∫ D1

0

FX(s)ds.

Then, we have: When

θ − 2∑n
k=1

1
γk

∫ D1

0

FX(s)ds ≤ 0,

then J1(D) < 0 which implies dJ(D)
dD

< 0. In this case, we have D∗
1 = D1. When

θ − 2∑n
k=1

1
γk

∫ D1

0

FX(s)ds ≥ 0,

then J1(D) > 0 which implies dJ(D)
dD

> 0. In this case, we have D∗
1 = D1. When

θ − 2∑n
k=1

1
γk

∫ D1

0

FX(s)ds > 0, and θ − 2∑n
k=1

1
γk

∫ D1

0

FX(s)ds < 0.

then there uniquely exists a Do > 0 such that dJ(D)
dD

> 0 if D ∈ (D1, D
o), and dJ(D)

dD
< 0

if D ∈
(
Do, D1

]
. Here, Do is the unique solution of J1(D) = 0, i.e.,

θ

2

n∑
k=1

1

γk
=

∫ Do

0

FX(s)ds.

Therefore, in this case we can have:

D∗
1 = D1 · I[Do < D1] +Do · I[D1 ≤ Do ≤ D1] +D1 · I[Do > D1].

A.8 Proof for Lemma 2

Note that ϕ̃k(D) is increasing in D, and satisfies ϕ̃k(D) ≤ ϕk(D), with equality if and

only if D → 0. Given these properties, the proof of Lemma 2 is similar to that of Lemma

1, by applying the same monotonicity arguments and structural reasoning.
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A.9 Proof for Lemma 3

Consider (20) in Theorem 3, which imposes the condition ρk ≤ ηk(D) for all k ∈ Kt. For

each participant k, let D̃k denote the feasible region of D that satisfies constraint (20). It

then follows that:

D̃Kt =
⋂
k∈Kt

D̃k,

To analyze the structure of D̃k, we examine the behavior of ηk(D). First, note that:

dηk(D)

dD
=

h(D)

θE[(X −D)+]2
,

d2ηk(D)

dD2
=

dh(D)
dD

E[(X −D)+]
2 + 2h(D)E[(X −D)+]SX(D)

θE[(X −D)+]4
.

In the following, we will prove that when dηk(D)
dD

= 0, we have d2ηk(D)
dD2 < 0. First, define a

tool function g(D) as:

g(D) =
√

Var[min{X,D}]−
∑
k∈J

√
Var[Xk]−

ρk
γk
θE[(X −D)+].

It holds that κk(D) = g(D)2, and we have

dg(D)

dD
= SX(D)l(D),

where

l(D) =

D − E[min{X,D}]√
Var[min{X,D}]

−
∑
k∈J

ρkθ

2γk
√

Var[Xk]− ρk
γk
θE[(X −D)+]


Now, we investigate the monotonicity of l(D). Apparently, the second item of l(D) is

increasing with respect to D. We now examine the monotonicity of the first item of l(D),

which we denote it as l1(D). We have

dl1(D)

dD
=

m(D)

Var[min{X,D}]5/2
,

where

m(D) = FX(D)Var[min{X,D}]− SX(D)(D − E[min{X,D}])2.

We have

dm(D)

dD
= fX(D)Var[min{X,D}] + fX(D)(D − E[min{X,D}]) > 0,
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which implies that m(D) > infm(D) = m(0) = 0. Thus m(D) > 0, dl1(D)
dD

> 0, and then

l(D) is increasing with D. When dηk(D)
dD

= 0, we have h(D) = 0, which further implies:

dg(D)

dD
=

SX(D)

(
γk Var[Xk]− g(D)2

γk

(∑
k∈K

1
γk

)2

)
2E[(X −D)+]

g(D)

γk

(∑
k∈K

1
γk

)2

.

When h(D) = 0, we have

d2ηk(D)

dD2
=

dh(D)
dD

θE[(X −D)+]2
,

where
dh(D)

dD
= −2E[(X −D)+]

γk

(∑
k∈K

1
γk

) [( dg(D)

dD

)2

− g(D)SX(D)
dl(D)

dD

]
< 0.

Thus we proved that when dηk(D)
dD

= 0, d2ηk(D)
dD2 < 0. This shows that ηk(D) is either

monotonically increasing, monotonically decreasing, or first increasing and then decreas-

ing. This is because all points where the first-order derivative is zero will be maximum

points. It is easy to verify that the lemma follows from the monotonicity of ηk(D).

A.10 Proof for Theorem 5

Denote J(D) be the objective function, we have

dJ(D)

dD
= n

(∑
k∈K

ρkθSX(D)−
dκ(D)
dD∑
k∈K

1
γk

)
,

d2J(D)

dD2
= n

(
−
∑
k∈K

ρkθfX(D)−
d2κ(D)
dD2∑
k∈K

1
γk

)
.

In the following, we will prove that when dJ(D)
dD

= 0, we have d2J(D)
dD2 < 0. Recall the tool

function g(D) we defined in the proof of Lemma 3; when dJ(D)
dD

= 0, we have

g(D) =

∑
k∈K ρkθSX(D)

∑
k∈K

1
γk

2 dg(D)
dD

,

then we have

d2J(D)

dD2
= − 2∑

k∈K
1
γk

[(
dg(D)

dD

)2

+ SX(D)g(D)
dl(D)

dD

]
< 0.
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Thus, whenever dJ(D)
dD

= 0, it follows that d2J(D)
dD2 < 0, indicating that such points corre-

spond to local maxima. As in the discussion of ηk(D) in Lemma 3, the function J(D)

may exhibit monotonic behavior—either increasing or decreasing—across different re-

gions. However, any point at which the first derivative equals to zero is guaranteed to be

a maximum. Therefore, by exploiting the monotonicity of J(D), the result follows.
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