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1 Introduction

This paper studies the optimal insurance contract design, where contracts following from bargaining

amongst multiple insurers. A policyholder (PH) seeks to insure a part of its risk in a market where

multiple insurers are present. We assume that insurance contracts are Pareto optimal, implying

that there is no alternative contract that is better for all parties and strictly better for at least one

party. Moreover, the aggregate premium that the PH pays is shared amongst the insurers. We

propose a cooperative game to determine a set of stable allocations that leads to a set of premiums.

This set of stable allocations is obtained via the core of an appropriate cooperative game. The core

is originally introduced for general cooperative games by Gillies (1953) and Scarf (1967).

Whereas most of the traditional literature on insurance contract design focuses on optimal

contracts with given premium functions (Borch, 1960; Arrow, 1963), we assume that indemnities

and premiums follow from bargaining amongst the insurers. This approach is in line with Raviv

(1979), who focuses on Pareto optimal insurance contracts with expected utilities.1 We assume that

all agents are endowed with a specific class of translation invariant risk measures, of which dual

utility (Yaari, 1987) is a canonical example. Maximising dual utility is equivalent to minimising

a distortion risk measure, as introduced by Wang et al. (1997). Dual utilities are often used to

represent the preferences of corporations as regulatory requirements are based on a distortion risk

measure in the Swiss Solvency Test regulation for insurers (a conditional Value-at-Risk), and a

popular insurance premium principle is the distortion premium principle (Wang, 1996).

In contrast to Raviv (1979) that imposes an expected value principle bound on the premiums,

our approach proposes a two-stage process that separates the indemnities and premiums via Pareto

optimality: Pareto optimality yields a particular shape of the indemnities, but not on the premi-

ums. We are allowed to do this when the preferences are translation invariant, whereas Raviv (1979)

focusses on expected utilities. We use a game-theoretic approach to determine a set of premiums.

Game-theoretic approaches to optimal reinsurance contract design are not new in case of expected

utility preferences. In particular, Baton and Lemaire (1981) investigate the core in reinsurance mar-

kets. Moreover, Suijs et al. (1998, 1999) study the core of insurance markets under the restriction

that insurance contracts are proportional.

In this paper, we focus on risk sharing of insurance contracts, where there are multiple insurers

1Borch (1962) and DuMouchel (1968) study Pareto optimal risk sharing in a reinsurance markets. In reinsurance
markets, the only constraint on risk sharing contracts is that all risk is redistributed. There do not appear constraints
such as the non-negativity of premiums and the constraint is that the insurance coverage cannot be larger than the
underlying loss.
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that are willing to sell insurance to a PH. In insurance, there are constraints on indemnities that are

used for a convex optimisation problem to determine Pareto optimal contracts. We allow for a very

general class of insurance indemnities. We show that Pareto optimality provides us with a structure

on the indemnity contracts, but not on the corresponding prices. For a Pareto optimal contracts,

we study the core and anti-core of an appropriate cooperative game to select a range of premiums.

The insurance contracts must be such that no subgroup of insurers has a joint incentive to stay

in the market, while paying the other insurers their maximum joint welfare gain. The maximum

joint welfare gain represents the maximum aggregate profit of this subgroup of insurers in a market

without the other insurers. We show that this stability criterion leads us to allocations in the anti-

core of a cooperative game. We show that the anti-core is non-empty and provide a closed-form

expression in case the agents are endowed with dual utilities.

When the objectives are given by risk measures, Pareto optimality is also studied by Boonen et

al. (2016a) and Cai et al. (2017). Boonen et al. (2016a) discard the non-negativity property

of prices. Such constraints change the underlying method to solve Pareto optimal contracts, but

we show that the outcomes are similar. Cai et al. (2017) focus on Pareto optimality of insurance

arrangements, but with given premium functionals. The approach with given premium functionals

has been popular in the related literature of optimal reinsurance contract design. These kind

of assumptions facilitate obtaining explicit solutions of such optimal contracts, but it could be

criticised for their ad-hoc mathematical representation. On the contrary, our approach aims to let

the premium be part of the insurance contract to bargain for rather than imposing a rigid premium

setting. We show that optimal reinsurance contracts are Pareto optimal, where optimal reinsurance

contracts are obtained by optimising the preferences of one party under participation constraints

of the other parties. There is a fast growing literature on optimal reinsurance contract design (see,

e.g., Young, 1999; Balbás et al., 2011; Chi, 2012; Asimit et al., 2013; Cui et al., 2013; Bernard et al.,

2015). We are the first to make a connection between Pareto optimality and optimal reinsurance

contract design.

The uncertainty with choosing the right model, also known as model risk, is an important issue

and cannot be ignored. The common practical issue is data scarcity, which represents a standard

source for model error. Expert opinion is quite often another way of choosing a model believed to be

the “best” possible one, which is limited to the past experience and individual perspectives about

future outcomes. Another source of model error is given by proxy models, models that are socially

accepted within a profession and widely spread in regulation standards. The underlying model is
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not unknowable, but unknown and the decision-maker is exposed to a higher level of uncertainty

and robust decisions are desirable. Encapsulating the model error in the decision-making process

may not be done in the same fashion amongst all decision-makers. That is, there might be divergent

beliefs about the concurrent risk models that various decision-makers validate as plausible models.

The classical theory of robust statistics (for example, see Huber, 1964; Huber and Ronchetti, 2009)

helps the decision-maker to produce a robust model choice and this is usually possible if data scarcity

is not present. Another disadvantage of this method when solving an optimisation problem is that

the ultimate goal is to identify a robust optimal decision and not necessary a robust model choice.

This is precisely why the robust optimisation becomes a standard method to resolve the issue of

optimisation under uncertainty. Within the optimal insurance problem, some attempts appeared

recently in Balbás et al. (2015) and Asimit et al. (2017a). Wilson (1968), Acciaio and Svindland

(2009), Boonen (2016), and Ghossoub (2017) all study risk sharing where agents have heterogeneous

beliefs, i.e. the model risk is refuted by all insurance players and there is one “true” and known

model for each player.

This paper is set out as follows: Section 2 states the model set-up; Section 3 characterises the

Pareto optimality set, while closed-form and numerical solutions are discussed in Section 4; Section 5

characterises a class of premiums using cooperative game theory for two classes of preferences; the

link between the more recent literature on individual optimal insurance and the classical Pareto

optimal concept is revealed in Section 6; Section 7 generalises our results to the case in which the

model risk is no longer ignored; finally, Section 8 concludes the paper.

2 Model Set-up

Consider a probability space given by (Ω,F ,P) and then, for any 1 ≤ p ≤ ∞, let Lp(P) be the set of

p-integrable random variables. Moreover, Lp+(P) is the set of non-negative and p-integrable random

variables. The standard insurance usually assumes that there is one PH who wishes to insure its

risk X ∈ Lp+(P) (a loss) on a given future reference period and let N = {1, . . . , n} be the set of

available insurers that are willing to cover a part or possibly the entire risk. It is further assumed

that the PH and each insurer have preferences ordered via risk measures on Lp(P), denoted by ρPH

and ρi, i ∈ N , respectively. That is, the functionals ρPH , ρi : Lp(P) → R are considered, where

i ∈ N . Various risk measure properties appeared in the literature and the following are recalled in

this paper for a generic risk measure ρ : Lp(P)→ R:
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(P1) Monotonicity : If Y ≤ Z P-almost surely, then ρ(Y ) ≤ ρ(Z);

(P2) Translation Invariance: For any m ∈ R, ρ(Y +m) = ρ(Y ) +m;

(P3) Positive homogeneity : For any λ ≥ 0, ρ(λY ) = λρ(Y );

(P4) Subadditivity : ρ(Y + Z) ≤ ρ(Y ) + ρ(Z);

(P5) Convexity : For any 0 ≤ β ≤ 1, ρ
(
βY + (1− β)Z

)
≤ βρ(Y ) + (1− β)ρ(Z);

(P6) Strict convexity : For any 0 < β < 1, ρ
(
βY + (1− β)Z

)
< βρ(Y ) + (1− β)ρ(Z) provided that

there exists no a ∈ R such that Y − Z = a P-almost surely;

(P7) Comonotonic additivity : If Y and Z are comonotonic, i.e.
(
Y (ω)−Y (ω′)

)(
Z(ω)−Z(ω′)

)
≥ 0

for any ω, ω′ ∈ Ω, then ρ(Y + Z) = ρ(Y ) + ρ(Z).

Throughout this paper, all risk measures are law-invariant2 and satisfy (P2). Moreover, without

loss of generality, we assume ρ(0) = 0. Recall that a risk measure that satisfies (P1)–(P4) is

a coherent risk measure. Moreover, a distortion risk measure satisfies (P1), (P7), law-invariance

and a continuity-type property (for details, see Wang et al., 1997); these risk measures have been

introduced in the insurance pricing context by Wang (1996), even though it appears earlier as a pref-

erence relation known as dual utility (see Yaari, 1987). Specifically, the mathematical formulation

of a distortion risk measure is given by

ρ(Y ) =

∞∫
0

g
(
SY (z)

)
dz −

0∫
−∞

[
1− g

(
SY (z)

)]
dz, (2.1)

for all Y ∈ Lp(P), where SY (·) = P(Y > ·) and g : [0, 1] → [0, 1] is a non-decreasing function with

g(0) = 0 and g(1) = 1 known as distortion function. Note that the integrals in (2.1) are assumed

to be finite and distortion risk measures also satisfy (P2) and (P3). Distortion risk measures are

characterised by Yaari (1987) as an alternative to expected utility. For distortion risk measures, the

evaluation of a risk is linear in the pay-offs, but non-linear in the probabilities.

Throughout this paper, we assume that the PH seeks to share its risk X ∈ Lp+(P) with some

insurers. The set of insurers that the PH is trading with is given by the set S ⊆ N . Each insurer

accepts to cover Xi ∈ Lp+(P) such that Xi ≤ X in exchange of a premium πi ≥ 0, where i ∈ S and

as a result, the PH covers the remaining amount XPH = X −
∑

i∈S Xi and pays the total premium∑
i∈S πi.

2By definition, ρ is law-invariant if for any Y,Z ∈ Lp(P) with Y
d
= Z, then ρ(Y ) = ρ(Z).
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Next, we explain the set of feasible insurance contracts, that include rationality constraints for

all insurance agents. Each insurer aims to minimise its own risk, ρi
(
Xi − πi

)
, under the rationality

constraint ρi
(
Xi − πi

)
≤ 0, where ρi(0) = 0 is the risk of insurer i before the transaction. Simi-

larly, the PH aims to reduce its risk, ρPH

(
XPH +

∑
i∈S πi

)
, under its own rationality constraint

ρPH

(
XPH +

∑
i∈S πi

)
≤ ρPH(X), where ρPH(X) is the risk of the PH before the transfer is made.

Therefore, we call a contract
(
πS , XS

)
feasible if

ρi
(
Xi − πi

)
≤ 0 for all i ∈ S and ρPH

(
XPH +

∑
i∈S

πi

)
≤ ρPH(X). (2.2)

We write
(
πS , XS

)
∈ RS+ ×AS(X), where

AS(X) =
{
XS :

∑
i∈S∪PH

Xi = X, Xi ∈ Lp+(P) for all i ∈ S ∪ PH
}
.

Moreover, the risk profiles XS ∈ AS(X) are called risk allocations.

The main purpose of the paper is to characterise the optimal insurance contract amongst all

insurance players. The most common approach in the economic theory is the Pareto criterion, which

is detailed in the next section.

3 Characterisation of Pareto optimal contracts

It is an irrefutable fact that conflicting objectives arise amongst insurer players and therefore,

a compromising mutually beneficiary solution is of interest, which is usually attained via Pareto

optimality. By definition, for a given S ⊆ N , the contract
(
πS , XS

)
∈ RS+×AS(X) is called Pareto

optimal if it is feasible and there is no other feasible contract
(
π̃S , X̃

S) ∈ RS+ ×AS(X) such that

ρi
(
X̃i − π̃i

)
≤ ρi

(
Xi − πi

)
for all i ∈ S and ρPH

(
X̃PH +

∑
i∈S

π̃i
)
≤ ρPH

(
XPH +

∑
i∈S

πi
)
,

with at least one strict inequality. Let us denote PS as the set of all Pareto optimal contracts. The

next theorem characterises the set of Pareto optimal contracts and is given as Theorem 3.1.

Theorem 3.1. If ρi satisfies (P2) for all i ∈ S ∪ PH, then PS = SS , where

SS = arg min(
πS ,XS

)
∈RS+×AS(X)

∑
i∈S∪PH

ρi(Xi) s.t. condition (2.2) holds. (3.1)
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Proof. We first show by contradiction that SS ⊆ PS . Thus, there exists a contract
(
π∗S , X∗S

)
∈ SS

that is not Pareto optimal. This means that there exists
(
π̃S , X̃

S) ∈ RS+ ×AS(X) such that

ρi
(
X̃i − π̃i

)
≤ ρi

(
X∗i − π∗i

)
, for all i ∈ S and ρPH

(
X̃PH +

∑
i∈S

π̃i

)
≤ ρPH

(
X∗PH +

∑
i∈S

π∗i

)

with at least one strict inequality. Thus, since all risk preferences satisfy (P2),

∑
i∈S∪PH

ρi
(
X̃i

)
<

∑
i∈S∪PH

ρi
(
X∗i
)
, (3.2)

which contradicts that
(
π∗S , X∗S

)
solves (3.1).

Let us prove now PS ⊆ SS , once again, by contradiction. Thus, there exists a Pareto optimal

contract
(
π∗S , X∗S

)
∈ PS that is not a solution of (3.1). This means that there exists

(
π̃S , X̃

S) ∈
RS+ ×AS(X) such that (3.2) holds. For the sake of exposition, denote now

ai
(
πS , XS

)
= ρi

(
Xi − πi

)
for all i ∈ S and aPH

(
πS , XS

)
= ρPH

(
XPH +

∑
i∈S

πi

)
.

Let π̂S = π̃S + εS with εi = ai
(
π̃S , X̃

S)− ai(π∗S , X∗S) for all i ∈ S. Thus,

aPH
(
π̂S , X̃

S)
= aPH

(
π̃S , X̃

S)
+
∑
i∈S

εi < aPH
(
π∗S , X∗S

)
, (3.3)

which is true due to (3.2). Further, for all i ∈ N , we have that

ai
(
π̂S , X̃

S)
= ai

(
π̃S , X̃

S)− εi = ai
(
π∗S , X∗S

)
. (3.4)

It is not difficult to verify that
(
π̂S , X̃

S)
is a feasible contract, i.e.

ai
(
π̂S , X̃

S) ≤ 0 for all i ∈ S and aPH
(
π̂S , X̃

S) ≤ ρPH(XPH

)
,

which are straightforward implications of relations (3.3), (3.4) and the rationality constraints for(
π∗S , X∗S

)
. Note also that π̂i ≥ 0, since ai

(
π̂S , X̃

S) ≤ 0 is true for all i ∈ S. Finally, the feasibility

of
(
π̂S , X̃

S)
together with equations (3.3) and (3.4) imply that

(
π∗S , X∗S

)
6∈ PS , which concludes

the proof of PS ⊆ SS . Hence, PS = SS , and so the proof is now complete.

Theorem 3.1 implies that if the minimum in (3.1) does not exist, the Pareto optimal set is empty.
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Recall that the rationality constraints imply that the PH does not pay any premium if the decision

is to not transfer anything to the insurers. According to Theorem 3.1, (P2) yields to a particular

structure on risk allocations if we focus on Pareto optimality, while the premiums may arbitrarily

be chosen as long as they yield a feasible contract. For expected utilities that do not satisfy (P2),

we are not always able to disentangle the risk allocations and the premiums in this way via Pareto

optimality (see Raviv, 1979).

Theorem 3.1 still holds if the rationality constraints from (2.2) are replaced by more stringent

transferability conditions such

ρi
(
Xi − πi

)
≤Mi for all i ∈ S and ρPH

(
XPH +

∑
i∈S

πi
)
≤ ρPH(X), (3.5)

where Mi ≤ 0, i ∈ S. Therefore, the Pareto optimal set can be found by simply solving

min(
πS ,XS

)
∈RS+×AS(X)

∑
i∈S∪PH

ρi
(
Xi

)
s.t. condition (3.5) holds.

Note that the premiums πS are not present in the above objective function, while the constraints

are linear in the πi’s. Thus, the latter optimisation problem is equivalent to solving

min
XS∈AS(X)

∑
i∈S∪PH

ρi
(
Xi

)
s.t.

∑
i∈S∪PH

ρi
(
Xi

)
≤
∑
i∈S

Mi + ρPH(X), (3.6)

where the premiums belong to a set that depends on the optimal solution XS . Interestingly, the

standard set (when Mi = 0 for all i ∈ S) of Pareto contracts becomes much simpler and it is

equivalent to solving

min
XS∈AS(X)

∑
i∈S∪PH

ρi(Xi). (3.7)

Note 3.2. Since the objective function appears as a constraint as well in (3.6), then solving (3.6)

is the same as solving the unconstrained counterpart, i.e. (3.7), but one should check if the optimal

objective value of (3.7) satisfies the inequality constraint; otherwise the set of feasible solutions of

(3.6) is an empty set.

An usual assumption in risk transferring is to assume comonotonic risk allocations. More specif-

ically, if we do not impose the retained risk XPH by the PH to be non-decreasing in the total risk,
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then the PH would have an incentive to under-report their losses. On the other hand, if XPH

increases more rapidly than X, then the PH would have an incentive to create incremental losses.

Similar arguments could be found if the insurance coverage Xi would not be non-decreasing in the

total loss. This implies that we replace the feasible set AS(X) in (3.7) by the following smaller set:

CS(X) =
{
XS ∈ AS(X) : Xi, Xj are comonotonic for all i, j ∈ S ∪ PH

}
.

Note that risk allocations in AS(X)\CS(X) may be decreasing in the loss or have discontinuities and

cut-off points, where the indemnity drops to zero after a certain loss level.3 Recall that the insurance

focused literature discusses many specific insurance contracts that are not elements of CS(X); for

example, marine breakdown insurance may expect a different risk behaviour, since the risk manager

is not the direct beneficiary of the insurance contract. Despite these examples, the vast majority

of the existing insurance contracts are elements of CS . A reasonable trade-off between practicality

and generality would be to choose CS as the actual feasible set. The following proposition shows

that Pareto optimal contracts could then still be found.

Proposition 3.3. If ρi satisfy (P5) for all i ∈ S ∪ PH, then (3.6) is solved by any solution of

min
XS∈CS(X)

∑
i∈S∪PH

ρi
(
Xi

)
s.t.

∑
i∈S∪PH

ρi
(
Xi

)
≤
∑
i∈S

Mi + ρPH(X). (3.8)

Moreover, if (3.6) has no solution, then (3.8) has no solution either.

Proof. Firstly, assume that (3.8) is solved by X∗S ∈ CS(X) and this solution does not solve (3.6).

Thus, X∗S is feasible for (3.6) and in turn, there exists a feasible solution of (3.6), X̂
S ∈ AS(X),

such that ∑
i∈S∪PH

ρi
(
X̂i

)
<

∑
i∈S∪PH

ρi
(
X∗i
)
.

Theorem 2.3 of Burgert and Rüschendorf (2006) shows that for law-invariant (as we implicitly

assumed from the very beginning) preferences satisfying (P5), there exists X̃
S ∈ CS(X) such that

ρi
(
X̃i

)
≤ ρi

(
X̂i

)
for all i ∈ S∪PH. Recall that X̂

S
is feasible for (3.6) and therefore, X̃

S
is feasible

for (3.8) and improves its objective since

∑
i∈S∪PH

ρi
(
X̃i

)
≤

∑
i∈S∪PH

ρi
(
X̂i

)
<

∑
i∈S∪PH

ρi
(
X̃∗i
)
≤
∑
i∈S

Mi + ρPH(X),

3Such risk allocation is found in Bernard et al. (2015).
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which contradicts our assumption that X∗S does not solve (3.6).

Secondly, assume that (3.6) has no solution, but (3.8) is solved by X∗S ∈ CS(X). Thus, X∗S is

feasible for (3.6) and in turn, there exists a feasible solution to (3.6), X̂
S ∈ AS(X), such that

∑
i∈S∪PH

ρi
(
X̂i

)
<

∑
i∈S∪PH

ρi
(
X∗i
)
.

Once again, Theorem 2.3 of Burgert and Rüschendorf (2006) tells us that there exists X̃
S ∈ CS(X)

such that ρi
(
X̃i

)
≤ ρi

(
X̂i

)
for all i ∈ S ∪ PH. It is not difficult to find that X̃

S
is feasible for

(3.8) and improves its objective, which contradicts our assumption. Hence, (3.8) has no solution

whenever (3.6) has no solution. This concludes the proof.

The convexity is a crucial assumption in Proposition 3.3 and counterexamples are possible

(for example, see Theorem 4.3 from Embrechts et al., 2016); for numerical purposes, there is an

advantage to know if the Pareto optimal contracts are comonotonic. The next theorem shows that

all Pareto optimal contracts are comonotonic under some certain conditions.

Theorem 3.4. If ρi satisfy (P2) for all i ∈ S ∪PH, then every solution XS to (3.7) is comonotonic

if one of the following properties holds:

i) ρi satisfy (P6) for all i ∈ S ∪ PH;

ii) ρi is a distortion risk measure with strictly concave distortion functions for all i ∈ S ∪PH; in

addition, X ∈ L∞+ (P) and (Ω,F ,P) is non-atomic.4

Proof. Instead of (3.7), consider now the following auxiliary problem:

min
Y S∈AS(X)

∑
i∈S∪PH

ρi
(
Yi
)
, AS(X) =

{
Y S :

∑
i∈S∪PH

Yi=X, Yi ∈ Lp
(
P
)
, i∈S∪PH

}
. (3.9)

Thus, we solve (3.7) for risks that are not necessarily non-negative. Then, if we find a solution of

(3.9) that is feasible for the problem (3.7), then it solves (3.7) as well. Note that for the sake of

simplicity, the superscript S is removed in the remaining part of the proof.

Part i) is first shown. Proposition 3.1 of Filipović and Svindland (2008) shows that there exists

a unique allocation for (3.9) up to rebalancing the cash. In other words, if Y 1 and Y 2 solve (3.9)

then Y 1−Y 2 is a deterministic vector. Let
(
hi(X), i ∈ S∪PH

)
be a solution of (3.9). Theorem 2.3

4By definition, L∞+ (P) is the set of non-negative and bounded random variables, and a probability space (Ω,F ,P)
is non-atomic if there is no A ∈ F such that for every B ∈ F with P(B) < P(A) we have P(B) = 0.
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of Burgert and Rüschendorf (2006) implies that
(
hi(X), i ∈ S ∪ PH

)
is comonotonic, implying the

functions hi to be non-decreasing. Thus, hi(X) + ci := hi(X)−hi(0), i ∈ S ∪PH solves (3.9), since

all risk measures satisfy (P2), Moreover, hi(X) + ci, i ∈ S ∪ PH is feasible to (3.8) and hence, it

solves (3.8) as well. This concludes Part (i).

Consider now Part ii) and let Y be a non-comonotonic risk allocation. Theorem 3.1 of Carlier et

al. (2012) says that there exists an allocation that strictly dominates in convex order Y . Thus,

there exists Ŷ such that E
(
φ(Y )

)
> E

(
φ(Ŷ )

)
for every strictly convex φ and E

(
φ̂(Y )

)
≥ E

(
φ̂(Ŷ )

)
for every convex φ̂ (for details, see Lemma 2.2 of Carlier et al., 2012).

Strict concavity of a probability distortion function implies that ρi for all i ∈ S ∪ PH strictly

preserve second order stochastic dominance (see Corollary 2 of Chew et al., 1987) and in turn,

ρi
(
Yi
)
> ρi

(
Ŷi
)

for all i ∈ S ∪ PH. Hence, if Y is not comonotonic, then there exist Ŷ such that

ρi
(
Yi
)
> ρi

(
Ŷi
)
, i ∈ S ∪ PH, implying that Y does not solve (3.9). Let

(
hi(X), i ∈ S ∪ PH

)
be

a comonotonic solution of (3.9). Note that hi(X) + ci := hi(X) − hi(0) solves (3.9) due to (P2),

which clearly solves (3.7) as well. Thus, Y does not solve (3.7) and hence, all solutions to (3.7) are

comonotonic, concluding the proof of Part (ii). The proof is now complete.

Theorem 3.4 provides us two conditions under which we know that Pareto optimal contracts are

comonotonic under some fairly general conditions. Moreover, for finding Pareto optimal contracts,

Theorem 3.4 helps us to justify a focus only on comonotonic contracts if one of the two conditions

is satisfied. Finding Pareto optimal contracts is the topic of Section 4.

4 Finding the Pareto optimal contracts

We have shown in Section 3 that under some mild conditions, the Pareto contract set coincides with

solving (3.7). This enables us to establish the optimal risk allocation, which is the main purpose

of this section. Solving (3.7) is now investigated and sometimes, closed-form optimal solutions are

possible in some particular settings, otherwise, numerical solutions are sought. In a nutshell, if (3.7)

is solved in CS and all risk measures are distortion risk measures or all risk measures are exponential

utilities, then elegant closed-form optimal solutions are possible, as stated in Propositions 4.1 and

4.2. All other cases could be numerically solved and two examples are later provided for which

efficient numerical methods are indicated.
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4.1 Distortion risk measures

Let us assume that for all i ∈ S ∪PH, ρi satisfies (2.1) with distortion function gi. It is not

difficult to find that g∗S(·) = min
{
gi(·), i ∈ S∪PH

}
is a proper distortion function and let ρ∗S be

the corresponding distortion risk measure. Closed-form solutions to (3.7) are possible under this

setting and are stated in Proposition 4.1 (for details, see Section 4 of Boonen et al., 2016b), where

IA is the indicator function that takes the value 1 if A is true and 0, otherwise.

Proposition 4.1. Let X ∈ L∞+ (P) and ρi, i ∈ S ∪PH, be distortion risk measures as in (2.1). The

risk allocation XS solve

min
XS∈CS(X)

∑
i∈S∪PH

ρi(Xi) (4.1)

if and only if Xi = fi(X) with fi(0) = 0 and

f ′i(·) := I{
gi

(
SX(·)

)
<g∗

S\i

(
SX(·)

)} + λSi (·)I{
gi

(
SX(·)

)
=g∗

S\i

(
SX(·)

)}, (4.2)

holds almost surely for all i ∈ S, where λSi is a measurable and [0, 1]-valued function such that

∑
i∈S:gi

(
SX(·)

)
=g∗

S\i

(
SX(·)

)λSi (·) ≤ 1.

Proposition 4.1 provides explicit solutions for the optimal Pareto contracts that exhibits a layered

indemnity schedule. Such layered risk allocations are the most known non-proportional contracts

available on the insurance market, which gives even more evidence to support our model setting that

confirms the long-time insurance risk culture (see Arrow, 1963; Venter, 1991). Deductibles appear

in the optimal insurance literature with expected utilities, where objective is to maximize the utility

of the PH and the premium is a given expectation principle (Arrow, 1963). However, without the

presence of ex-post costs and when Pareto optimality is the criterion, deductible insurance is often

not optimal with expected utilities (Raviv, 1979). Note that if gPH(·) = gi(·) for all i ∈ S, then

Proposition 4.1 shows that any comonotonic risk allocation XS ∈ CS(X) solves (4.1). Also, if there

is one agent that is risk neutral gi(s) = s for all s ∈ [0, 1], and the other agents are averse towards

mean-preserving spreads (due to Yaari, 1987, this implies gi(s) ≥ s), then it is Pareto optimal when

the risk-neutral agent bears all the risk X.

12



4.2 Exponential expected utilities

In this subsection, we briefly discuss another class of translation invariant preferences that is based

on exponential utility. This is a popular expected utility function that could be expressed as a

risk measure satisfying (P2). By definition, an exponential utility function is given by ui(z) =

−γi exp(−z/γi), where γi > 0 captures the risk tolerance and z ∈ R is interpreted as a gain. Since

we focuss on a generic random loss variable Y , we aim to minimise −E[ui(−Y )]. Then, we have

−u−1i (E[ui(−(Y + c))]) = −u−1i (E[ui(−Y )]) + c,

for any constant c ∈ R, where u−1i (·) in a strictly increasing function. Accordingly, we assume that

the risk measures for insurance agents i ∈ N ∪ PH are given by

ρi(Y ) = −u−1i (E[ui(−Y )]) = γk lnE
[

exp
(
Y/γk

)]
. (4.3)

This risk measure is also known as the entropic risk measure (see Barrieu and El Karoui, 2005).

One of the key properties of (4.3) is (P2), but it satisfies (P1) and (P6) as well (see Filipović and

Svindland, 2008).

Theorem 3.9 of Barrieu and El Karoui (2005) provides a solution to (4.1) for the two insurance

agents case, but an extension to multiple agents is quite obvious and is stated in the following

proposition.

Proposition 4.2. Let X ∈ L∞+ (P) and ρi, i ∈ S ∪PH, be as in (4.3). The risk allocation XS solve

(4.1) if Xi = γi∑
j∈S∪PH γj

X for any i ∈ S.

Proposition 4.2 shows that the optimal Pareto contracts exhibit a proportional indemnity sched-

ule. In general risk sharing problems where we allow for negative risk allocations, affine contracts are

Pareto optimal with exponential utilities (Borch, 1962). Moreover, zero-sum side-payments will not

affect Pareto optimality. In other words, if we find a Pareto optimal contract, we can construct a set

of Pareto optimal contracts by adding zero-sum side-payments. In our model, these side-payments

are captured by the premiums πS .

4.3 Examples with numerical solutions

Numerical solutions to (3.7) are always possible if the total risk X is discrete with a finite sample

space. This is the case if historical data are available, otherwise representative samples could be
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drawn from a parametric model that is either fitted on real data or is based on expert opinion

experience. Solving a discretised version of (3.7) requires a careful look for efficient numerical

methods. Two examples are further developed, which depend on the set of feasible solutions that

could be either AS or CS . Assume now that we have two insurers, i.e. N = {1, 2}, with risk

preferences given by:

ρ1(·) := E(·) + a
(
E
(
· −E(·)

)2)1/2
and ρ2(·) := E(·) + b

(
E
(
· −E(·)

)c
+

)1/c
with a ≥ 0, 0 ≤ b ≤ 1, and 1 ≤ c ≤ ∞. If c = ∞, the above is read as E(·) + b

(
x· − E(·)

)
. By

definition, x+ = max{x, 0} and x· := inf
{
x ∈ R : P(· ≤ x) = 1

}
represents the right-end point

of the sample space of a random variable. Formally, ρ1 is known as the standard deviation risk

measure, while ρ2 is a parametric class of non-comonotonic additive coherent risk measures that is

introduced by Fischer (2003). Note that these two risk measures satisfy (P1)–(P5). Finally, the PH

orders risk via a distortion risk measure with distortion function gPH .

As anticipated, the sample space of X is given by a finite set {xk, 1 ≤ k ≤ `} that without any

loss of generality is assumed to be increasingly ordered, i.e. x1 ≤ x2 ≤ · · · ≤ x`. We also assume

that every outcome has equal probability to occur. Each loss outcome, xk, is shared between the

three insurance players and we have that xk = yk + zk + tk, where yk and zk are the risk portions

for the first and second insurer, respectively, while tk represents the PH’s risk share. Therefore,

ρ1
(
X1

)
:= 1

`1
Ty + a‖Qy‖√

`
, where ‖ · ‖ represents the Euclidean distance, 1 is a column vector of

ones, Q = I− 1
`J with I and J being the identity matrix and matrix of ones, respectively. Further,

ρ2
(
X2

)
:=

1

`
1T z + b

(
1

`

∑̀
k=1

(
zk −

1

`
1T z

)c
+

)1/c

.

Let t(1) ≤ t(2) ≤ · · · ≤ t(`) be the order statistics sample. Thus, we have

ρPH
(
XPH

)
:=
∑̀
k=1

(
gPH

(
(`− k + 1)/`

)
− gPH

(
(`− k)/`

))
t(k) =

∑̀
k=1

dkt(k), (4.4)

where dk := gPH
(
(`− k + 1)/`

)
− gPH

(
(`− k)/`

)
.

Assume first that CS is the set of feasible solutions. Hence, y, z and t are increasingly ordered

since x is ordered as well, which simplifies (4.4) and we have that ρPH
(
XPH

)
= dT t. The increasing

ordering requires that Ry ≤ 0, Rz ≤ 0 and Rt ≤ 0, where 0 is a column vector of zeroes and R is
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an `× ` matrix given by

R :=



0 0 · · · 0 0

1 −1 · · · 0 0

. . .
. . .

0 0 · · · 1 −1


.

Recall that by convention, an equality/inequality between two vectors is understood componentwise.

Now, (3.7) for this setting is equivalent to solving

min
(y,z,t)∈

R`×R`×R`

{
1

`
1Ty +

a√
`
‖Qy‖+

1

`
1T z + b

(
1

`

∑̀
k=1

(
zk −

1

`
1T z

)c
+

)1/c

+ dT t

}
(4.5)

s.t. Ry ≤ 0,Rz ≤ 0,Rt ≤ 0,0 ≤ y,0 ≤ z,0 ≤ t,y + z + t = x.

For obvious computational reasons, the above is written as a Second Order Cone Program(SOCP).

Clearly, (4.5) is equivalent to solving

min
(y,z,t,u,v,w)∈

R`×R`×R`×R×R`×R

{
1

`
1Ty +

a√
`
u+

1

`
1T z + b1

(∑̀
k=1

vck

)1/c

+ dT t

}

s.t. ‖Qy‖ ≤ u, z− w1 ≤ v,0 ≤ v,
1

`
1T z = w, (4.6)

Ry ≤ 0,Rz ≤ 0,Rt ≤ 0,0 ≤ y,0 ≤ z,0 ≤ t,y + z + t = x

with b1 := b(1/`)1/c. The above formulation is almost written in an SOCP form and only the

fourth term from the objective function requires more work. Recall that if c ∈ {1,∞}, then (4.6)

is directly SOCP-representable without any additional change, while the case in which c = 2 has a

straightforward SOCP reformulation as follows:

min
(y,z,t,u,v,w,ε)∈

R`×R`×R`×R×R`×R×R

{
1

`
1Ty +

a√
`
u+

1

`
1T z + b1ε+ dT t

}
s.t. ‖Qy‖ ≤ u, z− w1 ≤ v,0 ≤ v,

1

`
1T z = w, ‖v‖ ≤ ε, (4.7)

Ry ≤ 0,Rz ≤ 0,Rt ≤ 0,0 ≤ y,0 ≤ z,0 ≤ t,y + z + t = x.

We now briefly discuss the same issue whenever c = m/p with integers m > p, i.e. c is a rational
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number. This assumption is not restrictive in any sense, since the set of rational numbers is

dense in R. The main idea appeared in various ways in the literature (see for example, Ben-Tal and

Nemirovski, 2001; Krokhmal and Soberanis, 2010) and is based on the so-called “tower of variables”

construction. The representation is similar to the one displayed in (4.7) where the epigraph type

constraint ‖v‖ ≤ ε is replaced by

(∑̀
k=1

vck

)1/c

≤ ε, which is indeed SOCP-representable (for details,

see Morenko et al., 2013). For example, if c = 3, then the constraint in question could be rewritten

as follows:

1Tγ ≤ ε,0 ≤ γ,0 ≤ δ, v2k ≤ εδk, δ2k ≤ vkγk, for all 1 ≤ k ≤ `.

Thus, the SOCP reformulation of (4.6) when c = 3 is given by:

min
(y,z,t,u,v,w,ε,γ,δ)∈R`×R`×

R`×R×R`×R×R×R`×R`

{
1

`
1Ty +

a√
`
u+

1

`
1T z + b1ε+ dT t

}

s.t. ‖Qy‖ ≤ u, z− w1 ≤ v,0 ≤ v,
1

`
1T z = w,

1Tγ ≤ ε,0 ≤ γ,0 ≤ δ, (4.8)∥∥(2vk, ε− δk)∥∥ ≤ ε+ δk,
∥∥(2δk, vk − γk)∥∥ ≤ vk + γk, for all 1 ≤ k ≤ `,

Ry ≤ 0,Rz ≤ 0,Rt ≤ 0,0 ≤ y,0 ≤ z,0 ≤ t,y + z + t = x.

Assume now thatAS is the set of feasible solutions. Since the vector t is not ordered anymore, the

problem becomes more cumbersome. Even though a solution is possible, it could be computationally

expensive (for details, see Asimit et al., 2017b). The optimisation problem does not require a

significant computational effort if gPH(x) = min
{

1, x/(1 − α)
}

, where 0 < α < 1, known in the

literature as the Conditional Value-at-Risk (CVaR) at level α (see Rockafellar and Uryasev, 2000)

or Expected Shortfall at level α (see Acerbi and Tasche, 2002). From the computational point of

view, the CVaR formulation is more advantageous and is given by:

CVaRα(·) := inf
ξ∈R

{
ξ +

1

1− α
E(· − ξ)+

}
,

where 0 < α < 1. Note that the coherence of CVaRis shown by Pflug (2000). Consequently, if the

PH orders risk via the CVaR, then optimising (3.7) under AS is equivalent to solving the following
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SOCP-type instance:

min
(y,z,t,u,v,w,ε,ξ,s)∈

R`×R`×R`×R×R`×R×R×R×R`

{
1

`
1Ty +

a√
`
u+

1

`
1T z + b1ε+ ξ +

1

n(1− α)
1T s

}
s.t. ‖Qy‖ ≤ u, z− w1 ≤ v,0 ≤ v,

1

`
1T z = w, ‖v‖ ≤ ε,

t− ξ1 ≤ s,0 ≤ s,0 ≤ y,0 ≤ z,0 ≤ t,y + z + t = x,

where without loss of generality c = 2 is assumed in the above.

Example 4.3. Assume that a = b = 1, c ∈ {2, 3} and that the PH orders risk via CVaR80%.

Random samples of size 1, 000 are drawn for the total risk from a Log-Normal distribution with

parameters (µ, σ) = (10, 1) and a two-parameter Pareto distributed with survival function
(
1 +

·/λ)−γ such that the theoretical first two moments are matched with the Log-Normal distribution,

i.e. (γ, λ) = (4.78442, 926.018). As before, the total risk samples are assumed to be increasingly

ordered and CN is the set of feasible solutions (our numerical investigations showed that the optimal

contracts do not change if the optimisation is performed over AN ).

The Pareto optimal solutions are plotted in Figure 1 and we notice a layered optimal risk con-

tract. Figure 1 displays sensible results for a couple of reasons. Firstly, the Log-Normal distribution

exhibits a moderately heavy tail, while the Pareto distribution has a very heavy tail and therefore,

any insurer would absorb a higher amount of risk for the Pareto distribution. Secondly, the optimal

indemnity of the second insurer is larger when the setting c = 3 changes to c = 2.

5 Stable premiums

The previous results have shown how to efficiently allocate the risk amongst all insurance players,

but the premiums are yet to be set. For a Pareto optimal contract, the risk allocation XN is fixed,

but the premiums πN that the insurers charge are not fixed, though πN should satisfy the individual

rationality constraints from (2.2). Due to Theorem 3.1, we have that

∑
i∈N∪PH

ρi(Xi) ≤ ρPH(X),

with XN satisfying (3.7). If the inequality above is strict, there are typically multiple ways to

construct a premium vector that is individually rational for all insurance agents.

In this section, we notice that a vector of premiums could be perceived as an allocation of the
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Figure 1: Pareto optimal risk allocations
(
y∗, z∗, t∗

)
that solve (4.8) and are respectively displayed in

blue, red and yellow. The left and right panels show the Log-Normal and Pareto sample, respectively;
the top and lower panels correspond to the c = 3 and c = 2 case, respectively.

welfare gains in the market to all insurers, which is the key ingredient for our approach to justify

the premium charges. Specifically, we define a cooperative Transferable Utility (TU) game that

assigns the maximum welfare gains to every subset of insurers. We call a premium vector stable if

no subgroup of insurers has a joint incentive to stay in the market, while paying the other insurers

their maximum joint welfare gain. It is shown that stable vectors of premiums constitute anti-core

elements of a TU game.

As anticipated, we rely on cooperative game theory to determine prices. A TU game is given by

(N, v̂), where v̂ : 2N → R is a mapping that assigns to every subgroup of the set N a utility level5;

by definition, an allocation is a vector aN ∈ RN such that
∑

i∈N ai = v̂(N). The core of TU games

is originally introduced by Gillies (1953) and is given by

core(N, v̂) =
{
aN ∈ RN :

∑
i∈S

ai ≥ v̂(S) for all S ⊂ N,
∑
i∈N

ai = v̂(N)
}
. (5.1)

5Here, 2N is the collection of all subgroups of N .
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In other words, the core is the set of allocations such that no subgroup of agents has a joint

incentive to not cooperate with the other agents. The core is one of the most important concepts in

cooperative game theory (see, e.g., Scarf, 1967; Shapley and Shubik, 1969). It is generally accepted

that, if the core is a nonempty set, then the allocation on which the players agree should be a core

allocation. Formally, we have a ∈ core(N, v̂) if, for each S ⊆ N , there exists no allocation â ∈ RS

with
∑

i∈S âi = v̂(S) such that each insurance player i ∈ S prefers the allocation â above a: âi > ai

for all i ∈ S.

We further make use of the following two properties of a TU game (N, v̂):

• concavity : v̂(S ∪ {i})− v̂(S) ≥ v̂(T ∪ {i})− v̂(T ), for all i ∈ N and S ⊂ T ⊆ N\{i};

• additivity : v̂(S) =
∑

i∈S v̂({i}), for all S ⊆ N .

The remaining part of the section covers three settings. Firstly, a general setting is considered

where all risk preferences are monotonic and translation invariant. Secondly, we assume that the

risk preferences are given by distortion risk measures as defined in (2.1). Thirdly, we reflect on the

setting where the PH strictly benefits in the insurance contract.

5.1 Stable premiums with risk preferences satisfying (P1) and (P2)

Let us assume that ρi satisfies (P2) for all i∈N∪PH and ρPH satisfies (P1) as well. Once a risk

allocation is found via Pareto optimality as explained in Section 3 (for example, see (3.7)), another

main problem is now to determine the premium vector πN ∈ RN+ . We aim to use a TU game to

model the pricing for transferring the risk to various insurers. This leads to a collection of premium

vectors corresponding to the chosen risk allocation. At the moment, after identifying the optimal

Pareto contract, the premiums are known to belong to a set that depends on the optimal solution

XS and a refinement is now sought.

The welfare gain for a given S ⊆ N and XS ∈ CS(X) is as follows:

WG
(
S,XS

)
:= ρPH(X)−

∑
i∈S∪PH

ρi
(
Xi

)
.

Due to (P2), we can interpret the welfare gain as a monetary amount, i.e. WG
(
S,XS

)
is the

monetary amount that the insurers in S gain on aggregate by sharing the risk X via XS . Therefore,

it is natural to study the following TU game that assigns the maximum welfare gains for the insurers
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in S ⊆ N :

v(S) = max
XS∈AS(X)

WG
(
S,XS

)
= ρPH(X)− min

XS∈AS(X)

{ ∑
i∈S∪PH

ρi
(
Xi

)}
, (5.2)

for all S ⊆ N . By construction, we have v(∅) = 0 and 0 ≤ v(S) ≥ v(T ) for all S ⊂ T ⊆ N .

This game assigns the maximum welfare gain that a subgroup may obtain by insuring the risk X

altogether. It is further assumed that the minimum in (5.2) exists for all S ⊆ N .

Recall that an allocation is a vector aN ∈ RN such that
∑

i∈N ai = v(N). Now, the premium

charged by the ith insurer for insuring the risk Xi is πi = π̂i(Xi, ai), where

π̂i(Xi, ai) := ρi(Xi) + ai, i ∈ N, (5.3)

and XN ∈ AN (X) is an optimal Pareto risk allocation. For any
(
πN , XN

)
∈ PN such that

πi = π̂i(Xi, ai) for all i ∈ N , we get from (3.7) that

∑
i∈N

π̂i(Xi, ai) =
∑
i∈N

ρi(Xi) + v(N) = ρPH(X)− ρPH
(
XPH

)
.

Consequently, the PH is indifferent6. Moreover, if ai ≥ 0, then due to (P2) we have:

ρi(Xi − π̂i(Xi, ai)) = −ai ≤ 0,

so that insurer i is individually rational. Moreover, this implies that we are allowed to interpret

ai are a welfare gain for insurer i ∈ N . Theorem 3.1 implies that
(
πN , XN

)
∈ PN if XN satisfies

(3.7) and πN is as in (5.3) with aN ≥ 0. Hence, an allocation aN represents the welfare gains for

the insurers in a Pareto optimal contract, where the aggregate welfare gains are given by v(N).

We proceed with discussing the core of the game (N, v). First, we show that the core indeed

leads to stability, and make an explicit link with the insurance contract
(
πN , XN

)
.

Proposition 5.1. Assume that ρi is such that (P2) holds for all i ∈ N ∪PH, and let
(
πN , XN

)
∈

RN+ ×AN (X) be Pareto optimal. Then, it holds that aN ∈ core(N, v) for aN solving πi = π̂i(Xi, ai)

for all i ∈ N if and only if
∑

i∈N (πi − ρi(Xi)) = v(N) and for all S ⊂ N there does not exist a

6This is relaxed in Section 5.3
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(
π̂S , X̂

S) ∈ RS+ ×AS(X) such that

ρPH

(
X̂PH +

∑
i∈S

π̂i

)
≤ ρPH

(
XPH +

∑
i∈N

πi

)
, (5.4)

ρi(X̂i − π̂i) ≤ ρi(Xi − πi), i ∈ S, (5.5)

with at least one inequality strict.

Proof. Let
(
πN , XN

)
∈ RN+ × AN (X) be Pareto optimal. Then, aN ∈ core(N, v) is equivalent to∑

i∈S ai ≥ v(S) or,
∑

i∈S(πi − ρi(Xi)) ≥ v(S) for all S ⊂ N , and
∑

i∈N ai =
∑

i∈N (πi − ρi(Xi)) =

v(N). Then, it is sufficient to show that for all S ⊂ N ,
∑

i∈S(πi − ρi(Xi)) ≥ v(S) is equivalent

to the case that there does not exist a
(
π̂S , X̂

S) ∈ RS+ × AS(X) such that (5.4)-(5.5) hold with

at least one inequality strict. Fix S ⊂ N . Since
(
π̂S , X̂

S)
is Pareto optimal and thus feasible,

we have ρi(Xi − πi) ≤ 0. From this, and from the fact that the above preferences are linear in

the πi’s, we get from similar arguments as in the proof of Theorem 3.1 that there does not exist a(
π̂S , X̂

S) ∈ RS+ ×AS(X) such that (5.4)-(5.5) hold with at least one inequality strict is equivalent

to the case that there does not exist X̂
S ∈ AS(X) such that

∑
i∈S∪PH

ρi(X̂i) <
∑

i∈S∪PH
ρi(Xi) +

∑
i∈N\S

πi.

Or, equivalently, for all X̂
S ∈ AS(X) it holds

∑
i∈S∪PH

ρi(X̂i) ≥
∑

i∈S∪PH
ρi(Xi) +

∑
i∈N\S

πi,

so that

min
X̂
S∈AS(X)

∑
i∈S∪PH

ρi(X̂i) ≥
∑

i∈N∪PH
ρi(Xi) +

∑
i∈N\S

(πi − ρi(Xi)).

Since
(
πN , XN

)
is Pareto optimal, we have by Theorem 3.1 that

∑
i∈N∪PH

ρi(Xi) = min
X̂
N∈AN (X)

∑
i∈N∪PH

ρi(X̂i),
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and hence this is equivalent to

v(N)− v(S) ≥
∑
i∈N\S

(πi − ρi(Xi)).

Hence, since v(N) =
∑

i∈N (πi − ρi(Xi)), this is equivalent to

v(S) ≤
∑
i∈S

(πi − ρi(Xi)).

This concludes the proof.

The next proposition shows that premium allocations via the core of our game is possible only

under very restrictive conditions, i.e. additivity of the game (N, v). The additivity property is

strong and it does not need to hold for the reinsurance problem in (5.2).

Proposition 5.2. Assume that ρi is such that (P2) holds for all i ∈ N ∪ PH and ρPH satisfies

(P1). Then, core(N, v) 6= ∅ if and only if the TU game (N, v) is additive.

The proof is delegated to the appendix and makes use of the proof of Theorem 5.4, that is

stated later in this paper. Core elements yield insurance contracts in which all insurers benefit from

having more insurers in the market. Proposition 5.2 shows that this only happens in a specific case.

Moreover, if the core is non-empty, its unique element is given by ai = v({i}) for all i ∈ N , which

is a well-known property of additive games. Hence, the core is either empty or single-valued.

Because the core is generally empty, the inequality constraints of the core
∑

i∈S ai ≥ v(S) are

strong. We now proceed with studying the set of stable allocations, that include “milder” constraints

on
∑

i∈S ai. We define the set SA(N, v) as follows:

SA(N, v)=
{
aN ∈RN :

∑
i∈S

ai ≥ v(N)− v(N\S) for all S ⊂ N,
∑
i∈N

ai=v(N)
}
,

which has a very intuitive construction. The minimal allocation to a subgroup of insurers S ⊂ N

is determined as follows. The insurers in N\S get the maximum aggregate welfare gain, given by

v(N\S); if this welfare gain is completely allocated to the insurers in N\S, the insurers in S get

at least the remaining, i.e. v(N) − v(N\S) which is non-negative. Later, in the proof of Theorem

5.4, we will formally show that v(S) ≥ v(N) − v(N\S) for all S ⊆ N , so that the constraints in

SA(N, v) are indeed milder than for the core: core(N, v) ⊂ SA(N, v).
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We next show that the set SA(N, v) is the same as the anti-core of game (N, v), a statement

that is true under a very general setting.

Proposition 5.3. If v(S) is finite for all S ⊆ N , it holds that SA(N, v) = Acore(N, v), where

Acore(N, v) =
{
aN ∈ RN :

∑
i∈S

ai ≤ v(S) for all S ⊂ N,
∑
i∈N

ai = v(N)
}
. (5.6)

Proof. Let aN ∈ Acore(N, v). We get for every S ⊂ N that

∑
i∈S

ai =
∑
j∈N

aj −
∑

j∈N\S

aj ≥ v(N)− v(N\S).

Thus, aN ∈ SA(N, v). Further, we get that if aN ∈ SA(N, v), then

∑
i∈S

ai =
∑
j∈N

aj −
∑

j∈N\S

aj ≤ v(N)−
(
v(N)− v(S)

)
= v(S)

for all S ⊂ N . Hence, aN ∈ Acore(N, v). This concludes the proof.

The elements Acore(N, v) are the allocations of our interest. For a Pareto optimal contract,

the set Acore(N, v) helps us to construct a range of premiums that satisfy our stability conditions.

The next theorem shows that this set is non-empty, which concludes that the premium allocation

exercise is possible.

Theorem 5.4. Assume that ρi satisfies (P2) for all i ∈ N ∪ PH and ρPH satisfies (P1). If (5.2) is

well-defined for all S ⊆ N , then Acore(N, v) 6= ∅.

Proof. For S ⊆ N , let eS be the vector in RN such that eS(i) = 1 if i ∈ S, otherwise eS(i) = 0.

Bondareva (1963) and Shapley (1967) show that the core of a cooperative game (N, v) is non-empty

if and only if (N, v) is balanced; a game (N, v) is called balanced when
∑

S⊆N λSv(S) ≤ v(N) for

all λS ∈ [0, 1] such that
∑

S⊆N λSeS = eN (the Bondareva-Shapley Theorem). Since, in general,

it holds that Acore(N, v) = −core(N,−v) for any TU game (Monderer et al., 1992), we have that

core(N,−v) 6= ∅ is an equivalent formulation to our claim. Thus, the game (N,−v) is balanced if

∑
S⊆N

λSv(S) ≥ v(N) for all λS ∈ [0, 1] such that
∑
S⊆N

λSeS = eN .
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Now,
∑
S⊆N

λS ≥ 1 and
∑

S:i∈S⊆N
λS = 1 are clearly true and therefore

∑
S⊆N

λSv(S) = ρPH(X)
∑
S⊆N

λS −
∑
S⊆N

λS min
XS∈AS(X)

{∑
i∈S

ρi
(
Xi

)
+ ρPH

(
XPH

)}
≥ ρPH(X)

∑
S⊆N

λS − min
XN∈AN (X)

∑
S⊆N

λS

(∑
i∈S

ρi
(
Xi

)
+ ρPH

(
XPH

))
≥ ρPH(X)− min

XN∈AN (X)

{ ∑
S⊆N

λS
∑
i∈S

ρi
(
Xi

)
+ ρPH

(
XPH

)}
= ρPH(X)− min

XN∈AN (X)

{∑
i∈N

ρi
(
Xi

) ∑
S:i∈S⊆N

λS + ρPH
(
XPH

)}
= v(N).

Here, the second inequality follows from the fact that

(
ρPH(X)− ρPH

(
XPH

)) ∑
S⊆N

λS ≥ ρPH(X)− ρPH
(
XPH

)
for all XN ∈ AN (X),

which is due to the (P1) property of ρPH and the fact that
∑

S⊆N λS ≥ 1 and XPH ≤ X are true

for any XN ∈ AN (X). Therefore, core(N,−v) 6= ∅ due to the Bondareva-Shapley Theorem, which

concludes the proof.

5.2 Stable premiums with distorted risk preferences

We now assume more specific preferences than those considered in Section 5.1. This specific setting

is interesting in the sense that a closed-form expression of the set of stable allocations, SA(N, v), is

possible. That is, let us assume that ρi satisfies (2.1) with distortion function gi for all i∈ S ∪ PH

and the feasible set of risk allocations is CN (X). It is well-known that distortion risk measures

satisfy (P1) and (P2) (see Yaari, 1987). Then, it holds that:

WG
(
S,XS

)
=
∑
i∈S

(
ρPH

(
Xi

)
− ρi

(
Xi

))
,

for all S ⊆ N and XS ∈ CS(X), since ρPH satisfies (P7) and the fact that the risk allocation is

comonotonic. It is readily verified from Proposition 4.1 that

∑
i∈S∪PH

ρi
(
Xi

)
= ρ∗S(X),
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whenever XS is as in (4.2) with ρ∗S being defined in Section 4.1. Then, we study the following TU

game (N, v):

v(S) = max
XS∈CS(X)

WG
(
S,XS

)
= ρPH(X)− ρ∗S(X), for all S ⊆ N, (5.7)

The next result shows that the TU game (N, v) has a special structure, namely is concave.

Consequently, the set SA(N, v) could be characterised by its marginal vectors (Shapley, 1971) and

for clarity, we state these results as Theorem 5.5. Recall that by definition, Π(N) is the set of all

permutations of N , while conv{·} represents the convex hull operator.

Theorem 5.5. Let ρi be distortion risk measures with distortion function gi as in (2.1) for all

i ∈ N ∪PH. Then, the TU game (N, v) from (5.7) is concave and SA(N, v)=conv{mσ :σ ∈ Π(N)},

where

mσ
σ(1) = v

({
σ(1)

})
and mσ

σ(i) = v
({
σ(1), . . . , σ(i)

})
− v
({
σ(1), . . . , σ(i− 1)

})
, i = 2, . . . , n.

Proof. It holds for every 0 ≤ x ≤ 1 that

g∗S∪{i}(x)− g∗S(x) = min
{
gj(x) : j ∈ S ∪ {i} ∪ PH} −min{gj(x) : j ∈ S ∪ PH

}
= min

{
gi(x)−min{gj(x) : j ∈ S ∪ PH}, 0

}
≤ min

{
gi(x)−min{gj(x) : j ∈ T ∪ PH}, 0

}
= min

{
gj(x) : j ∈ T ∪ {i} ∪ PH

}
−min

{
gj(x) : j ∈ T ∪ PH

}
= g∗T∪{i}(x)− g∗T (x),

for all i ∈ N and S ⊂ T ⊆ N\{i}. Then, we derive

ρ∗T∪{i}(X)− ρ∗T (X)− ρ∗S∪{i}(X) + ρ∗S(X)

=

∞∫
0

g∗T∪{i}
(
SX(z)

)
dz −

∞∫
0

g∗T
(
SX(z)

)
dz −

∞∫
0

g∗S∪{i}
(
SX(z)

)
dz +

∞∫
0

g∗S
(
SX(z)

)
dz

=

∞∫
0

(
g∗T∪{i}

(
SX(z)

)
− g∗T

(
SX(z)

)
− g∗S∪{i}

(
SX(z)

)
+ g∗S

(
SX(z)

))
dz,

which is clearly non-negative. Therefore, v
(
S ∪ {i}

)
− v(S) ≥ v

(
T ∪ {i}

)
− v(T ) holds for all

i ∈ N and S ⊂ T ⊆ N\{i}. Hence, the game (N, v) is concave. For concave games, the anti-core
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is given by conv{mσ : σ ∈ Π(N)}, due to Theorems 3 and 5 of Shapley (1971) and the fact that

Acore(N, v) = −core(N,−v). The proof is now complete.

Note 5.6. In Theorem 5.5, we provide a closed-form expression for SA(N, v). This set is however

not necessarily single-valued. An open research question is still to characterise a single-valued

allocation to determine premiums. A well-known allocation rule of TU games is the Shapley value

(Shapley, 1953). A PH directly approaches the insurers to insure its risk in a Pareto optimal way.

The Shapley value relies on a different approach and assumes that the PH first goes to randomly

assigned insurer. This insurer selects with the PH a risk allocation via Pareto optimality, and

the PH pays the aggregate premium such that it is indifferent. Then, the PH goes to the second

randomly assigned insurer and selects the risk allocation via Pareto optimality for the first two

insurers. The PH still pays the premium such that it is indifferent, the first insurer keeps its welfare

gain and the second insurer gets the increase in the welfare gain. Continuing this procedure leads

to an allocation; averaging this over all possible orderings of the insurers leads to the Shapley value.

In case of distortion risk measures, we show that the corresponding TU game (N, v) is concave

(see Theorem 5.5) and thus, the Shapley value constitutes an anti-core element (Shapley, 1971).

Generally, we leave in this paper the question to an appropriate solution open for further research.

5.3 Welfare gains for the PH

In this section, the approach we propose hinges on the assumption that the PH is indifferent, which

is now relaxed. Recall the maximum welfare gain v(S) = maxXS∈AS(X)WG
(
S,XS

)
from (5.2).

Suppose that in any transaction, there is a profit for the PH that is proportional to v(S). That is,

the PH has an ex-post risk given by ρPH(X) − δv(S) for δ ∈ [0, 1). Thus, in the market with all

insurers in N , the PH gets the welfare gain δv(N) and the remaining welfare gain, (1− δ)v(N), is

then allocated amongst the insurers in N .

Define v̂(S) = (1 − δ)v(S), S ⊆ N . For a vector aN ∈ RN such that
∑

i∈N ai = v̂(N) and

π̂i(Xi, ai) as in (5.3), we get for any
(
πN , XN

)
∈ PN with πi = π̂i(Xi, ai) for all i ∈ N that

∑
i∈N

π̂i(Xi, ai) =
∑
i∈N

ρi(Xi) + v̂(N) = ρPH(X)− ρPH
(
XPH

)
− δv(N).

Clearly,

core(N, v̂) = (1− δ) · core(N, v) := {(1− δ)a : a ∈ core(N, v)},
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SA(N, v̂) = (1− δ) · SA(N, v) := {(1− δ)a : a ∈ SA(N, v)}.

Hence, Propositions 5.2 and 5.3, Theorem 5.4 and Theorem 5.5 remain valid for this setting where

(N, v) is replaced by (N, v̂).

6 Optimal insurance and Pareto optimality

The current section aims to link the classical concept of Pareto optimality with the recent fast

growing literature on optimal insurance/reinsurance. These two concepts have been independently

investigated even though the ultimate aims are basically the same, i.e. finding efficient risk alloca-

tions. There is a vast literature on Pareto optimality and our focus has been on the risk sharing

problem between a PH and one or more insurers willing to absorb part of the PH’s risk. The Pareto

solutions provides a “fair” allocation amongst all parties involved in the risk allocation exercise.

In contrast, the optimal insurance/reinsurance problem is generically viewed as an optimisation

problem from one risk bearer point of view. These two strands of research have not crossed yet in

the literature and we try now to investigate whether the insurance/reinsurance problem leads to

contracts that are Pareto optimal.

In the insurance/reinsurance problem framework, it is assumed that the PH or one insurer seeks

to optimise its risk measure subject to rationality constraints, which in our case are given in (2.2).

The mathematical formulations of the optimal insurance contract set from the PH and a generic

insurer are

SPHS = arg min(
πS ,XS

)
∈RS+×AS(X)

ρPH

(
XPH +

∑
i∈S

πi

)
s.t. condition (2.2) holds (6.1)

and

Si0S = arg min(
πS ,XS

)
∈RS+×AS(X)

ρi0
(
Xi0 − πi0

)
s.t. condition (2.2) holds, (6.2)

respectively, where i0 ∈ S and S ⊆ N is a set of insurers. The next result shows that optimal

insurance contracts via individual risk efficiency are Pareto optimal as well, which shows that the

optimal insurance/reinsurance problem is well-posed. According to our knowledge, this link has not

been discussed in the literature, even though Pareto optimality and individual risk optimisation are

two related concepts.
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Proposition 6.1. Let i0 ∈ S with S ⊆ N and assume that ρi satisfies (P2) for all i ∈ S ∪ PH.

Then, SPHS ⊆ PS and Si0S ⊆ PS .

Proof. We show first that SPHS ⊆ PS and therefore, let
(
π∗S , X∗S

)
∈ SPHS . Keeping in mind that

ρi satisfies (P2) and the fact that the objective function in (6.1) is continuous and increasing in each

πi for all i ∈ S, one may find that the insurers’ rationality inequality constraints become equality

constraints. Thus,
(
π∗S , X∗S

)
∈ SS and in turn, we get that

(
π∗S , X∗S

)
∈ PS due to Theorem 3.1,

which justifies that SPHS ⊆ PS .

Next, we show Si0S ⊆ PS and therefore, let
(
π∗S , X∗S

)
∈ Si0S . Recall that ρi satisfies (P2) and

since the objective function in (6.2) is continuous and decreasing in πi0 , then we may conclude that

π∗i0 = ρPH(X)− ρPH
(
X∗PH

)
−

∑
i∈S\{i0}

π∗i .

Consequently,
(
π∗S , X∗S

)
must solve

min(
πS ,XS

)
∈RS+×AS(X)

ρi0
(
Xi0

)
+ ρPH

(
XPH

)
+

∑
i∈S\{i0}

πi

s.t. ρi
(
Xi

)
− πi ≤ 0, i ∈ S and ρPH

(
XPH

)
+
∑
i∈S

πi ≤ ρPH(X).

Similar arguments to those given in the proof of SPHS ⊆ PS , one may show that
(
π∗S , X∗S

)
∈ SS .

Thus,
(
π∗S , X∗S

)
∈ PS due to Theorem 3.1, which completes the proof.

7 Model risk

Model risk has been ignored until this very moment and it has been assumed that all insurance

players have known the “true” distribution of the total risk and this probabilistic model is the same

amongst all players, i.e homogeneous beliefs are only considered. This convenient assumption may

lead to decisions that are very sensitive to small changes in the chosen model, which affects the

optimal decision. This problem could be tackled by using statistical tools, but the ultimate goal

is to produce an optimal robust decision, which is the main objective of a robust optimisation. In

addition, Asimit et al. (2017a) has shown the advantage of robust optimisation over the statistical

methods and for these reasons, this section is focused on standard robust optimisation to deal with

model risk. This source of risk could be viewed such that the “true” probability measure is not

unknown, but it belongs to a set of possible available probability models that are based on statistical
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evidence, expert opinion or “good practice” in the sector.

The mathematical formulation of the model risk is such that the “true” probability measure for

a given insurer or the PH is one amongst various available choices,
{
Pj , j ∈Mi

}
with i ∈ N ∪ PH

Mi being an index set. clearly, these probability measures are defined on the same sample space

As a result, X,Xi ∈ Lp+(Pi) for all i ∈ N ∪PH and j ∈Mi. We define ρi(·;Pj) as the risk measure

given the underlying probability measure Pj for i ∈ N ∪PH and j ∈Mi. The rationality constraint

for each insurer and PH is now given by

ρi
(
Xi−πi;Pj1

)
≤ 0 and ρPH

(
XPH +

∑
k∈S

πk;Pj2

)
≤ρPH

(
X;Pj2

)
(7.1)

for all i ∈ S, j1 ∈ Mi and j2 ∈ MPH . Therefore, a contract
(
πS , XS

)
is feasible and we write(

πS , XS
)
∈ RS+ ×AMS (X), where

AMS (X) =
{
XS :

∑
i∈S∪PH

Xi = X, Xi ∈ Lp+(Pj) for all i ∈ S ∪ PH, j ∈Mi

}
,

if (7.1) holds. Further, the contract
(
πS , XS

)
∈ RS+ × AMS (X) is called Pareto robust optimal if

there is no other feasible contract
(
π̃S , X̃

S) ∈ RS+ ×AMS (X) such that

ρi
(
X̃i − π̃i;Pj1

)
≤ ρi

(
Xi − πi;Pj1

)
and ρPH

(
X̃PH +

∑
k∈S

π̃k;Pj2

)
≤ ρPH

(
XPH +

∑
k∈S

πk;Pj2

)

for all i ∈ S, j1 ∈ Mi and j2 ∈ MPH , with at least one strict inequality. Let us denote PMS as the

set of all Pareto robust optimal contracts.

The individual robust optimisation problems involve the well-known (in robust optimisation)

worst-case scenario approach. The mathematical formulations for the optimal insurance contract

set from the PH and a generic insurer under model risk are

SPH,MS = arg min(
πS ,XS

)
∈RS+×AS(X)

max
j∈MPH

{
ρPH

(
XPH ;Pj

)
+
∑
k∈S

πk

}
s.t. (7.1) holds

and

Si0,MS = arg min(
πS ,XS

)
∈RS+×AS(X)

max
j∈Mi0

ρi0
(
Xi0 − πi0 ;Pj

)
s.t. (7.1) holds,
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respectively, where i0 ∈ S and S ⊆ N is a set of insurers.

Extensions of Theorem 3.1 in the presence of model risk are now given in Proposition 7.1. Its

proof is omitted, since is similar to the arguments given in the “if” part proof of Theorem 3.1 and

the proof of Proposition 6.1.

Proposition 7.1. Let S ⊆ N and assume that ρi and ρPH satisfy (P2) for all i ∈ S. Then,

i) S+MS ⊆ PMS if |Mj | = |MPH | for all j ∈ S, where | · | represents the cardinality of a set,

ii) SPH,MS ⊆ SMS and Si0,MS ⊆ SM′S ,

where

S+MS = arg min(
πS ,XS

)
∈RS+×AMS (X)

∑
i∈S∪PH

∑
j∈Mi

ρi
(
Xi;Pj

)
s.t. ρi

(
Xi − πi;Pj1

)
≤ 0, ρPH

(
XPH +

∑
k∈S

πk;Pj2

)
≤ ρPH

(
X;Pj2

)
for all i ∈ S, j1 ∈Mi and j2 ∈MPH ,

SMS = arg min(
πS ,XS

)
∈RS+×AMS (X)

∑
i∈S∪PH

max
j∈Mi

ρi
(
Xi;Pj

)
s.t. ρi

(
Xi − πi;Pj1

)
≤ 0, ρPH

(
XPH +

∑
k∈S

πk;Pj2
)
≤ ρPH

(
X;Pj2

)
for all i ∈ S, j1 ∈Mi and j2 ∈MPH ,

and

SM′S = arg min(
πS ,XS

)
∈RS+×AMS (X)

∑
i∈S

max
j∈Mi

ρi
(
Xi;Pj

)
+ max
j∈MPH

{
ρPH

(
XPH ;Pj

)
− ρPH

(
X;Pj

)}
s.t. ρi

(
Xi − πi;Pj1

)
≤ 0, ρPH

(
XPH +

∑
k∈S

πk;Pj2
)
≤ ρPH

(
X;Pj2

)
for all i ∈ S, j1 ∈Mi and j2 ∈MPH .

Proposition 7.1 tells us how to find some Pareto robust optimal contracts, namely by finding

S+MS . Finding all Pareto robust optimal contracts is a much more difficult problem and involves

standard multi-objective optimisation methods such as the weighted sum scalarisation (for example,

see Miettinen, 1999; Ehrgott, 2005) when all risk measures are convex. It is well-known that

the worst-case robust optimisation problems may not lead to Pareto robust contracts if there are
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multiple solutions. Interesting discussions that link the multi-objective optimisation with the worst-

case robust optimisation are provided in Ehrgott et al. (2014) and Ide and Schöbel (2016), but SMS
represents the most natural worst-case robust optimisation formulation when the optimisation is

viewed from a joint point of view. It is still challenging to find elements of SMS
⋂
PMS and SMS

⋂
PM′S ,

but specific applications require different practical solutions (for example, see Iancu and Trichakis,

2014; Asimit et al., 2017a). The last main result of the section shows a situation in which finding

solutions for SMS
⋂
PMS and SMS

⋂
PM′S is possible. We next provide an extension of Theorem 5.1

of Asimit et al. (2017a), which allows us to explain our point, but the proof is left to the reader

since it is similar to the proof of Theorem 5.1 of Asimit et al. (2017a).

Proposition 7.2. Let (x∗1, . . . ,x
∗
n) be any optimal solution of the following problem

min
(x1,...,xn)∈
R`×···×R`

n∑
i=1

max
j∈Mi

{
cTijxi + dij

}
s.t. Aixi ≤ bi, 1≤ i≤n, x1+· · ·+xn = x, (7.2)

with known Ai, bi, cij and x matrices and column vectors of appropriate dimensions and known

scalars dij . Moreover, consider the following optimisation problem:

min
(y1,...,yn)∈
R`×···×R`

n∑
i=1

∑
j∈Mi

cTijyi s.t. Ai(x
∗
i +yi) ≤ bi, c

T
ijyi ≤ 0, 1≤ i≤n, j ∈Mi, y1+· · ·+yn = 0. (7.3)

i) If the optimal objective value in (7.3) is zero, then (x∗1, . . . ,x
∗
n) is Pareto robust efficient in the

sense that there is no other (x̃1, . . . , x̃n) ∈ R`×· · ·×R` feasible in (7.2) such that cTijx
∗
i ≥ cTijx̃i

for all 1 ≤ i ≤ n, j ∈Mi and at least one inequality is strict.

ii) If the optimal objective value in (7.3) is negative, then (x∗1 +y∗1, . . . ,x
∗
n +y∗n) solves (7.2) and

is Pareto robust efficient, where (y∗1, . . . ,y
∗
n) is an optimal solution of (7.3).

Note 7.3. One may apply Proposition 7.2 for finding solutions for SMS
⋂
PMS and SMS

⋂
PM′S in

a particular setting where the state space is finite, i.e. Ω = {x1, . . . , x`}. If ρ is a distortion risk

measure as defined in (2.1), then ρ(X;P) = dTx provided that x is increasingly ordered, where

dk = g
(

1−
k−1∑
s=1

ps

)
− g
(

1−
k∑
s=1

ps

)
and P(X = xk) = pk for all 1 ≤ k ≤ `

for further details, see Dhaene et al. (2012). Clearly, if ρi satisfy (2.1) for all i ∈ S ∪ PH and the

admissible set of XS is CS(X), then the optimisation problems with the set of optimal solutions
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given by SMS
⋂
PMS and SM′S

⋂
PMS have only linear terms and become a special case of problem

(7.2) in Proposition 7.2.

A final conclusion could be drawn after all of these findings. The individual robust solutions

could be written in various ways, but SM is the most natural formulation. Proposition 7.2 shows

that linear formulations have the advantage of finding optimal Pareto contracts that solve SM or

SM′ , which is the ultimate goal of our analysis. Finding optimal Pareto contracts for non-linear

instances is an open problem that remains to investigate in the future.

8 Conclusions

This paper provides micro-economic theory for optimal insurance contract design with translation

invariant risk measures. Whereas traditional actuarial papers on optimal insurance focus on op-

timising future utility of one specific party, we study Pareto optimality and the anti-core of an

appropriate game. The set of Pareto optimal contracts is characterised, and we find that Pareto

optimality leads to a structure on the indemnity functions, and the premiums need guarantee indi-

vidual rationality. This allows us to disentangle the indemnity functions and premiums, where the

set of premiums that can be chosen with Pareto optimality is not necessarily single-valued. Further,

we propose to select premiums in the anti-core of an appropriate cooperative game.

The optimal reinsurance contract design has been investigated in the last decade, but indepen-

dent of the vast classical Pareto optimality literature; we show that these two concepts are very

much related and in fact, optimal reinsurance contracts are in fact Pareto optimal. This is an inter-

esting result that shows why the optimal reinsurance contract design provides valuable information

even though focuses on a small subset of the set of Pareto optimal contracts. The final part of the

paper discusses the model risk issue and we manage to explain how a robust and optimal Pareto

optimal contract could be found.

Existing literature on Pareto optimality of insurance contracts with expected utility preferences

focuses on the effect of costs. When there are ex-post costs, insurance policies with an upper limit

are not part of the solution. When these costs are variable, deductibles appear in Pareto optimal

contracts (see Raviv, 1979; Blazenko, 1985; Spaeter and Roger, 1997). Aase (2017) extends this

result of Pareto optimal deductibles to the case of ex-post quasi-costs: the costs include a fixed cost

each time a claim is made. In this paper, we neglect costs, and find that Pareto optimal deductibles

may exist when distortion risk measures are used. We believe that a study of costs on Pareto
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optimal contracts with risk measures would be interesting to investigate in the coming future.
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Burgert, C. and Rüschendorf, L. (2006). On the optimal risk allocation problem. Statistics & Decisions, 24(1):153–
171.

Cai, J., Liu, H., and Wang, R. (2017). Pareto-optimal reinsurance arrangements under general model settings.
Insurance: Mathematics and Economics, 77:24–37.

Carlier, G., Dana, R.-A., and Galichon, A. (2012). Pareto efficiency for the concave order and multivariate comono-
tonicity. Journal of Economic Theory, 147:207–229.

Chew, S. H., Karni, E., and Safra, Z. (1987). Risk aversion in the theory of expected utility with rank dependent
probabilities. Journal of Economic Theory, 42:370–381.

Chi, Y. (2012). Reinsurance arrangements minimizing the risk-adjusted value of an insurer’s liability. ASTIN
Bulletin, 42:529–557.

Cui, W., Yang, J., and Wu, L. (2013). Optimal reinsurance minimizing the distortion risk measure under general
reinsurance premium principles. Insurance: Mathematics and Economics, 53:74–85.

Dhaene, J., Kukush, A., Linders, D., and Tang, Q. (2012). Remarks on quantiles and distortion risk measures.
European Actuarial Journal, 2(2):319–328.

DuMouchel, W. H. (1968). The Pareto optimality of an n-company reinsurance treaty. Scandinavian Actuarial
Journal, 1968:165–170.

33



Ehrgott, M. (2005). Multicriteria Optimization. Springer, Berlin, Heidelberg.
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A Proof of Proposition 5.2

It is well-known that additive games have a non-empty core and therefore, we only need to show

the “only if” part of the proof. Now, suppose core(N, v) 6= ∅. The Bondareva-Shapley Theorem

(see the proof of Theorem 5.4) states that core(N, v) is non-empty if and only if the game (N, v) is

balanced. Take the balanced collection λŜ = 1 if |Ŝ| = 1 and λŜ = 0 otherwise. Let S ⊆ N and

since (N, v) is balanced, then it holds that
∑

i∈S v({i}) ≤ v(S). Moreover, since (N,−v) is balanced

as well (see Theorem 5.4), we have
∑

i∈S v({i}) ≥ v(S) and hence,
∑

i∈S v({i}) = v(S). The latter

holds for all S ⊆ N and consequently, the TU game (N, v) is additive, which concludes our proof.
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