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PREFACE 

Drug development is a long-term, complex, and expensive process. Each new 
drug originates from basic biochemical research, moves on to laboratory exper-
iments and animal studies, and eventually reaches clinical trials. Clinical trials 
are prospective studies of new interventions—such as experimental treatments, 
combination therapies, or medical devices with human subjects. The entire pro-
cedures of clinical trials are rigorously specified and controlled to reduce bias 
and errors. Clinical trials can generally be classified into four sequential phases: 
I, II, III, and IV. Phase I trials mainly focus on the safety and toxicity profile 
of the investigational compound. Once the new agent is considered tolerable, a 
phase II trial will be undertaken to examine the efficacious activities based on 
a short-term efficacy endpoint. If the test drug shows promising anti-disease 
effects, the study will then move forward to a large-scale phase III trial for 
confirmative evaluation of the drug's efficacy. If the new drug has successfully 
undergone extensive testing through phase I, II, and III trials, it will be filed to 
the regulatory authority (e.g., the United States Food and Drug Administration 
or the European Commission), for approval of widespread use in the general 
patient population. After the drug becomes available on the market, phase IV 
trials may be initiated to keep drugs' efficacy, toxicity, and rare side effects under 
long-term surveillance. New warning labels may be added to the prescription of 

xv 
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the drug and, even more seriously, some drugs exhibiting unforeseen excessive 
toxicities could be withdrawn from the market. 

Every clinical trial starts from the design and planning stage, moves to trial 
conduct and monitoring, and finally to the data analysis and conclusions; each 
step along the way calls for statistical methods. Without a good design and 
proper implementation, the trial could be a mess (e.g., leading to inconclusive or 
false findings), or even a disaster (e.g., causing an undesirably large number of 
patients to suffer from toxicity or death). Clinical trials should be efficient and 
ethical; for example, saving resources, benefiting more patients, drawing correct 
conclusions quicker, and resulting in less unnecessary toxicities. Well-designed 
and carefully carried-out clinical trials are the most powerful tools for new drugs' 
discovery. With a focus on the practicality, this book covers a wide range of 
statistical designs that are commonly used for each phase of clinical trials from 
both the Bayesian and frequentist perspectives. There has been great interest and 
extensive development in Bayesian adaptive designs, especially for early-phase 
clinical trials (i.e., phase I and phase II trials). Nevertheless, frequentist methods 
still dominate phase III trials by explicitly controlling the type I and type II errors 
in the hypothesis testing framework. Instead of biasing toward either Bayesian 
or frequentist methods, this book takes a pragmatic approach and introduces all 
clinical trial designs that are routinely used. 

For beginners in this field, Chapters 1 and 2 provide an overview of the funda-
mentals of clinical trials and the related terminologies and concepts. For readers 
without a statistical background, Chapter 3 gives a brief introduction of basic 
knowledge of statistics including both Bayesian and frequentist estimation and 
inference procedures, with highlights on the key differences between the two. 
Chapters 4 through 6 discuss various Bayesian and frequentist designs and their 
statistical properties and operating characteristics for phase I, II, and III clinical 
trials, respectively. In particular, phase I and phase II trial designs are mainly 
based on Bayesian methods, due to small sample sizes in these early-phase stud-
ies. Chapters 4 and 5 also cover more advanced methodological development of 
early-phase trial designs, including Bayesian predictive probability trial moni-
toring, seamless phase I/II trial designs, and time-to-event toxicity and efficacy 
trade-offs. Chapter 6, which is dominated by frequentist approaches in the hy-
pothesis testing framework, concentrates on power and sample size calculation 
for phase III clinical trials with continuous, dichotomous, and survival endpoints, 
respectively. Sample sizes may be calculated using fixed-sample designs, group 
sequential methods, or adaptively re-estimated in light of interim data. Non-
compliance issues and intent-to-treat analysis are also discussed. In subsequent 
Chapters 7-10, more specific topics and more up-to-date developments in clin-
ical trials are presented, such as Bayesian adaptive randomization, late-onset 
toxicity, dose finding in drug-combination studies, and targeted therapy designs. 

The impetus of writing this book is to provide comprehensive and systematic 
coverage of statistical methodologies in clinical trial designs from practical 
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perspectives. It may serve as a textbook for a graduate-level course and also as 
a reference for statisticians, medical doctors, research nurses, and other clinical 
trial practitioners, who are interested or involved in designing, conducting, and 
monitoring clinical trials. My goal is that readers would be able to design clinical 
trials for each phase on their own and would also understand and evaluate those 
designed by others. Many clinical trial designs and statistical methods discussed 
in this book are routinely used at the University of Texas M. D. Anderson Cancer 
Center and pharmaceutical industries. Most of the software used in this book 
can be freely downloaded from the website of the Department of Biostatistics at 
M. D. Anderson Cancer Center: 

http://biostatistics.mdanderson.org/SoftwareDownload/ 

Approximately one-third of the book was written when I was Associate Pro-
fessor in the Department of Biostatistics at M. D. Anderson Cancer Center, and 
the rest was finished after I joined the faculty of the Department of Statistics 
and Actuarial Science at the University of Hong Kong. I would like to express 
my sincere thanks and gratitude to my colleagues at both institutes for their 
enormous encouragement and support. In particular, I would like to thank Ying 
Yuan, J. Jack Lee, Donald Berry, Peter Müller, Peter Thall, Valen Johnson, Yu 
Shen, Jeffrey Morris, Bradley Carlin, Nan Chen, and Shurong Zheng for many 
insightful discussions on various issues arising in clinical trials and Bayesian 
adaptive designs, as well as Jianwen Cai, K. W. Ng, and W. K. Li for their 
consistent encouragement. Special thanks go to Lee Ann Chastain, Vicki Geall, 
Robert Golden, Guo-Liang Tian, Yuanshan Wu, and Jiajing Xu for proofreading, 
Susanne Steitz-Filler, Kristen Parrish, and Amy Hendrickson for editorial help, 
and all the students and colleagues who took my courses and workshops in this 
exciting area, which helped me to structure the book from the teaching materials. 
Finally, I would like to thank my mother, who has always encouraged me but 
eventually said to me "Son, don't write another book, this is too much work!" 
and also dedicate this book to the memory of my father; without their guidance, 
encouragement, and love in my life, this dream would never have come true. 

GUOSHENG YIN 

Hong Kong, China; and Houston, USA 

November, 2011 



CHAPTER 1 

INTRODUCTION 

1.1 WHAT ARE CLINICAL TRIALS? 

Clinical trials are prospective intervention studies with human subjects to investi-
gate experimental drugs, new treatments, medical devices, or clinical procedures, 
under rigorously specified conditions. Clinical trials play a critical role in drug 
development and pharmaceutical research. Conventionally, clinical trials are 
classified into four sequential phases: I, II, III, and IV. The trial design for each 
phase is a complicated process, which often requires close collaborations and 
joint efforts from many stakeholders, such as academic institutions, medical 
centers/hospitals, pharmaceutical companies, contract research organizations, 
government organizations (e.g., the National Institute of Health), and regulatory 
agencies (e.g, the Food and Drug Administration—FDA). From phase I to phase 
IV trials and from fixed to adaptive designs, all study procedures need to en-
sure consistency and validity of the findings. Every aspect of the trial design, 
every stage of the trial conduct, and every interim monitoring and data analy-
sis call upon statistical methods. Therefore, the importance of statistics in the 
applications of clinical trials can never be overemphasized. 

Clinical Trial Design. By Guosheng Yin 1 
Copyright © 2012 John Wiley & Sons, Inc. 



2 INTRODUCTION 

Before stepping into statistical methods for clinical trial designs, we first 
provide an overview of clinical trials. If a clinical trial does not involve a com-
parison treatment or if the patient enrollment and administration of comparison 
treatments are not concurrent such as use of historical controls, the trial is said 
to be uncontrolled. A controlled clinical trial may include an active control (the 
standard treatment) or a placebo (an inert that mimics the look and the route of 
administration of the real treatment) for direct comparison so that the difference 
in the clinical outcome attributable to the experimental therapy can be evaluated 
objectively. 

A clinical trial is said to have internal validity if the observed difference 
between treatment groups is real, not confounded nor due to any bias or chance. 
Generally speaking, a randomized, double-blind (masking of the identity of 
treatment to both patients and clinicians), placebo-controlled trial possesses a 
high level of internal validity. External validity of a clinical trial refers to whether 
the study conclusions can be generalized to a broader population. The external 
validity of a trial would not be relevant if its internal validity is questionable. 
External validity may be enhanced by relaxing patient eligibility criteria. 

Clinical trials are the most effective approach to examining and compar-
ing treatment effects of experimental drugs, medical therapies, or any clinical 
intervention in human beings. A carefully thought-out, well-designed, and ap-
propriately conducted and analyzed clinical trial is a powerful tool for new drug 
discovery and pharmaceutical development. Most importantly, the findings in 
clinical trials have a direct and enormous impact on clinical practice. 

In a clinical trial, patients are accrued over time and followed prospectively. 
While participants may not necessarily enter the trial on the same calendar date 
due to staggered entry, they all progress from a well-defined baseline point 
by meeting the eligibility criteria of the study. Investigators must take full 
responsibility to inform the participants of all aspects of the trial—in particular, 
of the potential benefits and adverse effects of the new intervention. 

1.2 BRIEF HISTORY AND ADAPTIVE DESIGNS 

Theirs/ controlled clinical trial may be traced back to a study of investigating 
treatments for scurvy conducted by Lind (1753). In that study, twelve patients 
aboard the Salisbury at sea were divided into six groups, with two in each group. 
Patients were in similar conditions and had the same diet. Two of the patients 
were given a quart of cider a day; two took elixir of vitriol three times a day; two 
took two spoons of vinegar three times a day; the worst two patients were put 
under a course of seawater; two others had two oranges and one lemon a day; and 
the remaining two patients took nutmeg three times a day. The most sudden and 
visible good effects were perceived from the use of oranges and lemons; one of 
those who had taken them was fit for duty at the end of six days. Obviously, this 
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scurvy study lacks some essential characteristics of modern clinical trials. For 
one, patients were not properly randomized; for example, the worst two patients 
were treated with seawater. Second, the study was not blinded or masked; that 
is, both patients and the investigator knew what treatment was used. As a result, 
there could be selection bias and other confounding effects in the scurvy study. 

Early applications of randomization were in agriculture to study which fer-
tilizers affected the great crop yields (Fisher, 1926). The field was divided into 
plots, and each plot was randomly assigned a specific fertilizer. The goal of 
randomization here is to obtain a valid test of significance through independent 
replications, whereas randomization used in clinical trials—for example, the 
streptomycin trial in pulmonary tuberculosis by Hill (Medical Research Coun-
cil, 1948)—is to produce comparable groups so that patients in different groups 
are alike in all aspects except for the treatment. Randomization is essential in 
clinical trials to control known and unknown biases during patient selection, 
treatment allocation, outcome evaluation, and so on. Blinding provides an-
other way of reducing the treatment-related bias by intentionally concealing the 
identity of treatments. 

Traditionally, clinical trials are designed with fixed sample sizes and equal ran-
domization (patients are allocated to each treatment with the same probability). 
This can be illustrated with the following phase III clinical trial of human immun-
odeficiency virus (HIV) type 1. It is known that maternal-to-infant transmission 
is the primary means for newborns infected with HIV. To evaluate whether the 
antiviral therapy zidovudine reduces the risk of maternal-to-infant HIV transmis-
sion, the Pediatrie AIDS (acquired immune deficiency syndrome) Clinical Trials 
Group conducted a randomized, double-blind, placebo-controlled, multi-center 
trial to evaluate the efficacy and safety of the zidovudine regimen (Connor et al., 
1994). The primary binary endpoint was whether the newborn infants were HIV-
positive (with at least one positive HIV culture of peripheral-blood mononuclear 
cells). At the first interim analysis, 239 pregnant women received zidovudine 
and 238 received placebo through equal randomization between zidovudine and 
placebo, while 12 women withdrew from the study before delivery. Among 363 
births with known HIV-infection status, there were 180 newborns in the zidovu-
dine group with 13 infants HIV-positive and 183 in the placebo group with 40 
HIV-positive. The interim result was very compelling: Zidovudine reduced the 
risk of maternal-to-infant HIV transmission by approximately two-thirds. This 
finding led to early termination of the trial, and the data and safety monitoring 
board recommended that the patient enrollment be discontinued and that all pa-
tients in the trial be offered zidovudine treatment. In a later updated analysis, 
20 newborns were HIV-positive in the zidovudine group and 60 were in the 
placebo group (Zelen and Wei, 1995; Rosenberger, 1996). The results were 
indeed overwhelming. Had those 60 women with HIV-positive newborns in 
the placebo group been given zidovudine, many infants would have been saved. 
This trial reveals a limitation of equal randomization; that is, regardless of the 
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accumulating evidence in the trial, patients are always equally allocated to the 
experimental treatment and control. By contrast, adaptive randomization, which 
tends to assign more patients to better treatments based on the accumulating 
data, may appear to be a more ethical approach. 

In fact, adaptive randomization is just one aspect of adaptive designs; adap-
tations in clinical trials have many other features and meanings (Berry, 2006; 
Chow and Chang, 2006; Chang, 2008; Berry et al., 2010). In general, adaptive 
designs may allow trial early stopping for superiority, noninferiority, or futility; 
adaptive dose escalation/de-escalation or dose insertion in dose-finding studies; 
dropping or adding treatment arms; adaptive randomization, seamless phase I/II 
or phase II/III transition; extending accrual or sample size re-estimation; en-
riching a subpopulation; and so on. No matter how adaptations are undertaken, 
they all should be completely specified in advance of the trial, so that the type 
I error rate can be properly controlled. Adaptive clinical trials are much more 
challenging and demanding than traditional fixed-sample trials. This is true not 
only in the design stage, but also during the trial conduct. Adaptive designs 
often require an integrated multidisciplinary research team and the infrastructure 
to allow for more frequent interim data monitoring. In particular, patients must 
be examined and treated on the regular basis along with biomarker analysis. We 
also need to design and oversee the entire trial conduct, implement real-time 
adaptive randomization, and carry out timely interim analyses. 

As an example, adaptation in a phase I dose-finding trial means to escalate 
or de-escalate the dose based on the accumulating toxicity data. Patients are 
enrolled sequentially over time and are treated in cohorts. At any time of the trial, 
a new cohort may be treated at a lower, a higher, or the same dose, depending 
on whether the current dose is considered overly toxic, safe, or appropriate. 
Decision making on dose assignment is frequent and spontaneous upon each new 
cohort's arrival. However, toxicity may be of late onset, such that the outcomes 
of previous patients are still not available when that information is needed for the 
next dose assignment. For example, in a dose-finding trial with the combination 
of oxaliplatin and gemcitabine along with concurrent radiation therapy, toxicity 
assessment required a nine-week follow-up, while the accrual was one patient 
every two weeks (Desai et al., 2007). Hence as a new patient entered the trial, 
some of the patients who had already been treated might have only been partially 
followed and their toxicity outcomes were missing. Such delayed outcomes 
inevitably pose great challenges to dose finding. More interestingly, that trial 
also raises a commonly encountered situation in which multiple therapies are 
combined for enhancing treatment synergistic effects. Here is another example 
of a drug-combination study: A seamlessly connected phase I/II trial evaluated 
both the safety and efficacy of the combination of decitabine and Ara-C in the 
treatment of acute myelogenous leukemia and myelodysplastic syndrome. Two 
doses of decitabine, two doses of Ara-C, and two treatment schedules were 
studied, which led to a total of eight different drug combinations. 
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1.3 MODERN CLINICAL TRIALS 

Traditional cancer treatments, such as chemotherapies, take effect by impairing 
mitosis and act effectively on fast-dividing cancer cells. Unfortunately, these 
drugs (often known as cytotoxic agents) cannot discriminate fast-dividing normal 
cells and cancer cells and thus kill both blindly, which often results in substantial 
toxicity. Nowadays, with enormous expansion of our knowledge on the complex 
cancer pathways and networks, personalized medicine holds the most promise 
for the next generation of drug development. Targeted therapies are more specific 
toward certain disease pathways or inhibiting certain protein profiles. This type 
of agents utilize pathogenesis at a molecular level to differentiate patients who 
are more likely to respond from those who are not. Consequently, each patient is 
treated with individually tailored treatments. For example, imatinib (also called 
Gleevec) is highly effective in chronic myelogenous leukemia by inhibiting the 
BCR-ABL fusion protein that promotes cancer cell growth. This "wonder drug" 
works by seeking out and destroying cancer cells only, while leaving healthy 
cells virtually untouched. Another example is a monoclonal antibody, called 
trastuzumab with a trade name of Herceptin, which interferes with the human 
epidermal growth factor receptor 2 (HER2). Trastuzumab only works effectively 
in a subset of breast cancer patients with HER2 positive status. As the trend of 
personalized medicine grows, it is desirable to identify each patient's biomarker 
profile in order to provide the best available treatment accordingly (Lee, Gu, and 
Liu, 2010). 

Although many new agents are waiting in the pipeline to be tested and a 
large number of biomarkers (e.g., molecular profiles or protein pathways) have 
shown promising evidence to be therapeutically useful, efficient diagnosis and 
treatment as well as biomarker validation have proven to be extremely difficult. 
To overcome the "biomarker barrier," Bayesian adaptive designs appear to be 
well-suited because they ideally adapt to information that accrues during the 
trial. In the modern era of clinical trials, the study design and trial conduct 
become more sophisticated than ever, which, in turn, demands more advanced 
and adaptive statistical methods. To appreciate the importance and complexity 
of the process, we present three recent high-profile clinical trials in the following. 

The first trial is known as BATTLE (Biomarkers-Integrated Approaches of 
Targeted Therapy for Lung Cancer Elimination) at the University of Texas M. 
D. Anderson Cancer Center (Zhou et al., 2008). This umbrella study consisted of 
four parallel phase II trials for patients with advanced non-small-cell lung cancer 
(NSCLC). The trial assessed four targeted agents and four biomarkers simul-
taneously. Through timely tissue collection and biomarker analysis, BATTLE 
provided biomarker-based targeted therapies for NSCLC patients. 

The statistical design of BATTLE is adaptive, flexible, and ethical. Based 
on Bayesian hierarchical modeling, the design enhanced borrowing information 
across different subtypes of biomarker groups. In addition, Bayesian adaptive 
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randomization was used to favor treatments that were more likely to be effective 
during patient allocation. The trial continued to learn about treatment effects 
aligning with patients' biomarker profiles. The BATTLE design possesses many 
desirable operating characteristics, such as 

• selecting effective drugs with high probabilities and ineffective drugs with 
low probabilities; 

• treating more patients with more effective drugs according to their tumor 
biomarker profiles; and 

• dropping inefficacious arms with high probabilities based on an early 
stopping rule. 

In conjunction with an early stopping rule, Bayesian adaptive randomization 
appears to be a rational and smart choice for treating patients and underpinning 
effective treatments. As a follow-up study, BATTLE 2 is under the way. 

Second, we introduce the highly anticipated multi-agent trial, called I-SPY 
2 (Investigation of Serial Studies to Predict Your Therapeutic Response with 
Imaging and Molecular Analysis 2). This is an adaptive neoadjuvant phase II 
trial for women with newly diagnosed locally advanced breast cancer (Barker 
et al., 2009). The goal is to examine whether combinations of investigational 
drugs targeting molecular pathways with standard chemotherapy are better than 
standard chemotherapy alone. I-SPY 2 evolves from I-SPY 1, which has built 
an infrastructure to integrate enormous amounts of complex and disparate data 
from many resources and to facilitate real-time adaptive learning. 

The standard biomarkers in I-SPY 2 are hormone receptor, HER2, and 
MammaPrint, while many other exploratory biomarkers are also involved. Based 
on practical and clinical relevance, the number of biomarker groups is narrowed 
down to ten for identifying molecularly tailored treatments. The standard neoad-
juvant chemotherapy regimen include weekly paclitaxel (plus trastuzumab for 
HER2+ patients) followed by doxorubicin and cyclophosphamide. At any time 
of the trial, up to five novel targeted agents are investigated simultaneously, with 
the standard therapy added to each. 

The primary endpoint in I-SPY 2 is pathologic complete response (pCR) at 
the six-month follow-up. Patients in each subgroup are adaptively assigned to 
the treatments that are believed to benefit them the most. However, potentially 
delayed outcomes may hamper the real-time implementation of adaptive ran-
domization. To overcome this difficulty, the statistical design provides joint 
modeling of some surrogate endpoints and pCR. For each biomarker signature, 
the trial continuously updates drugs' predictive probabilities of success in a 
phase III trial and, consequently, decisions are made on whether an experimental 
treatment should 

• graduate along with the corresponding biomarker signature and move 
forward to a more informed phase III trial, 
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• be dropped for futility, or 

• continue for further evaluation after accruing more information. 

During the trial, new drugs may be added to replace those that have either 
graduated or been dropped. Unlike the BATTLE trial which considered four 
fixed therapies, I-SPY 2, being "more" adaptive, allows treatments to "come and 
go" as the trial progresses. 

At last, IPASS (Iressa Pan Asia Study) is a phase III trial to compare oral 
gefitinib (commonly known as Iressa) monotherapy with intravenous carboplatin 
and paclitaxel chemotherapy as first-line treatment in chemotherapy-naive Asian 
patients with advanced NSCLC (Mok et al., 2009). Prior to the IPASS study, 
there have been several randomized, controlled phase III trials of the epidermal 
growth factor receptor (EGFR) tyrosine kinase inhibitors for NSCLC treatment, 
but the results were confusing with some positive and some negative findings 
(Saijo, Takeuchi, and Kunitoh, 2009). 

From a more selective patient population, IPASS enrolled a total of 1,217 
patients from Asian countries and equally randomized them to gefitinib or 
chemotherapy (the combination of carboplatin and paclitaxel). The primary 
endpoint of IPASS was progression-free survival, and the primary objective of 
the study was the noninferiority of gefitinib to chemotherapy. Not only the trial 
concluded the noninferiority of gefitinib, but also demonstrated its superiority 
over chemotherapy. An interestingly finding was that the survival curves of the 
two treatment groups crossed at month six, favoring chemotherapy during the 
first six months and gefitinib thereafter. This suggested that patients could be a 
mixture of two possible subpopulations that were differentially responsive to the 
molecular-targeted therapy and cytotoxic agents. Further biomarker analyses 
showed that patients with EGFR mutations had longer progression-free survival 
in the gefitinib arm, while patients with wild-type EGFR had longer survival in 
the chemotherapy arm. 

Following the findings of the IPASS study, European Commission granted the 
marketing authorization for Iressa as treatment of adults with locally advanced 
or metastatic NSCLC with an EGFR mutation. The endorsement of Iressa's use 
in a subset of NSCLC patients reflects the growing importance of personalized 
treatment. 

1.4 NEW DRUG DEVELOPMENT 

Before any further discussion on new drug development, it is important to make 
a distinction between different types of agents. First of all, most of the oncology 
drugs are cytotoxic agents, which damage or destroy rapidly growing cancer 
cells. For example, carboplatin and paclitaxel typically shrink the tumor in a 
dose-dependent manner: A higher dose would result in more shrinkage of the 
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tumor. The second type of agents are cytostatic; many targeted therapies belong 
to this family, and they are often directed at molecular targets to inhibit tumor 
growth or prevent the proliferation of cancer cells (Korn, 2004). Patients may 
benefit from cytostatic agents even without explicitly shrinking the tumor. For 
cytostatic agents, lower doses may be as effective as higher doses. For example, 
a tyrosine kinase inhibitor, lapatinib, specifically targets HER2+ in breast cancer 
patients. In the treatment of lung cancer, gefitinib prevents cancer cells from 
growing and multiplying by targeting EGFR through the disruption of EGFR 
signal transduction for cell division, apoptosis, and angiogenesis. Finally as 
the third type, biologic agents are substances from a living organism, such as 
interleukins and vaccines, which are often used in the prevention, diagnosis, or 
treatment of cancer and other diseases. 

For illustration, we describe the intuition behind the four successive phases 
of clinical trials using cancer drug development as an example. Before initiating 
a clinical trial for a new chemical compound, extensive preclinical studies must 
have been carried out. In preclinical settings, in vitro (within a controlled 
environment—e.g., on glass slides or in test tubes) and in vivo studies (within a 
living organism, such as rodents) are performed to test a wide range of doses of 
the experimental agent. These cell-line and animal experiments mainly provide 
the preliminary toxicity and efficacy data, along with pharmacokinetics (PK) and 
pharmacodynamics (PD) information. PK refers to how the body processes the 
drug, characterizing the relationship between the dosage regimen and the drug 
concentration in the blood over time; PD studies how the drug works in the body 
by modeling the relationship between the drug concentration-time profile and 
therapeutic and adverse effects. 

Suppose that laboratory scientists conducted extensive basic research in bio-
chemistry and identified a new chemical compound that appears to be promising 
to eradicate cancer cells. Every drug comes with certain amount of risk. This 
chemical compound has never been tested in human subjects; thus the first task 
is to examine whether the new drug can be tolerated by human beings. We may 
be willing to accept a certain level of toxicity if the drug's therapeutic benefits 
outweigh its adverse effects. This is particularly sensible with cancer drugs, 
because they often induce various levels of toxicity and adverse events. 

As the first human study, a phase I clinical trial is launched to investigate the 
toxicity and side effects of the new agent on a small number of cancer patients. 
Often these patients are disease-relapsed or refractory to standard treatments, 
and sometimes there is no other better treatment option for them. In oncology, 
the goal of a typical phase I trial is to identify the maximum tolerated dose 
(MTD) and evaluate the drug's dose-limiting toxicities. The MTD is defined as 
the dose that has a toxicity probability closest to the maximally tolerable level 
predetermined by the investigator. It is common to assume that both toxicity and 
efficacy effects of the drug increase as the dose increases. Thus a set of doses 
of the new drug is explored to find the most toxic dose (presumably also the 
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most therapeutically effective) that can be reasonably tolerated by patients. In a 
dose-finding study, there is a trade-off between toxicity and efficacy. If the trial 
design is too conservative, the amount of the dosage may not be sufficient to fully 
impart the drug's therapeutic effects; however, if the design is too aggressive, the 
administered dose may be too much to tolerate, and thus the study may result in 
excessive toxicity, or even death. 

After the MTD of the new drug is determined, the next step is to assess whether 
the drug has sufficient biologic activity in opposition to the disease. For this 
purpose, a phase II clinical trial is undertaken, in which the drug is often adminis-
tered at the MTD or the dose immediately lower than the MTD (sometimes called 
the recommended phase II dose—RP2D). The MTD is the highest dose that can 
still be tolerated, while use of the RP2D is a more conservative approach. Phase 
II is a "proof-of-concept" stage, which examines the drug's short-term therapeu-
tic effects and also continues monitoring severe adverse events. Nonworking or 
unsafe drugs should be "killed" as early as possible. Phase II trials often use 
a "quick" endpoint to guard the door so that drugs of little therapeutic effects 
will be blocked out. Once a phase Π trial is completed, a decision is made on 
whether the drug is promising to warrant further investigation. At this stage, 
compounds found to be ineffective or unsafe should be dropped to avoid wasting 
more resources. 

If a new drug successfully passes through the phase II testing, it will be moved 
forward to a phase III trial for definitive comparison with the current standard 
treatment or placebo. Phase III trials are large-scale and long-term randomized 
studies that may involve hundreds or even thousands of patients. If the drug is 
proven to be truly effective in such confirmative trials (typically two separate 
positive phase III trials are required for FDA approval), it will be filed to the 
regulatory agency for authorization of marketing. If granted approval, the drug 
prescription will be available to the general patient population in public. 

Due to the restrictive eligibility criteria and rigorously specified conditions in 
phases I-III trials, some rare but serious adverse effects of the drug might not 
have been surfaced in the previous studies. Hence after the approval, a phase IV 
trial may be launched with more relaxed eligibility criteria, which will follow 
a larger number of patients over a much longer period of time. It provides an 
opportunity to learn more about rare side effects of the approved agent and its 
interaction with other treatments. Sometimes the findings in a phase IV trial 
may add a warning label to the drug, or even result in the removal of a drug from 
the market due to severe adverse events that were unforeseen when the drug was 
approved. 

Conventionally, these four phases of trials are conducted sequentially and 
separately without any kind of formal borrowing information or strength across 
them. Each trial, regardless of the phase, requires an independent study design 
and a completely separate protocol for its own. There is typically a gap between 
two consecutive phases because it takes time and effort to complete and analyze 
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the previous trial and also to initiate a new trial. Nevertheless, there is an 
increasing trend of combining phase I and phase II trials—seamless phase I/II 
trials, and combining phase II and phase III trials—seamless phase II/III trials, 
in order to expedite the drug development process. 

1.5 EMERGING CHALLENGES 

New drug development, especially in oncology, is becoming a daunting task that 
requires prohibitive expenditures of time and cost. Although these days much 
more resources have been devoted to research and development in pharmaceutical 
industries, fewer drugs make it to the market: Compounds entering phase I trials 
ultimately approved for sale are about 5% only. Nowadays, on average the 
number of enrollment criteria has dramatically increased. As a consequence, 
it becomes more difficult to accrue patients, which, in turn, means that a trial 
often takes far longer to complete. Moreover, much more medical procedures, 
such as blood tests or electrocardiograms, are performed on participants for 
extracting as much information as possible. These changes may be partly due to 
more complex diseases being tackled in company with the knowledge explosion 
in genomics. Indeed, clinical trials are becoming more and more complicated 
and difficult. Every trial has some characteristics unique to itself, albeit the 
oversimplification of four sequential phases in the conventional setting. There is 
no shoe that fits all. Therefore, from statistical perspectives, we cannot be more 
careful, thorough, quantitative, and analytical than ever. 

There has been debating about whether clinical trials are being too restric-
tive to reflect the complexity and diversity of actual clinical practice. It is true 
that clinical trials must follow strictly specified study conditions and enrollment 
criteria. By contrast, pragmatic trials are designed and conducted in a more prac-
tical way to answer the real questions facing patients and clinicians (Ware and 
Hamel, 2011). These trials are more relevant to real-world practice and there-
fore represent less-perfect experiments than the standard randomized controlled 
trials. The internal validity of pragmatic trials is compromised to achieve higher 
generalizability. Although randomized controlled trials have limited relevance 
to clinical practice due to homogeneous patients, carefully defined treatments, 
double blinding, and rigorous follow-ups and medical exams, they remain as 
the gold standard approach to examining the benefits and harms of medical 
interventions. 

1.6 SUMMARY 

In the chapters that follow, we will cover the most commonly used statistical 
methods for designing clinical trials of each phase. Irrespective of Bayesian or 
frequentist points of view, we take a practical perspective and introduce various 
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adaptive methods for designing and monitoring clinical trials. Here "adaptive" 
has a very broad meaning, which includes adaptive dose-finding methods (deter-
mining each dose assignment based on the outcomes of previous patients), trial 
early stopping due to futility or efficacy, dropping or adding an arm if necessary, 
group sequential methods, sample size re-estimation, adaptive randomization 
(either covariate-adaptive to balance prognostic factors or response-adaptive to 
assign more patients to better treatments), enrichment designs to enhance homo-
geneity of patients, and so on. Adaptation is not exclusively bonded with either 
Bayesian or frequentist approaches; both can be adaptive. 

The remainder of the book is organized as follows. Chapter 2 presents the 
fundamental concepts and structures of clinical trials. To build the foundation, 
Chapter 3 introduces both frequentist and Bayesian estimation and inference 
procedures, and we put an emphasis on the main differences between the two 
schools of thoughts. Chapters 4 and 5 cover phase I and phase II trial designs, 
respectively; and most of the statistical methods in these early-phase trials are 
Bayesian flavored (Biswas et al., 2009; Yin and Yuan, 2010a). This is mainly 
due to the flexibility of Bayesian adaptive designs and the limited resources and 
small sample sizes in early-phase trials. Chapter 6 is dominated by frequentist 
sample size and power calculations in the hypothesis testing framework. Chapter 
7 discusses all kinds of randomization procedures and, more importantly, adap-
tive randomization. Chapter 8 focuses on dose finding with late-onset toxicity 
(delayed outcomes) and Chapter 9 introduces Bayesian adaptive dose-finding 
methods for drug-combination trials. With the ground-breaking concept of per-
sonalized medicine, prediction and validation of biomarkers for therapeutical 
use become increasingly important, for which Chapter 10 covers the most up-
dated development in targeted therapy designs. Most of the trial examples in the 
book were designed at the University of Texas M. D. Anderson Cancer Center. 
Although we introduce clinical trial design methodologies mainly on the basis of 
oncology trials, these statistical techniques can also be applied to other disease 
areas. 



CHAPTER 2 

FUNDAMENTALS OF CLINICAL TRIALS 

2.1 KEY COMPONENTS OF CLINICAL TRIALS 

For a better understanding of the statistical issues arising from clinical trials, 
we first introduce necessary concepts and key components that are essential 
to clinical trial designs in this section. We then give a brief discussion on 
pharmacokinetics and pharmacodynamics modeling, as well as the intuition 
behind phase I-IV clinical trials. 

2.1.1 Protocol 

Every clinical trial comes with a study protocol. The protocol is a document 
that provides a comprehensive description of the entire study. In particular, it 
includes the general information and background of the disease or condition 
to be treated, the intervention to be used, the study objectives and rationale, 
the procedures to assess drugs' efficacy and safety, and the statistical design 
and methodology (often known as the statistical considerations). The protocol 
should also describe the known and potential risks and benefits of the treatment 

Clinical Trial Design. By Guosheng Yin 13 
Copyright © 2012 John Wiley & Sons, Inc. 



14 FUNDAMENTALS OF CLINICAL TRIALS 

to human subjects, the target patient population, the current standard of care, the 
route of drug administration, and treatment dosages and schedules. 

The study protocol may be viewed as a written agreement between the in-
vestigators, the trial participants, and the scientific community at large. It is 
the single document that specifies the detailed research plan and lays out the 
schematic diagram and organization for the trial. The contents of a protocol are 
typically confidential, and may contain the following items: 

(1) introduction and rationale; 

(2) study objectives, including primary and secondary aims; 

(3) overall study design and experimental plan; 

(4) patient population and enrollment criteria; 

(5) specific treatment procedures, such as randomization, intervention, out-
come measurement, and possible protocol deviations; 

(6) statistical considerations; 

(7) safety data collection and reporting; and 

(8) regulatory, administrative, and legal obligations. 

When composing a protocol, all of the issues related to the trial design must 
be taken into consideration, such as the availability of the drug, the starting time 
of the trial, the duration of the intervention, needs for special tests or laboratory 
facilities, and logistics of blinding and randomization. The protocol is a quality 
control tool for a clinical trial, and the trial conduct should follow the protocol 
as closely as possible. This is especially important for a multi-center study, 
in which collaborators from different institutions must all follow a centralized 
written document. 

Statistical considerations in the protocol must ensure the integrity of the trial 
design. This is the statistical section that specifies the sample size; the probability 
model; efficacy and toxicity monitoring; stopping rules for superiority, futility, 
and safety; statistical methods and schedules for analyzing the interim data; the 
selection of subjects to be included in the analyses; and procedures for assessing 
any deviations from the original study plan. If any change is made to a protocol, 
an amendment needs to be added. 

Nearly every clinical trial experiences violations of the protocol to some ex-
tent. This may be caused by misinterpretation or misunderstanding of some 
terminologies used in the protocol, or by carelessness or unforeseen circum-
stances during the trial conduct. Some protocol deviations are inconsequential, 
but others may have severe effects on the validity of the trial, or even alter the 
conclusions of the study. Deviations from the protocol should be minimized and 
their effects on the study findings need to be thoroughly examined. 
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2.1.2 Primary Objective 

In general, a clinical trial contains one primary objective and possibly several 
secondary objectives. All of the objectives must be feasible and clinically 
meaningful. The primary objective of a clinical trial is the main question that 
the investigators are most interested in, and the trial should be able to adequately 
address at its conclusion. The main question needs to be carefully chosen and 
clearly stated in advance. It is the question on which statistical considerations 
are centered and sample size computations are based. The secondary objectives 
are subsidiary questions that are related to the primary one, which may provide 
additional information on the drug use. 

EXAMPLE 2.1 

In a phase I trial for patients with acute myelogenous leukemia, the pri-
mary objective was to determine the maximum tolerated dose (MTD) and 
the associated dose schedule for a new drug. The secondary objectives in-
cluded: to characterize the dose-limiting toxicities (DLTs) and the overall 
safety profile of escalated doses of the drug, to determine the pharmacoki-
netic parameters and the pharmacodynamic effects, and to assess clinical 
responses and symptomatic improvement, if any. 

The objectives of clinical trials in different phases could be very different, but 
those in the same phase are more or less similar although still depending on each 
individual study. As seen in Example 2.1, phase I oncology trials are typically 
dose-finding studies to identify the MTD of the new agent. On the other hand, 
phase Π trials often aim to evaluate the short-term efficacy of the experimental 
treatment. In the following example of a phase III clinical trial, the primary goal 
is to compare patients' survival across different treatment groups. 

EXAMPLE 2.2 

In a phase III trial for patients with HER2 overexpressing advanced or 
metastatic breast cancer, the primary objective was to evaluate and compare 
the time to disease progression (i.e., progression-free survival) between 
an experimental arm and a control arm. Secondary objectives included 
examining the two treatments with respect to the overall response rate, 
clinical benefit, time to response, duration of response, and overall survival. 

2.1.3 Eligibility Criteria and Accrual 

Defining the study population is an integral part of posing the primary question in 
a trial planning stage. The study population is a subset of the general population, 
which should be defined in advance with unambiguous inclusion or eligibility 
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criteria. We must take into consideration the impact that these criteria will have 
on the study design, feasibility, and recruitment. 

Eligibility criteria are tied with patient safety and the anticipated effects of 
the intervention. Participants defined in the inclusion criteria of a trial should be 
those who have the potential to benefit from the intervention and who are likely 
to adhere to the study protocol. Patients who may be harmed by the intervention 
must be excluded, and those at a high risk of developing conditions that would 
prelude the ascertainment of an event of interest should also be excluded. 

Due to staggered entry, patients enter the trial at different calendar times. 
Since all participants must meet the eligibility criteria to enter the trial, they have 
similar baseline status—that is, the disease and health conditions prior to the 
initiation of an intervention. All the relevant baseline data should be measured 
and collected from each subject. Patients in different treatment arms should 
be comparable with respect to the baseline measurements, including prognostic 
factors, pertinent demographic and socioeconomic characteristics, and medical 
history. 

Often recruiting a sufficient number of patients in a reasonable period of time 
is one of the most challenging tasks in a clinical trial. Successful recruitment 
relies upon devoting extra efforts, maintaining flexibility, and establishing interim 
goals. Options when the accrual falls short include: 

• accepting a smaller number of patients than originally planned, 

• relaxing the inclusion criteria, 

• extending the time frame for recruitment, and 

• adding more recruiting centers in a multi-center study. 

A multi-center trial requires collaborative efforts from different institutions to 
enroll and follow study subjects. Conducting the same trial at multiple centers 
helps to recruit an adequate number of participants within a reasonable time, and 
also to assure a more representative sample of the target population. Moreover, 
investigators with similar research interests and skills can work together on a 
common problem and share resources. 

2.1.4 Power and Sample Size 

Calculation of the sample size with provision for an appropriate level of sig-
nificance and power is an essential part of clinical trial planning. The design 
parameters, such as the effect size including the expected treatment difference 
and the associated variance, may be obtained from previous studies or expert 
opinions. Clinical trials should control the type I error to prevent false-positive 
results and also should have sufficient statistical power to detect the treatment 
difference considered to be of clinical interest. The primary response variable 
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which characterizes the effectiveness of the intervention must be clearly iden-
tified. The endpoint may be dichotomous (whether a patient has responded to 
treatment or not), continuous (e.g., measuring blood pressures, cholesterol lev-
els, or some biomarker expression), or time-to-event (progression-free survival 
or overall survival). Different types of endpoints require different statistical 
methods for sample size calculation. 

No matter how thoroughly and rigorously a trial is designed, unexpected events 
may occur during the trial conduct. For example, the trial may indicate greater-
than-expected beneficial effects of the study drug, so that the experimental 
treatment should be short-tracked to the FDA for approval; or it may become clear 
in the middle of a trial that it will be impossible to reach a statistically significant 
difference by the end of the study, and thus the trial should be terminated early for 
futility. A well-planned clinical trial may allow for appropriate interim decision 
making for strong positive or negative treatment effects; that is to stop a trial 
early due to overwhelming efficacious effects, futility, or substantial adverse 
events of the study drug. Trial designs must preserve the integrity of the study, 
by controlling the type I and type II errors. 

During the planning stage, it may be difficult to obtain reliable estimates of 
the design parameters due to changes of the study conditions and differences in 
the patient populations between the current and historical studies. The trial may 
end up with a sample size that is not adequate to detect a clinically meaningful 
difference, due to either an overestimation of the treatment difference or an 
underestimation of the variance. It is thus sensible to adaptively adjust the 
originally planned sample size using the interim data in order to achieve an 
adequate power for the study. This additional flexibility in sample size re-
estimation calls for more sophisticated statistical methods and trial designs. 

2.1.5 Blinding 

Bias is the systematic error; that is the deviation from the truth caused by any 
reason other than sampling variability. In a clinical trial, bias can be substantially 
reduced by blinding the participants and investigators. Bias exists on a conscious 
and a subconscious level for both patients and investigators. In an open-label 
(unblinded) study, both patients and investigators know the intervention that 
each subject is taking. In general, patients tend to believe that they are doing 
better if these patients know that they are on the new drug, and investigators are 
more likely to overestimate the response if they know the patient is treated with 
the experimental drug due to their enthusiasm for the new agent. Due to the 
conscious and subconscious psychological tendencies of humans, bias may arise 
in an open-label study, while blinding provides an effective tool to prevent such 
bias. There are three ways of blinding in clinical trials: 

• In a single-blind study, patients are not aware of which intervention they 
receive, but the investigators are. 
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• In a double-blind study, neither the patients nor the investigators who 
are responsible for patients' follow-up know the identity of the treatment 
assignment. 

• In a triple-blind study, not only the patients and investigators are unaware 
of treatment assignments, the personnel in charge of data analysis (e.g., 
statisticians) are also not informed of the identity of the treatment groups. 

Phase III clinical trials often use double-blind designs to prevent potential bias 
during data collection and assessment. Triple-blind clinical trials are not common 
because they are complex and also not regarded as necessary in general. 

When conducting a trial under a blinding scheme, great care must be taken 
to hide the treatment identity from all except those who need to know which 
medication is active and which is a placebo. Before the trial is finished, this 
information should be limited only to the drug producers (often the trial sponsors) 
and possibly the data safety and monitoring board. 

2.1.6 Randomization 

In a comparative study with multiple treatments, each patient is randomly as-
signed to one of the treatment groups. The use of randomization in a clinical 
trial helps to remove systematic errors or bias, lay out the foundation for statis-
tical analysis, and also justify the significance level of hypothesis testing. Many 
factors may affect the primary outcome of a trial, while randomization can re-
duce the confounding effects that may be incorrectly attributed to the difference 
between the study groups. For example, if a physician always assigns healthier 
or younger patients to the experimental therapy and sicker or older patients to 
the standard treatment, the study may eventually conclude that the experimental 
therapy is more effective, which, however, could be a false-positive result due to 
selection bias. To prevent bias in the allocation of patients, randomization helps 
to produce comparable groups with respect to all the known and unknown risk 
factors. 

The simplest randomization procedure is equal randomization. In a two-arm 
trial, equal randomization allocates each patient based on a ratio of 1:1, which can 
be easily achieved by tossing a fair coin. Each participant has the same chance 
to be assigned to either the intervention or the control group. Randomization 
probabilities may be fixed throughout the trial, or adaptively changing based 
on the characteristics or the outcomes of the patients who have already entered 
the trial. More sophisticated randomization procedures require more advanced 
statistical modeling. Baseline- or covariate-adaptive randomization adjusts the 
patient allocation probabilities according to imbalance in the patient baseline 
characteristics between treatment groups. Response- or outcome-adaptive ran-
domization adjusts the allocation probabilities according to the responses of 
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previously enrolled patients to their assigned treatments, such that a new patient 
is more likely to receive a better treatment. 

2.1.7 Parallel and Crossover Designs 

The parallel design is the standard approach to comparing several treatments. 
Patients are randomized to one of the arms and then remain on that treatment 
throughout the trial. By contrast, a crossover design randomizes patients to a 
sequence of treatments and allows them to cross over from one treatment to the 
other instead of fixing the treatment for each subject. There should be a washout 
period between two consecutive treatments to eliminate the residual effects from 
the previous treatment. Each patient will be given the new intervention in a 
crossover design, while a parallel design does not guarantee a patient to be 
assigned to a certain treatment. In a two-arm crossover trial as shown in Figure 
2.1, each participant is evaluated twice, once in the intervention group (treatment 
A) and once in the control group (treatment B), which lessens the concern over 
the accuracy of the control data. Moreover, serving as his/her own control, 
the subject variability is reduced, and investigators can assess whether each 
participant does better on treatment A or treatment B. 

However, crossover designs have some intrinsic limitations. The time interval 
between using treatments A and B should be sufficiently long to wash out the 
carryover effects from the previous treatment. Due to the late-onset of certain 
events, the residual effects of the earlier treatment might affect the subject's 
response to the later treatment. Moreover, the health status of the patient and 
the condition of the disease might have already been altered by the previous 
treatment. Thus only conditions that are likely to be similar in both treatment 

Washout period to 
reduce carryover 
effects 

Figure 2.1 Crossover design with treatments A and B. 
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periods are amenable to a crossover design. This restriction greatly limits the 
applications of crossover designs. For example, surgeries or acute diseases that 
do not recur are not suitable for a crossover study. Also, in an oncology trial, 
if a patient has responded to one treatment, it would not be sensible to switch 
the treatment to something else that is uncertain; or if a patient's disease has 
progressed, the characteristics of the disease may have changed and will not 
return back to the original status. 

2.1.8 Data Collection 

Clinical trial data are collected through medical examinations, laboratory tests, 
interviews, and questionnaires. We need to devote sufficient effort to ensure the 
key data that are critical to the interpretation and conclusion of the trial of high 
quality. 

Response variables are the outcomes measured in the course of a trial; they 
must be clinically relevant and also must define and answer the primary and 
secondary questions. Response variables may be dichotomous, continuous, or 
time-to-event measurements—for example, the incidence of the DLT, partial or 
complete response, stable disease, progression-free survival, and overall survival. 
In general, a single "clean" response variable should be identified to answer the 
primary question. If there are too many response variables in a trial, the findings 
may be inconsistent and difficult to interpret and generalize. 

In a trial of long duration, intermittent short-term response variables may 
serve as surrogates for the long-term outcomes. For example, we may measure 
the percentage of tumor shrinkage instead of mortality, the change in the count 
of CD-4 (cluster of differentiation 4) lymphocytes for HIV/AIDS patients, or the 
PSA (prostate-specific antigen) level in prostate cancer as opposed to disease-
free survival. The surrogate response variables must be scientifically acceptable 
such that when the clinical trial is completed, they can be used to speed up the 
determination of the possible benefits of the new intervention. 

After a patient is enrolled in a trial, we should make an effort to monitor 
and enhance the participant's adherence to the assigned treatment. Patients may 
not comply with their assigned treatment due to dropping out of the study or 
switching to a different treatment. Common reasons for noncompliance include 
that patients experience excessive toxicities and other unexpected side effects, are 
unwilling to change their behaviors, do not understand instructions given to them, 
may lack family support, or may change their minds regarding participation. 

2.1.9 Adverse Events 

Drug-related adverse events or side effects are always on the top of the con-
cerns for patients and investigators. Toxicities must be continuously monitored 
throughout the trial. The potential benefits of the intervention should be max-
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imized, while possible toxicity should be kept to a minimum by appropriately 
selecting the dose and frequency/schedule of administration of the drug. At any 
time, a trial should be suspended if excessive toxicities have occurred. 

For a thorough evaluation of potential risks of the intervention, we need 
to pay adequate attention to the assessment, analysis, and reporting of adverse 
events. When patients are taken off the study medication or have the intervention 
device removed, the specific reasoning behind such actions should be carefully 
documented. For example, due to excessive toxicities, patients may be placed 
on a reduced dosage of the study drug or on a lower intensity of an intervention. 
Moreover, the type and frequency of participants' complaints are also important 
for assessing the adverse effects of the intervention. 

An external and independent group, known as the data safety monitoring 
board (DSMB), is often needed to oversee the entire clinical trial, especially for 
a study involving randomization. The DSMB looks for early evidence of over-
whelming benefits or harmful effects related to the experimental intervention. 
If the treatment is harmful, early termination of the trial should be considered. 
If the treatment leads to benefits as expected, it would be unethical to continue 
randomizing patients to other inferior arms. If there appears to be no clear con-
clusions by the end of the trial, it may be unwise to continue the trial due to the 
cost and concerns about participants' health. 

2.1.10 Closeout 

The closeout of a clinical trial usually requires careful planning, such as (i) con-
sideration of the date when the last participant is enrolled and (ii) the minimum 
length of the follow-up that the protocol requires. After completion of the trial, 
it is important to clean and verify the data to ensure a high quality. Statistical 
analysis should be thorough and correct. Misspecified models and inappropriate 
methods may result in misleading findings and impair the credibility of a trial. 
Questions, as follows, may be asked at the conclusion of the trial: 

• Has the trial been carried out as originally planned? 

• How do the results of the trial compare with those from other relevant 
studies? 

• What are the clinical implications of the study findings, and how will the 
trial's conclusion affect clinical practice? 

The analysis population should be carefully chosen, because excluding ran-
domized patients from analysis or subgrouping on the basis of response variables 
may lead to biased results of unknown magnitude and direction. Investigators 
have an obligation to review their study and the findings critically and to present 
sufficient information so that others can properly evaluate the trial. 
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Figure 2.2 Drug concentration over time for an intravenous drug. 

2.2 PHARMACOKINETICS AND PHARMACODYNAMICS 

In the preclinical studies and early-phase trials, we need to understand the 
pharmacokinetics (PK) and pharmacodynamics (PD) of the drug (Hedaya, 2007). 
PK works on the kinetics of drug absorption, distribution, and elimination; it 
characterizes the relationship between the dose and the time course of drug 
concentration in the body. PD studies the treatment effect once the drug has 
reached the site of action. Hence intuitively speaking, PK is what the body does 
to the drug, and PD is what the drug does to the body. 

The PK model produces the drug blood concentration-time profile in the body. 
It describes the motion of the drug in the body over time, in particular, regarding 
drug absorption, distribution, metabolism, and elimination. Figure 2.2 shows 
the plasma concentration-time profile after an intravenous dose administration. 
Let C(t) denote the drug plasma concentration at time t. The model that 
characterizes the curve in Figure 2.2 is given by 

C(i) = -exp(- /3e t ) . 
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Figure 2.3 Drug concentration over time for an orally administered drug. 

where d is the dosage of the drug, V is the volume of the distribution, and ße is 
the elimination rate parameter. If the drug is administered as a single oral dose, 
the drug blood concentration-time profile is given by 

C(t) = 
ßad 

(ßa~ße)V 
{exp(-ßet) - exp(-ßat)}, 

where ßa is the absorption rate and other parameters are defined as before. Figure 
2.3 displays a typical curve of drug concentration over time for an orally taken 
agent. 

The PD profile of a drug (i.e., a typical dose-response curve) is shown in 
Figure 2.4. Among various models that characterize the drug concentration-
effect profile, the Sigmoid Emax model is particularly popular. The Emax 
model assumes that the drug effect monotonically increases with respect to the 
drug concentration until it reaches a plateau corresponding to the maximum drug 
effect. The Emax model, also known as the Hill (1910) equation, quantifies the 
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Figure 2.4 Drug effect versus drug concentration in an Emax model. 

drug's therapeutic effect in the form of 

E = E„ 
Ca 

■(ΟΕΜΥ + Ο^ 
(2.1) 

where Emax is the maximum effect of the drug, CE5O is the drug concentration 
when the effect is 50% of Emax, and C is the drug concentration at the site 
of action. The parameter a adjusts how quickly this monotonically increasing 
curve reaches the plateau Emax. When Em¡aí = 1, (2.1) reduces to a logistic 
regression model, 

log E 

\-E 
= a{log(C) - log(CE50)} = ßo + ßi log(C), 

where the intercept and slope are /3n = — olog(C£;5o) a nd βι = α> respectively. 
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2.3 PHASES l-IV OF CLINICAL TRIALS 

2.3.1 Phase I 

Following the preclinical studies, the first step of testing a new drug in human 
beings is to understand how well the agent can be tolerated. The safety of a 
drug does not mean absolutely harmless, while it is often necessary to accept a 
certain amount of risk. A drug may be considered "safe" as long as its benefits 
outweigh the associated risks. Especially in serious and life-threatening diseases, 
the tolerance for drugs' risks could be higher. For example, chemotherapies are 
known to potentially induce various severe adverse effects, which, however, 
may save cancer patients' lives. Exposing human subjects to the risks inherent 
in experimental research is only justifiable if there is a realistic possibility that 
the study findings will benefit those participants and future patients, and also 
lead to substantial scientific progress. 

In oncology, phase I trials focus on identifying the MTD, which is the max-
imum dosage that can be given to patients before they start experiencing an 
unacceptable level of toxicity. Phase I trials are single-arm studies, and the 
typical outcome is whether a patient has experienced the DLT, which refers to 
an unacceptable level of toxicity that prohibits continuing the treatment. 

A common assumption in a phase I trial is that toxicity monotonically in-
creases with the dose. Patients are typically grouped according to their en-
rollment dates and are treated in cohorts. The eligibility criteria in a phase I 
oncology trial are less restrictive. Most of the participants may have advanced or 
refractory cancer; that is, the tumor is not responsive to any standard treatment, 
or the disease has progressed. For safety, the trial starts treating the first cohort 
of patients at the lowest or the physician-specified dose level. Dose escalation 
or de-escalation is adaptively determined by the accumulating data from succes-
sively accrued patients. Phase I clinical trials are critically important because 
the identified MTD will be further investigated in the subsequent phase II or 
phase III trials. If the MTD is misidentified as a dose with higher toxicity, a 
substantial number of patients would be exposed to over-toxic doses; this may 
cause a discontinuation of research on an actually working drug due to excessive 
toxicities. On the other hand, if a dose with lower toxicity is misidentified as the 
MTD that turns out to be ineffective, it may overlook an otherwise promising 
drug. 

2.3.2 Phase II 

Phase II trials may be regarded as the "proof-of-principle" stage of drug develop-
ment. This phase of a trial evaluates whether the drug has any biologic activity 
or beneficial effect, and it continues monitoring all the possible adverse events. 
Phase II studies provide critical information for the "go or no-go" decision, that 
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is whether to proceed further to a large confirmatory phase III trial. Nonworking 
drugs should be dropped from the study or "killed" at this stage to avoid investing 
more resources and efforts. 

Phase II trials may be single-arm assessing one treatment, or multi-arm com-
paring several treatments. If only one treatment is evaluated, the historical data 
or the standard response rate will be used for comparison. If the trial examines 
multiple treatments, patients will be randomized to the experimental and standard 
arms. Randomized phase II trials may reduce the so-called "trial effect," which 
often arises due to different patient populations, physician cares, and medical 
environments between the current and previous studies. 

The data collected in a phase II trial characterize the drug's short-term efficacy. 
The primary endpoint must be ascertainable quickly and be able to establish 
the treatment benefit convincingly. Examples of such short-term responses 
include: more than 50% shrinkage of a solid tumor compared with the baseline 
measurement; partial response (a 30% decrease in the sum of the longest diameter 
of target lesions) or complete response (disappearance of all target lesions); and 
partial or complete remission in patients with leukemia as indicated by the levels 
of platelets, blastic cells, and white blood cells. In principle, a phase II trial 
is small and can be completed in a relatively short period of time in order to 
facilitate the "go or no-go" decision to a phase III trial. 

2.3.3 Phase III 

Phase III trials are large-scale in terms of resources, efforts, and costs. This phase 
collects a large amount of data over a long period of follow-up to examine the 
ultimate therapeutic effect of a new drug. The standard form of a phase III trial 
is a double-blind, randomized, and placebo-controlled study. The control arm 
may be a placebo or the standard of care. The use of a placebo in a randomized 
trial is only acceptable if there is no other best or standard therapy available. 
Patients must be informed of the possibility that they may be given a placebo 
rather than the experimental intervention. The typical endpoint in a phase III 
trial is a time-to-event measurement, such as progression-free survival. Interim 
monitoring is often considered for such a long-term confirmatory trial. 

2.3.4 Phase IV 

After a drug successfully passes through phases I, II, and III testing, it will be 
filed to the FDA for marketing authorization. Upon the drug's approval, a phase 
IV trial may be initiated as a post-marketing surveillance study. In this phase, 
the drug-associated adverse events and patients' safety are closely monitored to 
identify problems that have not be recognized prior to its approval. Rare severe 
adverse events that arise after the widespread use of the drug in the general 
patient population may add a warning label to the prescription or even cause the 
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Figure 2.5 Diagram of a clinical trial, with Internal Review Board (IRB) and Data 
Safety Monitoring Board (DSMB). 

drug to be withdrawn from the market. A phase IV trial is an integral part of the 
drug evaluation process, which may lead to new indications or new uses of the 
approved agent. 

2.4 SUMMARY 

Clinical trials must protect participants' safety in the study and satisfy all ethical 
constraints. Statistical methods and trial designs should utilize all available re-
sources to detect the treatment effect from confounders, reduce bias, and improve 
precision (Friedman, Furberg, and DeMets, 1998; Piantadosi, 2005). Properly 
designed and carefully conducted clinical trials, especially when coupled with 
blinding and randomization, instill a high level of confidence in the study find-
ings. Figure 2.5 presents the flow chart of a clinical trial from the design, review, 
approval, and conduct until the final data analysis. As a summary, clinical trial 
designs aim to 

• eliminate bias, quantify and reduce errors, 

• produce accurate estimates of treatment effects and the associated preci-
sion, 
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• provide a high degree of credibility, reproducibility, and internal and ex-
ternal validity, and 

• most importantly, influence future clinical practice. 

EXERCISES 

2.1 What are the main objectives and what types of endpoints are typically 
used in phase I, II, and III clinical trials, respectively? 

2.2 When can the drug be filed to the FDA for approval? Which phase of the 
trial is conducted after approval, and for what purposes? 

2.3 What is the type I error rate and what is power of a statistical test? Describe 
them in the hypothesis testing framework. 

2.4 What is the purpose of blinding in a clinical trial, and what is the purpose 
of randomization? 



CHAPTER 3 

FREQUENTIST VERSUS BAYESIAN 
STATISTICS 

3.1 BASIC STATISTICS 

3.1.1 Probability and Univariate Distributions 

A probability space is often denoted by (Ω, F, P), where Ω is the sample space 
containing all the possible outcomes of an experiment; T, called the σ-field, is a 
collection of subsets of Ω; and P is a probability measure. For a set A G T, its 
complement Ac G F; if A\, A2,... e J , then the union U^-Aj G T; and the 
empty set 0 G T. For any set A G T, a probability measure function P with 
domain JF satisfies 

• P(A) > 0, 

• Ρ(Ω) = 1, and 

• P(U^XA¿) = £ g x P( Ai) for any mutually disjoint sets Ai,A2,... G J*. 

A random variable is a function mapping from the sample space Ω to the 
real line 7c. The cumulative distribution function of random variable X is 
F(x) = P(X < x) for all x G 7c. If X is a continuous random variable, the 
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probability density function (p.d.f.) of X is defined as 

Thus given f(x), the cumulative distribution function of X can be obtained by 

F(x) = f f(u) du. 
J — oo 

If X is a discrete random variable, the probability mass function (p.m.f.) is 
denoted by P(X = x) or Pr(X = x). Without loss of generality, we illustrate 
the expectation and variance for a continuous random variable, while for a 
discrete random variable the integral is simply replaced by a summation over 
all of the discrete probability masses. The expectation or the mean of random 
variable X is 

E(X) = jxf(x)dx, 

and the variance of X is 

Var(X) = E{X - E(X)}2 = E(X2) - {E{X)}2. 

In the following, we list some discrete distribution functions that often arise 
in clinical trial designs. 

• Discrete uniform distribution: The p.m.f. of X is 

P(X = xk) = ±, k = l,...,K, 

where x\,..., χχ are different values on the real line and K is a prespec-
ified positive integer. The discrete uniform distribution is often used as a 
prior distribution in the context of Bayesian model averaging or Bayesian 
hypothesis testing. For example, a discrete uniform prior distribution 
may be assigned to the candidate models or hypotheses when there is no 
preference a priori to any specific model/hypothesis. 

Bernoulli distribution: X ~ Bernoulli(jp), if X = 1 with probability p, 
and X = 0 with probability 1 - p. The p.m.f. of X can be written as 

P(X = x)=p%l-p)1-x, 2 = 0,1, 

with E(X) = p and Var(X) = p(l — p). The Bernoulli distribution is 
commonly used in phase I and phase II clinical trials, in which binary 
endpoints are typically observed, for example, to characterize whether a 
patient has experienced toxicity or whether a patient has responded to 
treatment. 

• 
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• Binomial distribution: Y ~ Bin(n,p), if Y = Xi + · · · + Xn, where 
Xi,...,Xn are independent and identically distributed (i.i.d.) random 
variables from Bernoulli(p). The p.m.f. of y is given by 

P{Y = y)= (n)py(l-p)n-y 

= ,, n ! ,.Py{l-p)n-y, y = 0,l,...,n, 

with E(Y) = np and Var(y) = np(l — p). The binomial distribution may 
be used to model the number of patients who have experienced toxicity or 
those who have achieved efficacy in a clinical trial. 

• Beta-binomial distribution: X ~ Beta-Bin(n, α,β), if the p.m.f. of X is 

,-./·.,- N (n\ Β(α + χ,β+ η —χ) η „ 
P(X = l ) = y B(a,ß) -· X = °·1 "' 

where the beta function is defined as Β(α,β) = Γ(α)Γ(/3)/Γ(α + β), 
and the gamma function is given by 

Γ(α) = / ua-le~u du. 
Jo 

The mean and the variance of X are given by 

E(X) = - ^ j and Var(X) = ^ ( « + ^ + «) 
a + ß v y ( a + /g)2(Q + /g + 1 ) ' 

respectively. As will be seen in Chapter 5, a beta-binomial distribution 
often arises as the posterior predictive distribution in a phase II trial with 
a binary endpoint. 

Negative binomial distribution: X ~ Neg-Bin(r,p), if the p.m.f. of X is 

P(X = x)=(X + r
x~

1\pr(l-Pr, x = 0 , l , . . . , 

where r is a fixed positive integer, and E(X) = rp/(l — p) and Var(X) = 
rp/ ( l — p)2. Suppose that a sequence of independent Bernoulli exper-
iments are conducted, each with a success probability p. Let X be the 
number of experiments failed until a total of r successes are accumulated, 
then X ~ Neg-Bin(r,p). The geometric distribution is a special case 
of the negative binomial distribution with r = 1; that is, the number of 
experiments failed until the first success is observed. 
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• 

• 

Poisson distribution: X ~ Poisson(À), if the p.m.f. of X is 

β~ λ λ χ 

P(X = x) = r - , x = 0 , l , . . . , 
xl 

where λ > 0 is the intensity rate parameter, and E(X) = War(X) = X. 
For a binomial random variable Y ~ Bin(n,p), as n -» oo and p —>· 0 
with np -> λ a constant, the distribution of Y converges to a Poisson 
distribution with intensity parameter λ. 
Hypergeometric distribution: X ~ Hypergeometric (iV, m,n), if the 
p.m.f. of X is 

fm\ ÍN - m\ 
\ x I\ n-x I 

P(X = χ) = X -

where x = max(0, n + m — N),... ,min(m,n). If we define p = m/N, 
the expectation and the variance of X are given by 

N — n 
E(X) = np and Var(X) = ——-np( l —p), 

respectively. The hypergeometric distribution can be viewed as the finite 
population counterpart of a binomial distribution. Consider an urn with a 
total of TV balls, m balls of type A and (N — m) balls of type B. A sample 
of n balls is randomly drawn without replacement. Let X be the number 
of balls of type A in the sample, then X ~ Hypergeometric (iV, m,n). 
However, if each of the n balls is sampled with replacement, this would 
lead to a binomial distribution, and thus (N — n)/(N — 1) in the variance 
of X is called the finite population correction factor. The hypergeometric 
distribution is the fundamental basis to construct the log-rank test when 
comparing two survival curves. 

Besides the discrete random variables, many continuous random variables 
also play an important role in clinical trials, for which the probability density 
functions are given as follows. 

• Continuous uniform distribution: X ~ Unif (a, b), if the p.d.f. of X is 

f(x) = T , a < x < b. 
b — a 

The expectation and variance of X are given by 

E(X)^a-±i and Var(X) = i ^ £ , 
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respectively. The simplest continuous uniform distribution is f(x) = 1 
f o r z e (0,1). 

• Normal distribution: X ~ Ν(μ, σ2), if the p.d.f. of X is 

with E(X) = μ and Var(X) = σ2. If μ = 0 and σ = 1, then N(0,1) 
is called the standard normal distribution. If X ~ Ν(μ, σ2) and y = 
exp(X), then random variable y follows a log-normal distribution with 
the density function 

/(?/) = pr- exp 
{log(y) - μ}2 

y>o, 2σ2 

where log(·) stands for the natural logarithm. 

• Gamma distribution: X ~ Ga(a, β), if the p.d.f. of X is 

Γ(α) 

where a > 0 is the shape parameter and β > 0 is the scale parameter. The 
expectation and the variance of X are given by 

E(X) = | and Var(X) = - £ , 

respectively. When a = 1, the gamma distribution reduces to an Exponen-
tial distribution: X ~ Exp(/3) with E(X) = 1//3 and Var(X) = l//?2. 
The gamma distribution is often used to model the hazard function of 
failure times in survival analysis. 

• Chi-squared distribution with υ degrees of freedom: X ~ χ2, if the p.d.f. 
ofXis 

f(x) = * . g ^ 2 - ^ - ' / 2 , g > 0, 
v ; 2^/2Γ(ζ//2) 

with E(X) = v and Var(X) = 2ΪΛ The chi-squared distribution χ2 is a 
special case of Ga(a, ,0) with a = i//2 and β = 1/2. If X ~ N(0,1), 
then X2 ~ x2. Furthermore, if Xi,... ,Xn are independent and each 
xi ~xli fori = Ι , . , . , η , then 

Xl + ■ ■ ■ + Xn ~ xl1+...+Un. 

If Xi ~ χ2
χ and X2 ~ xt2 are independent, then 

Χφι 
Xl¡V2 

~ ^I/l,IA2) 
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which is an F distribution with v\ and v<¿ degrees of freedom. 

• Inverse gamma distribution: If X ~ Ga(a, ß) and Y = X~l, then 
Y ~ IG(a, ß), and the p.d.f. of Y is given by 

Γ(α) 

withE(y) = /3 / (a - l ) fora > l.andVar(Y) = /3 2 /{(a- l ) 2 (a-2)}for 
a > 2. The inverse gamma distribution is often used as a prior distribution 
for the variance component in Bayesian hierarchical models. For example, 
let σ2 denote the variance of a normal distribution and define τ = σ - 2 , 
then the prior distribution on σ2 can be specified as τ ~ Ga(a, β), which 
is equivalent to σ2 ~ IG(a, β). 

• Beta distribution: X ~ Beta(a,/3), if the p.d.f. of X is 

^=VM§)x"l(l'xf~1' 0<I<1' 
where the two shape parameters a > 0 and /3 > 0, and 

E(X) = —^— and Var(X) = " ^ 

When a = ß = 1, the beta distribution reduces to the uniform distribution 
on (0,1). The beta distribution is typically used as a prior distribution for 
a probability parameter. For example, let p denote the response rate of 
an experimental drug, and let Y denote the number of patients who have 
responded among n treated patients. In this case, Y ~ Bin(n,p) and the 
prior distribution on p may be given as p ~ Beta(a, ß). 

Student's t distribution with v degrees of freedom: X ~ ί„(μ, σ2), if the 
p.d.f. of X is 

with E(X) = μ for u > 1, and Var(X) = σ2ν/{ν - 2) for v > 2. Stu-
dent's ί distribution resembles a normal distribution except with heavier 
tails. As v —>■ oo, the distribution ίν(μ,σ2) converges to a normal dis-
tribution Ν(μ, σ2). When ι/ = 1, ίι/(μ, σ2) becomes Cauchy distribution 
with the density function 

πσ{1 + {χ-μ)2/σ2Υ 
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whose mean, however, does not exist. In practice, we often encounter a 
central t distribution with μ = 0 and σ = 1, simply denoted as i„; and 
we denote a noncentral t distribution with μ Φ 0 and σ = 1 as ί„(μ). For 
example, if X ~ N(0,1), Y' ~ χ^, and X and Y are independent, then 

X 

which is a central ί distribution with v degrees of freedom. 

• Weibull distribution: X ~ Weibull(a,/3), if the p.d.f. ofXis 

/ (x) = aßxa~l exp(-/3zQ), a: > 0, 

where a > 0 is the shape parameter and β > 0 is the scale parameter. 
If a = 1, the Weibull distribution reduces to an exponential distribution. 
The Weibull distribution is often used to model the time-to-event data. If 
the failure time T ~ Weibull(a, β), the survival function of T is 

S(t) = P(T >t) = exp(-ßta), 

and the hazard function is 

Depending on the value of a, the hazard function may be increasing 
(a > 1), decreasing (a < 1), or constant (a = 1). 

As noted, one random variable may be linked with another through a variable 
transformation. For ease of exposition, denote the density function of X as 
fx(x), and let Y = g(X) where <?(·) is a monotone function. If the inverse 
function g~1(y) has a continuous derivative, then the density function of Y is 
given by 

dg-Hy) 
ÎY{y) = fx{g-\y)} 

ay 

3.1.2 Multivariate Distributions 

For bivariate random variables (X, Y), 

P{(X,Y)eA}= if f(x,y)dxdy, 
JJ(x,y)€A 

where A is a subset of ~R? and f(x,y) is the joint p.d.f. of X and Y. For a given 
function g(- , ·), 

E{g(X, Y)} = JJ g(x,y)f(x,y)dxdy. 
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The marginal density function of X is obtained by integrating out Y from the 
joint density function, 

/0E) = J f(x,v)ày, 

and the conditional density function of Y given X = x is 

If f(x, y) = f(x)f(y), then X and Y are said to be independent, which also 
implies f(y\x) = f(y). 

The conditional expectation and the conditional variance of Y given X = x 
are given by 

E(Y\X = x) = Jyf(y\x)dy 

and 
Var(y|X = x) = E{Y2\x) - {E(y|x)}2, 

respectively. The covariance between X and Y is defined as 

Cov(X, Y) = E[{X - E(X)}{Y - E(Y)}] = E(XY) - E(X)E(Y), 

and the correlation coefficient is given by 

Cov(X, Y) 
P = VVar(X)Var(y) ' 

Based on the conditional probability, the expectation and the variance of X can 
be computed through the following chain rules: 

E(X) = E{E(X\Y)}, 

Var(X) =E{Var(X|y)} + Var{E(X|y)}. 

If X and Y are independent random variables with respective density functions 
fx{x) and fy{y), the density function of Z = X + Y is 

fz{z) = j fx(x)fY(z - x) dx, 

which is known as the convolution formula. More importantly, the probability 
of comparing two independent random variables is given by 

/ fx(x)fy(y)dydx, 
-oo J—oo 

which is useful to ascertain treatment superiority in a randomized trial. 
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More generally, /(x), which is the joint p.d.f. for a K-dimensional random 
vector X = ( X i , . . . , Χ κ ) Τ , satisfies 

P(XeA) = [ /(x)dx 
JA 

= / · · · / f(x1,...,xK)dxi---dxK, 
J J(XI,...,XK)£A 

where A is a subset of TZK. For any k between 1 and K, the joint density 
function of X\,... ,Xk can be obtained by integrating out Xk+i, ■ ■ ■, Χκ, 

f(xi, ...,xk) = J ··■ j f(xi,..., XK) dxk+i ■ ■ ■ dxK, 

and the conditional density function is given by 

f(xi,...,xk,xk+i,...,xK) 
f{xi,...,xk\xk+1,...,xK) 

f(xk+1,...,xK) 

Several important discrete and continuous multivariate distributions are given 
below. 

• Multinomial distribution: For i = 1 , . . . , K, let p¿ denote the probability 
of the occurrence of event i, Σ?=\ p¿ = 1; and let Xi denote the number 
of occurrences of event ¿ ina total of n experiments, Σ?=ι χί = η· The 
random vector X follows a multinomial distribution, if the joint p.m.f. of 
Xis 

f(xi,...,xK)= , n !
 .PT---PXKK-

X\\---XK· 

Each Xi marginally follows a binomial distribution, Xi ~ Bin(n, p¿); and 
EpQ) = npi, VarpQ) = npi(l - p¿), and Cov(Xi,Xj) = -npiPj for 
ΐφυ-

• Multivariate normal distribution: The random vector X follows a K-
dimensional normal distribution with mean μ and variance-covariance 
matrix Σ; that is, X ~ Νκ{μ, Σ) , if the p.d.f. of X is 

/ « = (27Γ)*/2|Σ|ΐ/2 βχρ{-^(χ - ^ Σ - ^ Χ - /*)} · 

• Dirichlet distribution: X ~ Di r (a i , . . . , ακ), if X has a p.d.f. of 

Τ(αι)---Τ(ακ)
 1 °κ 

where a = Σ^=ι &i with a¿ > 0, and ΣΕ=ι χί = 1 w i t n 0 < x¿ < 1. 
Each Xi marginally follows a beta distribution, Xi ~ Beta(a¿, a — a¿), 
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with E(Xj) = on/a, 

Var(Xi) = 2 and Cov(Xu X¡) = ' (ι φ j). 
cr (a + l) c r (a + l) 

The Dirichlet distribution is a multivariate version of the beta distribution, 
which reduces to a beta distribution when K = 2. In addition, for any 

(Xi , . . . ,Xi + Xj,... ,XK) ~ Di r (a i , . . . , a¿ + a>j,... ,aK). 

• Wishart distribution: Suppose that X is a v x K (v > K) random matrix, 
and the rows of X are independent zero-mean normal random vectors. 
Then the K x K random matrix W = XTX follows a Wishart distribution 
with v degrees of freedom; that is, W ~ Wishart(E,z/), where Σ is a 
K x K symmetric and positive definite parameter matrix. The p.d.f. of 
W is given by 

|wi(„-A--l)/2 , 1 

/ ( w ) = c | E | " / 2 — e x P \ - 2 t r a c e ^ E w ) 

with the normalizing constant 

c = γΚ/2πΚ(Κ-1)/Α jQ γ ^+^Λ . ( 3 - 1 ) 

¿ = 1 ^ ' 

The Wishart distribution is a multivariate version of the gamma distribu-
tion. 

• Inverse Wishart distribution: If W ~ Wishart(E, v) and U = W - 1 , then 
U follows an inverse Wishart distribution; that is, U ~ Inv-Wishart(E_1, u) 
with the density function 

|u|-(i/+A-+l)/2 r χ -, 

/ ( " ) = ^ ρ e x p | - - t r a c e ( E Lu x)j> , 

where c is given in (3.1). The inverse Wishart distribution is often used 
as a prior distribution for the variance-covariance matrix of a multivariate 
normal distribution in Bayesian hierarchical modeling. 

3.1.3 Copula 

A multivariate distribution can be easily constructed by linking marginal dis-
tributions through a copula (Clayton, 1978; Hougaard, 1986; Nelsen, 1999). 
For the bivariate case, let H(x,y) denote the cumulative distribution func-
tion of the bivariate random variables (X,Y), and let F(x) = H(x,oo) and 
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G(y) = H(oo, y) denote the marginal distribution functions of X and Y, re-
spectively. Sklar's theorem states that there exists a copula C7(· , ·) such that 

H(x,y) = C7{F(x),G(y)h 

where 7 is the association parameter. 
As an illustration, the Gaussian copula is built upon the bivariate normal 

distribution. Let Φρ(· , ·) denote the cumulative distribution function of the 
standard bivariate normal distribution with correlation coefficient p, and let Φ(·) 
denote the cumulative distribution function of the standard normal distribution. 
For 0 < u, v < 1, the Gaussian copula function is given by 

Φρ{φ-1(η),φ-1(^)} = 

/

φ - 1 ( ΐ ί ) /·Φ_1(ί)) __ _ __ 

/ » _ / · , " . 9 M / 9 e X P { OM*" σ~7\ σ } dVdX-
-00 J—c 

f*_1W /"*> M«) 1 i x 2 -2p j : y + y2 

2π(1 - p2)V2 e x p i 2(1 - (?) 

In clinical trials, copulas are particularly useful to model bivariate or mul-
tivariate outcomes, such as jointly modeling toxicity and efficacy, or bivariate 
survival times. The well-known Archimedean copula functions have a special 
structure of 

H(x,y) = V-1[Vl{F(x)} + Vl{G(y)}}, 

where the generator function ηΊ{υ) satisfies ηΊ{1) = 0, lim„_>.o ηΊ(η) = oo, the 
first derivative η'Ί{υ) < 0, and the second derivative 77"(u) > 0. Archimedean 
copulas encompass the following bivariate distributions: 

• The Clayton copula takes the generator function οΐηΊ(μ) = η~Ί — 1, and 
thus the bivariate distribution function is given by 

H(x,y) = {F(x)-^ + G(y)-i - l}~l'\ 

• The Gumbel copula specifies ηΊ(ν) = (— log u)1^, and then 

H(x,y) = e x p f - K - l o g F t x ) ) 1 / ! + ( - logG(y))1 ^} 7 ] . 

• The Frank copula has ηΊ{υ) = — log{(e_au — l ) / (e~ a — 1)}, and 

H(x,y) = -~\og l + l e i n e l)[ 

7 { e-T - 1 J 

3.1.4 Convergence of Sequences of Random Variables 

A sequence of random variables, Xi, Χ2, ■ ■., converges in probability to random 
variable X, denoted as Xn —> X, if for every e > 0 we have 

lim P(\Xn -X\<e) = l. 
n—>oo 
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Weak Law of Large Numbers: Let Xi, Χ2, ■ ■ ■ be i.i.d. random variables with 
E(Xi) = μ, and define Xn = n"1 ΣΓ=ι X%. Then for every e > 0, 

lim P{\Xn - μ\ < e) = 1, 
n—>oo 

that is, Xn converges to μ in probability. 
Continuous Mapping Theorem: Suppose that a sequence of Χχ, ^ 2 , · · · con-

verges in probability to random variable X and g(-) is a continuous function, 
then the sequence g(X\),g(X2),. ■. converges in probability to g(X). 

A sequence of random variables, X\,X2, ■ ■ ■, converges almost surely to 
random variable X, denoted as Xn -̂ Ą- X, if for every e > 0 we have 

P f lim \Xn-X\ < e ) = 1. 
\n—>oo / 

Strong Law of Large Numbers: Let Xi, Χ2, ■ ■ ■ be i.i.d. random variables with 
E(Xi) = μ, then for every e > 0 we have 

P ( lim \Xn -μ\<β) = 1, 

that is, Xn converges to μ almost surely. 
A sequence of random variables, X\, Χ2,..., converges in distribution (or 

weakly converges) to random variable X, denoted as Xn —> X, if the respective 
cumulative distribution functions of Xn and X, Fxn (x) = P(Xn < x) and 
Fx(x) = P(X <x), satisfy 

^ΡχΛχ) = Fx(x) 

for all x where Fx(x) is continuous. The relationships among the convergence 
modes are: 

• Xn -^Ą X implies that Xn —> X, and 

• Xn —> X implies that Xn —> X. 

Slutsky's Theorem: If Xn —> X and Yn —> a, where a is a constant, then 

XnYn^Xa and Xn + Yn A X + a. 

Central Limit Theorem: Let Xi, X2,... be a sequence of i.i.d. random vari-
ables and the corresponding moment generating functions exist in a neighbor-
hood of zero. Let E(X¿) = μ and Var(X¿) = σ2, then 

η(^Λ ΑΝ(0,1). 
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Delta Method: Let Xn be the average of a sequence of i.i.d. random variables 
as discussed previously, and 

y/^iXn-μ) Α Ν ( 0 , σ 2 ) . 

For a given function g(-), suppose that the first derivative </(μ) exists and 
</(μ) φ 0. We take the first-order Taylor series expansion of g(Xn) around μ, 

g{Xn) = 9{μ) + 9'{μ){Χη - μ) + o(xn - μ), 

where o(x) denotes a quantity such that o{x)jx —> 0 as x ->· 0. Hence, the usual 
(first-order) Delta method states that 

V^{g(Xn) - 9(μ)} A N(0, σ2{9'(μ)}2). 

If </(μ) = 0, but the second derivative </'(μ) exists and (/'(μ) φ 0, we take the 
second-order Taylor series expansion, 

g(Xn) = 9(μ) + \9"{μ){Χη ~ μ? + o{{Xn - μ)2), 

which leads to the second-order Delta method, 

n{g{Xn) - 3(μ)} —► Xl. 

3.2 FREQUENTIST METHODS 

3.2.1 Maximum Likelihood Estimation 

The maximum likelihood method is the most widely used frequentist approach to 
estimation and inference. Suppose that the density function of random variable 
Y is f(y\9), where Θ is a vector of unknown parameters. Let y = {y\,..., yn} 
denote an i.i.d. sample from f(y\9), and then the likelihood function is given by 

L{e) = X\f{yi\e). 
¿=i 

The maximum likelihood estimator (MLE) of Θ is obtained by maximizing L(ff) 
or its logarithm logL(ö). The first derivative of logL(ö) with respect to Θ is 
called the score function, 

dlogL(fl) "dlog f(yi\9) 
U«(ö) = 9Θ = L· ¿g < <3·2) 

and the MLE Θ can be solved from the score equation, Un(0) = 0. Often there 
is no closed-form solution for the MLE. Hence an iterative procedure, such as 



42 FREQUENTIST VERSUS BAYESIAN STATISTICS 

the Newton-Raphson algorithm, may be used to solve the score equation. In 
this iterative procedure, we first specify an initial value 0(O), and then at the kth 
iteration the estimate of Θ is updated as 

0(fc) = 0(fc-i) {^ipL ».(V,), (3.3, 

where 0(fc-i) is the estimate from the (k — l)th iteration. We continue updating 
the estimate of Θ until some prespecified convergence criteria are met. If we 
replace <9Un(0)/d0T by E{dUn(0)/90T} in (3.3), this is called the Fisher-
scoring algorithm. 

The second derivative of — log L(0) with respect to Θ is the observed infor-
mation matrix of Θ, 

I f f l ) - d2log¿(0) ^d2logf(yi\e) 
n{ ' ΟΘ0ΘΤ ¿ ί ΘΘΟΘτ ' 

and correspondingly, the expected (Fisher) information matrix is given by 

= riE 
d\ogf{Y\e)\ ¡dlogf(Y\e)\T 

8Θ ¡ \ ΘΘ J 

Under certain regularity conditions, the score function Un(0o) evaluated at the 
true parameter 0o asymptotically follows a zero-mean normal distribution with 
variance-covariance matrix X(0n)· The MLE Θ possesses many desirable prop-
erties, such as consistency and asymptotic normality; that is, θ — θο converges in 
distribution to a zero-mean normal distribution with variance-covariance matrix 
X_1(0o)· Moreover, the MLE is the efficient estimator in the sense that the 
variance of Θ achieves the Cramér-Rao lower bound (Sen and Singer, 1993). 

3.2.2 Method of Moments 

Let {y i , . . . , yn} be an i.i.d. sample of random variable Y with a density function 
f(y\0), where Θ is an unknown z/-dimensional parameter vector. The sample 
moments are given by n _ 1 Σ " = 1 yi,..., η"1 Σ " = 1 vX-, a nd the corresponding 
population moments are E ( F ) , . . . , Έ{Υν). By matching respective sample and 
population moments, a total of v estimating equations can be constructed for the 
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v unknown parameters of Θ: 

i = l 

i = l 

from which we can obtain the estimator for Θ. 

EXAMPLE 3.1 
As an illustration, suppose that we observe an i.i.d. sample {yi , . . . ,yn} 
from a normal distribution, Ν(μ, σ2) with unknown μ and σ. By the 
method of moments, we have 

■i n -i it, 

¿=1 i = l 

which lead to the estimators of μ and σ2 as 

1 n 

and 
ι=1 

respectively. 
n r—f n . Λ 

ι=1 Î = 1 

3.2.3 Generalized Method of Moments 

The generalized method of moments (GMM) is an estimation and inference 
procedure that has gained much popularity in econometrics (Hansen, 1982; 
Hall, 2005). The GMM is particularly useful for enhancing efficiency when 
the likelihood is difficult to derive but the moment conditions are available, 
and it is also applicable when there are more moment conditions than unknown 
parameters. 

In general, the sample moment can be written as 

Un(0) = -¿ U i (0 ) , 
Tí . 

Î = 1 

which may be the score function in (3.2) or other estimating equations. The 
GMM estimator Θ is obtained by minimizing the quadratic objective function 
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where Ση(0) is the empirical variance-covariance matrix, 

SnW = ^¿^(ΟΚΤ(Ο) -υη(θ)υΙ(θ). 
Tl . Λ 1=1 

Via a two-stage iterative procedure, Θ is computed as follows: 

(1) Insert an initial value 0(O) into Σ„(0). 

(2) At the kth iteration, we obtain the estimator θ^) by minimizing 

ηυΙ(0)Σ-1(0(^_1))υη(0) 

with respect to Θ, in which Ση(0^_1)) is fixed as known by plugging in 
the estimate θ^-ι) fr°m m e (k — l)th iteration. 

(3) Continue until some prespecified convergence criteria are met. 

The GMM estimator Θ may also be obtained by directly minimizing Qn(d) 
(Hansen, Heaton, and Yaron, 1996). 

Under certain regularity conditions (Hansen, 1982), the GMM estimator Θ 
exists and converges in probability to the true parameter θο, and y/n(ë — θς>) 
converges in distribution to a zero-mean normal distribution. Moreover, Qn{ß) 
follows a chi-squared distribution when evaluated at 6Q or Θ. 

3.2.4 Confidence Interval 

Besides the point estimates for the parameters of interest, the interval estimates 
are also critically important. For ease of exposition, we consider a scalar pa-
rameter Θ, whose true value is denoted by 0Q. We are interested in constructing 
a confidence interval for Θ such that a random interval [6L, #[/] covers 0Q with a 
certain probability. Toward this goal, we first derive a pivotal quantity and then 
construct the interval estimate [§L, θυ] based upon the distribution of the pivot. 

For illustration, let{yi, . . . ,yn}beani.i.d. sample fromF ~ Ν(μ,σ2), where 
μ is unknown and σ is known. Denote the sample mean by yn = n~l ΣΓ=ι V^ 
and then the pivotal quantity is given by 

v ^ ( ^ ) ~ N ( 0 , l ) . 

As a result, the 100(1 — a)% confidence interval for μ is 

σ σ 

where za/2 is the 100(1 - a/2)th percentile of the standard normal distribution; 
that is, Pr(Z < za/2) = 1 - a/2 for Z ~ N(0,1). Conventionally, we take 
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c 

0.2 0.3 

Estimated response rate 

0.4 

Figure 3.1 Estimated 95 % confidence interval for the response rate of an experimental 
drug. 

a = 0.05 and thus ζα/2 ~ 1.96, which leads to the usual 95% confidence interval 
of μ. If σ is unknown, the 100(1 - a)% confidence interval for μ is 

, sn - . , sn 
Vn— τη-1,α/2~/=ι ¡Jn + tn-l,a/2~/= 

where ίη_ιια/2 is the 100(1 — a/2)th percentile of Student's t distribution with 
n — 1 degrees of freedom, and 

sl = 
1 

n — 
T Σ(ΐ/ί - yn)

2-
¿ = 1 

EXAMPLE 3.2 

Suppose that a clinical trial was conducted to estimate the response rate p of 
an experimental drug. We observed 13 responses among 65 subjects treated 
by this drug. Based on the binomial distribution, the estimated response rate 
is p = 0.2, and the estimated standard error is SE = y^p(l —p)/n « 0.05. 
We can construct a 95% confidence interval for p using the asymptotic 
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normal approximation; that is, [p-1.96 x SE,p+1.96x SE] « [0.1,0.2], 
which is shown in Figure 3.1. 

In practice, confidence intervals may be used to monitor a trial for early 
stopping. Suppose that for an experimental drug the response rate of p = 30% 
is considered clinically relevant. If at any time during the trial the upper bound 
of the 95% confidence interval of p is smaller than 0.3, we may stop the trial 
and claim the experimental treatment not promising. As illustrated below, the 
futility early stopping of a clinical trial may be achieved by the use of the 95% 
confidence interval \pL,Pu]· 

PL P Pu 

E 1 ] 

0 0.3 

Response rate 

3.2.5 Hypothesis Testing 

Hypothesis testing typically involves a null hypothesis HQ and an alternative 
hypothesis H\, and each of them poses a statement on the parameter of interest 
Θ. In general, HQ is a hypothesis on Θ that we hope to reject based on the evidence 
from the data, and H\, which contradicts HQ, is expected to hold by rejecting 
H0. 

Depending on how the parameter Θ is specified, we may have 

• simple hypotheses 

H0: θ = θ0 versus Ηγ.θ = θι, 

where 9Q and 6\ are the prespecified parameter values and θο φ θ\ ; or 

• composite hypotheses 

Ηο-.θΕθ versus Ηϊ.θΕ ©C, 

where the parameter value of Θ is not explicitly specified. 
Based on the direction of the parameter value, hypothesis testing may also be 
classified as 

• a one-sided test with 

H0: θ<θ0 versus Ηχ: Θ > θ0, 
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if Ho can be rejected when the test statistic exceeds the threshold along 
one direction only (to the right side in this case); or 

• a two-sided test with 

H0: θ = θ0 versus Ηχ:θφ θ0, 

if HQ can be rejected when the test statistic exceeds the threshold along 
either direction. 

Hypothesis testing is to decide which of the two hypotheses is true or more 
supported by the observed data. Two different types of error may occur, known 
as the type I and the type II errors, respectively. The type I error is false positive; 
that is, it rejects HQ given that Ho is true. The type II error is false negative; that 
is, it accepts HQ given that Hi is true. Controlling the type I error in clinical trials 
would prevent a flood of nonworking drugs into the market, while controlling 
the type II error would prevent overlooking a truly effective treatment. The 
probability of committing a type I error is the type I error rate, denoted by a; 
the probability of committing a type II error is the type II error rate, denoted 
by β. Power is the probability of rejecting HQ given that Hi is true; that is, 
power = 1- /3 . The type I error rate and power with respect to Ho and Hi are 
displayed in Figure 3.2. 

Hypothesis testing in a clinical trial may formulate the null and the alternative 
hypotheses as 

HQ: The experimental treatment is ineffective, and 

H\ : The experimental treatment is effective. 

We can classify HQ,HI, and the trial conclusions on whether the drug is effective 
or not in the following 2 x 2 contingency table, 

Trial Conclusion: Ineffective Trial Conclusion: Effective 
Correct 

Type II error rate (β) 
Type I error rate (a) 

Correct (power) 

Based on a random sample from the population, we first construct a test 
statistic and then compute the p-value which is the probability of obtaining the 
data as or more extreme than the observed assuming that Ho is true. The p-value 
can be obtained by comparing the test statistic with its associated distribution 
under the null hypothesis. The smaller the p-value, the stronger the evidence 
contained in the data against HQ. The statistical test is said to be significant 
if the resulting p-value is smaller than the prespecified significance level. The 
most widely used significance level is a = 0.05. Statistically significant means 
that the observed result is unlikely to have occurred by chance given that the 
null hypothesis is true. For example, if the null hypothesis states that there is 
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Test statistic 

Figure 3.2 Type I error rate and power under the null and alternative hypotheses, 
respectively. 

no difference between treatment groups, a p-value smaller than 0.05 indicates 
that the observed difference is so large that this would be very unlikely to occur 
under the null hypothesis, so we should reject H0. Interestingly, the p-value 
itself under Ho follows a Unif(0,1); that is, 

Pr(p-value < Q\HQ) = a, 

for every a G (0,1). 

EXAMPLE 3.3 

Let {yi, · · ■, Vn} be an i.i.d. sample from the normal distribution Ν(μ, σ2) 
with unknown mean μ and variance σ2. We are interested in testing 

HQ\ μ = 0 versus Hi: μ φ 0. 

The sample mean 
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and the sample variance 

1 n 

sn = — [ Σ& - y^2 

are respective unbiased estimators for μ and σ2, since E(yn) = μ and 
E(s2) = σ2. Moreover, yn ~ Ν(μ,σ2/η), (n - 1)β2/σ2 ~ χ 2 ^ , and 
y„ and sn are independent. Therefore, a í test statistic can be constructed, 
Tn = Vñijn/sn, which follows Student's t distribution with n — 1 degrees 
of freedom under Ho. 

EXAMPLE 3.4 

Under the MLE framework of Section 3.2.1, suppose that we are interested 
in testing the ¿/-dimensional parameter vector Θ with 

H0: Θ = 0O versus Η\\0φ θ0. 

By the maximum likelihood method, we first compute the MLE Θ and the 
observed information matrix Ιη(θ) and then formulate the following three 
equivalent statistics, 

• Wald's statistic: (0 - θ0)
τΙη(θ){θ - θ0), 

• Likelihood ratio statistic: -2{logL(0o) — logL(0)}, and 

• Rao's score statistic: U^(0o)In1(öo)Un(0o)· 

Under the null hypothesis, all three test statistics asymptotically follow the 
same chi-squared distribution with v degrees of freedom. 

3.2.6 Generalized Linear Model and Quasi-Likelihood 

Suppose that we observe the outcome y¿ (which may be continuous or discrete) 
and the associated covariate vector Z¿ for % = 1 , . . . , n. To characterize the 
relationship between y¿ and Z¿, generalized linear models are readily applicable 
to various types of outcomes (McCullagh and Neider, 1989). For continuous 
data, we typically assume normality and fit a linear regression model, 

Vi = /3TZ¿ + ej, 

where the error e¿ ~ N(0, σ2). By taking the first derivative of the log-likelihood, 
the score function is given by 

Un(/3)=¿Zi(yi-/3
TZ¿). 

t = l 
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The MLE of ß has a close-form solution, 

( n \ ~~ 1 n 

ΣΖίΖΠ ^ ζ ^ . 
i=\ / i=l 

For dichotomous data, the outcome variable y¿ takes a value of 1 with probability 
Pi, and 0 with probability 1 — p¿. Under the usual logistic regression model, 

logitfe) = l o g ( r ^ - ) = / 3 T Z ¿ , 

the score function takes the form of 

¿ Í I l+exp(/3TZ,)J 
The MLE of β does not have an explicit form and may be obtained by the 
Newton-Raphson algorithm. If y¿ is an integer representing a count outcome, 
the Poisson (log-linear) model is readily applicable, 

log(^j) = ßTZi, 

where /z¿ is the Poisson mean; and correspondingly, the score function is 
n 

Vn(ß) = '£Zi{yi-exp(ß'TZi)}. 
¿=i 

Besides the identity, logit-, and log-link functions, other commonly used link 
functions include the complementary log-log transformation log{— log(·)} and 
the probit function Φ_1(·). 

The aforementioned score functions are special cases of the more general 
quasi-likelihood approach (Wedderburn, 1974; McCullagh, 1983). If we denote 
μι and Vi as the respective mean and variance of the outcome variable y¿, the 
quasi-likelihood estimator can be solved from 

So far, the observed data are assumed to be i.i.d., which, however, may not 
be true in many cases, such longitudinal measurements or clustered/grouped 
data. In this regard, statistical methods need to account for the underlying 
correlations for valid inference (Diggle et al., 2002). Liang and Zeger (1986) 
propose the generalized estimating equation (GEE) for such data, which provides 
a population-average approach to modeling the marginal mean while treating the 
correlation as nuisance. 
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For i = 1 , . . . , n, let y¿ = (y¿i,. . . , VÍK)T denote a K-vector of outcome 
variables for cluster i, and let μί = (μ,χ,.. . , βίκ)τ denote the marginal mean 
of y¿. Via a link function η(·), the generalized linear model specifies 

Vißik) = ßTZik, 

for i = 1 , . . . , n and fc = 1 , . . . , A'. If we denote C¿ as the working correlation 
matrix, which may not be identical to the true correlation matrix, the GEE is 
given by 

E(^) T vr 1 (y ¿ -^) = o, 0.4) 

1/2 1/2 where V¿ = Ti ' C¿r¿ and r¿ is the diagonal matrix of the marginal variances 
for cluster i. Under certain regularity conditions, the GEE estimator β solved 
from (3.4) is consistent and asymptotically normal with a sandwich (robust) 
variance-covariance matrix. 

3.2.7 Random Effects Model 

In contrast to the marginal approach such as the GEE, the random effects model 
is a subject-specific approach by explicitly formulating the dependence structure 
through random effects. The observed data are assumed to be conditionally 
independent, given the unobservable random effects. For illustration, let y¿fc 
denote the outcome of measurement k on subject i in a longitudinal study, for 
i = 1 , . . . , n and k = 1 , . . . , K. The linear random effects (or mixed) model is 
given by 

Vik = ß Zik+ bj Xik + €ik, (3.5) 

where ß is a vector of fixed effects, b¿ is a vector of random effects, and Zik 
and Xik are covariates. Let y¿ = (yn,..., yiK)T, Z¿ = ( Z i l ( . . . , ZiK)T, and 
Xi and e¿ are defined similarly. In a more compact form, model (3.5) can be 
rewritten as 

y¿ = Ziß + Xibi + e¿. 

We assume that b¿ and ej are independent and normally distributed with mean 
zero and variance-covariance matrices G and R, respectively. 

Model parameters in (3.5) can be estimated by iterating between the gen-
eralized least squares estimation of ß and the restricted maximum likelihood 
estimation of the variance components (Harville, 1977). Let S¿ denote the vari-
ance of y¿; that is, Σ» = XjGX^ + R. For a fixed S¿, the MLE of ß can be 
obtained by minimizing 

¿ ( Υ ί - Ζ ^ Σ Γ ^ Υ ί - Ζ ί / θ ) , 
i = l 
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which leads to an explicit solution of 

)9 = Σ ( ζ Τ Σ Γ ΐ ζ , ) - 1 Ζ ί
τ Σ Γ 1 Υ ί · 

The restricted MLE is often preferred over the usual MLE, as the latter may yield 
biased estimates for the variance components. 

3.3 SURVIVAL ANALYSIS 

Often, the primary endpoint in a phase ΙΠ clinical trial is concerned with patient 
survival. For example, progression-free survival measures the length of the 
time after treatment during which the disease remains stable without any sign 
of progression; overall survival is the time from the initiation of treatment to 
death due to any cause. Survival data are subject to random censoring, which 
may be caused by loss of follow-up, interim analysis, or the termination of the 
study. The most common case, right censoring, occurs if a patient is only known 
to have survived up to a (censoring) time point, but not exactly when the event 
occurred afterwards (Kalbfleisch and Prentice, 2002). Interval censored data 
arise if a patient is known to experience the event between two time points, but 
the exact failure time is unknown (Sun, 2006). 

Let f(t) denote the probability density function of failure time Γ, and let 
S(t) = P(T > t) denote the survival function. The hazard function 

w ¿-*o δ 

specifies the instantaneous failure rate, given that a subject has survived up to 
time t; and the cumulative hazard function is defined as 

A( i )= / \{u)du. 
Jo 

It is easy to show that S(t) = exp{-A(i)} and \{t) = f(t)/S(t). Therefore, 
f(t), S(t), X(t), and A(i) are one-to-one related; that is, any one of these 
functions uniquely determines the others. 

3.3.1 Kaplan-Meier Estimator 

As shown in Figure 3.3, the calendar time in a clinical trial can be divided into 
the accrual period and the follow-up period. Although patients are enrolled into 
a trial at different calendar times due to staggered entry, they can all be aligned 
at the same baseline condition for the purpose of analysis. 

For i = 1 , . . . , n, let T¿ be the failure time, let C¿ be the censoring time, and 
we observe Xi = min (T¿,C¿) and the censoring indicator A¿ = I (Ti < Ci), 
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Figure 3.3 Patients' accrual period and follow-up period, with crosses denoting events 
and circles denoting censoring. 
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Time to event (years) 

Figure 3.4 Kaplan-Meier estimator of the survival function with its pointwise 95% 
confidence interval, with "+" indicating censored observations. 

where /(■) is the indicator function. We assume that T¿ and C¿ are independent; 
that is, censoring times do not carry any information about failure times. Let _D¿ 
denote the number of events occurred at time Xi, and let ñ¿ denote the number 
of subjects at risk just prior to Xi, so i?¿ includes those who have not experienced 
the event or been censored yet. Under the independent censoring assumption, 
the Kaplan-Meier (or product-limit) estimator (Kaplan and Meier, 1958) for the 
survival function S(t) is given by 

^ - J E U ' - S ) · (3.6) 

and the variance of S(t) can be estimated by the Greenwood (1926) formula, 

For the data presented in Figure 3.3, the Kaplan-Meier estimator of the survival 
function and its pointwise 95% confidence intervals are displayed in Figure 3.4. 



SURVIVAL ANALYSIS 55 

Δ, = 0 Δ| = 1 
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Figure 3.5 
ί,Δί = 1). 

At-risk process y¿ (t) = I (Xi > t) and counting process JV¿(í) = I (Xi < 

Starting from 1 toward 0, the Kaplan-Meier estimator is a nonincreasing step 
function with jumps at failure times only. 

In survival analysis, it is easier to develop asymptotic theories based on 
the counting process and martingale (Andersen and Gill, 1982; Fleming and 
Harrington, 1991). As shown in Figure 3.5, the at-risk process Yi(t) = I (Xi > 
t) indicates whether subject i is still at risk at time i; and the counting process 
Ni(t) = I (Xi < t,Ai = 1) indicates whether subject i has experienced the 
event by time t. Let Y(t) = Σ?=ι Y%(t) and N(t) = £"=i JV¿(t). The Kaplan-
Meier estimator in (3.6) can be rewritten as 

s(t)= Π { 
i:Xi<t 

AN(Xj) 

y {Xi) 

where AN(t) = N(t) — N(t—). The cumulative hazard function Λ(ί) can be 
estimated by the Nelson-Aalen estimator, 

AW = Σ ™ , 

which is a nondecreasing step function taking jumps at failure times only. The 
estimate for the variance of Λ(ί) is given by 
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3.3.2 Log-Rank Test 

In a two-sample comparison with time-to-event data, the log-rank test is the 
most commonly used approach to testing whether the two survival curves are the 
same. Let S\ (t) and S2 (t) denote the survival functions for treatment groups 1 
and 2, respectively. The null hypothesis is 

H0: Si(t) = S2(t) for allí, 

and the alternative hypothesis is 

Hï- Si(t) φ S2(t) for some t. 

To construct the log-rank test, we first sort the distinct failure times in the pooled 
sample, t\ < ·■ ■ < tm, where m is the total number of unique failure times. 
Then at each distinct failure time i¿, we create a 2 x 2 contingency table as 
follows: 

Group 1 Group 2 
Number of failures 
Number of survivors 
Number of subjects at risk 

Under HQ, the number of events in group 1 follows a hypergeometric distribution 
conditional on all the marginal counts, i.e., Du ~ Hypergeometric (A¿, Ru, Di). 
Under the hypergeometric distribution, the expected number of failures in group 
1 is RuDi/Ri, and the variance of Du is 

Du 
Ru — Du 

Ru 

D2i 

R2i — D2i 
Ru 

Di 
R¿ -
Ri 

-Di 

Vi = 
RuR2jDj(Ri — Dj) 

Rl(Ri -1) ' 
Hence, by comparing the observed number of events with the expected count, 
the standardized log-rank test statistic is given by 

= E£i(Dii-RiiPi/Ri) 
( Σ ™ ι ^ ) 1 / 2 

which asymptotically follows the standard normal distribution under Ho. 

3.3.3 Proportional Hazards Model 

When covariates are involved in survival analysis, it is often assumed that the 
failure time T¿ and the censoring time C¿ are conditionally independent given 
covariates Z¿. The observed data {Xi = min(T¿,C¿),At = J(T¿ < C¿),Z¿} 
are i.i.d. replicates of (X, Δ, Z) for i = 1 , . . . , n. If we denote A(í|Z¿) as the 
hazard function for subject i with covariates Z¿, the Cox (1972) proportional 
hazards model takes the form of 

X(t\Zi) = XQ(t)exp(ßTZi), (3.7) 



SURVIVAL ANALYSIS 57 

where ß is the parameter of interest and λο(ί) is the unknown baseline hazard 
function. If λο(ί) is not specified, (3.7) becomes a semiparametric regression 
model. 

For subjects who have experienced the event of interest, their contributions 
to the likelihood are the density functions evaluated at their failure times; and 
for those who have been censored, their contributions to the likelihood are their 
survival functions (i.e., all the information we know are that these subjects have 
survived up to their respective censoring time points). As a result, the likelihood 
function is given by 

L{ß) = f[f{Xi\Zi)^S(Xi\Zi)
1-Ai ^flXWLi^SWZi), 

i = l i = l 

where /(X¿|Z¿) is the density function and S^XAZA) is the survival function of 
subject i. Let 1Z(t) — {j: Xj > t} denote the risk set prior to time t. The partial 
likelihood (Cox, 1975) takes the form of 

in which the infinite-dimensional parameter λο(ί) is eliminated so that the only 
remaining parameter is/3. By taking the first derivative of log Lp (β) with respect 
to β, we have the score function, 

U„(g) = ¿A.(^-Er( X"Z j e X^, )}- <3·8» 
The maximum likelihood estimator of β can be solved from Un(/3) = 0. 

Let Λο(ί) denote the baseline cumulative hazard function, Λο(ί) = JQ Xo(u)du. 
As defined before, let iVf(í) = 7(X¿ < t, Δ, = 1) and Yi(t) = I(Xi > t), and 
then the martingale under the Cox proportional hazards model is given by 

Mi(t) = Ni(t)- [ Yi{u)exp(ßTZi)dA0(u). 
Jo 

The score process is written as 

feí-Ό ( Ej=i^j(w)exp(^ Zj) J 

which reduces to (3.8) by taking t = co. The Aalen-Breslow estimator (Breslow, 
1974) of Λ0(ί) is given by 

A (tff\- Γ ^LidiVi(n) 
W'W-Jo Σ ^ ( η ) β χ ρ 0 3 τ Ζ < ) ' 

where diV¿(it) = Ni{(u + du)-) - N^u-). 
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3.3.4 Cure Rate Model 

The entire population may be a mixture of patients who would eventually ex-
perience the event of interest if a sufficient follow-up is taken, and those who 
would never experience the event. For example, cancer patients after intensive 
chemotherapy treatment, may develop drug resistance and will not achieve par-
tial or complete response under another treatment no matter how long they are 
followed. To incorporate a cure/insusceptible fraction in the population, cure 
rate models are developed for such time-to-event data. 

Let SPop(í|Z¿) denote an improper survival function for the population; that 
is, lim^oo 5ρθρ(ί|Ζί) > 0, where Z¿ is a vector of covariates for subject i. The 
mixture cure model (Berkson and Gage, 1952) takes the form of 

Spop(i|Zi) = l - ö ( Z i ) + ö(Zi)5(i), 

where S(t) is a usual proper survival function and 1 — #(Z¿) represents the 
proportion of the population that is cured or insusceptible to the event. Often, 
0(Z¿) is modeled by the logistic regression, 

0 ( Z i ) = e x p ^ Z . ) 
l + exp(/3'Zi) 

In an alternative formulation (Yakovlev et al., 1993; Yin and Ibrahim, 2005), 
the cure rate model takes the form of 

Spop(t\Zi) = exp{-0(Zi)F(i)}, (3.9) 

where Θ ( Z¿ ) = exp (βτ Z¿ ) and F (t) is the baseline cumulative distribution func-
tion. The cure rate under model (3.9) is limt-n» 5pop(i|Zj) = exp{—#(Z¿)}, 
and the population hazard function is Apop(í|Z¿) = 0(Z¿)/(í), where / ( i ) = 
dF(t)/dt. For more detailed discussions on cure rate models, see Kuk and Chen 
(1992), Mailer and Zhou (1996), Tsodikov (1998), and Ibrahim, Chen, and Sinha 
(2001). 

3.4 BAYESIAN METHODS 

3.4.1 Bayes' Theorem 

According to Bayes' rule, if A and B are two events in the sample space Ω, then 
the conditional probability of A given B is 

P(A\m P(AnB) P(B\A)P(A) 
P{AlB) = P(B) = P(B) ' 

whereP(ß) φ 0. \ΪΡ(Α<Γ\Β) = P(A)P(B), A and Bare said to be statistically 
independent. More generally, if {Ai,..., Am} is a partition of Ω, then for each 
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i = 1 , . . . , m, 
P(B\Ai)P(Ai) 

P(Ai\B) = 
Σ?=1Ρ(Β\Αι)Ρ(ΑΥ 

Bayesian methods adhere to the likelihood principle: All that we know about 
the data/sample is contained in the likelihood function. If the likelihood functions 
under two different sampling plans/distributions are proportional with respect to 
the parameter of interest Θ, statistical inferences on Θ should be identical based 
on these two sampling distributions. 

EXAMPLE 3.5 

We consider an experiment in which a coin was tossed 12 times, with 
9 heads and 3 tails observed (Lindley and Phillips, 1976). Let Θ be the 
probability of observing a head for a toss of the coin, and we are interested 
in testing the hypotheses, 

HQ: Θ = 0.5 versus Hx: Θ > 0.5. 

There is no further information on the sampling plan. 
Based on the observed data, there may be two choices for the likelihood 

function. First, let Y denote the number of heads after a fixed number 
of n tosses; that is, Y ~ Bin(n, Θ). Under the binomial distribution with 
n = 12 tosses and y = 9 heads observed, the likelihood function is given 
by 

Lx(0) = r\w{\ - Θ)η~ν = ( g2V(l - Θ)3. 

Second, let Y be the number of heads for the tosses of the coin until the 
third tail (r = 3) is observed; that is, Y ~ Neg-Bin(r, Θ). Under the 
negative binomial distribution, the likelihood function is given by 

L2(9)=(y + r
y-

iy(i-ey =(^)θ\ι-θγ. 

Clearly, L\{ß) oc ¿2(0) except for a normalizing constant, and the posterior 
distributions of Θ under these two sampling distributions are identical in 
the Bayesian framework. However, frequentist inferences about Θ are 
very different, which depends on the sampling distribution. Based on the 
binomial likelihood, the p-value is 

pi -value = Pr(y > 9\H0) = ¿ ( U jO.512 « 0.073, 
v=9 V y ) 
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while under the negative binomial distribution, 

p2-value = Pr(y > 9|J70) = f ] (V + 2 )0.53+2/ « 0.033. 

If we set the significance level at a = 0.05, the frequentist hypothesis test 
yields conflicting results: The null hypothesis is accepted under the bino-
mial distribution, but it is rejected under the negative binomial distribution. 

Let y = {í / i , . . . , yn} be an i.i.d. sample from a density function f(y\9) which 
is characterized by a vector of unknown parameters Θ. The likelihood function 
is 

L(y\e) = f[f(yi\9), 
i=l 

for which we use the notion of the data conditioning on the parameters to 
highlight one of the major differences between the Bayesian and frequentist 
methods. That is, the data are observed (fixed) and the parameters are random in 
the Bayesian paradigm, while the data are random and the parameters are fixed 
from the frequentist perspective. Given a prior distribution ρ(θ), the posterior 
distribution of Θ is given by 

p(0|y)ocL(y|0)p(0). 

We may incorporate the normalizing constant to make p(0\y) a valid density 
function; that is, 

p m = ¿WM*) 

The usual Markov chain Monte Carlo (MCMC) algorithms can then be used to 
draw posterior samples of Θ from p(0|y) for statistical inference. 

As one step further, the Bayesian posterior predictive distribution is concerned 
with a future observation y conditional on the current data y. If y and y are 
conditionally independent given Θ, which is often the case, then 

/ ( £ , % ) = f(y\0,y)p(e\y) = Πν\θ)ρ(θ\ϊ). 

By integrating out Θ from f(y, 0|y), we obtain the posterior predictive distribu-
tion, 

/G/|y) = / / (y |0 )p (0 |y )d0 . 

Bayesian clinical trial designs can naturally incorporate prior information 
through the prior distributions on the model parameters. The prior distribution 
characterizes all the information available before the trial is conducted, which, 
if properly calibrated, may improve the design properties. However, the prior 
specification is also the most criticized part of Bayesian methods due to the 
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subjectivity involved in the prior distribution. During the trial, the Bayesian 
machinery updates the prior to the posterior distribution coherently based on 
the accumulating data. Decisions are adaptively made based upon the posterior 
probabilities, credible intervals, Bayes factors, and so on. 

3.4.2 Prior Elicitation 

Prior distributions may be elicited from clinical investigators (expert opinions) 
or from previous studies (historical data). Before a trial is carried out, clinicians 
often have more or less knowledge on the effectiveness of the treatment, such 
as the drug's response and toxicity probabilities at certain dose levels, or the 
patients' median survival times in certain groups. Through communication with 
physicians, we should extract as much information as possible about the trial. 
For example, questions as follows may be asked: 

• What are the typical responses and toxicities for this patient population 
under treatment? 

• What percentage of patients will experience each of the clinically mean-
ingful events? 

• What is the highest dose that has negligible toxicity, and what is the lowest 
dose that induces a positive response? 

• What are the prediction intervals for patients' responses treated at certain 
dose levels? 

• What are the median survival times for certain prognostic groups? 
Based on the knowledge acquired from medical experts, we match the elicited 
information with the prior distributions by choosing appropriate hyperparame-
ters. 

On the other hand, historical data offer another route for prior elicitation. Due 
to patients' heterogeneity and differences in eligibility criteria, and treatment and 
assessment procedures, patients in the previous studies may not be exchangeable 
with those in the current trial. Hence, we need to discount the historical data by 
inflating the variance in the prior distribution or only using partial data. 

In general, the prior distribution may be classified into four categories as 
follows: 

• Noninformative prior refers to a flat or vague prior distribution, under 
which the posterior distribution is approximately proportional to the like-
lihood, so that the data fully dominate the posterior distribution and sta-
tistical inference. 

• Skeptical prior is a more conservative prior distribution, which often rep-
resents the standing point of the regulatory agency with a doubting view 
about the new therapy. 
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Figure 3.6 Four different prior distributions for the probability of response of an 
experimental drug in a clinical trial. 

• Optimistic prior is a more enthusiastic prior distribution, which is often 
dominated by the investigator's optimism about the new drug and thus 
puts most of the prior probability mass at favorable values of the treatment 
effect. 

• Clinical prior is a relatively objective prior distribution, which tries to 
eliminate the potential subjectivity by taking an average of several prior 
distributions elicited from different clinical experts. 

Figure 3.6 illustrates the aforementioned four types of prior distributions for the 
probability of response of a new drug. In order to be comparable with frequen-
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tist approaches, Bayesian clinical trial designs may simply use noninformative 
(improper or flat) prior distributions. 

3.4.3 Conjugate Prior Distribution 

Let Θ be the response rate of an experimental drug, and let ρ(θ) be the prior 
distribution of Θ, which represents uncertainty on Θ before observing any data. 
We take Θ ~ Beta(a, β); that is, a beta prior distribution for Θ with the density 
function of 

The parameters a and ß in the beta prior distribution can be viewed as the 
numbers of prior successes (responders) and failures (nonresponders), respec-
tively; a + β can be regarded as the number of prior observations measuring 
how informative the prior distribution is. For example, Beta(0.5,1.5) is a vague 
prior distribution, which contains information as much as two observations only, 
while Beta(5,15) is a more informative prior distribution, which contains the 
amount of information corresponding to 20 subjects. 

If we observe y responders among n subjects treated by the investigational 
drug, the posterior distribution for the response rate Θ is given by 

p(9\y) <x L(y\e)p(9), 

where the likelihood under the binomial distribution is 

L(y\e)= (nV(l-0)n-w. 

The posterior distribution of Θ is also a beta distribution, 

9\y ~Beta(a + y,ß + n-y). (3.10) 

If we take a uniform prior distribution, Θ <~ Beta(l, 1), this is equivalent to 
adding two observations to the data, one success and one failure; so the posterior 
mean of Θ in (3.10) is 

a + y = 1 + 2/ 
a + ß + n 2 + n' 

If the posterior and the prior distributions are from the same distributional family 
as in the beta-binomial case, the prior distribution is called a conjugate prior. For 
example, a Dirichlet prior distribution is conjugate with the likelihood function 
under a multinomial distribution; and a gamma prior distribution is conjugate 
with the likelihood function under an exponential distribution. Multiplying the 
likelihood with a conjugate prior distribution is equivalent to increasing the 
sample size; thus it is easier to assess the influence of different values of the 
hyperparameters in a conjugate prior distribution. 
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Figure 3.7 Update the probability of response from the prior to the posterior 
distribution using a beta prior distribution. 

EXAMPLE 3.6 

As an illustration, we specify a beta prior distribution for the response rate 
of an experimental drug, Θ ~ Beta(2,6). If we observe y = 15 responders 
among n = 25 patients treated in the trial, the posterior distribution of Θ 
is updated as 0\y ~ Beta(17,16). Figure 3.7 shows that from the prior to 
the posterior distribution of Θ, the distribution is shifted to the right in light 
of the observed data. 

The multinomial distribution is a generalization of the binomial distribution, 
which is particularly useful for monitoring multivariate outcomes in a clinical 
trial. Correspondingly, the Dirichlet distribution is the multivariate version 
of the beta distribution. For k = 1 , . . . , K, let θ^ denote the probability of the 
occurrence of the fcth event, satisfying Υ^=\ΘΗ = 1· Define Θ = (θ\,..., θκ)τ; 
then we can specify a Dirichlet prior distribution for Θ, 

ρ(θ) = 
Γ(αχ H \-ακ) 
Γ(α ι ) · · ·Γ (α*) ą 

Q l — 1 
■θ ακ-1 

Κ 
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If the observed data y = {y\,... ,yx} follow a multinomial distribution with 
Σλ-Li Vk = n, the likelihood function is 

Given the prior distribution Θ ~ Dir(o;i,.. . , ακ), the posterior distribution of 
Θ is also a Dirichlet distribution, 

0|y ~ Dir(Q! +yi,...,aK + yK), 

due to the conjugate property. 

3.4.4 Bayesian Generalized Method of Moments 

Bayesian inference for a vector of unknown parameters Θ depends on the poste-
rior distribution of Θ, 

ρ(θ\γ) ex Ηγ\θ)ρ(θ), 

where L(y\0) is the likelihood function and ρ(θ) is the prior distribution. How-
ever, if there is not enough information to construct the likelihood, the Bayesian 
posterior estimation and inference can be difficult (Zellner, Tobias, and Ryu, 
1997). In this regard, Zellner (1997) proposes the Bayesian method of moments 
by computing the maximum entropy density that is consistent with the moment 
conditions. Kim (2002) develops the limited information likelihood by minimiz-
ing the distance of the Kullback-Leibler information criterion. Chernozhukov 
and Hong (2003) study MCMC approaches to Laplace-type estimators, and Yin 
(2009) propose the Bayesian generalized method of moments to circumvent the 
difficulty of constructing the likelihood function. 

As discussed in Section 3.2.3, the GMM is based on the sample moment 
condition, 

Un(0) = -¿ui(e), 
Tí . Λ 

1=1 

which has a mean zero. The frequentist GMM estimator is obtained by mini-
mizing 

Qn(Ö) = nUl(0)E;1(ö)Un(0) , 

where Σ„(0) is the empirical variance-covariance matrix in the form of 

Σ«(0) = ΐΣί^{θ)νζ{θ)-\}η[θ)Μΐ{θ). 
ι=1 

Observing that Qn{d) behaves exactly like — 2 log L(y \θ), we can build a pseudo-
likelihood function 

Z ( y | 0 ) o c e x p j - Í Q n ( e ) } , 



66 FREQUENTIST VERSUS BAYESIAN STATISTICS 

which may be used to substitute the original likelihood L(y\6). 
Following the usual MCMC procedure, if we specify a prior distribution ρ(θ), 

the pseudo-posterior distribution of Θ is given by 

p(%)ocL(y|0)p(0), 

from which we draw samples to obtain the posterior inference for Θ. The 
Bayesian GMM is a moment-based approach, so that it can be generally con-
structed whenever moments or estimating equations are available. The likelihood 
may be vulnerable to model misspecification, while the Bayesian GMM only 
depends on moments and thus is more robust. Nevertheless, the pseudo-posterior 
distribution in the Bayesian GMM is complicated and nonstandard, which makes 
posterior sampling very challenging (Yin et al., 2011). 

3.4.5 Credible Interval 

In the frequentist paradigm, the parameter is fixed, but the confidence interval 
is random. The usual 95% confidence interval has an interpretation that by 
replicating the same experiment for a large number of times, the probability that 
these intervals contain the true parameter is 0.95. By contrast, the Bayesian 
credible interval given the data is fixed, while the parameter is considered to be 
random. Hence, the probability that the parameter is covered by (or falls inside) 
the 95% credible interval is 0.95. 

Let /(0|y) be the posterior distribution of Θ, and let Θ be the support of Θ. 
For a subset of Θ, say A, the posterior probability of the credible set A is 

P r (0G.4 |y )= / /(0|y)d0. 
JA 

Let F(9\y) denote the posterior cumulative distribution function of Θ, and let 
F~1(a\y) denote the ath quantile of Θ, where -F_1(-|y) is the inverse function. 
Then, the usual 100(1 — a)% credible interval for Θ is given by 

[F-\a/2\s), F-\l-a/2\y)}. 

A more meaningful Bayesian interval estimate is called the highest posterior 
density (HPD) interval (Chen, Shao, and Ibrahim, 2000). As shown in Figure 
3.8, if /(0|y) is unimodal, the 100(1 - a)% HPD interval for Θ is given by 

Λ(ττα) = {Θ: / ( % ) > ΤΓΩ}, 

where πα is the largest constant such that 

f ¡(θ\γ)άθ = 1 - a. 

If /(6>|y) is symmetric and unimodal, the credible interval and the HPD interval 
coincide. 
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Figure 3.8 Illustration of the highest posterior density (HPD) interval. 

3.4.6 Bayes Factor 

Given the observed data D, we consider two candidate models, MQ and Μχ, 
characterized by parameters 9Q and θ\, respectively. Let L(D\0k,Mk) denote 
the likelihood function under model Mk fork = 0,1. We specify the prior 
distributions for θο and θ\ as /(0n|M)) a nd /(0i |Mi) , and the prior model 
probabilities for Mn and Mi as P(Mn) and P(M\), respectively. The marginal 
likelihood for model M^ is obtained by integrating out the model parameter in 
the likelihood function with respect to the prior distribution, 

P(D\Mk) = J L(D\ek,Mk)f(9k\Mk)dek. (3.11) 

The posterior model probability for Mk is given by 

D 

1 

O 

m 

in 

d 

g 
d 

P(Mk\D) = 
P(D\Mk)P(Mk) 

P(D\M0)P(M0) + P(D|Mi)P(Mi) " 
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Noting that P(M\)/P(MQ) is the prior odds in favor of model M\ over Mo, 
the posterior odds is given by 

P{Mi\D) _ P{Mi) P{D\M{) 
P(M0\D) - P(M0)

 X P(D\Mo)' 

The Bayes factor (BF) is defined as the ratio of the posterior odds to the prior 
odds in favor of model Mi over MQ, 

= P{MX\D)/P(M0\D) = P(D\Mi) 
lfi P(M1)/P(M0) P(D\M0y 

Similarly in the Bayesian hypothesis testing, let P{HQ) and P{H\) denote the 
prior probabilities assigned to the null and alternative hypotheses, respectively. 
The posterior odds of favoring H\ over HQ is 

Ρ{Η,\Ρ) P (F i ) P{D\HX) Ρ[Η^ 
P(HQ\D) P(H0) P(D\H0) P(H0) ^ 

Therefore, the Bayes factor BFio can be interpreted as the weight or strength of 
evidence contained in the data to support Hi against HQ (Jeffreys, 1961; Kass 
and Raftery, 1995). In the case of testing two simple hypotheses, Ηο'. Θ = 0Q 
versus Hi: θ = θι, the Bayes factor reduces to the likelihood ratio. To quantify 
the strength of the data information in favor of Hi against HQ, the Bayes factor 
may be categorized in the unit of 1/2 on the log10(·) scale as follows: 

• If 0 < log10(BFi)o) < 1/2, the evidence in the data favoring Hi over HQ 
is not worth more than a bare mention. 

• If 1/2 < log10(BFi o) < 1, the data contain substantial evidence against 
HQ. 

• If 1 < log10(BFi)o) < 2, the data contain strong such evidence. 

• If log10 (BFi;0) > 2, the evidence in favor of Hi against Ho appears to be 
decisive. 

3.4.7 Bayesian Model Averaging 

Suppose that there are K candidate models, M i , . . . , Μκ, to fit the observed data 
D. Let P(Mk) be the prior probability that M^ is the true model, k — 1 , . . . , K. 
If there is no preference a priori to any single model, an equal probability mass 
is assigned to each model by simply setting Ρ{Μ^) = 1/K, which represents 
a discrete uniform prior distribution. When there is a preference to a certain 
model, we can incorporate such prior information into Ρ{Μ^). Let 9k be the 
parameter associated with model Μ&, and let f{ßk\Mk) be the prior distribution 
Offlfc. 
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For k = 1 , . . . , K, the posterior model probability for Mk is given by 

= P(X>[Mt)P(Mt) 
Σ , Ί ι Ρ ( ϋ | Μ , ) Ρ ( Μ , ) ' 

where P(D\Mk) is the marginal likelihood under model Mk as given in (3.11). 
The Bayes factor BF^o for model Mk against the reference model MQ is the 
ratio of the marginal likelihoods, 

= P(Mk\D)/P(M0\D) P(D\Mk) 
k>° P(Mk)/P(M0) P(D\M0y 

We can construct such a Bayes factor for each of the K models versus model 
Mo, and denote them by BF^o, . . . ,BF^o* respectively. Then, the posterior 
model probability of Mk can be naturally linked to the Bayes factors, 

PiMk\D) = B F ^ W = BF*>° 
Ef^BF^PiMj) E f= iBF i ; 0 ' 

if all the models are equally probable a priori. 
The Bayesian model averaging (BMA) procedure provides a coherent mech-

anism to account for the uncertainty associated with each candidate model 
(Raftery, Madigan, and Hoeting, 1997). For the model parameter Θ, the BMA 
estimator is given by 

K 

9 = YiêkP(Mk\D), 
k=l 

where Qk is the posterior mean of Θ under model Mk, 

ft = [a L(D\ek,Mk)f(ek\Mk) 
"k J°kfL(D\ek,Mk)f(ek\Mk)dek

k-

By assigning the posterior mean 9k a weight of P(Mk\D), BMA automatically 
lean toward the best fitting model, and thus Θ will be close to the best parameter 
estimate (Madigan and Raftery, 1994; Hoeting et al., 1999). 

3.4.8 Bayesian Hierarchical Model 

Bayesian hierarchical modeling often contains several layers of hierarchies, 
which is typically used to model dependent data, borrow information or strength 
across different subgroups, or pool separate studies together for joint inference. 
For illustration, we consider a longitudinal study, in which each subject is re-
peatedly measured over time. For i = 1 , . . . , n and k = 1 , . . . , K, the linear 
random effects model, as discussed in Section (3.2.7), may be used to account 
for the intra-patient correlation, 

yik = ßTZik + bJXik + eik, (3.12) 
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Ga(i ξ) Ga(£ ξ) Hyperprior 
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Figure 3.9 Illustration of Bayesian hierarchical modeling. 

where β is the p-dimensional fixed effects, b, is the g-dimensional random 
effects, bj ~ N9(0, G), and the error e^ ~ N(0, σ2). The Bayesian hierarchical 
model for (3.12) can be formulated as 

yik\(bi,a2) ~ N(ßTZik + bJXik,a
2), 

b ¿ | G ~ N 9 ( 0 , G ) , 
G ~ Inv-Wishart((í7«)-'1,7?), 

σ 2 - Ι Ο ( ξ , 0 , 

where Ω is a q x q symmetric and positive definite matrix, η is a scalar parameter, 
and ξ is a hyperparameter. 

EXAMPLE 3.7 

In a multi-arm randomized trial, it is desirable to borrow information 
across different subgroups. As shown in Figure 3.9, let θ\,..., θ$ denote 
the response rates for the five treatments, respectively. Suppose that we 
observe yk responses among nk patients treated in arm k, A; = 1 , . . . , 5. 
The Bayesian hierarchical model can be formulated as follows, 

yk\ek ~ Bin(nfc,0fc), 
ek\(a,ß) ~Beta(a, /3) , 

a ~ Ga(£,£), 
ß ~ Ga(£,0, 
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where the hyperparameter ξ in the gamma distribution may take a small 
value (e.g., ξ = 0.001) to induce noninformative prior distributions. 

Let y = (yi , . . . ,ΐ/5) denote the observed data. The joint posterior 
distribution is given by 

f(eu ...,θ5,α, ß\y) ex I Π Lk(yk\ek)f(ek\a, ß) \ f(a)f(ß), 

where the binomial likelihood function is 

Lk(yk\ek) = h ) e i \ i - ekr*-y*, 

f(9k\a,ß) denotes the beta distribution, and / ( a ) and f(ß) denote the 
gamma prior distributions. The full conditional distribution of 9k is 

&k\(a,ß,y) ~Beta(a + yk,ß + nk-yk), 

while those of a and ß do not have closed forms. 

3.4.9 Decision Theory 

Bayesian decision theory provides a statistical foundation for quantifying the 
trade-offs between decisions and the associated rewards/costs (Berger, 1985). 
Let r denote a reward, and let U(r) denote a utility function. The expected 
utility under a probability distribution P is written as Ep{U(r)}. The probability 
distribution P2 is preferred to Pi if and only if Ep1{¿Y(r)} < Ep2{U(r)}. Let 
the parameter Θ denote the state of nature, which has an influence on the decision 
process. The loss function is the opposite of an utility function, which is 
associated with the cost for a decision. If an action a is taken, a loss £(θ, a) may 
be incurred. Three standard loss functions are given below. 

• The squared-error loss function takes the form of 

£(θ,α) = {θ-α)2, 

which has an analogy to the least-squares estimation. 

• The linear loss function specifies 

£(0,a) = ( C ( f - ^ ^ _ Ω - π ' v ' ' \ c i ( a - Θ), if Θ - a < 0, 

which reduces to the absolute-error loss function C(0,a) = \θ — a\, if the 
constants CQ and ci are the same; for example, CQ = c\ = \. 
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The zero-one loss function is given by 

£(M;) = {5; iföee,-, 
ií0eek(k¿j). 

In a two-action decision problem, if Θ e ©o, action ao is correct with no 
loss and action a\ is incorrect with a loss of 1. 

Based on the likelihood L(y\6) and the prior distribution /(#), the posterior 
distribution of Θ is given by 

/(0|y)ocL(y|0)/(0). 

In the posterior decision analysis, we can compute the posterior expected loss 
for an action a, 

E{£(0, a)|y} = / £(0, a)/(0|y) dö, (3.13) 
Je 

and by minimizing (3.13) with respect to a, we obtain a posterior Bayes action. 

3.5 MARKOV CHAIN MONTE CARLO 

3.5.1 Inversion Sampling 

Let f(x) be the density function, and let F(x) be the cumulative distribution 
function of random variable X. The question is how to simulate random samples 
from f(x). Define a transformed random variable U = F(X), and then U 
follows a uniform distribution on (0,1); that is, U ~ Unif (0,1). This property 
implies a simple way to sample from f(x): First simulate a random sample u 
from Unif(0,1), and then solve F(x) = u to obtain x = F _ 1 (u) which is a 
sample from f(x). 

3.5.2 Rejection Sampling 

Sometimes, it may not be easy to solve x = F""1(n), and thus the inversion 
sampling becomes very difficult. As an alternative, the rejection sampling pro-
vides an attractive way to simulate samples from f(x). Let g(x) be a probability 
density function that is easy to sample from. We construct an envelope function 
Kg{x), where K > 1 is a constant such that f(x) < Kg(x) for all x. The 
rejection sampling algorithm proceeds as follows: 

• Sample x from g(x) and u from Unif(0,1). 

• If u < f{x)/Kg{x), accept £ as a realized value from f(x); otherwise, 
reject the value of x and go back to the sampling step. 

Through such sampling and rejection/acceptance steps, we can generate i.i.d. samples 
from f(x). 
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3.5.3 Gibbs Sampler 

In practice, it is often needed to draw samples from a multivariate distribution, 
which may be complicated and nonstandard. Suppose that a vector of K random 
variables (Χχ,...,Χχ) follows a multivariate distribution f(x\,..., χκ)· To 
circumvent the difficulty of directly sampling from f(x\,..., XR), the MCMC 
offers a straightforward approach to generating an ergodic Markov chain with 
f(x\,..., XK) a s the stationary distribution. 

Gibbs sampling is one of the most popular MCMC algorithms (Geman and 
Geman, 1984; Gelfand and Smith, 1990), which relies upon the availability of 
full conditional distributions; that is, the conditional distribution of each X^ 
given the rest of the X/s (j Φ k), 

f(xk\xi, ■ ■ ■ ,Xk-i,Xk+i, · · · ,XK), k = l,...,K. 

If all of the full conditional distributions are available, the multivariate sam-
pling problem can be cast into a sequence of samples from a set of univariate 
conditional distributions. Under some mild conditions, this set of univariate 
conditional distributions uniquely determines the multivariate distribution of 
(Xi,..., XK), a nd hence all the marginal distributions of X^ for k = 1 , . . . , K. 

The Gibbs sampler starts with a set of initial values x[ , . . . , Χχ , and pro-
ceeds as follows: 

„(0) „(0) f0)x 
• Sample x\ ' from f(x\\x\ ,x\ , · . . , xK 

Sample^2 fr°m / ( ^ R ) 4 >··■ ·>χκ) 

• Sample xK' from f(xx\x[ , x\',..., xK_i)· 

These K steps complete one iteration of the Gibbs sampler, and result in the first 
set of samples x[ ',..., xK . After a large number of iterations, a Markov chain 
is produced, whose joint distribution converges to that of (Χχ,..., Χκ)· 

The trace plot of the samples is helpful to provide visual checking of the sta-
tionarity of the Markov chain, while more rigorous examinations of the MCMC 
convergence are also available (Geweke, 1992; Gelman and Rubin, 1992; Cowles 
and Carlin, 1996). There is often a burn-in period to discard the first hundreds 
or thousands of iterations before taking the "real" samples for inference. To 
reduce the autocorrelations among the samples, we may thin the Markov chain 
by recording one sample every a fixed number of iterations. 

3.5.4 Metropolis-Hastings Algorithm 

The Metropolis-Hastings algorithm is another widely used MCMC procedure 
to draw samples from a target distribution (Metropolis et al., 1953; Hastings, 
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1970; Gilks, Best, and Tan, 1995). If the target distribution f(x) is not easy to 
sample from, we need to come up with a proposal distribution p(x, y) in order 
to produce a Markov chain. The Metropolis-Hastings algorithm starts with an 
initial value x^ and proceeds through the following transition: 

• At step i, generate y from p(x^\y) given x = x^'. 

• At step (i + 1), set 

x(i+i) = Í y, with probability 7r(xW,y), 
1 a;W, with probability 1 — π(χ^\ y), 

where 

Each time, the new sample y simulated from the proposal distribution may be 
accepted or rejected, and the optimal acceptance rate is around 23%. Repeating 
this procedure for a large number of iterations, a random sample is then generated 
from the density function f(x). 

3.6 SUMMARY 

This chapter provides a statistical background for clinical trial designs that will 
be discussed in the forthcoming chapters. We introduced the estimation and 
inference procedures separately for the frequentist and Bayesian approaches. For 
more in-depth discussions on frequentist statistics, see Sen and Singer (1993), 
Casella and Berger (2001), and Hogg, McKean, and Craig (2005); for those on 
Bayesian statistics, see Gelman et al. (2003) and Carlin and Louis (2008). 

In the frequentist clinical trial designs, the prior knowledge is informally 
utilized at the planning stage, such as specification of the effect size and variance 
for sample size calculation. Hypothesis testing mainly relies upon the maximum 
likelihood estimation, confidence intervals, and p-values. If a sequence of 
hypothesis tests is conducted during a trial, multiple testing issues arise, and 
the inference procedure must be adjusted to control the overall/familywise type 
I error rate. Moreover, the design should be equipped with sufficient power to 
detect the specified treatment difference. 

In contrast, Bayesian clinical trial designs incorporate prior information in 
a more formal and natural way (Spiegelhalter, Abrams, and Myles, 2004). In 
the Bayesian paradigm, interim analysis is not subject to multiple comparison 
issues; that is, multiple "looks" of the data would not affect Bayesian decisions. 
Trial designs are typically based on posterior probabilities of prespecified rules, 
which must be carefully calibrated through simulation studies. In addition, using 
the predictive probability to forecast the future trial outcomes is a very useful 
and unique feature for Bayesian trial monitoring. 
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Designing a clinal trial is an interactive process between statisticians and 
physicians. Before a real trial is carried out, the design must be investigated 
thoroughly, with all the design parameters carefully calibrated and all the decision 
rules clearly specified in advance. The design properties may be explored 
extensively back and forth using computer simulations until it produces good 
operating characteristics. The simulated scenarios should be chosen broadly to 
match the real situation and cover all of the possibilities that may happen in 
reality. In summary, the goals of clinical trial designs are to save sample sizes 
and resources while still making correct decisions, which, for example, include 
to 

• select excessively toxic doses with low probabilities and recommend the 
optimal dose with a high probability, 

• drop nonworking or unsafe drugs as early as possible and select promising 
drugs sooner, 

• treat more patients in the superior arms and fewer patients in the inferior 
arms, and 

• preserve the type I error rate and achieve high statistical power. 

EXERCISES 

3.1 Let X and Y be independent random variables with corresponding density 
functions fx(x) and fy(y). Show that the probability density function of the 
random variable Z = X + Y is given by 

fz(z) = / fx(x)fy(z - x) dx. 

Also, prove that 
P{X>Y) = I fx(x)FY(x)dx, 

where Fy(y) is the cumulative distribution function of Y. 

3.2 For a continuous random variable X, let F(x) denote its cumulative distri-
bution function. Define Y = F(X); show that the distribution of Y is uniform 
on (0,1). 

3.3 In the frequentist hypothesis testing framework, what is the distribution of 
the p-value under the null hypothesis? 



76 FREQUENTIST VERSUS BAYESIAN STATISTICS 

3.4 Let T denote the failure time, and let S(t) denote the survival function. 
Show that 

/•CO 
E ( T ) = / S(t)dt. 

Jo 

3.5 The mean residual lifetime is the remaining life expectancy conditional on 
survival up to time t, 

m{t) = E(T - t\T > t) for t > 0, 

where T is the failure time. Show that the mean residual lifetime has an explicit 
one-to-one correspondence to the survival function, 

3.6 In survival analysis, suppose that the observed data are given as follows: 

ient i 

1 
2 
3 
4 
5 
6 

Xi 

0.3 
0.1 
0.2 
0.4 
0.5 
0.6 

Δ, 
1 
1 
0 
1 
0 
1 

Zi 

0 
0 
1 
0 
1 
1 

where Xi is the observed survival time, A¿ is the censoring indicator, and Z¿ is 
the treatment indicator, for i = 1 , . . . , 6. Under the Cox proportional hazards 
model, 

X(t\Zi) = X0(t)exp(ßZi), 

we assume an exponential distribution with λο(ί) = λ. Derive both the full 
and the partial likelihood, and find the corresponding MLE and the maximum 
partial likelihood estimator (may not exist). If an additional patient with {X-j = 
0.2, Δ7 = 1, Zi = 1) is added, find the MLEs of β by maximizing the full and 
the partial likelihood functions, respectively; and also compare the efficiency 
based on the corresponding variance estimates. 

3.7 Show that the inverse-Wishart distribution is a conjugate prior distribution 
for the covariance matrix of a multivariate normal distribution. 

3.8 Under the linear random effects model (3.12), derive the conditional and 
marginal likelihood functions. In the Bayesian paradigm, derive the full condi-
tional distribution for each model parameter. 



CHAPTER 4 

PHASE I TRIAL DESIGN 

4.1 MAXIMUM TOLERATED DOSE 

If a compound shows promising anti-disease activity through extensive preclin-
ical research, a phase I clinical trial will be launched as the first step of drug 
testing in human subjects. The primary goal of a phase I trial is to determine the 
recommended dose for future phase II studies. Statistical issues in this phase 
include the ethics of the trial, selection of the starting dose, rapidity of dose esca-
lation, the target toxicity probability, the number of patients, and the efficiency 
of the trial design. 

The aims of a typical phase I oncology trial are to determine the maximum 
tolerated dose (MTD), assess the safety and tolerability, and investigate pharma-
cokinetics and pharmacodynamics of a new drug. The MTD is defined as the 
dose that has a toxicity probability closest to the target toxicity rate specified 
by the investigators. The recommended phase II dose may be the MTD or the 
dose of one level below the MTD. The dose-limiting toxicities (DLTs) refer to 
the drug-induced toxicities up to a certain level of severity so that no more of 
the treatment can be given to patients. For cytotoxic agents in cancer, DLTs are 
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drug-related severe adverse effects that are usually reversible, such as grade 3 
nonhematologic toxicities and grade 4 hematologie toxicities. 

EXAMPLE 4.1 

In a phase I trial with leukemia patients, a single agent, R7112, was in-
vestigated through oral administration. Predefined DLTs included any 
drug-related nonhematologic toxicity of grade 3, according to the Common 
Terminology Criteria for Adverse Events version 3.0, except for fatigue, 
anorexia, and alopecia. Nausea, vomiting, and diarrhea were also consid-
ered DLTs only if they reached grade 3 despite adequate supportive care 
measures. Toxicities that were not considered DLTs included grade 3-4 
myelosuppression lasting less than six weeks or in the presence of persis-
tent leukemia, grade 3 neutropenic fever without infection, cytopenias not 
resulting in death, grade 3 blood transfusions, and nausea and vomiting if 
manageable. 

It is often assumed that as the dose of a drug increases, the induced toxicity 
becomes more severe, while at the same time the drug's efficacy is also expected 
to strengthen. The MTD is the most toxic dose that can still be tolerated by 
patients, so that the therapeutic effect of the drug can be maximized if patients 
are treated at the MTD. Finding the MTD is crucial because it is the dose 
that will be further investigated in the subsequent phase II or phase III trials. 
Misidentification of the MTD may result in many serious consequences. For 
example, if an over-toxic dose is identified as the MTD, an undesirably large 
number of patients might be treated at that excessively toxic dose in the follow-
up studies. On the other hand, mistakenly selecting a dose with low toxicity (and 
also presumably negligible efficacy) as the MTD may cause a truly effective 
drug being overlooked. Therefore, in a phase I trial we need to identify the 
MTD accurately and efficiently, while exposing as few subjects as possible to 
suboptimal doses that are inefficacious or unsafe. 

EXAMPLE 4.2 

A phase I dose-finding trial was designed to study the safety of ΓΝΝΟ-
406 in adult patients with imatinib-resistant or -intolerant Philadelphia 
chromosome-positive leukemia. The primary objective of the study was to 
determine the MTD of INNO-406 with a target toxicity probability of 33%; 
that is, at most one-third of the patients treated at the MTD are expected to 
experience the DLT. 
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4.2 INITIAL DOSE AND SPACING 

In the early stage of drug development, relatively little is known about the new 
drug and its appropriate dosages on human subjects. Hence, a sequence of doses 
is screened to search for the MTD—the most toxic but still tolerable dose. The 
sample size of a phase I trial is small, usually ranging from 20 to 50 subjects. 
Dose finding in a phase I trial is adaptive by nature. Patients are sequentially 
enrolled into the study and are often treated in cohorts. The trial may start from 
the lowest or the physician-specified dose. If at a dose level an undesirably large 
number of patients have experienced the DLTs, the next cohort will be treated 
at a lower dose; and if a dose can be well-tolerated, the next cohort will be 
treated at a higher dose. Through adaptive dose escalation and de-escalation, 
each cohort of patients will be assigned to the most appropriate dose based on 
the data accrued in the trial thus far. 

Figure 4.1 displays a typical dose-finding situation, in which six increasing 
doses are considered and the MTD is the fourth dose with a target toxicity rate 
of 33%. To identify the MTD, we need to collect the toxicity data by adaptively 
treating patients through dose escalation and de-escalation. Toxicity is expected 
to occur shortly after treatment such that the outcomes of previously treated 
patients can be observed timely for decision making. For safety, the doses of the 
study drug should start from a very low dose level, and gradually increase, so 
that the MTD is likely to be covered by the entire range of the considered doses. 
The doses selected for investigation are usually some fractions of the dose that 
causes harm in animal studies. For example, the lethal dose 10% (LDio) of a 
drug is the dose that causes 10% of death in the animals that received the drug. 
To be conservative, the first human trial for a new drug may start at one-tenth of 
the rodent LDio, after adjusting for the body surface area. 

Due to discreteness of dose preparation, the MTD may not exactly match 
the target toxicity probability, say 33%. The MTD should be the dose that has 

MTD with a target Pr(toxicity) = 0.33 

O O O 81 O O 

Dose level 

Figure 4.1 Dose finding for the MTD in a phase I clinical trial with six dose levels. 
The cross indicates the MTD with a target toxicity probability of 33%. 
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Figure 4.2 Dose-toxicity curve with a target toxicity probability of 40%. 

the toxicity probability closest to the target level. Doses may be prepared in an 
escalation scheme following a sequence of Fibonacci numbers: Starting from 
0 and 1, each subsequent number is the sum of the two preceding numbers; 
that is, 0, 1, 1, 2, 3, 5, 8, . . . , and the ratio of consecutive Fibonacci numbers 
converges to the golden ratio (1 + Λ / 5 ) / 2 « 1.618. In practice, a modified 
Fibonacci sequence is often used, in which the percentages of dose increment 
for succeeding dose levels are 100%, 65%, 52%, 40%, 29%, 33%, 33%, 
and followed by 33% for all the remaining dose levels. For simplicity, dose 
escalation may increase the adjacent doses with a fixed percentage of 33%, or 
with a constant increment of the actual dose, say, 10 mg. 

As remarked earlier, dose finding is the main theme of a phase I clinical trial. 
Figure 4.2 shows a typical dose-toxicity curve that monotonically increases with 
respect to the dose. Suppose that the target toxicity rate is 40%, and we search 
over the prespecified doses from 10 mg up to 50 mg with a constant increment 
of 10 mg. In this case, the dose of 20 mg is expected to be claimed as the 
MTD. However, the true dose-toxicity curve is unknown in reality. To search 
for the MTD, many statistical methods are developed, which can be generally 
classified as algorithm-based or model-based approaches. The algorithm-based 
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Figure 4.3 Different dose-toxicity curves lead to different maximum tolerated doses 
(MTDs). The solid line is the true dose-toxicity curve, while others are hypothetical 
curves. 

methods, such as the 3 + 3 design (Storer, 1989) and the biased coin dose-finding 
design (Stylianou and Flournoy, 2002), can be viewed as "nonparametric" or 
model-free methods. These nonparametric methods do not explicitly assume a 
dose-toxicity curve, while dose escalation and de-escalation rigorously follow 
a set of prespecified rules. Other examples include a family of random walk 
rules for dose finding (Durham, Flournoy, and Rosenberger, 1997), a curve-free 
method using a product of beta priors (Gasparini and Eisele, 2000), and dose 
finding based on toxicity probability intervals (Ji, Li, and Yin, 2007; Ji, Li, and 
Bekele, 2007). 

By contrast, model-based dose-finding methods typically assume a paramet-
ric dose-toxicity relationship to pool the information across different doses for 
decision making. However, these parametric approaches are subject to model 
misspecification, because the true dose-toxicity curve is unknown. Figure 4.3 
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shows that for the same target toxicity probability of 30%, the identified MTD 
may vary dramatically under different dose-toxicity curves. Hence, if the dose-
toxicity curve is specified incorrectly, the MTD would be likely misidentified. 
Among a variety of model-based designs, the continual reassessment method 
(CRM) is a very popular dose-finding approach (O'Quigley, Pepe, and Fisher, 
1990). The practical performance of the CRM may be improved by assigning one 
cohort instead of one patient to each dose level and also limiting dose escalation 
by one dose level at a time (Faries, 1994; Goodman, Zahurak, and Piantadosi, 
1995). Other extensions of the CRM are described as follows. M0ller (1995) 
applies a preliminary up-and-down design to reach the neighborhood of the tar-
get dose during successive dose escalation. Piantadosi, Fisher, and Grossman 
(1998) propose using a simple dose-toxicity model to guide data interpolation 
and grouping three patients into a cohort to stabilize the estimates. Heyd and 
Carlin (1999) develop a further refinement for the CRM by allowing the trial to 
stop earlier when the width of the 95% posterior probability interval for the MTD 
becomes sufficiently narrow. Ishizuka and Ohashi (2001) propose monitoring 
a posterior density function of toxicity to reduce the number of patients treated 
at doses higher than the MTD. Leung and Wang (2002) apply decision theory 
to optimize the number of patients allocated to the highest dose with tolerable 
toxicity. Yuan, Chappell, and Bailey (2007) develop a quasi-likelihood approach 
to accommodating multiple toxicity grades. To resolve the CRM's sensitivity to 
the prespecified toxicity probabilities, Yin and Yuan (2009a) propose using mul-
tiple sets of toxicity probabilities and integrating the toxicity estimates through 
the Bayesian model averaging procedure. Along a similar line, Daimon, Zohar, 
and O'Quigley (2011) apply posterior maximization and averaging for the CRM 
working model. Cheung (2011) provides detailed discussions on dose-finding 
methodologies using the CRM. Apart from the CRM framework, Whitehead and 
Brünier (1995) introduce a Bayesian decision-theoretic approach to dose find-
ing. To prevent patients from experiencing excessive toxicity, Babb, Rogatko, 
and Zacks (1998) develop a dose escalation scheme that directly controls the 
probability of overdosing. For comprehensive coverage of various dose-finding 
methods in phase I clinical trials, see Chevret (2006) and Ting (2006). 

4.3 3 + 3 DESIGN 

In a phase I dose-finding study, dose escalation should proceed cautiously to 
avoid overshooting the MTD so that patients can be protected from overly toxic 
doses. On the other hand, the dose needs to be escalated quickly to avoid treating 
too many patients at ineffective doses that are far below the MTD. In light of 
these two guidelines, the standard 3 + 3 design provides an algorithm-based 
approach to dose finding that typically finds the MTD as the highest dose with a 
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Enter 3 patients at dose level j 

DLT = 0/3 DLT = 1/3 DLT > 1/3 

/ i \ 
/ Enter 3 more patients \ 

/ DLT = 1/6 DLT = 2/6 

Escalate toy+1 Dose y' -1 is MTD 

DLT > 2/6 \ 

De-escalate toy-1 

Figure 4.4 Diagram of the standard 3 + 3 design. 

toxicity probability less than 33% (Storer, 1989). Due to its simplicity and ease 
of implementation, the 3 + 3 design is widely used in practice. 

Apparently by the design's name, patients are treated with a cohort size of 3 
after entering the trial sequentially. The toxicity outcomes of the enrolled patients 
should be completely observed before any more patients enter the trial. The first 
cohort is treated at the lowest dose level or the one specified by physicians. 
Figure 4.4 exhibits the diagram of the 3 + 3 design, which is described in detail 
as follows: 

(1) Suppose that the current dose level is j , at which 3 patients are treated and 
evaluated for toxicity. 

(2) If none of the 3 patients experiences the DLT, escalate to dose level y' + 1 , 
and go back to step (1). 

(3) If 1 out of 3 patients develops the DLT, then 3 more patients will be treated 
at the same dose level y' and the trial proceeds as follows: 

(i) If 1 out of 6 patients experiences the DLT, escalate to dose level j + 1 
provided that dose level j + 1 has not exceeded the MTD. 

(ii) If 2 out of 6 patients experience the DLT, then the trial is finished 
and the dose at the next lower level j — 1 is declared as the MTD. 

(iii) If more than 2 patients experience the DLT, the current dose level j 
has exceeded the MTD, and 3 more patients will be treated at dose 
level j - 1 provided that fewer than 6 patients have been treated at 
that dose level. 
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(4) If 2 or 3 patients experience the DLT (the dose level has exceeded the 
MTD), 3 more patients will be treated at dose level j — 1 provided that 
fewer than 6 patients have been treated at that dose level. 

If 2 or 3 DLTs are observed among the first 3 patients in the 3 + 3 design, the trial 
will be stopped early without selecting the MTD, which is called an inconclusive 
trial. 

Following this set of rules, the MTD is defined as the highest dose at which 6 
patients have been treated with none or one occurrence of the DLT (the incidence 
rate of the DLT is less than 33%). A more aggressive definition for the MTD 
is the highest dose at which 6 patients are treated and 2 or fewer patients have 
developed the DLT (the incidence rate of the DLT may be equal to 33%). If there 
are J doses under investigation, the maximum number of patients required for a 
3 + 3 design is J x 6. 

To investigate the operating characteristics of the 3 + 3 design, we conducted 
simulation studies with five increasing doses. The first cohort was treated at the 
lowest dose level, and the maximum sample size was 30. We simulated four 
different scenarios as shown in Table 4.1, and for each scenario 10,000 trials 
were replicated. 

Table 4.1 
Levels 

Simulation Study Using the 3 + 3 Design with Five Increasing Dose 

3 + 3 design 

Scenario 1 
Selection % 
# Patients 

Scenario 2 
Selection % 
# Patients 

Scenario 3 
Selection % 
# Patients 

Scenario 4 
Selection % 
# Patients 

1 

0.30 
44.2 
4.8 

0.10 
18.9 
4.0 

0.02 
1.6 
3.2 

0.20 
37.8 
4.6 

2 

0.40 
20.9 
2.4 

0.20 
33.8 
4.2 

0.06 
5.8 
3.5 

0.30 
42.0 

3.6 

Dose level 

3 

0.55 
2.9 
0.6 

0.30 
28.5 

3.1 

0.10 
18.2 
3.9 

0.60 
5.3 
1.4 

4 

0.60 
0.2 
0.1 

0.40 
12.7 

1.5 

0.20 
32.2 
4.0 

0.70 
0.1 
0.1 

5 

0.65 
0.0 
0.0 

0.50 
1.4 
0.4 

0.30 
11.8 
2.7 

0.75 
0.0 
0.0 

Total 

# Toxicity 

2.8 

3.0 

2.2 

2.9 

Total 

# Patients 

7.9 

13.2 

17.3 

9.7 

Under each scenario, the first row represents the true toxicity probabilities of the five considered 
doses. The selection percentages for the probability of toxicity of 30% are in boldface. 
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Under each scenario, we present the true toxicity probability, the dose selection 
percentage and the number of patients treated at each dose, the number of DLTs 
and the total number of patients in the trial. For example, in scenario 1, 44.2% 
of the simulated trials selected dose 1 as the MTD, on average approximately 
5 patients were treated at dose level 1, and a total of 8 patients were treated in 
the entire trial and 3 DLTs were observed. The 3 + 3 design does not have a 
specific toxicity probability target; it often selects the MTD as a dose with a 
toxicity probability less than 33%. In scenarios 1 and 4, the dose with a toxicity 
probability 30% was selected with the highest percentages, while in scenarios 2 
and 3, the 3 + 3 design tended to select the dose with a toxicity probability of 
20% as the MTD. Due to inconclusive trials, the sum of the selection percentages 
at all of the dose levels may not be 1. 

The 3 + 3 design may be modified as a two-stage dose-finding procedure: The 
first stage takes single-patient dose escalation until the first DLT is observed, and 
the second stage switches to the usual 3 + 3 design afterwards. Stage 1 aims 
to use as few patients as possible to reach the dose-action neighborhood; once 
within the vicinity of the MTD, stage 2 applies the standard 3 + 3 design to 
locate the MTD. 

Despite the popularity, the 3 + 3 design has some limitations that may affect 
its practical performance (O'Quigley and Chevret, 1991; O'Quigley and Shen, 
1996). First, the 3 + 3 design is "memoryless" because dose escalation or 
de-escalation is solely based on the toxicity data observed at the current dose 
level with no regard to other dose levels. Second, this design does not have any 
statistical convergence property and also has no specific toxicity target to aim 
for. Finally, the 3 + 3 design tends to be conservative and is only suitable for a 
trial with the target toxicity probability less than 33%. 

4.4 A + B DESIGN 

The 3 + 3 design can be extended to a more general A + B design (Lin and Shih, 
2001), in which the cohort size may not always be 3. The schema of the A + B 
design is shown in Figure 4.5 and described below. 

(1) Suppose that the current dose level is j , at which A patients are treated 
and evaluated for toxicity. 

(2) If fewer than C out of A patients experience the DLT, escalate to dose level 
j + l· 

(3) If the number of DLTs is between C and D, the dose will stay the same, 
and B more patients will be treated at dose level j . After A + B patients 
are treated at dose level j , the design proceeds as follows: 
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Enter A patients at dose level j 

Escalate to/+l De-escalate toy-1 

Figure 4.5 Diagram of the A + B design. 

• If the number of DLTs is more than E, de-escalate to dose level j — I 
provided that only A patients have been treated at that dose level. 
However, if A + B patients have already been treated at dose level 
j — 1, that dose will be claimed as the MTD. 

• Otherwise, escalate to dose level j + 1. 

(4) If more than D out of A patients experience the DLT (D > C), de-escalate 
to dose level j — 1. That is, the next cohort of B patients will be treated 
at dose level j — 1 provided that only A patients have been treated at that 
dose level. However, if A + B patients have already been treated at dose 
level j — 1, that dose will be claimed as the MTD. 

The standard 3 + 3 design is a special case of the A + B design with A = B = 3 
and C = D = E = 1. For practical use, there may be several modifications to 
the A + B design as follows: 

• The starting dose level may not necessarily be the lowest one; instead the 
investigator may specify the starting dose level. 

• In steps (3) and (4) of the A + B algorithm, the current dose j instead of 
dose j — I may be declared as the MTD. 

• The design may be divided into two stages: In stage 1, one or two patients 
are treated per dose level until minor toxicities or DLTs occur, and stage 
2 follows the A + B design. 
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4.5 ACCELERATED TITRATION DESIGN 

4.5.1 Acceleration and Escalation 

If a new drug has never been used previously in humans, we can only rely upon 
preclinical data to select the testing doses for a phase I trial. In this circumstance, 
the starting doses are often set at very low levels to ensure patients' safety. The 
MTD may be located at the higher dose range, and thus it will take a long time 
and a large number of patients to reach the MTD area if using a cohort size of 
3 as in the 3 + 3 design. Hence, a large number of patients, especially most 
of the early participants, might be treated at doses far below the biologically 
active level of the drug. In addition, the 3 + 3 design provides little information 
on inter-patient variability or cumulative toxicity. To address these issues, the 
accelerated titration design (ATD) is developed through rapid intra-patient dose 
escalation (Simon et al., 1997). The ATD dramatically reduces the number 
of patients treated at subtherapeutic dose levels, shortens the duration of the 
trial, and acquires substantially more information on inter-patient variability and 
cumulative toxicity. 

Starting from the lowest or the physician-specified dose, the ATD is composed 
of two sequential stages: an acceleration stage and an escalation stage. During 
the acceleration stage, one patient is treated at each dose level, and the dose is 
escalated until the first DLT is observed. Then the design switches to a traditional 
dose-escalation scheme, such as the 3 + 3 design, by treating 2 additional patients 
at the dose that has triggered the switch. From then on, 3 patients are treated in 
the subsequent cohorts at each dose level. This approach offers the possibility of 
speeding up the trial at the beginning of dose escalation and reducing the number 
of patients assigned to the doses that are far below the MTD and are presumably 
therapeutically ineffective. 

Cancer therapy often involves multiple courses of treatment. The ATD may 
allow within-patient dose escalation depending on the toxicities observed in the 
previous course of treatment. For the same patient, we may escalate the dose if 
grade 0 or grade 1 toxicity is observed, and de-escalate the dose if grade 3 or 
higher toxicity is observed at the previously administered dose. The accelerated 
phase ends until one patient experiences the DLT or two patients experience 
moderate toxicity (usually grade 2) during the first course of treatment. After-
wards, the dose assignment for new patients follows the same rule as that in the 
standard 3 + 3 design. 

4.5.2 Modeling Toxicity with Random Effects 

Similar to a longitudinal study with repeated measurements, each subject in 
the trial is treated for multiple courses over time. Rather than identifying the 
MTD as in the 3 + 3 design, the ATD applies the random effects model to all 
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of the toxicity data (including toxicity experienced in the subsequent treatment 
courses) to select the dose for the following phase II trial. More specifically, let 
yik be an unobserved continuous variable representing the underlying toxicity 
level, let dik be the dose administered to patient i in treatment course k, and let 
Dik be the cumulative dose administered to patient i up to, but not including, 
treatment course k. Under this setup, the random effects model takes the form 
of 

Vik = log(d¿fc + aDik) + ßi + eik, 

for i = 1 , . . . , n and k = 1 , . . . , K. Here, a is the treatment effect of the cu-
mulative dose; /% is the random effects representing the inter-patient variability, 
ßi ~ Ν(0,σ|); and e¿fe is the error characterizing the intra-patient variability, 
e¿fc ~ Ν(0,σ2). The unobserved (latent) variable y^ can be cast into discrete 
toxicity levels using three additional cutoff parameters, c\ < C2 < C3, which 
divide the continuous toxicity measurement into four intervals: minimal toxi-
city (usually grade 0 or 1), moderate toxicity, DLT, and unacceptable toxicity. 
Based on the observed toxicity data, the model parameters (a, σ2}, σ2, ci, C2, C3) 
can be estimated using the maximum likelihood approach. The probabilities of 
observing the moderate toxicity and DLT at different dose levels can thereby be 
estimated, which will be used as the basis for recommending a phase II dose. 
The ATD effectively reduces the number of patients who are undertreated, and it 
speeds up the completion of a phase I trial. These advantages are accomplished 
through the accelerated dose escalation in stage 1, which, however, may sacrifice 
relatively more patients with grade 3 or 4 toxicities. 

EXAMPLE 4.3 

As an example, a phase I clinical trial was designed using the ATD to 
study a novel triplatinum complex, BBR3464 (Sessa et al., 2000). The 
objective of the trial was to find the MTD of BBR3464 and determine 
the associated toxicity and pharmacokinetic profile. The starting dose of 
BBR3464 was 0.03 mg/m2 per day, which corresponded to 1/10 of the 
mouse equivalent MTD. The DLTs included short-lasting neutropenia and 
late-onset diarrhea. The MTD was defined as the dose at which one-third 
of the patients developed the DLT after the first treatment cycle. Fourteen 
patients received BBR3464 on a daily x 5 schedule every 28 days, among 
them five patients were in the acceleration phase and nine in the standard 
phase. During the acceleration stage, only one patient per cohort was 
treated until one patient experienced the DLT or two patients experienced 
toxicities of grade > 2. The dose was escalated from 0.03,0.06,0.12,0.14, 
up to 0.17 mg/m2 per day, and eventually the MTD of BBR3464 identified 
by the trial was 0.12 mg/m2. 
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4.6 BIASED COIN DOSE-FINDING METHOD 

The biased coin design (BCD) has a long history in the sequential allocation 
of patients through randomization; see Section 7.6. The BCD aims to balance 
the number of patients in each treatment arm by hypothetically tossing a biased 
coin which has an unequal probability of landing on a head or a tail. With 
an extension of the BCD to dose finding, Durham, Flournoy, and Rosenberger 
(1997) introduce a family of random walk rules. 

Let φτ denote the target toxicity probability. Starting from the lowest dose 
level, the biased coin dose-finding design proceeds as follows: 

• In the case ο/φτ < 0.5: 
At any stage of the trial, if the previously treated patient has experienced 
the DLT, de-escalate the dose to one level lower; if no DLT is observed for 
the previous patient, escalate the dose to one level higher with probability 
φτ/(1 — Φτ) and the dose stays at the same level with probability (1 — 
20r) / ( l - Φτ). 

• In the case of φτ > 0.5: 
At any stage of the trial, if the previously treated patient has experienced the 
DLT, de-escalate the dose to one level lower with probability (1 — φτ)/Φτ 
and the dose stays at the same level with probability (2φχ — 1)/φτ', if no 
DLT is observed for the previous patient, escalate the dose to one level 
higher. 

At the lowest and the highest dose levels, appropriate adjustments are made so 
that treatment always remains within the prespecified dose range. For example, 
if the current dose is the lowest while the decision is to de-escalate the dose, or 
if the current dose is the highest while the decision is to escalate the dose, then 
the next patient will still be treated at the current dose. Stylianou and Flournoy 
(2002) further explore the biased coin dose-finding procedures using the maxi-
mum likelihood method, weighted least-squares approach, sample averages, and 
isotonic regression. However, dose-finding methods that involve random dose 
assignment are typically not preferred, especially when using toxicity alone as 
the primary endpoint. 

In oncology, the target toxicity probability is usually less than 0.5. Therefore, 
for φτ < 0.5, if no DLT is observed for the patient treated at the current dose 
level, the probabilities of dose escalation and dose staying at the same level (no 
change) for the next patient are given below. 

Toxicity Target φτ 0.10 0.20 0.25 0.30 0.33 0.35 0.40 
Pr(dose escalation) 0.11 0.25 0.33 0.43 0.50 0.54 0.67 
Pr(dose no change) 0.89 0.75 0.67 0.57 0.50 0.46 0.33 



90 PHASE I TRIAL DESIGN 

Often, the algorithm-based designs as aforementioned are closely related to 
the family of up-and-down designs (Gezmu and Flournoy, 2006). In the general 
up-and-down design, let j be the dose level at which the most recent cohort is 
treated, and let tj be the number of patients who have experienced the DLT at 
dose level j . We denote the cohort size by s, and specify two cutoff integers c¿ 
and cu, satisfying 0 < CL < eu < s. The group up-and-down design assigns 
the next cohort of patients to 

• dose level j — 1, if tj > c\j ; while if the current dose is at the lowest level, 
the next dose remains the same; 

• dose level j + 1 , if tj < c¿; while if the current dose is at the highest level, 
the next dose remains the same; and 

• dose level j , if c¿ < tj < CJJ. 

4.7 CONTINUAL REASSESSMENT METHOD 

4.7.1 Probability Model 

As we have seen, algorithm-based approaches to dose finding simply follow 
a set of prespecified rules. Often, dose assignment only depends on the data 
observed at the current dose level, while there is no modeling or borrowing 
information across other doses. By contrast, model-based dose-finding methods 
assume a certain parametric model for the underlying dose-toxicity curve. In 
particular, the continual reassessment method (CRM) links the true toxicity 
probability at each dose with the prespecified toxicity probability through a 
single-parameter model. During the trial, as the toxicity data are accumulated, 
the CRM continuously updates the estimates of the toxicity probabilities of all 
the doses. Each new cohort of patients will be sequentially assigned to the most 
appropriate dose based on the updated toxicity probabilities, and eventually the 
MTD will be identified when the total sample size is exhausted. 

Typically, toxicity is assumed to monotonically increase with respect to the 
dose. Let p\ < ■ ■ ■ < pj be the prespecified toxicity probabilities of a set of J 
doses for the drug under consideration, which is often known as the skeleton of 
the CRM. Let φτ be the target toxicity probability specified by the investigator. 
The CRM assumes a working dose-toxicity model; that is, for j = 1 , . . . , J , 

Pr(toxicity at dose level j) = Kj(a) = Pj , (4.1) 

where a is the only unknown parameter (O'Quigley and Shen, 1996). Figure 
4.6 displays dose-toxicity curves for different values of a under model (4.1). 
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Figure 4.6 Dose-toxicity curves with different values of a under the CRM power 
function. 

The CRM may take a different model structure other than the power function 
in (4.1), such as a logistic model with a fixed intercept of —3, 

TTj(a) 
exp(—3 + adj) 

1 + exp(—3 + adj)' 

where cL is the standardized dose at dose level j , or a hyperbolic tangent function, 

^ ) = {Süüi>±i}" = {. (e2^ - l ) / (e 2 ^ + 1) + 1 2d,· 

Figure 4.7 shows possible dose-toxicity curves for different values of a under 
the logistic and hyperbolic tangent functions, respectively. 

4.7.2 Likelihood and Posterior 

Suppose that yj patients have experienced the DLT among the rij patients treated 
at dose level j , for j = 1 , . . . , J. Let D denote the observed data, then the 
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Figure 4.7 Dose-toxicity curves with different values of a under the CRM logistic 
and hyperbolic tangent functions, respectively. 

likelihood function is given by 

exp(a) \rij-yj L(D\a) oc Π { p f W j ^ l - p f 1 0 ' ^ 

Let / ( a ) denote a prior distribution for a, for example, a ~ N(0, σ2). Using 
Bayes' theorem, the toxicity probability at dose level j can be estimated by the 
posterior mean, 

7Γ,· 
/ P-, 

■Φ(α) L(D\<x)f(a) 
¡L(D\a)f(a)da 

áa. 

After each cohort is treated, in light of the newly updated toxicity data including 
all the patients enrolled thus far, we re-calculate the posterior means of the 
toxicity probabilities at all the dose levels. The dose that has a toxicity probability 
closest to the target φτ may be recommended to treat the next cohort. Whereas 
for safety, it is typically required no dose skipping during dose escalation or de-
escalation, and thus each time dose assignment only moves one level up or down 



CONTINUAL REASSESSMENT METHOD 93 

toward the target. The trial continues until the total sample size is exhausted, 
and finally the dose with a toxicity probability closest to φτ is selected as the 
MTD. 

In the CRM, we may specify the prior mean toxicity probabilities, (p i , . . . ,j5j), 
instead of (pi,... ,pj). The skeleton (p i , . . . ,pj) can then be obtained through 

p3=E{pf^} = Jpf^a)f(a)da, j = l,...,J. (4.2) 

Because pj and pj are one-to-one related, whichever specified would not affect 
the trial performance much. It is worth noting that (pi, ■ ■ ■ ,pj) is the intrinsic 
component of the CRM model, which is not part of the prior distributions as in 
the usual Bayesian sense. 

4.7.3 Dose-Finding Algorithm 

In practice, patients are often treated in a cohort size of three. To be conservative, 
dose escalation or de-escalation is restricted by one dose level of change at a 
time. The CRM dose-finding procedure is described as follows: 

(1) Treat the first cohort of patients at the lowest or the physician-specified 
dose level. 

(2) Denote the current dose level as j c u r r . Based on the data observed thus 
far, we obtain the posterior means of the toxicity probabilities for all the 
doses under consideration; that is, π\,..., TTJ. We find the dose level j * 
that has a toxicity probability closest to φτ, 

j * = arg min \ñj - φτ\, 
je{i,...,J} 

and 

• if j c u r r > j * , de-escalate to dose level jCUTr — 1; 
• if j c u r r < j * , escalate to dose level j c u r r + 1; 
• otherwise, the dose stays at the same level for the next cohort of 

patients. 

(3) Once the maximum sample size is reached, the dose with the toxicity 
probability closest to φχ is selected as the MTD. 

In addition, if the lowest dose is still too toxic, as noted by 

/•l°g{log(0T)/l°g(pi)} 
ΡΓ(ΤΓΙ > φτ\Β) = / / ( a | D ) d a > 0.9, (4.3) 

J—oo 

the trial will be terminated for safety. In (4.3), the threshold value 0.9 may be 
adjusted according to the trial's operating characteristics. 
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Table 4.2 Simulation Study Using the CRM with Five Doses and a Target Toxicity 
Probability of φτ = 30% 

CRM 

Scenario 1 
Selection % 
# Patients 

Scenario 2 
Selection % 
# Patients 

Scenario 3 
Selection % 
# Patients 

Scenario 4 
Selection % 
# Patients 

1 

0.30 
70.6 
20.6 

0.10 
2.9 
5.6 

0.02 
0.0 
3.2 

0.20 
29.6 
12.3 

2 

0.40 
27.7 

8.2 

0.20 
37.2 
11.8 

0.06 
0.5 
4.2 

0.30 
66.3 
14.8 

Dose level 

3 

0.55 
1.7 
1.2 

0.30 
44.3 

9.1 

0.10 
9.3 
6.1 

0.60 
4.1 
2.8 

4 

0.60 
0.0 
0.0 

0.40 
14.0 
3.0 

0.20 
39.3 

8.7 

0.70 
0.0 
0.1 

5 

0.65 
0.0 
0.0 

0.50 
1.6 
0.5 

0.30 
50.9 

7.8 

0.75 
0.0 
0.0 

Total 

# Toxicity 

10.1 

7.1 

5.0 

8.6 

Total 

# Patients 

30 

30 

30 

30 

4.7.4 Simulation Study 

We conducted simulation studies to investigate the practical performance of 
the CRM. As shown in Table 4.2, we considered five increasing dose lev-
els with monotonically increasing toxicity. The target toxic probability was 
φτ = 30%, and the prespecified toxicity probabilities were (pi , . . . ,Ps) = 
(0.1,0.2,0.3,0.4,0.5). We took the prior distribution a ~ Ν(0,σ2) with 
σ = 1.34. The first cohort was treated at the lowest dose level, and the maximum 
sample size was 30. For comparison with the 3 + 3 design, we intentionally sim-
ulated the same four scenarios as those listed in Table 4.1, and for each scenario 
10,000 trials were replicated. 

Under each scenario, we present the true toxicity probability, the selection 
percentage, the number of patients treated at each dose, the total number of 
observed DLTs, and the total number of patients treated in the trial. Unlike the 
3 + 3 design which does not target any specific toxicity probability, the CRM had 
a target toxicity probability of φτ = 30%. As an illustration, we interpret the 
simulation results of scenario 1, in which the first dose is the MTD. Because the 
early stopping rule in (4.3) was not invoked, each of the simulated trials under 
scenario 1 ran until exhausting the maximum sample size of 30. On average, 
there were 10 patients experiencing the DLT in each trial, approximately 21 
patients were treated at the MTD, and there was a more than 70% of chance that 
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the true MTD would be selected. Other three scenarios also demonstrated that 
the selection percentages of the MTD using the CRM were substantially higher 
than those in the 3 + 3 design; see Table 4.1. 

Regression models with more unknown parameters are typically more flexible 
in terms of model fitting. However, model flexibility might not help dose finding 
due to the small number of patients and the sequential nature of the CRM. In 
particular, at the beginning of a trial, the data are really sparse; for example, only 
three patients are involved for the first decision making. In general, dose-finding 
methods would work well as long as the model provides an adequate local fit 
around the current treating dose, because the dose assignment is only allowed 
to change by one dose level at a time. If the sample size is large, the CRM 
is consistent and the recommended dose converges to the true MTD (Shen and 
O'Quigley, 1996). Nevertheless, such asymptotic behaviors might not be very 
relevant due to the small sample size in a typical phase I clinical trial. 

4.8 BAYESIAN MODEL AVERAGING CONTINUAL 
REASSESSMENT METHOD 

4.8.1 Skeleton of the CRM 

Despite its superior performance over the 3 + 3 design, the CRM suffers from the 
arbitrariness and subjectivity in the prespecification of the skeleton (jp\,..., p j ). 
This is mainly due to a lack of toxicity information on the new drug. If the 
elicited pj 's deviate far from the true dose-toxicity curve, the estimates of the 
toxicity probabilities may not be accurate. Such model misspecification often 
leads to poor performance of a trial design, which may end up selecting a wrong 
dose as the MTD. Of greater consequence is that an undesirably large number of 
patients may be treated at excessively toxic doses. Because the underlying true 
toxicity profile for a new drug is unknown in practice, there is no information to 
justify whether a specific skeleton is reasonable. 

To enhance the robustness of the design, multiple CRM models may be used 
in parallel, each equipped with a different skeleton (Yin and Yuan, 2009a). 
Different skeletons represent different prior guesses of the toxicity profile of 
the drug. We assign a discrete prior probability mass to each CRM model, 
and accommodate model uncertainty through the Bayesian model averaging 
(BMA) procedure (Raftery, Madigan, and Hoeting, 1997; Hoeting et al., 1999). 
BMA produces more robust estimates of the toxicity probabilities based on the 
posterior model probability weighting. In other words, instead of using a single 
CRM for the trial conduct, we carry out multiple parallel CRMs. The BMA-
CRM adaptively assigns a larger weight to a model of a better fit, and thus 
automatically ensures the estimated toxicity probabilities to be always close to 
the best estimates among all the candidate models. 
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4.8.2 BMA-CRM 

Let Mfc denote the CRM probability model associated with the fcth skeleton 
(pki, ■ ■ ■ ,Pkj), for k — 1 , . . . , K. Under the working model Mk, the toxicity 
probability at dose level j is given by 

7Tfcj(o!fc) = Pfc7(Qfe) ' 3 = 1, · · · » J, 

where ak is the unknown parameter associated with model Mk. Suppose that at 
a certain stage of the trial, yj patients have experienced toxicity among the rij 
patients treated at dose level j . Based on the observed data D, the likelihood 
function under model Mk is 

L{D\ak,Mk) oc Π {Vkf
ak)r{l-Ve

k7
iak)}ni~y3-

3=1 

Let P(Mk) be the prior probability that model Mk is the true model. We 
take a discrete uniform distribution for the prior model probability; that is, 
P(Mk) = l/K, if there is no preference a priori for any single CRM model. 
Let f(ak\Mfc) denote the prior distribution of ak under model Mk. The marginal 
likelihood of model Mk ,L(D\ Mk ), is obtained by integrating out ak with respect 
to the corresponding prior distribution, 

L(D\Mk) = J L(D\ak,Mk)f(ak\Mk)dak, 

and the posterior model probability for Mk is 

= L(D\Mt)P(Mk) 

E?.tL(D\Mt)P(Mt) 

As a result, the BMA estimate of the toxicity probability at dose level j is 
given by 

K 

*j = Σ ñkjP(Mk\D), j = 1 , . . . , J, 
fc=l 

where jrkj is the posterior mean of the toxicity probability at dose level j under 
model Mk, 

L(D\ak,Mk)f{ak\Mk) 
*ki J Pk> ¡L(D\ak,Mk)f(ak\Mk)dak ^ 

By assigning ñkj a weight of P(Mk\D), the BMA estimator ñj automatically 
favors the best fitting model. The decision on dose escalation or de-escalation is 
based upon itj as opposed to Ttkj- The BMA-CRM no longer regards the prior 
guesses of the toxicity probabilities as fixed; instead, they are associated with 
model fitting adequacy. 
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In contrast to model averaging, Bayesian model selection (BMS) finds the best 
fitting model according to a suitable criterion among all the candidate models 
(e.g., see Spiegelhalter et al., 2002). Clearly, the higher the posterior model 
probability, the better the model fit. In the resultant BMS-CRM, we naturally 
select the CRM model associated with the highest posterior model probability 
to determine dose assignment. 

4.8.3 Dose-Finding Algorithm 

Let φτ be the prespecified target toxicity probability. Patients are treated in a 
cohort size of three. Dose escalation or de-escalation is restricted by one dose 
level of change at a time. The BMA-CRM dose-finding algorithm is described 
as follows: 

(1) Treat the first cohort of patients at the lowest or the physician-specified 
dose level. 

(2) Suppose that the current dose level is jCUTI. Based on the accumulated 
data D, we obtain the BMA estimates of the toxicity probabilities for all 
the doses under consideration; that is, πχ,..., πj. We find the dose level 
j * that has a toxicity probability closest to φτ, 

j * = arg min \fj - φτ\, 
¿e{i,...,J} 

and 

• if j c u r r > j * , de-escalate to dose level j c u r r — 1; 
• if j c u r r < j * , escalate to dose level j c u r r + 1; 
• otherwise, the dose stays at the same level for the next cohort of 

patients. 

(3) Once the maximum sample size is reached, the dose with the toxicity 
probability closest to φτ is selected as the MTD. 

In addition, if the lowest dose is still too toxic, as noted by 

K 

X;Pr(7Tfcl > <fo\Mk,D)P{Mk\D) > 0.9, 
fc=l 

the trial will be terminated early for safety. 

4.8.4 Simulation Study 

We investigated the operating characteristics of the BMA-CRM through simu-
lation studies. We considered eight doses with the target toxicity probability 
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Figure 4.8 Four different skeletons in the BMA-CRM with a target toxicity probability 
of (AT =30%. 

φτ = 30%, and we prepared four sets of initial guesses of the toxicity probabil-
ities: 

(p i , . . . ,p 8 ) = < 

f (.02, .06, .08,.12, .20, .30, .40, .50), skeleton 1, 
(.01, .05, .09, .14, .18, .22, .26, .30), skeleton 2, 
(.10, .20, .30, .40, .50, .60, .70, .80), skeleton 3, 
(.20, .30, .40, .50, .60, .65, .70, .75), skeleton 4. 

As shown in Figure 4.8, these four skeletons represent quite different prior 
opinions on the dose-toxicity curve, which are expected to capture the true 
dose-toxicity relationship more effectively using the BMA procedure. In the 
first skeleton, toxicity increases slowly at the low doses but increases quickly 
at the high doses; the second skeleton is more concentrated at the low toxicity 
levels; the toxicity probabilities in the third skeleton are evenly spread over the 
range of 0.1 to 0.8; and the fourth skeleton starts at 0.2, and increases quickly 
at the low doses before leveling off at the high doses. The individual CRM 
using each single skeleton is referred to as CRM 1 to CRM 4. We took the 
prior distribution a ~ N(0,22), and a discrete uniform prior model probability 
P(Mk) — 1/4 for k — 1 , . . . , 4. The maximum sample size was 30, and patients 
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were treated in a cohort size of 3. The first cohort was treated at the lowest dose 
level, and for each scenario 10,000 trials were replicated. 

In Table 4.3, under each scenario we present the true toxicity probability, 
the selection percentage of the MTD, the number of patients treated at each 
dose, and the total number of patients experiencing toxicity averaged over the 
10,000 simulated trials. In scenario 1, the seventh dose is the MTD; the selection 
percentages of the MTD using four individual CRMs were very different: CRM 
2 had the lowest MTD selection percentage of only 30.8%, but incorrectly 
selected the eighth dose with the highest percentage of 56.9%. By contrast, 
the BMA-CRM and the BMS-CRM selected the MTD with 51.5% and 50.5%, 
respectively. The number of patients treated at each dose was similar across 
these designs, except that CRM 2 treated almost twice as many as patients at 
dose level 8 compared with other designs. Therefore, if skeleton 2 had been 
used in the trial conduct, the eighth dose would have been very likely chosen as 
the MTD, which, however, was overly toxic with a toxicity probability of 0.5. 
Scenario 2 has the MTD at the sixth dose level, and the MTD selection using the 
BMA-CRM was the second highest among all the designs. The worst skeleton 
corresponded to CRM 2, which yielded a less than 30% selection of the MTD. 
Interestingly, in this scenario we intentionally matched the skeleton in CRM 1 
with the true toxicity probabilities. As expected, CRM 1 yielded the highest 
MTD selection percentage, and that of the BMA-CRM was only 2% lower. In 
scenario 3, the MTD is the third dose; CRM 1 behaved the worst by selecting 
the MTD less than 50%, compared with more than 60% of the MTD selection 
for the other three CRMs. 

Overall, both the BMA-CRM and BMS-CRM indeed enhance the robustness 
of the dose-finding procedure. Although the CRM with a certain skeleton may 
not perform well due to model misspecification, simultaneously using multiple 
skeletons would reduce the chance of such underperformance. These two meth-
ods carry the essence of model averaging and model selection by adaptively 
balancing among competing skeletons, and thus offer more reliable and more 
robust estimates for the toxicity probabilities. The BMA-CRM and BMS-CRM 
typically cannot beat the best-performing single-skeleton CRM, while their per-
formances are always close to that best CRM and can be much better than the 
worst one. 

Figure 4.9 presents the posterior model probability for the individual CRM 
after each cohort was sequentially accrued under scenarios 1 to 3, respectively. 
The posterior model probabilities of the four CRM models started diverging after 
approximately 4 to 8 cohorts, and eventually they reached the stabilized values 
in an order correctly matching with their performances. Hence, the BMA-CRM 
automatically distinguishes model fitting as more data are collected in the trial, 
and assign a higher posterior model probability to a better-performing CRM. For 
example, in scenario 1, the BMA procedure selected CRM 3 as the best-fitting 
model and CRM 2 as the worst after approximately 15 cohorts, which exactly 
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Table 4.3 Simulation Study Comparing the CRM, BMA-CRM, and BMS-CRM 
with Eight Doses and a Target Toxicity Probability of φτ = 30% 

Design 

Scenario 1 
CRM1 
# Patients 
CRM 2 
# Patients 
CRM 3 
# Patients 
CRM 4 
# Patients 
BMA-CRM 
# Patients 
BMS-CRM 
# Patients 

Scenario 2 
CRM1 
# Patients 
CRM 2 
# Patients 
CRM 3 
# Patients 
CRM 4 
# Patients 
BMA-CRM 
# Patients 
BMS-CRM 
# Patients 

Scenario 3 
CRM 1 
# Patients 
CRM 2 
# Patients 
CRM 3 
# Patients 
CRM 4 
# Patients 
BMA-CRM 
# Patients 
BMS-CRM 
# Patients 

1 

0.02 
0.0 
3.2 
0.0 
3.2 
0.0 
3.2 
0.0 
3.2 
0.0 
3.2 
0.0 
3.2 

0.02 
0.0 
3.2 
0.0 
3.2 
0.0 
3.2 
0.0 
3.2 
0.0 
3.2 
0.0 
3.2 

0.06 
0.9 
4.3 
0.2 
3.9 
0.3 
4.1 
0.4 
4.1 
0.3 
4.1 
0.2 
4.1 

Selection 

2 

0.03 
0.0 
3.0 
0.0 
3.0 
0.0 
3.0 
0.0 
3.0 
0.0 
3.0 
0.0 
3.0 

0.06 
0.0 
3.1 
0.0 
3.1 
0.0 
3.1 
0.0 
3.1 
0.0 
3.1 
0.0 
3.1 

0.15 
27.8 

7.4 
22.6 
7.5 

19.6 
7.2 

19.3 
7.2 

20.6 
7.2 

20.0 
7.2 

3 

0.04 
0.0 
3.0 
0.0 
3.1 
0.0 
3.2 
0.0 
3.1 
0.0 
3.1 
0.0 
3.1 

0.08 
0.0 
3.2 
0.3 
3.4 
0.6 
3.6 
0.4 
3.6 
0.3 
3.4 
0.2 
3.4 

0.30 
48.5 

9.7 
60.8 
11.7 
65.1 
13.0 
65.6 
12.7 
62.0 
12.2 
64.9 
12.4 

Percentage at Dose Level 

4 

0.06 
0.1 
3.1 
0.1 
3.1 
0.8 
3.5 
0.6 
3.5 
0.2 
3.2 
0.1 
3.2 

0.12 
2.9 
3.6 
4.3 
3.8 
6.3 
4.8 
7.5 
4.9 
4.3 
4.3 
3.8 
4.1 

0.55 
21.0 
6.5 

15.1 
5.1 

14.4 
5.0 

14.2 
5.2 

16.1 
5.6 

13.7 
5.2 

5 

0.08 
1.4 
3.6 
1.0 
3.2 
4.6 
4.1 
3.6 
3.8 
1.5 
3.5 
1.5 
3.6 

0.20 
23.9 
6.3 

17.1 
4.6 

32.6 
6.9 

27.8 
6.4 

23.9 
5.9 

26.1 
6.3 

0.60 
1.5 
1.9 
1.0 
1.5 
0.6 
0.6 
0.5 
0.7 
0.9 
0.8 
1.0 
1.0 

6 

0.10 
16.0 
4.7 

11.2 
3.5 

22.1 
5.2 

18.0 
4.2 

16.2 
4.4 

19.2 
4.5 

0.30 
43.6 

6.6 
28.4 
4.8 

40.8 
5.7 

35.3 
4.8 

41.6 
5.8 

38.4 
5.4 

0.65 
0.2 
0.2 
0.2 
0.3 
0.0 
0.0 
0.0 
0.1 
0.0 
0.1 
0.1 
0.1 

7 

0.30 
52.6 

5.7 
30.8 
4.3 

59.3 
6.4 

44.8 
5.2 

51.5 
6.3 

50.5 
5.4 

0.40 
22.7 

3.0 
25.5 

3.8 
18.1 
2.4 

20.7 
2.9 

22.7 
3.3 

21.2 
3.1 

0.68 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

8 

0.50 
29.9 

3.6 
56.9 

6.6 
13.1 
1.4 

33.0 
3.8 

30.6 
3.2 

28.6 
4.0 

0.50 
6.9 
0.8 

24.4 
3.2 
1.6 
0.2 
8.2 
1.0 
7.3 
0.8 

10.3 
1.3 

0.70 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Total 

# Toxicity 

4.7 

5.6 

3.9 

4.7 

4.7 

4.8 

5.9 

6.5 

5.2 

5.5 

5.7 

5.8 

9.1 

8.8 

8.4 

8.5 

8.6 

8.6 
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CRM2 
CRM3 
CRM4 

15 

— 1 — 

20 

Accumulating cohorts in scenario 1 

CRM1 
CRM2 
CRM3 
CRM4 

Accumulating cohorts in scenario 2 

I 

Accumulating cohorts in scenario 3 

Figure 4.9 Posterior model probabilities of the four individual CRMs versus the 
accumulating number of cohorts under scenarios 1-3, respectively. 
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matched with the order of the performance of the individual CRMs. For scenarios 
1 and 2, the true toxicity probabilities at the first several dose levels are extremely 
low, and thus very few patients would experience toxicity at the beginning of the 
trial. This in turn requires a larger number of cohorts to discriminate the model 
fitting. 

4.8.5 Sensitivity Analysis 

To examine how the number of skeletons affects the practical performance of the 
BMA-CRM, we considered another scenario with the true toxicity probabilities 
(π ι , . . . , π 8 ) = (0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80). We increased the 
number of skeletons from one to six, by successively adding one skeleton at a 
time in the original order of skeletons 1-4, while the fifth and sixth skeletons are 
given by 

. . _ i (.08, .15, .21, .29, .37, .44, .51, .58), skeleton 5, 
[Pu ■ ■ ■ ,Ps) - | j 0 5 j 1 0 j 2 0 ; 2 5 ; 3 0 j 4 0 ; 4 7 ; 5 5 j ; s k e l e t o n 6 . 

As shown in Figure 4.10, the CRM using only the first skeleton yielded the 
lowest selection percentage of the MTD, and adding the second and the third 
skeleton steadily improved the results, while using three to six skeletons did not 
affect the design performance much. 

The remaining question is how to specify the skeletons, and whether different 
ways of specification would have an impact on the performance of the design. 
Generally speaking, the skeletons should be chosen in a way to cover a reasonable 
range of dose-toxicity relationships, while avoiding redundant skeletons. The 
two skeletons, (pu,... ,pu) and {pku ■ ■ ■ ,Pkj), are equivalent if one can be 
expressed as a power transformation of the other; that is, pij = pjy for 
j = 1 , . . . , J, where 7 is a constant. This can be written as 

log(pfci) log(pfej) 

and thus we may use the variability of the ratios of the log probabilities as a 
measure of "dissimilarity" between skeletons i and k. A larger value of this 
variance indicates a higher level of dissimilarity between the two skeletons. In 
practice, the investigator often gives a range of toxicity probabilities for each 
dose, say, \PJ,L,PJ,U] for dose level j . For example, the toxicity probability at 
dose level 1 may range from 0.1 to 0.3, that at dose level 2 from 0.25 to 0.4, and 
so on. We can naturally construct three skeletons by grouping pjtL, p^u, and 
(Pj,L + Pj,u)/2 across all the dose levels, respectively. 

The BMA-CRM is intuitive, coherent, and easy to implement using the Gaus-
sian quadrature or the Markov chain Monte Carlo (MCMC) method to approx-
imate the posterior integrals. The BMA-CRM software and many others to be 
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Figure 4.10 Selection percentage of the MTD as the number of skeletons increases. 

introduced in the forthcoming chapters can be freely downloaded from the web-
site of the Department of Biostatistics at the University of Texas M. D. Anderson 
Cancer Center: 

http:/fàiostatistics.mdanderson.org/SoftwareDownload/ 

In the BMA-CRM software, the prespecified toxicity probabilities are the prior 
mean values of the considered doses as defined in (4.2). If only one set of prior 
mean toxicity probabilities is specified, the BMA-CRM reduces to the original 
CRM. 

4.9 ESCALATION WITH OVERDOSE CONTROL 

Escalation with overdose control (EWOC) is another model-based Bayesian 
dose-finding method (Babb et al., 1998). The EWOC design directly controls 
the toxicity percentage in a trial such that patients are protected from over-toxic 
doses. Each time, the dose is selected in a way that the predicted proportion of 
patients who will receive overdoses equals a predetermined threshold. 

For the îth patient treated at dose x¿, let y, = 1 if the patient experienced the 
DLT and y¿ = 0 otherwise. The relationship between y¿ and x¿ can be modeled 
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Figure 4.11 A typical dose-toxicity curve with the lowest dose xo and the MTD M 
in the EWOC design. 

as 
Pr(y¿ = l|dose = Xi) = F(ß0 + ßlXi), 

where F(-) is a prespecified cumulative distribution function, and ß0 and ß\ 
are unknown parameters with ß\ > 0 to maintain the dose-toxicity monotonie 
order. Suppose that n subjects have been enrolled in the trial, and given the 
observed data y = (yi, · · ·, yn) t n e likelihood function is 

L(y\ßo,ßi) = Π F(ßo + ßi*i)yi{l - F(ßo + ßlXi)} 
i = l 

1—î/i (4.4) 

Figure 4.11 shows a typical dose-toxicity curve, which monotonically in-
creases with respect to the dose. Let φτ denote the target toxicity probability, 
let M denote the MTD, and let πο denote the toxicity probability of the lowest 
dose XQ. Then, we have 

φτ = Pr(y = l|dose = M) = F(ßQ + ftM), 
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and 
π0 = Pr(y = l|dose = XQ) = F(ß0 + ßix0). 

As a result, the unknown parameters (ßo, ß\) can be linked with (M, 7r0) through 

F-\<fr)-F-\iro) 
ßl = W^x~o ' 
ßo = F-1{*0)-ß1x0. 

If we assume F~1(x) = logit(x) = log{x/(l — x)}, we have 

exp 
F(ß0+ßlX) = 

1 + exp 

logit(TTo) + {logit(0r) - logit(TTo)} X — XQ 

M -XQ 

logit(7T0) + {logit(^r) - logit(7T0)} X — XQ 

M - XQ, 

After plugging F(ßo + ß\x) into the likelihood function in (4.4) and specifying 
the prior distributions for M and TTQ, we can derive the joint posterior distribution 
of M and πη. The next dose can be determined using the marginal distribution 
of M. Let G(x\y) denote the posterior cumulative distribution function of M; 
that is, 

G(x\y) = Pr(M < x|y), 
which is in fact the probability of an overdose given the data available in the 
trial. The dose x recommended for the next patient satisfies G(x\y) = a; that 
is, the predicted probability that the chosen dose exceeds the MTD must equal a 
prespecified threshold a. Hence, after the posterior distribution of the MTD is 
obtained, the next patient will be treated at the dose x = G _ 1 (a|y). 

Once the trial is completed, the EWOC design selects the dose that has a 
minimal posterior expected loss, 

/ ■ Ca(x,M)dG(M\y), 

where the asymmetric loss function takes the form of 

r ( M\ — / a(M — x), if x < M (underdose), 
La(x,M) - | (! _ α ) ( χ _Μ^ ifx>M (overdose). 

This loss function implies that the loss incurred by treating a patient above the 
MTD is (1 — a)/a times more than that associated with treating the patient at 
the same distance below the MTD. 

4.10 BAYESIAN HYBRID DESIGN 

4.10.1 Algorithm- versus Model-Based Dose Finding 

As discussed in Section 4.2, algorithm-based dose-finding methods typically 
follow a set of dose-finding rules without imposing any modeling structure for the 
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underlying dose-toxicity curve. By contrast, model-based approaches explicitly 
postulate the dose-toxicity relationship, which, however, would be vulnerable 
to model misspecification. In practice if the assumed model is wrong, it may 
yield inappropriate dose movement during escalation and de-escalation. For 
example, the CRM may continue treating patients at the same dose when 3 out 
of 3 patients have experienced the DLT; escalate the dose when 2 out of 3 patients 
have experienced the DLT; or de-escalate the dose when there is no DLT among 
6 treated patients. These inappropriate dose assignments are not allowed if using 
algorithm-based approaches, such as the 3 + 3 design. However, the 3 + 3 design 
does not borrow information across different dose levels, and thus may result in 
efficiency loss. 

The Bayesian hybrid dose-finding method takes a compromise between the 
algorithm- and model-based designs, which inherits advantages from both the 
nonparametric and parametric approaches by adaptively selecting one of them 
for decision making (Yuan and Yin, 2011a). The intuition behind the hybrid 
dose-finding method is that, if the data observed at the current dose provide 
adequate information on whether this dose is below or above the MTD, there 
is no need to enforce a parametric dose-toxicity model to borrow information 
or strength from other doses; and if the information at the current dose is not 
strong enough for such decision making, we resort to a parametric model to pool 
information from all other doses. 

4.10.2 Bayesian Hypothesis Testing 

Suppose that the current dose level is j , and let ITJ denote its toxicity probability. 
We formulate three complementary hypotheses to gauge how close itj is to the 
target toxicity probability φτ, 

Hi : TTj < φτ — δ, 

Ή-2'· Φτ — δ < 7Tj < φτ + S, 
Η3: Kj > φτ + δ, 

where δ is a prespecified tolerance margin, for example, 5 = 0.03. As displayed 
below, the hypotheses Ηχ, Η2, and H3 represent the situations that dose level j 
is below, in the vicinity of, and above the MTD, respectively. 

Toxicity probability at dose level j : -KJ 

below MTD MTD above MTD 
1 1 | λ , 

0 φχ — δ φτ φτ + δ 1 
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Under each hypothesis, we take a uniform prior distribution for IKJ, 

nj\Hi ~ Unif(O,0r-(J), 
irj\H2 ~ Unif(0r - <5, φτ + 5), (4.5) 
7r¿|i/3 ~ Vnif(φτ + δ, 1). 

Suppose that y¿ patients have experienced DLTs among the rij patients treated 
at dose level j . Considering the information at dose level j only, the posterior 
probability of each hypothesis is given by 

p(Hl ) = P{Hk) 
I k\Vj) p ( i / l )BF l i f c + P(iî2)BF2)fc + P(iÏ3)BF3,fc' 

where BFj^ = P(yj\Hi)/P(yj\Hk) is the Bayes factor for testing hypothesis i 
versus hypothesis k, for i, k = 1,2,3. The marginal distribution of yj under H\ 
is given by 

Pfol^jf^g)^!-*,)"™^*, 
=

 F^T ~ ¿ ; y*+1; n J ~ yj+ *) 

(0r - 5)(η, + 1) 

where F(c; a, β) is the cumulative distribution function of a beta distribution 
with the shape and scale parameters a and β, evaluated at c. Similarly, the 
marginal distributions of yj under B.% and H$ are given by 

P ( y j | / Í 2 ) = 2δ(η- + 1)^Φτ + ¿ ; y i + * ' " ' " y ¿ + 1} 

- F(<£T - δ; yj + 1, n,· - yj + 1)} 

and 
_ 1 - F Q r + δ; yj + 1, n3- - yj + 1) 

( 1 - 0 τ - $ ) ( η , · + 1) 
respectively. With no favor of any hypothesis a priori, we take a discrete uniform 
prior distribution for the three hypotheses: P{H{) = P(H2) = Ρ{ΗΆ) = 1/3. 
Hence, the posterior probability for hypothesis k is simplified as 

^ ^ B F ^ + B F U B F ^ <4·« 
Based on Jeffreys' (1961) interpretation of Bayes factors (see Section 3.4.6), if 

log10(BFii2) > l/2andlog10(BFi)3) > l/2,whichisequivalenttoP(i7i|yj) > 
0.61, there is substantial evidence in favor of Hi against both H2 and H%. This 
suggests that dose level j is far below the MTD, and thus we should escalate 

P(yj\Hs) 
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to dose level j + 1, without the need of borrowing any information from other 
doses. Similarly, if P(Hs\yj) > 0.61, we should de-escalate to dose level j — 1 
as there is substantial evidence supporting that dose level j is far above the MTD. 
Finally, if P(H2\yj) > 0.61, the next cohort of patients will be treated at the 
same dose level, since dose j is within the ¿-neighborhood of the MTD. 

However, it may happen that P(Hk\yj) < 0.61 for all k; that is, the informa-
tion at dose level j alone is not adequate to determine any action. In this case, we 
invoke a parametric dose-toxicity model, such as the CRM, to pool information 
across all the doses to determine the next dose assignment. The working model 
in the CRM takes the form of 

π,(α)=ρ^α\ j = l,...,J, (4.7) 

where the p/s are the prespecified toxicity probabilities of the considered J 
doses and a is an unknown parameter. Recall that dose j is the currently treating 
dose, which is now denoted as j c u r r for clarity. Under the three hypotheses, the 
uniform prior distributions for ^curr in (4.5) can be transformed into the prior 
distributions for a in (4.7): 

/ ( a | ^ ) = - ^ ^ P ^ ) e x p ( a ) , 

for a > log{log(çi>T - <5)/log(p,-curr)}; 

tl I u \ l o § ( P i c u r r ) exp(a) , >. 
f(a\H2) = - - 2¿ Pj™" exP(«)> 

for log{log(ç!>x + δ)/log(pjcurr)} < a < log{log((/>x — S)/\og(pjcurr)}; and 

f( \TT \ lOg(Pjcurr) e x p ( a ) 

f{a\H3) = - Ł _ ■ _ ¿PjcuVr ;exp(a) , 

fora < log{log(^T+^)/log(pjcurr)}. Lety = (j/i , . . . ,yj) denote the observed 
data at all of the doses. The marginal distribution of y under H^ is given by 

P{y\Hk) = J j exp(a) i l / j | j _ exp(a) yij-y, f(a\Hk)da, 

for k — 1,2,3. The posterior distribution of Hk given y takes the same form as 
(4.6), and Jeffereys' rule will again be used for decision making, but now based 
on all the data y. If still none of the decisions can be reached under the CRM 
model, the next cohort of patients will be treated at the same dose level j c u r r to 
accumulate more information. 
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4.10.3 Dose-Finding Algorithm 

Patients are treated in a cohort size of three. To be conservative, dose escalation 
or de-escalation is restricted by one dose level of change at a time. The Bayesian 
hybrid dose-finding algorithm is described as follows: 

(1) Treat the first cohort of patients at the lowest or the physician-specified 
dose level. 

(2) Let j c u r r denote the current dose level, and suppose that ŷ curr patients 
have experienced the DLT among the n̂ curr patients treated at dose level 
jcurr W e c a i c u l a t e p(Hk\yjcuTr) for k = 1,2,3, and 

• if P(iíi|y¿curr) > 0.61, escalate to dose level j c u r r + 1; 
• if P(Hs\yjcurT) > 0.61, de-escalate to dose level j c u r r — 1; 
• if P(H2\yjcurr) > 0.61, the dose stays at the same level as j c u r r for 

the next cohort of patients. 

(3) Otherwise, we switch to the CRM model to calculate P(Hk\y) based on 
all the observed data y, and apply the same decision rules as in step (2) 
but based on P(Hk\y). 

(4) Once the maximum sample size is exhausted, the dose with the toxicity 
probability closest to φτ is selected as the MTD. 

4.10.4 Simulation Study 

We investigated the Bayesian hybrid design through simulation studies under 
four scenarios. We considered six doses with the target toxicity probability 
φτ = 30%. The maximum sample size was 24 and patients were treated in a 
cohort size of 3. We compared the Bayesian hybrid design with two CRMs: 
One had an arbitrary skeleton (pi , . . . ,p6) = (0.14,0.20,0.25,0.30,0.35,0.40) 
which was also used in the hybrid design, and the other with the pj 's equal to the 
true toxicity probabilities of each scenario (denoted as the true CRM). The true 
CRM is certainly not available in practice, while it may serve as the optimal case 
for comparison. In the hybrid design, we took the tolerance margin δ = 0.03, 
and under each scenario we simulated 10,000 trials. 

Figure 4.12 shows the selection percentage of the MTD under each scenario. 
As expected, the true CRM indeed performed the best, because the dose-toxicity 
model is correctly specified. The hybrid design outperformed the CRM with a 
higher selection percentage of the MTD in all scenarios. Moreover, the hybrid 
design is much safer than the CRM, as the number of patients treated at the doses 
above the MTD was reduced by almost a half. 

Since the CRM always enforces a parametric dose-toxicity model to fit all the 
data, it may underestimate or overestimate the dose toxicity probabilities if the 



110 PHASE I TRIAL DESIGN 

Έ 

_LU cbu. = _ Úh 

Jl 

0.10 0.12 0,30 0.50 0.60 Of 

Pr(toxicity) in scenario 1 

W 
0.08 012 0.20 0.30 0.40 0-50 

Pr(toxrCity) in scenario 2 

c 
o 

φ o 
ú) í*> 

(O 

0.06 0.08 0.10 0.15 0.30 0.4S 

Pr(toxiciiy) in scenario 3 

rl 

a l · LLU LUZ 
0.02 0.03 0.04 0.05 0.30 0.50 

Pr(toxidty} in scenario 4 

Figure 4.12 Selection percentages of the MTD using the CRM, Bayesian hybrid 
design and true CRM under scenarios 1—4. 

assumed model is wrong. As a consequence, the CRM may lead to some prac-
tically inappropriate dose escalation or de-escalation. For example, the CRM 
might still escalate the dose when 2 out of 3 patients have experienced toxicity 
at the current dose (the 3 + 3 design would de-escalate the dose immediately), 
de-escalate the dose when only 1 out of 9 patients has experienced toxicity, 
or continue treating patients at the same dose when 3 out of 3 patients have 
experienced toxicity. In Table 4.4, we present the percentages of the simulated 
trials that had such inappropriate dose assignments using the CRM. By properly 
choosing nonparametric or parametric models, the hybrid design substantially 
improves dose finding and trial safety and, more importantly, none of the simu-
lated trials had such inappropriate dose actions. In the hybrid design, the switch 
from the nonparametric to the parametric dose-finding scheme depends on the 
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Table 4.4 Percentages of the Trials Having Practically Inappropriate Dose 
Movement Under the CRM 

Dose Action 

Escalation 

De-escalation 

Staying the same 

# Toxicity / # Patients 

2/3 

0/6 
1/6 
1/9 

3/3 
5/6 
0/6 
0/9 
1/9 

1 

7.4 

0.6 
5.1 
0.1 

2.5 
0.0 
6.5 
0.5 
4.0 

Scenario 

2 

12.9 

0.2 
2.8 
0.1 

3.2 
0.3 
4.0 
0.2 
2.0 

3 

8.0 

0.1 
0.8 
0.0 

1.8 
0.5 
3.0 
0.3 
2.3 

4 

12.7 

0.0 
0.4 
0.0 

4.6 
1.9 
2.7 
0.2 
1.5 

Note: The first row with (# Toxicity / # Patients) = 2/3 means that the decision is to escalate the 
dose when two out of three patients have experienced toxicity . 

adequacy of the information at the current treating dose, which is adaptively 
triggered in order to borrow strength across other doses. 

4.11 SUMMARY 

In oncology, the toxicity and side effects of most cancer treatments, especially 
those of the cytotoxic agents, are severe. The main theme of a phase I oncology 
trial is to determine the MTD of an experimental drug; that is to find the max-
imum tolerable dose, while expecting that the drug's therapeutic effect can be 
maximized. A phase I clinical trial is single-arm (uncontrolled), and the sample 
size is small. 

Among a variety of statistical methods for dose finding, the 3 + 3 design is 
widely used in practice due to its ease of implementation. This design is more 
appropriate for use if a broad range of doses of the new drug is screened to 
identify the MTD that is not too toxic (often the toxicity probability is less than 
33%). The 3 + 3 design is relatively conservative and usually requires a smaller 
sample size than other dose-finding methods. For patient safety, the starting 
dose of a new drug is often prepared at a very low level. If the dose spacing 
is also conservative, the lower range of the doses may be far below the MTD. 
Thus, using a cohort size of three in the 3 + 3 design may have to treat a large 
number of patients before the dose is escalated up to the neighborhood of the 
MTD. However, the sample size is small, and patients may be used up before 
reaching the MTD. To alleviate this difficulty, the accelerated titration design 
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speeds up the dose-finding process to avoid wasting many patients at very low 
and presumably inefficacious doses, which is particularly suitable for drugs that 
are undergoing the first-human test. In the acceleration stage, the accelerated 
titration design continues dose escalation with a cohort size of one until the first 
DLT is observed, afterwards the design switches to the standard 3 + 3 algorithm. 
The algorithm-based designs, which also include the A + B design and the biased 
coin dose-finding design, may be viewed as nonparametric approaches, because 
they do not impose any parametric model structure but fully rely upon a set of 
explicitly specified rules. 

Due to the small sample size in a typical phase I trial, model-based designs 
may be preferred because they can borrow information or strength across all the 
doses. The CRM, which imposes a parametric dose-toxicity model with a single 
unknown parameter, has gained much popularity in dose-finding studies due to 
its superior performance over the 3 + 3 design. However, the CRM is sensitive 
to the prespecified toxicity probabilities (skeleton) for the considered doses, and 
the skeleton is often arbitrary and subjective. To enhance the robustness of the 
design, the BMA-CRM specifies multiple skeletons and applies the Bayesian 
model averaging mechanism to update the posterior estimates of the toxicity 
probabilities in a coherent way. As long as one skeleton in the BMA-CRM is 
reasonable, the design would perform well. Model-based phase I trial designs are 
dominated by Bayesian methods, because they are more flexible and can naturally 
incorporate prior information or historical data. These Bayesian phase I designs, 
such as the CRM, BMA-CRM, and hybrid designs, often have good operating 
characteristics and plausible statistical properties and specifically target the MTD 
on the dose-toxicity curve. Whereas, the Bayesian dose-finding methods are 
relatively more complicated, requiring more intensive computations and closer 
collaborations between statisticians and physicians. 

EXERCISES 

4.1 Explain why the maximum number of patients required for the 3 + 3 design 
is J x 6, where J is the number of doses under investigation. 

4.2 The 3 + 3 dose-escalation design is similar to the standard 3 + 3 design 
except that it does not allow dose de-escalation, which is described as follows: 

• Treat the first cohort of patients at the lowest or the physician-specified 
dose. 

• If no DLT is observed in any of the 3 subjects, escalate to the next higher 
dose. 
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• If 1 DLT is observed among the 3 subjects, treat 3 additional subjects at 
the same dose level. If none of the 3 additional subjects experiences the 
DLT, escalate to the next higher dose; otherwise, stop the trial. 

• If 2 or more DLTs are observed among the 3 subjects, stop the trial. 

For a given sequence of five doses with the true toxicity probabilities: 

(π ΐ 5 . . . ,π5) = (0.1,0.2,0.3,0.4,0.5), 

compute the probability of dose escalation and the probability that the trial stops 
at each dose level, respectively. 

4.3 Consider a phase I clinical trial with 6 doses. Under the continual reassess-
ment method, the true toxicity probability at dose level j is 

πο(α) =pfp(a ) , J = 1, ·· · ,6, 

where (pi , . . . ,p$) = (0.1,0.2,0.3,0.4,0.5,0.6). Suppose that the observed 
data are given by 

Dose Level 

Number of DLTs 
Number of Patients 

1 

0 
3 

2 

1 
6 

3 

2 
9 

4 

1 
3 

5 

0 
0 

6 

0 
0 

Given a normal prior distribution, a ~ N(0,22), derive the posterior distribution 
for a, and apply the MCMC procedure to draw the posterior samples of a. 
Compare the posterior mean of each TTJ based on the MCMC with that using the 
Gaussian quadrature approximation. 

4.4 Download the BMA-CRM software from the website of M. D. Anderson 
Cancer Center. Let the target toxicity probability be φτ = 30%. 

(1) Using a single skeleton, run 10,000 simulations for the following three 
scenarios with true toxicity probabilities: 

Dose Level 

Scenario 1 
Scenario 2 
Scenario 3 

1 

0.10 
0.10 
0.02 

2 

0.25 
0.20 
0.07 

3 

0.33 
0.30 
0.10 

4 

0.45 
0.50 
0.15 

5 

0.60 
0.65 
0.29 

Summarize and explain the simulation results. 

(2) Sequentially adding one skeleton at a time up to a total of five skeletons, 
run 10,000 simulations for each case and compare the results. 
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4.5 Using the BMA-CRM software with the default three skeletons, conduct 
a trial with seven prespecified doses: (10,20,30,40,50,60,70) mg. The target 
toxicity probability is φτ = 40% and the cohort size is 3 with a total of 12 
cohorts. If a patient experiences the DLT, we take the toxicity outcome y = 1, 
and otherwise y = 0. The sequence of the observed toxicity data is given as 
follows: 

Toxicity Outcome 

Cohort 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

2/1 

0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
1 
1 

2/2 

0 
1 
0 
0 
1 
0 
1 
0 
1 
0 
0 
0 

2/3 

0 
0 
0 
0 
0 
1 
1 
0 
1 
0 
0 
0 

In cohort 1, all three patients did not experience the DLT, and in cohort 2 there 
was one DLT observed among three patients, and so on. Describe how the trial 
was conducted; that is, at which dose each cohort was treated, and which dose 
was finally selected as the MTD. 



CHAPTER 5 

PHASE II TRIAL DESIGN 

Following phase I trials for the initial assessment of safety and tolerability of the 
experimental drug, phase II trials focus on the evaluation of the drug's therapeutic 
effects and how well the drug works at the recommended dose. If a new drug 
fails during its developmental process, this usually happens in a phase II trial 
where the drug is discovered not working as expected or being overly toxic. The 
primary endpoint in a phase II clinical trial is often short-term and dichotomous, 
characterizing the patient clinical response to treatment. If the new drug shows 
sufficient efficacious effects, it will be carried forward to a long-term phase III 
study for confirmatory testing. Phase II trials can be either single-arm comparing 
the new treatment with the standard response rate or historical data, or multi-arm 
with patients randomized among different treatments. 

Compared with the small sample size in a phase I trial, that in a phase II 
trial is relatively large, typically ranging from 30 to 200 subjects. Phase II 
trials are sometimes further classified as phase lia and phase lib studies. Phase 
Ha trials evaluate whether the drug has any anti-disease activity that warrants 
further investigation, and they are often used when there is no existing standard 
therapy for comparison. Phase lib trials, which more resemble phase III trials, 
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are designed to study the drug's effectiveness, and they entail a comparison with 
at least one standard treatment. 

The goal of a typical phase II oncology trial is to screen new agents based on 
their short-term efficacy effects. The patient clinical response is often character-
ized by the drug's anti-tumor activity, which may be measured as the difference 
in the sum of the longest diameter of the target lesions pre- and post-treatment. 
Accordingly, patient status may be classified as 

• complete response, if all of the target lesions are no longer detectable; 

• partial response, if there has been a decrease of 30% or more in the target 
lesions; 

• progressive disease, if one or more new lesions have appeared or if there 
has been an increase of 20% or more in the target lesions; or 

• stable disease, if there is neither sufficient tumor shrinkage to qualify as 
partial response, nor sufficient tumor growth to qualify as progressive 
disease. 

The clinical response should be measurable within a short period of time fol-
lowing the treatment so that a phase II trial can be finished quickly to make a 
decision on whether to carry out a large-scale phase III trial. 

In a single-arm phase II trial, two- or multi-stage designs may be used to 
improve the trial efficiency by allowing for early termination if the treatment is 
deemed ineffective after partial data have been observed. This strategy offers 
an opportunity to examine whether the trial should continue to use up all of 
the planned subjects, or should stop early due to futility. Alone this direction, 
Gehan (1961) proposes that if no response is observed in the first stage, the 
trial is terminated for futility; otherwise, an additional number of patients will 
be enrolled in the second stage to provide more information for estimating 
the response rate. Simon (1989) develops an optimal and a minimax two-
stage design by controlling both the type I and type II errors in a frequentist 
hypothesis testing framework. Fleming (1982) and Chang et al. (1987) study 
multiple testing and group sequential methods for phase II trial designs. In 
the Bayesian paradigm, Thall and Simon (1994) provide practical guidelines 
on how to implement a phase II trial design by continuously monitoring every 
new outcome. At any time during the trial conduct, the accumulated data may 
indicate that the experimental drug is promising, nonpromising, or the trial 
should continue to enroll the next patient due to a lack of evidence to support any 
decision. As one step further, Lee and Liu (2008) develop Bayesian predictive 
probability monitoring rules for single-arm phase II trials. The decision to 
continue or to stop the trial is made according to the strength of the predictive 
probability, which is the probability of rejecting the null hypothesis should the 
trial be conducted to the maximum sample size given the observed data. In 
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an extension to randomized phase II studies, Yin, Chen, and Lee (2011) bridge 
predictive probability monitoring and adaptive randomization, and provide a 
detailed comparison with group sequential methods in a two-arm trial. 

Conventionally, phase I and phase II trials are conducted separately in a se-
quential order; each requires all the necessary planning and review processes. 
After the maximum tolerated dose (MTD) or the recommended phase II dose 
(RP2D) is identified in phase I trials, a completely new phase II trial will be 
initiated. There is typically a "white" space or time lag between these two con-
secutive phases. Although phase I dose finding focuses on the drug's toxicity, 
patients might not be interested in participating in a trial if there is no hope for 
a cure. Moreover, drugs' toxicity and efficacy effects often interact with each 
other. Hence, dose finding solely based on toxicity while ignoring efficacy may 
not be the best strategy to evaluate a new drug. In a phase II trial, patients 
are treated at the MTD or RP2D to assess the drug's therapeutic effect, while 
toxicity is still closely monitored. As a result, there is a growing trend of bridg-
ing phase I and phase II trials by jointly evaluating drugs' toxicity and efficacy. 
Gooley et al. (1994) consider two dose-outcome curves using simulation as a 
design tool. Conaway and Petroni (1996) consider a compromise between treat-
ment safety and anti-tumor activity. Thall and Russell (1998) propose phase I/II 
trial monitoring and dose finding based on both efficacy and adverse outcomes. 
O'Quigley, Hughes, and Fenton (2001) study viral failure, viral success, and 
toxicity for early-phase dose-finding trials in HIV. Braun (2002) generalizes the 
continual reassessment method to model two competing outcomes. Thall and 
Cook (2004) develop toxicity and efficacy trade-off contours for dose finding. 
Bekele and Shen (2005) investigate a joint distribution of a binary and a con-
tinuous outcome by introducing latent variables in a probit model. Yin, Li, and 
Ji (2006) propose Bayesian adaptive phase I/II designs based on toxicity and 
efficacy odds ratios. In an extension, Yuan and Yin (2009) develop survival 
models for the bivariate times to toxicity and efficacy, in which the unobserved 
events are naturally censored but still contribute to the likelihood. 

The rest of this chapter will first introduce Gehan's and Simon's two-stage 
designs for single-arm phase II trials, which are based on frequentist hypoth-
esis testing procedures. Then we will discuss phase II designs from Bayesian 
perspectives, including trial monitoring with posterior probabilities, and trial de-
signs using predictive probabilities, adaptively randomized phase II trials, phase 
II designs with multivariate outcomes, and seamless phase I/II trial designs. 

5.1 GEHAN'S TWO-STAGE DESIGN 

The intuition behind a two-stage design is to conduct a futility analysis in the 
middle of the trial rather than waiting till the end to examine the drug's efficacy. 
If it is discovered that a drug is not working as effectively as expected, it would 
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be unethical to continue treating patients with this futile drug. Instead, the trial 
should be stopped early to allow the remaining patients to seek better treatment 
options. 

Following this route, Gehan (1961) proposes a two-stage trial design: 14 
patients are treated in stage 1; if there is no response among the first 14 patients, 
the trial stops for futility; and if there is at least one response, the trial proceeds 
to stage 2 to accrue more patients. The number of 14 patients is obtained as 
follows. Suppose that in a phase II trial the target response rate is 20%, which 
is the lowest response rate considered clinically meaningful. The treatment is 
likely to be ineffective if there is no single response after an adequately large 
number of patients are treated in stage 1, say n\ patients. Let X¿ denote a 
dichotomous outcome, which takes a value of 1 if subject i has responded to 
the treatment, and 0 otherwise. Let p denote the probability of response of the 
experimental drug; that is, p = Pr(X¿ = 1). Clearly, the number of clinical 
responses observed out of the first n\ patients follows a binomial distribution, 
Y — Υ^λγΧΐ ~ Bin(ni,p). If p > 0.2, then the probability of no response 
among the first n\ patients is 

Pr(y = 0|p) = (1 -p)ni < 0.8ni. 

We set Pr (y = 0|p = 0.2) equal to a very small number; for example, let 
Pr (y = 0|p = 0.2) = 0.05, then η,ι ss 14. If the experimental treatment is 
active enough (e.g., the probability of response p > 0.2), there would be an 
approximately 95% chance of observing at least one response among the first 
14 subjects, and thus the trial would proceed to stage 2. The total sample size, 
including patients in both stage 1 and stage 2, can be calculated to achieve a 
specified level of accuracy for the estimated response rate. 

In a more general setting, let p denote the minimally acceptable response rate, 
which may not be 0.2, then the number of patients required for stage 1 is 

_ log(0.05) 
l o g ( l - p ) ' 

If there is no response among the first n\ patients, the trial will be terminated 
to claim that the treatment is not promising; otherwise, an additional number of 
subjects will be recruited to ensure a certain degree of accuracy for the estimated 
response rate. 

EXAMPLE 5.1 

Suppose that in a phase II trial p = 0.2 is of the minimal clinical interest. 
The estimation precision of the response rate is expected to be within ±0 .1 ; 
that is, the standard error (SE) of the estimated response rate p is 0.1. Based 
on the data from stage 1, we have p\ = y\jn\ and SE = Vpi(l — P\)/n\. 
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To be conservative, we may take p = f>\ + 1.15 x SE, which is the upper 
bound of the 75% confidence interval of p, and we set 

V n 

to solve for the total sample size n = n i + ri2. If there are y\ = 5 responses 
among the first ni = 14 subjects in stage l,thenpi = 5/14andp « 0.504. 
Therefore, stage 2 needs to enroll additional 712 = 11 patients, which leads 
to a total sample size of n = 25. 

5.2 SIMON'S TWO-STAGE DESIGN 

The optimal and minimax two-stage designs proposed by Simon (1989) are very 
popular in single-arm phase II trials. The trial design is cast in a hypothesis 
testing framework with specification of the type I and type II error rates. In stage 
1, a fixed number of patients are enrolled and if the number of responses is low, 
the trial stops and claims the drug nonpromising. If there is an adequate number 
of responses observed in stage 1, an additional fixed number of patients will be 
enrolled in stage 2. After the trial is finished, if there is a sufficient number of 
responses in the two stages combined, the study drug is considered promising; 
otherwise it is considered nonpromising. 

Let p denote the response rate of the test drug, let po denote a clinically 
uninteresting response rate, and let p\ {p\ > po) denote a clinically desired 
response rate. The null hypothesis is that p is at most po; and the alternative 
hypothesis is that p is at least p\, 

HQ\P<PO versus H\\p>_pi. 

If there are r± or fewer responses observed from the ni subjects enrolled in stage 
1, the trial is terminated to accept HQ that the drug is not promising. If more than 
7*1 responses are observed in stage 1, the trial moves on to stage 2 by enrolling 
ri2 additional subjects. At the conclusion of the trial, if the total number of 
responses is r or fewer, we accept HQ to claim that the drug is not clinically 
interesting; otherwise, we reject HQ to claim that the drug is promising enough 
to warrant further investigation. 

More specifically, let Y\ = y\ be the number of responses among n\ patients 
in the first stage, and let Y% = y<i be that among n<i patients in the second stage. 
Obviously, Y\ and Y2 are independent binomial random variables, 

Y\ ~ Bin(ni,p) and Y2 ~ Bin(n2,p). 

The experimental treatment is claimed to be 

• nonpromising, if y\ < r\ or (y\ > n ) ΓΊ (yi + 2/2 < r ) ; or 



120 PHASE II TRIAL DESIGN 

• promising, if {y\ > r{) Π (y\ + y2 > r). 

Nevertheless, there is an extreme case that the number of responses observed in 
the first stage is already greater than r (i.e., y\ > r), then there is no need to 
have the second stage, and the treatment can be declared promising immediately 
after the first stage. 

Based on the specified type I and type II error rates (denoted as a and ß, 
respectively), the hypothesis testing needs to satisfy 

Pr(the treatment is declared promising | p < po) < Oj 
Pr(the treatment is declared promising \p>p\) > 1 — ß. 

For ease of computation, the type I and type II error constraints can be computed 
at the boundary values; that is, 

Pr{(yi >ri)C\{yi + y2 >r)\p = p0} = a, 

Pr{(yi > r i ) n ( y i + j/2 > r)\p = pi} = 1- /3 , 
where by the independence of Y\ and Y2, 

Pr{(yi > ri) Π (yi + y2 > r) \ p} 

= Σ Σ P(yi\p)P(v2\p) 
Vl>r\ y2>r—yi 

= Σ Σ (ni)pyi(i-p)ni~m(n2)py2(i-p)n2~V2-

However, many sets of values of (ηχ, η2, r\,r) may be found to satisfy the two 
constraints in (5.1). To uniquely determine the design parameters, we need to 
specify an additional optimality criterion to select the most suitable set of design 
parameters. 

Under the type I and type II error constraints, the four design parameters 
(ni,ri2,ri,r) can be calibrated to meet one of the following two optimality 
criteria: 

• The optimal two-stage design minimizes E(N\HQ), the expected sample 
size given that the regimen has low anti-disease activity. 

• The minimax two-stage design minimizes the maximum sample size, 
n = n\ + ri2, in the trial. 

Given that the drug does not work, the expected sample size is given by 

E(N\H0) = rei + rî2 x Pr(proceed to stage 2 | Ho) 

= m + n2 x P r (n + 1 <yi <r\p = po). 

By enumerating all the possible values of (ni,ri2,ri ,r) , the two-stage design 
selects the final design parameters according to either the optimal or the minimax 
criterion. 
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Table 5.1 Illustration of Simon's Optimal and Minimax Two-Stage Designs with 
Two Separate Sets of Design Parameters: (α, β,ρο,ρι) = (0.05,0.1,0.1,0.3) and 
(0.1,0.1,0.2,0.4) 

(α,β,ρο,ρ!) 

Two-Stage Design 

(0.05,0.1 

Optimal 

18 
2 
35 
6 

22.5 
0.73 

,0.1,0.3) 

Minimax 

22 
2 
33 
6 

26.2 
0.62 

(0.1,0.1. 

Optimal 

17 
3 
37 
10 

26.0 
0.55 

,0.2,0.4) 

Minimax 

19 
3 
36 
10 

28.3 
0.46 

First-stage sample size n\ 
Drug is not promising if y\ < 
Maximum sample size n 
Drug is not promising if y < 
Expected sample size under po 
Pr(trial early stopping | po) 

Note: y i is the number of responses in stage 1, and y and n are the total numbers of responses 
and patients in the trial, respectively. 

EXAMPLE 5.2 

To demonstrate Simon's two-stage designs, we first specify the type I and 
type II error rates: The probability of accepting a "bad" drug is a = 0.05, 
and the probability of rejecting a "good" drug is β = 0.1; that is, the test 
power is 90%. In addition, the response rate of a "bad" drug is po = 0.1, 
which is not of clinical interest, and the response rate of a "good" drug is 
Pi = 0.3, which is considered clinically meaningful. Finally, the upper 
bound of the sample size is set as 100, so that the two-stage design would 
enumerate all the possible values of the design parameters (ni,ri2, r\,r) 
within this range. If the upper limit of the sample size is too small, the 
numerical algorithm may fail to find an optimal or a minimax design that 
satisfies both the type I and type II error constraints. We also present the 
case with the trial specification of (a = 0.1, β = 0.1, po = 0.2,pi = 0.4) 
for the two-stage designs. 

Table 5.1 shows the operating characteristics of the optimal and minimax 
two-stage designs. For illustration, we interpret the optimal two-stage 
design under the first scenario with (a = 0.05, β = 0.1, po = 0.1, pi = 
0.3) as follows. The design parameters of Simon's optimal two-stage 
design are (ni = 18, ri2 = 17, r\ = 2, r — 6). If 2 or fewer responses are 
observed among the first 18 patients treated in stage 1, the trial will stop 
and claim the drug nonpromising; otherwise, the trial will proceed to stage 
2 to accrue 17 more patients. At the end of stage 2, if 6 or fewer patients 
have responded among a total of 35 patients, the drug will be declared 
nonpromising; otherwise, the drug will be claimed promising. 
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5.3 BAYESIAN PHASE II DESIGN WITH POSTERIOR 
PROBABILITY 

Starting from this section, we will switch from frequentist to Bayesian phase II 
trial designs. Thall and Simon (1994) provide Bayesian practical guidelines on 
how to implement a single-arm phase II trial by examining the drug's anti-disease 
activity. During the trial, the data are monitored continuously, and decisions are 
made adaptively, until the maximum sample size, N, is reached. Based on the 
accumulated data as the trial proceeds, the experimental drug may be claimed 
promising, not promising, or the information accrued in the trial is not adequate 
to deliver any conclusion, so more data are needed. 

Let PE denote the response rate of the experimental drug. For each subject, 
we observe a dichotomous outcome taking a value of 1 with probability PE, 
and 0 with probability 1 — PE- In a single-arm trial, the experimental drug is 
compared with the response rate of the standard treatment, denoted by ps- For 
both PE and ps, we take beta prior distributions: 

PE ~ Beta(cK£, ßE) and ps ~ Beta(as , ßs), 

where aE,ßE,&s> and ßs are the hyperparameters. If there exist historical 
data for the standard treatment, we may center the prior mean of ps at its 
empirical estimate, but enlarge the prior variance to discount the historical data. 
In general, the prior distribution of PE should have a larger variance than that of 
ps because much less is known about the new drug. For example, we may take a 
vague prior distribution for the experimental drug, PE ~ Beta(0.4,1.6), which 
contains as much information as two observations only. If the historical data had 
eight responses among 40 treated subjects, we fix the prior mean of ps at the 
estimated historical response rate, but inflate the prior variance; for example, we 
may take ps ~ Beta(4,16) as the prior distribution for the standard drug, which 
corresponds to 20 patients' information. 

At a certain stage of the trial, let Y be the number of responses among n 
patients treated by the experimental drug, then Y ~ Bin(n,pß). Due to the 
conjugate property between beta and binomial distributions, the posterior of PE 
given Y = y is still a beta distribution, 

pE\y ~ Beta(a£ + y,ßE + n-y). 

If we denote the probability density function of p ~ Beta(a,/3) by f(p;a,ß) 
and the cumulative distribution function by F(p; a, ß) = f£ f(x; a, ß) dx, then 

Pv(pE > PS + % ) 

= / {l-F(p + a;aE + y,ßE + n-y)}f(p;as,ßs)dp, 
Jo 

where 0 < δ < 1 is the minimally acceptable increment of the response rate for 
the experimental drug compared with the standard drug. 
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Let θυ and 9L be the prespecified upper and lower probability cutoffs, typi-
cally, θυ G [0.95,0.99] and BL G [0.01,0.05]. Subsequently, we determine the 
upper and lower decision boundaries based on the number of observed responses. 

• Let Un be the smallest integer of y satisfying PT(PE > Ps\y) > #c/· 

• Let Ln be the largest integer of y satisfying Pr(p# > ps + 5\y) < 9L-

The decision rule after observing y responses out of n patients is described as 
follows: 

• If y > Un, terminate the trial and declare the experimental drug promising. 

• If y < Ln, terminate the trial and declare the experimental drug not 
promising. 

• If Ln < y < Un and n < N, continue the trial to treat the next patient. 

If y does not cross any stopping boundary until reaching the total number of 
subjects with n = N, the trial is considered inconclusive: the effectiveness of 
the experimental agent is undetermined. 

Although the stopping rule requires that the trial be terminated to declare the 
experimental drug promising if y > Un, investigators rarely stop the trial in 
such a case so that more patients are allowed to benefit from the "good" drug. 
Therefore, the stopping rule for superiority of the drug is often not implemented 
in a single-arm phase II trial. 

EXAMPLE 5.3 

We present two examples to illustrate how to use the Bayesian posterior 
probability to monitor a phase II trial. In the first trial design, we take 
beta prior distributions for the response rates of the standard drug and the 
experimental drug, ps ~ Beta(15,35) and PE ~ Beta(0.6,1.4). We 
specify 9L = 0.05 and δ = 0 for futility stopping, and the maximum 
sample size N = 40. The trial is monitored on a one-by-one patient basis. 
Under this setup, the stopping boundaries are given by 

Ln 

n 

0 

6 

1 

13 

2 

18 

3 

24 

4 

29 

5 

35 

6 

40 

where Ln is the number of responses and n is the number of patients in the 
trial. The paired values of Ln/n indicate to stop the trial if the number of 
responses after treating n patients is less than or equal to Ln. For example, 
Ln/n = 2/18 suggests that if there are 2 or fewer responses in the first 18 
treated patients, the trial will be terminated for a lack of efficacy. 

In the second example, we take beta prior distributions for ps and PE 
as ps ~ Beta(10,40) and PE ~ Beta(0.4,1.6), respectively. We specify 
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the maximum sample size N = 30, 9L = 0.05, and δ — 0. The stopping 
boundaries for the number of responses are given by 

■Ln 

n 

0 

7 

1 

19 

2 

29 

3 

30 

That is, if there is no response among the first 7 treated patients, if there 
is only 1 response among the first 19 patients, or if there are 2 or fewer 
responses among the first 29 patients, the trial would be terminated early 
for futility. If the trial runs to the maximum sample size 30, and 3 or 
fewer responses have been observed, we claim the experimental drug not 
promising. 

5.4 BAYESIAN PHASE II DESIGN WITH PREDICTIVE 
PROBABILITY 

In the Bayesian paradigm, the posterior predictive distribution characterizes 
the distribution of the future data conditional on the observed data. Using the 
posterior predictive probability for decision making in the middle of a trial, we 
can produce the probability distribution of the statistic that has not been observed 
yet. Frequentist predictive methods usually obtain the probability of the future 
data by conditioning on a particular value of the model parameter, whereas 
Bayesian predictive methods average these probabilities over the parameter space 
given the observed data. Based on the accumulated data in a trial, we can compute 
the predictive probability of either claiming the experimental drug promising or 
not promising at the conclusion of the study. In other words, the predictive 
probability characterizes the future trial conclusion given the strength of the 
currently observed data. 

Consider a single-arm phase II trial as before. Let PE denote the probability 
of response for the experimental drug. During the trial conduct, the data are 
accumulated as more patients are enrolled. Let n be the number of patients who 
have entered the trial thus far, 1 < n < N, where N is the maximum sample 
size planned for the entire trial. Let Y denote the number of responses among n 
treated patients, then Y ~ Bm(n,pE). We specify a beta prior distribution for 
PE; that is, PE ~ Beta(a£, ßß). At the interim analysis, if we observe Y — y 
responses out of n treated patients, the posterior distribution of PE is 

pE\y ~ Beta(a£ + y, ßE + n - y). 

The number of patients to be recruited in the future is N — n, among which let 
X denote the number of patients who would respond. The probability of X = x 
given the current data y follows a beta-binomial distribution, 

X\y ~ Beta-Bin(iV - n,aE + y,ßs + n - y), 
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with the probability mass function of 

P(*\y) = l { x ya-P) B{aE + y,ßE + n - y )
a P 

= ÍN - n\ B(aE + y + x,ßE + N - y - x) 
\ x J B(aE + y,ßE + n-y) 

where the beta function B(a, β) = Γ(α)Γ(/3)/Γ(α + β). By the end of the trial, 
suppose that we observe X = x, then the posterior distribution of the response 
rate given both y and x would be 

PE\(V,X) ~ Beta(a£ + y + χ,βΕ + N - y - x). 

Lee and Liu (2008) demonstrate how to monitor a phase II trial using the 
predictive probability. Given the current data y, if we observe the future data 
X = x at the end of the trial, we would claim the experimental drug promising, 
if 

Pr(pE >ps\y,x) > θτ, 

where ps is the standard response rate and θτ is the prespecified target proba-
bility, e.g., θχ £ [0.85,0.95]. Because X is not observed, we take an average 
over all the possible outcomes in the future to define the predictive probability 
(PP) as 

N-n 

PP = Σ P(x\y)i{Pr(PE > Ps\y, χ) > θτ}, (5.2) 
x=0 

where I{ ■ } is the indicator function. Let 0\j and 9L denote the cutoff prob-
abilities for decision making, which need to be calibrated through simulations 
to achieve desirable trial performance. The cutoff probability 0χ, is chosen as a 
small constant, and θυ as a large constant, between 0 and 1. Under the predictive 
probability monitoring, the trial proceeds as follows: 

• If PP > θυ, stop the trial and claim the experimental drug promising. 

• If PP < 9L, stop the trial and claim the experimental drug not promising. 

• Otherwise, continue the trial until the number of treated patients reaches 
the maximum sample size N. 

If there were no indicator function in (5.2), the PP simply reduces to the 
posterior probability after averaging out the unobserved X, 

N-n 

Σ p(x\y) PT(PE > ps\y, χ) = Pr(pe > ps\y), 
x=0 
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which does not depend on the total sample size N. However, the predictive 
probability mimics the decision process of claiming the drug promising or non-
promising at the completion of a trial, for which the sample size of the future 
data indeed makes a difference. Consider the following two situations: one trial 
with the maximum sample size TV = 25, and the other with iV = 50. Suppose 
that we have observed only one response among the first n = 22 treated patients, 
then we would be more certain that the drug is futile in the first case where there 
are only three subjects left to enroll compared with the second scenario in which 
there are still 28 subjects remaining in the pipeline. 

5.5 PREDICTIVE MONITORING IN RANDOMIZED PHASE II 
TRIALS 

Phase II trials provide an initial assessment of efficacy for new drugs, screen 
out ineffective treatments, and identify promising ones for further investigation. 
In reality, many "promising" drugs eventually fail in phase III trials although 
they have demonstrated potential efficacious effects in phase II trials. One of 
the main reasons for such drug failure is that the test drug is compared with the 
standard response rate or historical data in a single-arm phase II trial. Although 
single-arm trials are inherently comparative, they are less objective and can be 
biased, because there usually exist substantial differences in patient populations, 
study criteria, and medical facilities between the current and previous studies. 
For a better assessment, randomized phase II trials are becoming a common 
practice, in which the experimental drug is compared with the standard treatment 
(Ratain and Sargent, 2009). Randomization helps to eliminate potential bias and 
confounding effects, and balance patients' characteristics; more discussions on 
randomization are given in Chapter 7. 

In a randomized phase II trial, the posterior predictive probability can be use 
to monitor a trial by predicting the outcome of the trial after all the patients are 
enrolled. If there is a high predictive probability that a definitive conclusion 
would be reached by the end of the study (e.g., superiority or futility), the trial 
could be stopped earlier. In a two-arm trial, let pk denote the response rate 
for treatment k, and we assign a beta prior distribution, pk ~ Beta(ak,ßk) 
for k = 1,2. Let Nk be the maximum sample size planned for arm k, and 
let Yfc be the number of responses among η^ treated patients, 1 < nk < N^, 
so Yk ~ B'm(rik,Pk)- Following the conjugacy between beta and binomial 
distributions, the posterior distribution of pk is 

Pk\yk ~Beta(afc + yfc,/3fc + nfc -yk), k = 1,2. 

Let Xk denote the number of responses among the remaining Nk — n& subjects 
in arm k. As discussed before, the posterior predictive distribution of Xk given 
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the current data Yk = yu is beta-binomial, 

P(xk\yk) = (Nk ~ nk) B^aE+^ + x^^ + N^-y\-x^\ (5.3) 
\ Xk J B{aE + yk,ßE + nk-yk) 

Suppose that we compare two treatments by formulating a frequentist hypoth-
esis test with 

Ho- Pi = V2 versus Ηχ: p\ φ p2. 

For each pair of the future data (Xi = x\, X2 = X2), we can draw a conclusion 
of whether the hypothesis test would yield a significant treatment difference by 
the end of the trial. Summing over all the possible future outcomes (#1, £2), 
the predictive probability of rejecting HQ (i.e., there is a significant treatment 
difference) is given by 

Pr (a significant difference at the end of the trial | data) 
N\—n\ Ν2—Π2 

= Σ Σ ^(zi|yi)P(x2|y2)/(rejectingi/0), (5.4) 
£1=0 £2=0 

where the indicator function /(·) characterizes whether the usual binomial test 
for two proportions is significant. Based on both the current and future data, the 
estimate of the response rate for arm k is 

yk + xk , Λ 0 
P* = - ^ - . fc = 1>2· 

Under the null hypothesis Ho: pi = P2 = p, the pooled samples across the two 
arms produce an estimate of p as 

„ = y\ + χ\ + 2/2 + X2 
P JVi + iV2 

and 

Var(Pl - P2) = — ^ — + ^ — - = ρ{1 - p) ^ - + ^ 

Using normal approximation, the frequentist two-sample statistic for testing two 
proportions is given by 

z = Pi-fa 
^p(l-p)(l/N1 + l/N2) 

which asymptotically follows the standard normal distribution under the null 
hypothesis. We would reject the null hypothesis if \Z\ > za/2, where za/2 is the 
100(1 - a/2)th percentile of the standard normal distribution. Given the interim 
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data, the predictive probability of rejecting the null hypothesis at the end of the 
trial is 

Νχ—ηι Ν2—Π2 

Σ Σ P(xi\yi)P(x2\y2)I(\Z\>za). 
¡ri=o 12=0 

The aforementioned interim monitoring scheme couples the Bayesian predic-
tive probability with a frequentist hypothesis testing procedure. On the other 
hand, we can implement a fully Bayesian interim monitoring procedure using 
the predictive probability. Given both the current data (yi, i/2) and future data 
(xi, X2), we calculate the posterior predictive probability, 

Pr(pi>P2\m,y2,Xi,X2)= / f(P2\y2,X2)f{Pi\yi,xi)àpidp2, 
JO Jp2 

where f{pk\yk, Xk) is the probability density function of pk with the beta distri-
bution, pk ~ Beta(afe + yk + xk, ßk + Nk - yk - xk), for k = 1,2. Treatment 
1 is claimed to be superior to treatment 2 if 

Pr(pi >P2\yi,y2,xi,X2) > θχ, (5.5) 

where the cutoff probability θχ typically takes a value between 0.85 and 0.95, 
depending on how much certainty we have to claim superiority of treatment 1 
based on (5.5). However, the future data (χι,χζ) have not been observed yet. 
Thus given the observed data (yi,y2), the predictive probability of claiming 
treatment 1 superior to treatment 2 at the end of the trial is 

Pr(claiming superiority of treatment 1 | data) 
JVi— m Ν2—Π2 

= Σ Σ ρ{χι\νύρ{χ2\υ2)ΐ{ΡΑρι >P2\yi,y2,xi,x2) > M -
2>l=0 X2=0 

We demonstrate how to use the predictive probability for trial monitoring in 
a two-arm randomized trial. The planned sample size for each treatment arm 
is the same; that is, N\ = N2 = N/2. For the frequentist hypothesis testing, 
we use a two-sided binomial test at the significance level of a = 0.05. For the 
Bayesian method, we take the prior distributions for p\ and p<¿ as Beta(0.2,0.8) 
and set the cutoff probability θχ = 0.95 in (5.5). 

In Table 5.2, we present the total sample size N; the number of responses over 
the current number of subjects in arm k, yk/nk; and the predictive probabilities 
in favor of arm 1 or arm 2 using the frequentist and Bayesian approaches, 
respectively. As an illustration, we interpret the results with N = 40 in the 
first row. We planned to enroll 20 subjects in each arm to compare the two 
treatments. After 10 patients were treated in each arm, 5 patients responded in 
arm 1 and 2 patients responded in arm 2. At this point, the predictive probability 
of favoring treatment 1 at the conclusion of the trial is approximately 51% using 
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Table 5.2 Illustration of Interim Monitoring with the Posterior Predictive 
Probability in a Two-Arm Randomized Phase II Trial 

N 

40 
60 
80 

100 
100 
100 
100 
100 
100 

Arm 1 

Vi/ni 

5/10 
5/10 
5/10 
5/10 

10/20 
15/30 
20/40 
10/20 
10/20 

Arm 2 

Viln2 

2/10 
2/10 
2/10 
2/10 
4/20 
6/30 
8/40 
8/20 
9/20 

Pr(favoring 

Frequentist 

0.5062 
0.6266 
0.6915 
0.7291 
0.8415 
0.9306 
0.9910 
0.2167 
0.1157 

arm 1) 

Bayesian 

0.6702 
0.7225 
0.7567 
0.7815 
0.8999 
0.9735 
0.9993 
0.2821 
0.1573 

Pr(favorin 

Frequentist 

<0.0001 
0.0005 
0.0020 
0.0040 

<0.0001 
<0.0001 
<0.0001 

0.0069 
0.0211 

g arm 2) 

Bayesian 

<0.0001 
0.0013 
0.0037 
0.0065 

<0.0001 
<0.0001 
<0.0001 

0.0120 
0.0328 

Note: N is the maximum sample size, y\ and n\ are the numbers of responses and patients in 
arm 1, respectively; 1/2 and 712 correspond to those in arm 2. 

the frequentist two-sample test, and 67% using the fully Bayesian approach. In 
addition, the predictive probabilities of favoring treatment 2 are negligible using 
both methods. Because there may be no definitive prediction of favoring any 
treatment at the conclusion of the trial, the sum of the probabilities of favoring 
arm 1 and arm 2 is not equal to 1. From row 1 to row 4, there is an increasing 
trend for the predictive probability of favoring arm 1 as N increases, which 
reaches a plateau quickly. In other words, if there are more data to collect in the 
future, the currently observed treatment difference may be enhanced. 

The indicator function of (5.4) may take a frequentist hypothesis test or a 
Bayesian procedure for decision making. As will be discussed further in the 
next section, the design can continuously update the predictive probability of 
the trial outcome, such that early termination of a trial is possible for either 
superiority or futility. 

5.6 PREDICTIVE PROBABILITY WITH ADAPTIVE 
RANDOMIZATION 

5.6.1 Bayesian Adaptive Randomization 

For a more objective comparison of different treatments, phase II trials are 
often randomized with multiple arms. Patients may be randomly allocated to 
each treatment arm with a fixed probability throughout the trial (e.g., equal 
randomization assigns patients to each arm with the same probability). Or, the 
randomization probability may be adaptively changing based on the accumulated 
data during the trial. Response- or outcome-based adaptive randomization (AR) 
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tends to assign more trial participants to better treatments, as each new patient 
has a higher probability to receive the more effective treatment based on the data 
collected in the on-going trial. 

Yin, Chen, and Lee (2011) naturally bridge the Bayesian AR and predictive 
probability for trial monitoring. More specifically, in a two-arm randomized 
trial, let pk denote the response rate for treatment k, and let N^ denote the 
maximum sample size planned for arm k, k = 1,2. Let j/i and y2 be the 
observed numbers of responses after treating n\ and n2 (1 < η^ < Ν^) patients 
in arms 1 and 2, respectively. We assign a beta prior distribution to pk\ that is, 
Pk ~ Beta(afc, ßk). Based on the binomial likelihood, the posterior of pk is still 
a beta distribution, Pk\Vk ~ Beta(a¡fc + yk, ßk + n^ — yk)· As a result, we can 
compute λ = Pr(pi > P2\yi-,y2), and the next patient will be randomized to 
arm 1 with the probability 

π ( λ ' 7 ) = λ 7 + ( 1 - λ ) 7 ' 

where the tuning parameter 7 often takes a value of 0.5 (Thall and Wathen, 
2007). To prevent extreme imbalance between the two arms, the randomization 
probability may be constrained between 0.1 and 0.9. For stability, there is 
typically a prephase of equal randomization before the AR procedure takes 
place. More discussions on various randomization methods are given in Chapter 
7. 

5.6.2 Predictive Probability 

Let X\ = xi and X2 = x2 denote the unobserved numbers of responses among 
the future patients in arm 1 and arm 2, respectively. The posterior predictive 
distribution of Xk given the current data yk is beta-binomial as in (5.3). To 
characterize the treatment difference, we specify a target probability θχ and 
a threshold δ. The two treatments are claimed to be nonequivalent (i.e., one 
treatment is superior to the other), if 

Prflpi -P2I > S\yi,xi,y2,X2) > ΘΤ· 

The predictive probability (PP) can be computed by averaging out the random-
ness in Xi and X<¿, 

N\—n\ N<2—ri2 
p p = Σ Σ P(*i\vi)P{x2\v2) 

£1=0 12=0 

x / { P r ( | p i - p 2 | >S\yi,xi,y2,X2) >θτ}- (5.6) 

Let θυ and 0¿ denote the two cutoff probabilities for trial early stopping. The 
decision rules based on the predictive probability are described as follows. 
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Table 5.3 Stage 1 Parameter Calibration for δ and ΘΊ (Fixing ÖL = OandÖf/ = 1) 

Type I Error Rate Power 
δ\$τ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90 

0.02 1.000 1.000 .797 .427 .230 1.000 1.000 .991 .967 .919 
0.03 .844 .517 .362 .228 .124 .991 .978 .955 .918 .859 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 , 

.429 

.291 

.214 

.157 

.111 | 
.093 

.317 

.218 

.158 

.119 

.086 

.064 

.224 

.157 

.112 

.080 

.060 

.043 

.142 

.097 

.073 

.056 
,034 
.026 

.080 

.053 

.038 

.028 

.016 

.013 

.967 

.945 

.917 

.878 

.845 
.800 

.949 

.912 

.878 

.835 

.797 

.753 

.920 

.875 

.833 

.785 

.741 

.680 

.864 
■822 
.765 
.716 
.667 
.612 

.788 

.735 

.669 

.617 

.564 

.501 

The staircase lines indicate the 10% type I error rate (left panel) and 80% power (right panel) 
boundaries, the shaded areas are the overlapping parameters that satisfy both the design constraints, 
and the final chosen values are in boldface. 

• Superiority stopping: If PP > By, stop the trial to claim superiority of a 
treatment. 

• Futility stopping: If PP < 6L, stop the trial to claim equivalence of two 
treatments. 

To compute the PP, the maximum sample size in each arm must be given, 
which, however, becomes unknown due to the implementation of AR. If there is 
no early stopping, the total number of subjects remaining in the trial is known; 
that is, m — Ni + N2 — πχ — η^. Let Z denote the number of subjects that 
will be assigned to arm 1, then Z <~ Bin(m, π). We first average over X\ and 
X2 conditioning on Z = z, and then average over Z according to the binomial 
distribution, which leads to 

m z m—z / \ 
p p = Σ Σ Σ (mUz(i-Kr-zP(xi\yi,z)P(x2\y2,z) 

x/{Pr(|pi -Ρ2Ι > φι ,ζ ι ,2 /2 ,^2) > θτ}. 

Due to the additional marginalization over Z, the computation of the PP becomes 
intensive. As an approximation, we may use the expected number of subjects 
that will be assigned to each arm in (5.6); that is, Νχ—ηι = πιπ and N2 — ri2 = 
m(l — 7τ). 

5.6.3 Parameter Calibration 

The design needs to calibrate four parameters (δ, θτ,θί,θυ) to ensure that the 
trial possesses the desired frequentist properties: That is to control the type I 



132 PHASE II TRIAL DESIGN 

Table 5.4 Stage 2 Parameter Calibration for 0¿ and θυ Using Two Different 
Methods (Fixing 5 = 0.05 and θτ = 0.85) 

Method 1: Enumerating All Possible Future Sample Sizes 

Type I Error Rate Power 
9v\H 0-00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 

0.95 
0.96 
0.97 
0.98 
0.99 
1.00 

.126 

.120 

.115 

.107 

.105 

.101 

.116 

.120 

.106 

.105 

.099 

.097 

.112 

.105 

.097 

.092 

.095 

.088 

.106 

.107 

.092 

.091 

.080 

.083 

.095 

.096 

.092 

.082 

.079 

.074 

.839 

.828 

.827 

.827 

.820 

.822 

.823 

.815 

.813 

.814 

.803 

.806 

.792 

.799 

.791 

.791 

.796 

.789 

.783 

.772 

.765 

.764 

.766 

.755 

.747 

.739 

.734 

.734 

.723 

.733 

Method 2: Approximation with Expected Future Sample Sizes 
0.95 
0.96 
0.97 
0.98 
0.99 
1.00 

.125 

.121 

.112 

.112 

.102 

.101 

.116 

.115 

.110 

.101 

.096 

.093 

.113 

.106 

.099 

.096 

.087 

.088 

.104 

.102 

.096 

.092 

.076 

.080 

.099 

.088 

.082 

.085 

.071 

.070 

.840 

.829 

.829 

.826 

.819 

.820 

.822 

.816 

.813 

.815 

.802 

.806 

.793 

.799 

.789 

.796 

.796 

.790 

.782 

.772 

.765 

.765 

.767 

.760 

.747 

.734 

.735 

.731 

.722 

.731 

The staircase lines indicate the 10% type I error rate (left panel) and 80% power (right panel) 
boundaries, the shaded areas are the overlapping parameters that satisfy both the design constraints, 
and the final chosen values are in boldface. 

error rate below 10% and achieve a power above 80%. We took a two-stage 
procedure to first calibrate the main design parameters (δ, θτ) and then the early 
termination parameters (θι,θυ)· m s t a ê e 1> w e explored different values of 
δ and θτ while fixing QL = 0 and θυ — 1, such that the trials would not be 
terminated early. We considered the null hypothesis, #r> Pi = P2 = 0.4, and the 
alternative hypothesis, Η\:ρχ = 0.4 andp2 = 0.2. We specified noninformative 
beta prior distributions for both p\ and p^. The total sample size was N = 160, 
with the first 40 patients equally randomized between the two arms prior to the 
initiation of the AR procedure. For each configuration, we simulated 10,000 
trials and recorded the percentages of trials rejecting H0. 

Table 5.3 presents the null cases in the left panel and the alternative cases in 
the right panel. The type I error rates below the staircase line are 10% or less; 
and simultaneously, the power values above the boundary line are 80% or higher. 
The shaded areas meet both the type I error and power criteria, from which we 
chose δ = 0.05 and θτ = 0.85. 

In stage 2 of parameter calibration, we followed a similar procedure to de-
termine the early termination parameters (0L,0U), while fixing δ = 0.05 and 
θχ = 0.85. Each trial was monitored for early termination due to superiority or 
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Figure 5.1 Rejection rates of HQ using the Bayesian adaptive randomization and 
predictive probability (BARPP) and group sequential (GS) methods at different values 
of p2, while fixing pi = 0.1,0.2,0.3, and 0.4, respectively. 

equivalence after every 10 patients were enrolled. Table 5.4 presents the type 
I error rates and power values using two different computational methods for 
the PP: One is to enumerate all the possibilities of the future sample sizes and 
the other uses the expected future sample sizes. The results based on the two 
approaches are very close. There are multiple pairs of (#£,, θυ) satisfying the 
design requirements, from which we chose 9L = 0.05 and θυ = 0.99. 

5.6.4 Simulation Study 

We examined the performance of the phase II design with the Bayesian adap-
tive randomization and predictive probability (BARPP) by exploring different 
scenarios. We varied p2 from 0.01 to 0.8 while fixing p\ at each value of 
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Figure 5.2 Sample size for each arm, the total sample size (arm 1 + arm 2) of the 
Bayesian adaptive randomization and predictive probability (BARPP) design and that 
of the group sequential (GS) method. 

(0.1, 0.2, 0.3, 0.4), respectively. For comparison, we also implemented the 
frequentist group sequential (GS) method with equal randomization using the 
O'Brien-Fleming superiority boundary (O'Brien and Fleming, 1979) and a futil-
ity stopping boundary; more discussions on group sequential methods are given 
in Chapter 6. Based on the type I error rate and power requirements, the maxi-
mum sample size for the GS method was 140 with a group size of 10. No early 
termination was allowed for the first 40 patients, and thereafter the superiority 
and futility stopping boundaries were regularly applied every 10 patients. 

Figure 5.1 presents the percentage of the 10,000 simulated trials that rejected 
the null hypothesis; that is, the type I error rate under the null and power under 
the alternative hypothesis. All of the curves are V-shaped with the minimum 
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point at pi = P2- Power increases as p2 moves away from p\ either to the left 
or to the right. In scenarios with p\ = 0.1 or 0.2, both the type I error rate 
and power of the GS method are higher than those under the BARPP design. 
In scenarios with p\ = 0.3 or 0.4, the two curves are almost identical. Figure 
5.2 shows the sample sizes in arm 1 and arm 2, and the total sample sizes under 
different scenarios. When p\ = P2, patients were equally randomized to the two 
arms even using the AR procedure. When the difference between p\ and p-¿ was 
large, early stopping took place quickly after equal randomization and thus led 
to small sample sizes in both arms. Using the BARPP design, more patients 
were randomized to the better arm, while there incurs some loss of power due to 
imbalanced numbers of patients in the two arms, which, in turn, is reflected by 
a larger sample size compared with the GS method. 

5.6.5 Posterior versus Predictive Trial Monitoring 

To understand the difference between using the posterior probability and the pre-
dictive probability for trial monitoring, we consider the following two scenarios. 

• Scenario 1 : We observe 11 responses among 25 treated patients in arm 
1, denoted as 11/25; and 5 responses among 25 treated patients in arm 2, 
denoted as 5/25. 

• Scenario 2: We observe 10/25 in arm 1, and 9/25 in arm 2. 

In the first situation, after 50 subjects were treated, we observe a substantial 
difference between the two arms: 11/25 versus 5/25. Given the observed data D 
and δ = 0.05, the posterior probability is Pr(|pi — P2¡ > δ\Ό) = 0.920, which 
does not depend on the remaining number of subjects in the trial. By contrast, 
Figure 5.3 shows that the predictive probability first decays as the future sample 
size increases, and then it reaches a plateau after the future sample size becomes 
approximately 50. Here is the explanation for this phenomenon. If there are 
very few patients remaining in the enrollment pipeline, we may have a strong 
confidence that by the end of the trial, it is very likely to claim treatment 1 
better than treatment 2; however, if there are still a large number of patients to 
recruit, the relative information collected thus far may not be as strong to claim 
superiority of treatment 1 as after reaching the maximum sample size. In other 
words, we make decisions based on the expected result at the end of the trial, 
which compromises the current information with the future sample size. 

In the second case, the posterior probability is Pr(|pi — p2¡> S\D) = 0.706. 
The predictive probability gradually increases with the increasing future sample 
size. This indicates that if there are still more data to collect and the trend 
continues, the current subtle difference between the two arms may become 
more "real" by the end of the trial. The predictive probability is a relatively 
conservative approach, which compromises the information contained in the 
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Figure 5.3 Predictive probability (PP) versus posterior probability when observing 
11/25 and 5/25 responses in arm 1 and arm 2 (scenario 1), and 10/25 and 9/25 in arm 
1 and arm 2 (scenario 2), respectively. 

current data and the amount of future data. Using predictive probabilities to 
guide phase II trial designs is appealing, since it is desirable to terminate a trial 
if a definitive conclusion can be drawn in the course of a trial. 

5.7 BAYESIAN PHASE II DESIGN WITH MULTIPLE OUTCOMES 

5.7.1 Bivariate Binary Outcomes 

Although phase II trials mainly focus on evaluation of efficacy, toxicity data 
are also collected in the study, because the toxicity information in phase I trials 
alone may not be adequate. By jointly modeling efficacy and toxicity data, 
we can borrow information across the bivariate outcomes for better decision 
making. Along this direction, Thall, Simon, and Estey (1995) present a Dirichlet-
multinomial model to accommodate multivariate discrete outcomes arising in 
phase II trials. 

Suppose that there are K exclusive events that each patient may experience. 
For k = 1 , . . . ,K, let p^ be the probability associated with the occurrence 
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P(T,E) 

P(T,EC) 

P(TC,E) 

P(TC,EC) 

of the Ä;th event, satisfying J2%=iPk = 1· If n patients have been treated, 
let j/fc denote the number of subjects who have experienced event k, such that 
£fcLi y* = n. Denote p = (p i , . . . ,pK) and y = (yu ..., yK), and thus y 
follows a multinomial distribution with probability p. If we take a Dirichlet 
prior distribution, p ~ Dir(c*i,..., ακ), then the posterior distribution of p is 

p|y ~Di r (a i +y1,...,aK + yx)-

In a phase II trial, we are often concerned with bivariate binary outcomes 
of toxicity and efficacy. There are four different possible events: observing 
both toxicity and efficacy (T,E), observing toxicity but no efficacy (T,EC), 
observing efficacy but no toxicity (TC,E), and observing neither toxicity nor 
efficacy (Tc, Ec). We may construct a 2 x 2 joint probability table: 

Toxicity (ρτ) NO toxicity (1 — ρτ) 
Efficacy (pE) 

No efficacy (1 — pE) 

Based on these four nonoverlapping events, we can compute the marginal prob-
ability for a "good" event such as efficacy, PE = P(T,E) + P{TC,E)>

 a nd that for 
a "bad" event such as toxicity, ρχ = Ρ(τ,Ε) + P{T,EC)· If w e take the joint prior 
distribution of 

{P(T,E)-,P{T,Ec)-,P{Tc,E)iP(Tc,Ec)) ~ D i r i « ^ ^ ) ) " ^ , ^ ) ; « ^ ^ ) ; « ^ , ^ ) ) ) 

then both ρτ and PE marginally follow beta distributions, 

PT ~ Beta(a(Ti£) + α(τ,Ε^), "(TSE) + O^TC,E")), 

PE ~ Beta(a(Ti£) + α^^,α^Ε^ + α(τ=,β=))· 

5.7.2 Stopping Boundaries 

In a single-arm phase II trial, we compare both toxicity and efficacy of the 
new treatment with the historical rates of the standard treatment. Let ηχ and 
ηΕ denote the toxicity and efficacy rates of the standard treatment, for which 
we take beta prior distributions, ηχ ~ Beta(£r,Cr) and ηΕ ~ Beta(£.E,(£:), 
respectively. For the new treatment, the marginal prior distributions for toxicity 
and efficacy in (5.7) can be rewritten as 

px ~ Beta(ax, βτ) and PE ~ B e t a ^ E , / ^ ) , 

where aT = α(τ,Ε)+α(τ,Εη> βτ = a^Tc¡E)+a^TotEc),aE = a(T,£;)+a(Tc,£;). 
and βΕ = α(τίΕη + α(τ^,Εη-

Let y = (y(T,E),y(T,Ec),y(Tc,E),y(T',Ec)) denote the observed data; that 
is, among n treated patients, y{T,E) °f them have experienced both toxicity 
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and efficacy, y(r,Ec) have experienced toxicity only, y^,E) have experienced 
efficacy only, and y[Tc,Ec) have neither experienced toxicity nor efficacy. The 
observed toxicity and efficacy data can be summarized in a 2 x 2 contingency 
table: 

yT n-yr 
V(T,E) 

V{T,E") 

V{T',E) 

V{TC,EC) 

Let 0 < δβ < 1 denote the minimally acceptable increment in the response rate 
for the experimental drug compared with the standard drug, and let 0 < δτ < 1 
denote the maximum tolerance for that of the toxicity rate. Then, 

PT(PE > VE + SE\yE) 
/■1-SE 

= / {l-F(p + oE;aE + yE,ßE + n-yE)}fip-^E,CE)ap 
Jo 

and 

Pr(pT > ητ + δτ^τ) 
fl — δτ 

= / {1 - F(p + δτ; aT + yT,ßr + n- yr)}f{p\ ξτ, Cr) Φ , 
Jo 

where f(p;a,ß) denotes the probability density function for p ~ Beta(a, ß) 
and F(p; a, ß) is the corresponding cumulative distribution function. 

Let θυ, &L, and θχ denote the prespecified probability cutoffs, for example, 
θυ,θτ e [0.95,0.99] and 9L G [0.01,0.05]. After n subjects have been treated 
in a trial, we can determine the upper and lower decision boundaries as follows: 

• Let Un be the smallest integer of ys satisfying Pr(p# > ηε\νε) >θυ· 

• Let L„ be the largest integer of Î/£ satisfying Pr(p# > ηΕ + δε^Ε) < ®L· 

• Let Tn be the smallest integer of yr satisfying Ρτ(ρτ > ητ+δτ\ντ) > θτ· 

The decision rules after observing the multivariate data y from n patients are 
then given as follows: 

• If yE > Un, terminate the trial and declare the experimental drug promis-
ing. 

• If VE < Ln, terminate the trial and declare the experimental drug not 
promising. 

• If VT > Tn, terminate the trial due to excessive toxicity of the experimental 
drug. 

The first two stopping rules are constructed for efficacy, while the last one is 
for toxicity or patient safety. When calculating the stopping boundaries, the 
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dependence between toxicity and efficacy is not relevant, and we can simply 
use the marginal beta distributions for the probabilities of toxicity and efficacy. 
However, when calculating the probability of stopping a trial due to crossing 
any of these boundaries, we must take into account the dependence between the 
bivariate binary outcomes by using the Dirichlet model. 

EXAMPLE 5.4 

We examine the operating characteristics of the phase II trial design accom-
modating both toxicity and efficacy. The prior distribution for the efficacy 
rate of the standard drug is taken as r/£ ~ Beta(3,7), and that for the ex-
perimental drug is PE ~ Beta(0.6,1.4). Correspondingly, the prior distri-
bution for the toxicity rate of the standard drug is taken as ητ ~ Beta(2,8), 
and that for the experimental drug is ρτ ~ Beta(0.4,1.6). The lower cut-
off probability for efficacy is θι — 0.05, and the upper cutoff for toxicity 
is θτ — 0.95, and SE — ST = 0. In practice, we set θυ = 1, because we 
typically do not implement an efficacy stopping bound for a promising drug 
in a single-arm trial. In other words, if the investigational drug appears 
to be effective, patient accrual will continue without interruption such that 
more patients would benefit from this "good" drug. The maximum sample 
size is N = 30, with a cohort size of 1. 

Based on these design specifications, the stopping boundaries for re-
sponse (efficacy) are given by 

Ln 

n 

0 

8 

1 

20 

2 

30 

where Ln is the number of responses and n is the number of treated patients. 
The stopping boundaries for toxicity are given by 

T 
-Ln 
n 

3 4 5 5 

3 5 7 8 

6 

10 

7 

12 

8 

14 

8 

15 

9 

17 

10 

19 

11 

21 

12 

23 

12 

24 

13 

26 

14 

28 

15 

30 

where Tn is the number of toxicities observed among n treated patients. 
We take the cases with Ln/n = 0/8 and Tn/n = 5/8 to illustrate how to 
implement the trial in practice. The trial would be stopped early if among 
the first eight treated patients, no response has been observed or the number 
of toxicities occurred is greater than or equal to five. Suppose that the trial 
runs to the maximum sample size (no early stopping). By the end of the 
trial, if there are two or fewer responses among 30 treated patients, the drug 
will be claimed nonpromising; if there are 15 or more patients experiencing 
toxicity, the drug will be considered unsafe. In either case, the drug should 
be "killed" at this developmental stage. 
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Table 5.5 Phase II Trial Designs by Simultaneously Monitoring Toxicity and 
Efficacy for Six Scenarios 

True Joint Probabilities Number of 
Sc. Ρ(τ,Ε) Ρ(τ,Ε") P(T",E) P{T",E') Patients Efficacy Toxicity 

0.05 
0.04 
0.36 
0.20 
0.10 
0.50 

0.05 
0.16 
0.24 
0.10 
0.30 
0.30 

0.45 
0.16 
0.24 
0.30 
0.20 
0.10 

0.45 
0.64 
0.16 
0.40 
0.40 
0.10 

29.9 
25.6 
9.9 

27.3 
21.6 
4.8 

14.9 
5.1 
5.9 

13.6 
6.5 
2.9 

3.0 
5.1 
5.9 
8.2 
8.6 
3.8 

Note: Sc. stands for Scenario. 

As shown in Table 5.5, we simulated six scenarios for phase II trials using 
the aforementioned design specifications. The first three scenarios generate the 
joint toxicity and efficacy probabilities by assuming the independence between 
the two endpoints, while the last three scenarios accommodate correlations 
between them. In scenario 1, almost one-half of the patients achieved the efficacy 
event, and approximately 10% of the patients experienced toxicity, which closely 
matched the marginal efficacy and toxicity rates, respectively. In scenarios 3 
and 6, on average only ten and five patients were treated respectively, since the 
trials were likely to be terminated early due to excessive toxicities (the marginal 
toxicity rate is 60% in scenario 3 and 80% in scenario 6). 

5.8 PHASE l/ll DESIGN WITH BIVARIATE BINARY DATA 

5.8.1 Motivation 

As discussed in Chapter 4, the primary objective of a phase I trial is to find the 
MTD, for which toxicity is usually considered alone. In general, dose-finding 
studies need to locate the MTD accurately and efficiently, while exposing as 
few patients as possible to over-toxic or inefficacious doses. Subsequently in 
phase II trials, patients are often treated at the MTD to examine the short-term 
efficacy effect of the drug. In conventional settings, phase I and phase II trials 
are conducted separately without any kind of formal borrowing of information 
or strength across them. However, with limited resources and especially a small 
sample size, the MTD identified in the phase I trial might not be accurate, which 
certainly has an undesirable impact on the subsequent phase II and phase III 
studies. In addition, the ultimate goal of drug development is to find a cure. 
Therefore, it is critical to search for the optimum biologic dose of a drug that has 
the highest efficacy as well as tolerable toxicity. 
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To fully utilize the data collected in both phase I and phase II trials, toxicity 
and efficacy may be jointly evaluated for the drug's risk and benefit trade-offs. 
Following this route, the seamless phase I/II trial design works to 

• speed up the drug developmental process by eliminating the gap between 
phase I and phase II clinical trials, 

• improve the dose-finding procedure by maximizing the drug's efficacy as 
well as controlling its toxicity, and 

• enlarge the sample size by pooling patients from phase I and phase II trials 
such as to produce more accurate estimates for toxicity and efficacy than 
would be achieved in each separate trial. 

EXAMPLE 5.5 

A multi-center, open-label, phase I/II dose-finding trial was designed to 
evaluate the efficacy, safety, and tolerability of RAD001, and to find the 
optimal biologic dose in combination with a standard 3-week cycle of do-
cetaxel therapy for patients with metastatic breast cancer. RAD001 had 
three prespecified dose levels, and docetaxel was administered at a constant 
dose level. RAD001 was shown by in vitro and in vivo studies to be a potent 
inhibitor of tumor growth, which exerts its activity on interleukin and the 
growth-factor-dependent proliferation of cells through their high affinity 
for an intracellular receptor protein. Docetaxel takes its cytotoxic effect to 
prevent normal mitosis and alter the skeletal structure and functions of the 
cell. Dose-limiting toxicities were defined as grade 4 hematological tox-
icity, grade 3 or grade 4 nonhematological toxicity, or other well-defined 
serious adverse events. Efficacy of the combined treatments was assessed 
by tumor response. After docetaxel treatment was ceased, RAD001 con-
tinued to be administered alone till disease progression or appearance of 
unacceptable toxicity. 

5.8.2 Likelihood and Prior 

Forj = 1 , . . . , J, letpj and qj denote the probabilities of toxicity and efficacy at 
dose level j of the experimental drug, respectively. As to toxicity, a monotonie 
order is assumed with pi < ·· · <pj, while there is no such a constraint imposed 
for qj because the treatment efficacy may plateau or even decrease as the dose 
increases. Figure 5.4 shows three possible patterns for efficacy: increasing, 
umbrella-shaped, and decreasing; but toxicity always monotonically increases 
with respect to the dose. 
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Dose level Dose level 

Figure 5.4 Three possible patterns for efficacy and toxicity curves with six increasing 
doses. 

Let Xij denote the binary toxicity outcome for subject i treated at dose level 
3> 

Xij — 
1, with probability pj, 
0, with probability 1 — pj, 

and similarly let Yij denote the binary efficacy outcome of the same subject, 

Yi υ 
_ J 1, with probability qj, 

\ 0, with probability 1 — qj. 

The association between the bivariate binary outcomes can be measured by the 
global cross ratio (Dale, 1986), 

7Γ 
lj 

'j(00)Kj(U) 

T¿(oi)*j(io) 

where Kj(xy) = Pr(X¿j = x, Y%j = y) for x = 0,1 and y = 0,1. The joint 
toxicity and efficacy probabilities at dose level j , ^j^xy), can be represented in a 
2x2 contingency table: 

Qj 

l - q j 

Pi 
πΚΐι) 

Tj(10) 

I-Pj 

Tj(01) 

TTj(oo) 
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Given the marginal toxicity and efficacy probabilities pj and qj, the joint proba-
bilities are given by 

^ ■ ( i i ) 
7; Φ 1, 

2(7i - 1) ' 
, PjQj, 7 j = 1. 

7Tj(10) =Pj - T j ( l l ) . 

^ (01) = Qj _ 7 r i ( l l ) i ( 5 · 8 ) 

TTj(oo) = 1 - P j - Ç j + * ¿ ( i i ) . 

where a¿ = 1 + (p.,- + 9j)(7¿ — 1) and fy = —Ajji'Jj — l)Pj9j· Let p = 
(pi,... ,pj)T, and define q and 7 similarly. Suppose that rij patients have been 
treated at dose level j , and n^n) of them experienced both toxicity and efficacy, 
nj(io) with toxicity but no efficacy, η,·(οι) with efficacy but no toxicity, and η (̂οο) 
with neither toxicity nor efficacy. Let D denote the observed data at all the dose 
levels, then the multinomial likelihood is given by 

j 1 1 

L(D|p,q,7) « Π Π n ^ W 7 1 ^ · 
j=\x=0y=0 

In the Bayesian paradigm, parameter constraints often make the prior speci-
fication challenging. To incorporate the monotonie order for pj, we define 

í i ^ í r M and t3=U-V---V^-), 
U-Pi / \l~Pj l~Vj-i) 

for j = 2 , . . . , J, and then 

βξι Θ
ξ ι H h e& 

Pi = -——r- and p,· = τ j - , 
^ 1 + e& F J 1 + e«i + · · · + efe 

which automatically satisfy the order constraint. As for efficacy, we need not 
enforce such a monotonie ordering constraint, and thus define 

C l = l o g ( V M and C ^ l o g f ^ - V l o g í ^ 1 ^ 

which lead to 

91/ V 1 - * 7 \ 1 - 9 j - i 

pCl p C l + - + C j 
91 = Λ 1 „ Λ a n d 9? 1 + eCi ""* v i + eCi+-+C¿' 

for j = 2 , . . . , J. After such variable transformations, we can specify nonin-
formative prior distributions on (p, q) by assigning multivariate normal prior 
distributions with zero means and large variances to ξ = (£i , . . . ,£ j )T and 
C = (Ci> · · ■ ) 0 ) T · F°r example, we consider five dose levels and take the 
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Figure 5.5 Prior distributions of the toxicity probabilities pj and the efficacy 
probabilities qj, for j = 1,. . . , 5. 

marginal variances Var(£,·) = Var((j) = 100 for j = 1 , . . . ,5. Figure 5.5 
displays the prior distributions of the five paired probabilities of toxicity and 
efficacy. These prior distributions are indeed very flat in the middle range of 
(0,1), and there is an obvious trend of shifting to the right for toxicity due to the 
monotonie toxicity constraint. Subsequently, we can derive the joint posterior 
distribution and also the full conditional distributions for all the model param-
eters (£, C, 7), from which the posterior samples can be easily obtained by the 
usual Gibbs sampler. 

5.8.3 Odds Ratio and Dose-Finding Algorithm 

To facilitate dose finding, we construct toxicity-efficacy odds ratio trade-off 
contours in the two-dimensional probability domain. Figure 5.6 shows that 
for j = 1 , . . . , J each dose j corresponds to a point with the efficacy and 
toxicity probabilities {qj,pj), and the optimal dose is the one that is closest 
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Figure 5.6 Two-dimensional toxicity-efficacy odds ratio contour with point A(qj,pj) 
corresponding to dose level j . 

to the lower-right corner (1,0). The horizontal and vertical lines crossing the 
dose with (qj,pj), point A, partition the unit square into four rectangles. The 
toxicity-efficacy odds ratio ujj at dose level j is given by 

.j =Pj/0--Pj) =PjQ--Qj) 
3 Qj/0--Qj) Qj0--PjV 

which is exactly the ratio between the areas of the lower-right versus the upper-
left rectangles. The smaller the value of Uj, the more desirable the corresponding 
dose. Figure 5.6 also presents a toxicity-efficacy odds ratio equivalence contour, 
along which all the points have the same value of UJ. 

Nevertheless, Uj is based on the marginal toxicity and efficacy probabilities 
(qj, pj ) without accounting for the correlation between them. To account for the 
correlation, we add a third dimension as shown in Figure 5.7: 

" ' i (01) 
Pr(efficacy | no toxicity) = ^J(E\TC) — — · 

Tj(01) + *i(00) 
In this three-dimensional probability space, the optimal point is the lower-left 
corner, which corresponds to {qj,Kj(E\Tc)iPj) = (1) 1>0). The closer the dose 
to that point, the better. The horizontal and vertical planes crossing the dose 
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Figure 5.7 Three-dimensional toxicity-efficacy odds ratio trade-off incorporating 
the third axis of Pr(efficacy | no toxicity), with point A {qj,^j(E\Tc),Vi) corresponding 
to dose level j . 

with (<7j,7rj(£|Tc),pj), point A, partition the unit cube into eight pieces. Along 
the diagonal line, the ratio between the volumes of the lower-left versus the 
upper-right cubes is 

n Pj(l - Qj)0-- *j{E\Tc)) flj(oo) 
1 h — ΤΛ \ ~~ ω3 · 

V--Vmi^j{E\T^ ^'(01) 
The dose that yields the smallest value of Ω.,· is considered the best. Figure 
5.7 also presents an odds ratio equivalence surface across point A; that is, all 
the points on this smooth surface have the same value of Uj. Hence, the dose-
finding procedure may use either the two-dimensional or the three-dimensional 
toxicity-efficacy odds ratio as a selection criterion. 

Let φτ and φΕ be the prespecified maximum tolerable toxicity probability and 
the minimum acceptable efficacy probability, respectively. Define an admissible 
set S that contains all the doses satisfying 

Pv(Pj < φτ\Ό) > θτ and Pr(9 j > φΕ\Ό) > ΘΕ, 
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where θχ and ΘΕ are fixed probability cutoffs that can be calibrated through 
simulation studies. For patients' safety, untried doses cannot be skipped during 
dose escalation. The phase Ι/Π trial proceeds as follows: 

(1) Treat the first cohort of patients at the lowest dose level. 

(2) Let Pjhigh denote the toxicity probability of the highest dose tried thus far, 
and let θ^ (θγ > θτ) denote the cutoff probability for dose escalation. If 

Pr(pjhigh < <¡>T\D) > θ*τ, (5.9) 

we escalate to the lowest untried dose for the next cohort. 

(3) Otherwise, treat the next cohort of patients at the most desirable dose 
selected from S according to one of the odds ratio criteria. 

(4) Once the maximum sample size is reached, the dose with the smallest 
toxicity-efficacy odds ratio in S is recommended. 

In practice, it may happen that (5.9) does not hold and <S is an empty set, then 
the trial would be terminated as an inconclusive study. 

5.8.4 Numerical Comparison 

For comparison, we introduce two other criteria for the drug's risk and ben-
efit trade-offs. One is to select the dose with the largest joint probability of 
7Tj(01) = Pr(no toxcity, efficacy) given in (5.8), and the other constructs tox-
icity and efficacy trade-off contours in the two-dimensional probability space 
(Thall and Cook, 2004). The latter requires specification of three toxicity-
efficacy equivalent points, based on which a concave trade-off contour can be 
constructed via a simple polynomial model. As shown in Figure 5.8, the straight 
line that connects each point of dose toxicity-efficacy probabilities with the 
lower-right point (1,0) crosses the equivalence contour. The desirability param-
eter for each dose j , 6j, is defined as the ratio of the Euclidean distance from the 
intersection point to (1,0) versus that from the dose point to (1,0). The larger 
the value of Sj, the more desirable the dose. Figure 5.8 shows that <5i = AO/BO 
and ¿2 = CO/DO, and as δι > 02 dose 1 is preferred to dose 2. 

We compared the Bayesian phase I/II odds-ratio design and the dose-finding 
methods by using the 7̂ ,(01) andój criteria in the simulation study. We considered 
five doses with the maximum sample size of 60 and the cohort size of 3. The 
upper toxicity and lower efficacy probability limits were φτ = ΦΕ ~ 0.3, and 
the cutoff probabilities were θτ = 0.25, ΘΕ = 0.1, and θ^ = 0.5. We used 
noninformative prior distributions for all the model parameters in the Markov 
chain Monte Carlo (MCMC) procedure. 

Averaged over 1,000 simulated trials, Figure 5.9 exhibits the dose selection 
percentages using the two-dimensional odds ratio (2d-OR), three-dimensional 
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Figure 5.8 The Sj criterion based on the toxicity-efficacy trade-off contour, with 
δι = AO/BO for dose 1 and δ2 = CO/DO for dose 2. 

odds ratio (3d-OR), 7TJ(OI), and Sj criteria under four scenarios, respectively. In 
scenario 1, toxicity increases substantially with respect to the dose while efficacy 
does not change as much. All the four designs selected the first dose over 50% 
and treated most of the patients at that dose as well. In scenario 2, toxicity is 
negligible but efficacy increases considerably over the dose. The 3d-OR criterion 
outperformed the 2d-OR, while the TTJ^OI) design performed the best. The dose-
response curve for efficacy in scenario 3 is not monotonie: Efficacy first increases 
and then decreases with the dose; and also the fourth and fifth doses are overly 
toxic. In that scenario, all of the designs selected the third dose the most, while 
the Sj criterion appears to be slightly aggressive due to selecting dose 4 over 
30%. In scenario 4, the 2d-OR design behaved the best. In conclusion, all of 
the four designs performed reasonably well by selecting the optimal dose with 
the highest percentage, at which most of the patients were also treated. The 
odds ratio equivalence contour between toxicity and efficacy is intuitive and 
meaningful, which allows for an objective quantification of trade-offs between 
toxicity and efficacy. 
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Figure 5.9 Dose selection percentages in the order of using the two-dimensional odds 
ratio (2d-OR), three-dimensional odds ratio (3d-OR), 7Γ,·(οΐ), and ¿¿ criteria, respectively. 

5.9 PHASE l/ll DESIGN WITH TIMES TO TOXICITY AND EFFICACY 

In traditional phase I and phase II trials, toxicity and efficacy are often modeled as 
binary endpoints. Although such binary-outcome designs are simple and easy to 
implement, they ignore information of how soon patients experience toxicity or 
respond to treatment. By contrast, time-to-event data contain much more clinical 
information to discriminate drugs' therapeutic effects. For example, in addition 
to lowering the occurrence rate of toxicity, it is also desirable to delay the onset 
of such adverse events such that patients' quality of life could be improved. As 
an extreme case, if death is one of the severe adverse events, the longer the lag 
time to observe death, the better. 

If the patient accrual is faster relative to the assessment of toxicity and efficacy, 
new participants may face delays in receiving treatment because the outcomes 
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of the previous patients may still be unavailable what that information is needed. 
Under this circumstance, one choice is to suspend the enrollment until all the 
toxicity and efficacy data are completely observed, which, however, not only 
causes logistical inconvenience, but also results in a lengthy study duration. The 
other possibility is to choose the "best" dose based on the currently available data 
(i.e., discarding the missing data), so that each new cohort will be treated im-
mediately upon arrival. Notwithstanding patients have not experienced toxicity 
by the decision-making time, they may experience toxicity later during the rest 
of the follow-up. Hence, ignoring the unobserved or censored data is likely to 
underestimate the toxicity probability; and consequently, dose escalation might 
be overly aggressive, leading to an undesirably large number of patients treated 
at over-toxic doses. On the other hand, if the response rate is underestimated due 
to the late onset of efficacy events, the trial may be inappropriately terminated 
early for futility. To accommodate possible delayed outcomes, both toxicity and 
efficacy can be modeled as time-to-event data (Yuan and Yin, 2009); patients 
who have not experienced the event by the decision-making time are naturally 
treated as censored, but still contribute partial information to the trial design. 

5.9.1 Bivariate Times to Toxicity and Efficacy 

The entire patient population may be viewed as a mixture of the subjects who 
would eventually experience the event of interest if a sufficient follow-up is 
taken and those who would never experience the event. For example, after 
intensive chemotherapy treatment, a substantial proportion of cancer patients 
become drug-resistant and will not respond to another therapy regardless of the 
dosage or the duration of treatment. In this regard, cure rate models are more 
suitable for the time-to-event data that need to incorporate a cure or insusceptible 
fraction. In contrast, toxicity will occur sooner or later if patients are treated 
with a sufficient amount of dosage, and thus there is typically no patient who 
would be insusceptible to toxicity. 

Let tx and i# be the times from the initial treatment until occurrences of 
toxicity and efficacy events, respectively. Under the proportional hazards model 
(Cox, 1972), the hazard function for toxicity is 

XT(tT\Z) = A0r(ir)exp(/3T-Z), 

where λοτ(^τ) is the baseline hazard function and Z represents the dose. Under 
a Weibull distribution with parameters ay and ητ, λοτ(ίτ) = ατΉτί>ατ~ι, and 
the survival function for times to toxicity is given by 

ST{tT\Z) = exp{-VTtT
T exp(ßTZ)}. (5.10) 

For efficacy, the mixture cure rate model (Berkson and Gage, 1952) is more 
appropriate such as to account for the proportion of patients who would never 
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respond to treatment. Hence, the population survival function is given by 

SE,poP(tE\Z) = 1 - 7Γ + *SE(tE\Z), 

where SE(tE\Z) is the usual survival function for susceptible subjects (potential 
responders), and 1 — π is the proportion of insusceptible patients (nonresponders) 
in the population. Similar to (5.10), under the proportional hazards assumption, 

SE{tE\Z) = exp{-VEt«E exp(ßEZ)}. 

In consideration of the correlation between the bivariate failure times (ίχ, tE), 
the Clayton ( 1978) copula can be used to link the two marginal survival functions, 

S(tT, tE\Z) = {ST(tT\Z)-^ + SE(tE\Z)-i - 1} -1/7 

where 7 > 0 characterizes the association between iy and tE. The larger the 
value of 7, the higher the correlation. The correlation approaches 1 as 7 —>■ 00, 
and tx and tE become independent as 7 —> 0. 

Let UT be the time to toxicity for subject i, and let tt¿ be the actual follow-
up time. Due to censoring caused by decision making, we in fact observe the 
toxicity data (νΐτ,Δίτ), where y^ — tw and AÍT = 1 if the toxicity event 
has occurred, and yw = Ui and AÍT — 0 if the time to toxicity is censored. 
Similarly, define (yiE,AtE) for efficacy. Based on the observed data D, the 
likelihood is given by 

L(D\ßT, aT, ητ, βε, αΕ, ηΕ, π, 7) 

= Λ Í PSfatViElZj)]****** f ^Sjy^y^Z^Y'^^ 
i=i\ 9yiTdyiE J l dyiE / 

x ( _ ( l _ ^STÍVÍTIZÍ) _ ; r a g ( y i T , y i g | ^ ) ] A < r ( 1 " A i B ) 

l dyiT dyiT J 

x {(1 - n)ST(yiT\Zi) + 7rS(yiT, 2 / ί β | ^ ) } ( 1 - Δ ι τ ) ( 1 - Δ ί £ ) , 

where the first term is for both toxicity and efficacy observed, the second cor-
responds to toxicity censored but efficacy observed, the third stands for toxicity 
observed but efficacy censored, and the last term with both toxicity and efficacy 
censored. Because the efficacy event may be censored due to either insuscepti-
bility or that the event has not occurred yet, the last two terms in the likelihood 
consist of two parts: One is for subjects who are insusceptible to efficacy, and 
the other is for those who may respond but the efficacy event is censored. 

5.9.2 Areas Under Survival Curves 

Toxicity and efficacy are typically evaluated within a fixed period of time [0, r], 
where τ depends on the specific disease and the testing drug. Clinical events of 
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Figure 5.10 Areas under the survival curves for toxicity and efficacy, the AUSC ratio 
= AT/AE-

interest are expected to occur within [0, r] , and those happened after r will not 
be relevant. Generally speaking, a desirable dose should induce more patients to 
achieve favorable responses quickly after treatment, and yet cause fewer patients 
to suffer from toxicity even long after treatment. As shown in Figure 5.10, 
a sharply declining survival curve for efficacy indicates that patients respond 
quickly to the treatment; and a slowly decaying survival curve for toxicity 
corresponds to the late onset of adverse events. By using the ratio of the areas 
under the survival curves (AUSCs), we simultaneously take into consideration 
the following two aspects of the treatment: 

• both the toxicity and efficacy rates evaluated at the end of the follow-up 
time r, and 

• how soon patients experience toxicity and how quickly they respond to 
treatment. 

In contrast, dose selection in a binary-outcome design is solely based on the 
toxicity and efficacy rates, while ignoring the entire paths of the survival curves. 
For illustration, Figure 5.11(a) shows two survival curves for times to toxicity 
at a high and a low dose: Patients treated at the high dose would be more likely 
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and also more quickly to experience toxicity, as the survival curve of the high 
dose consistently stays below that of the low dose. In this case, the low dose is 
preferred due to lower toxicity either based on the AUSC criterion or simply by 
comparing the toxicity rates at r. However, it may happen that the two doses 
have similar toxicity rates at the end of the follow-up, but the survival curve 
of the high dose declines much more sharply than that of the low dose because 
patients typically experience toxicity sooner when treated at a stronger dosage; 
see Figure 5.11 (b). Under this situation, the AUSC criterion recommends the low 
dose as more desirable because patients' qualities of life would be improved due 
to delayed adverse events, whereas the two doses would be indistinguishable 
if the selection is solely based on the toxicity rates. In a dose-finding study, 
survival curves rarely cross; see Figure 5.11(c). 

It is also critical to consider how quickly patients respond to treatment in order 
to discriminate drugs' therapeutic effects. For example, patients with leukemia 
are more likely to die if they cannot achieve partial or complete remission soon 
after treatment (Estey, Shen, and Thall, 2000). Hence, the dose that helps patients 
achieving quick remission is highly preferred. Given that the two doses have the 
same response rate at r, the AUSC criterion tends to select the dose that would 
induce a quicker response. 

Let AT and AE denote the areas under the survival curves of toxicity and 
efficacy up to r, respectively; then 

AT _ ατ
1(ητβ

βτΖ)'1/ατΤ(ατ\ηττατββτΖ) 
AE ~ (I - π)τ + παγ(ηΕΖβΕΖ)~1/αΕΤ(θίΕ

ι,ηΕταΕ&βΕζγ 

where Γ(α, b) is the incomplete gamma function, 

rb 
T{a,b) = / xa-1e~xdx. 

Jo 

When 7Γ = 1 and T -*■ oo, AT/AE has an important interpretation as the ratio 
of the mean survival times between toxicity and efficacy. 

5.9.3 Dose-Finding Algorithm 

Because there is limited information at the beginning of a trial, dose assignment 
is difficult for the first few patients in the accrual due to data sparsity. This is 
even more prominent if toxicity and efficacy events are of late onset. To facilitate 
the conduct of a trial, a prephase can be implemented prior to the initiation of 
the formal Bayesian time-to-event (TTE) dose-finding procedure. 

During the start-up stage, no new patient will be treated until all the patients 
already in the trial are fully followed and evaluated. The prephase starts at the 
lowest dose level with a cohort size of 3. Suppose that the current dose level is 
j , and the trial proceeds as follows: 
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Figure 5.11 Three possible situations when comparing survival curves for the times 
to toxicity at a high and a low dose. 

(1) If no patient experiences toxicity, escalate to dose level j ' + 1, while if 
j = J (the highest dose level), switch to the Bayesian TTE dose-finding 
procedure at dose level j . 

(2) If one patient experiences toxicity, switch to the Bayesian TTE dose-
finding procedure at dose level j . 

(3) If 2 or more patients experience toxicity, switch to the Bayesian TTE 
dose-finding procedure at dose level j — I, while if j = 1, terminate the 
trial. 

Let φτ be the maximum toxicity rate that is acceptable, and let ΦΕ be the 
minimum efficacy rate that is clinically relevant. Furthermore, let dj denote the 
jth dose, and let j h l g h denote the highest dose level tried thus far in the trial. 
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Based on the accumulated data D, the Bayesian TTE design is described as 
follows: 

(1) If the probability of observing toxicity at dose level j ' h l g h satisfies 

Pr{l - ST{T\Z = d̂ high) < φτ\Ώ} > θτ, 

where θτ is the cutoff probability for dose escalation, say, θτ = 0.85, we 
escalate to dose level j h l g h + 1. If j h l g h = J, we treat the next cohort of 
patients at dose level J. 

(2) Otherwise, we identify an admissible set S that contains all of the doses 
satisfying 

Pril - ST(T\Z = dj) < φτ\ΰ} > θτ, J (5.11) 
Pr{l - SE,POP(T\Z = dj) > φΕ\ϋ} > ΘΕ, 

where θχ (#τ < θτ)
 anc* #£ are the fixed probability cutoffs that can be 

calibrated through simulations. 

(i) We treat the next cohort of patients at the (most desirable) dose in <S, 
which has the largest value of the AUSC ratio, AT/AE. 

(ii) If S is an empty set, we terminate the trial without dose selection, 
which leads to an inconclusive trial. 

(3) Once the maximum sample size is reached, the dose that belongs to S and 
maximizes AT/AE will be recommended. 

The admissible set S defined by (5.11) serves for screening purposes to protect 
patients from excessively toxic doses, and also from futile doses. 

Compared with the conventional binary-outcome design which potentially 
requires a full follow-up for each patient, the Bayesian TTE design naturally 
treats the unobserved toxicity data as censored data. As a consequence, the 
trial duration can be considerably shortened. However, this may result in more 
aggressive dose escalation because toxicity could be underestimated at the early 
stage of the trial when most of the observations are censored. 

Dose finding is a sequential process by adaptively assigning patients to the 
most appropriate dose based on the data accumulated in the trial. When a new 
cohort arrives, the outcomes of the patients who previously entered the trial 
might still be unavailable. The Bayesian phase I/II TTE design fulfills the need 
of utilizing all the available data, especially the information of how soon the 
toxicity and efficacy events occur. Seamless transition between consecutive trial 
phases eliminates the "white" space between them, requires a single protocol, 
and gains statistical efficiency from using both data in a combined analysis. 
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5.10 SUMMARY 

This chapter has covered many topics in phase II trial designs. For single-arm 
phase II trial designs, we introduced Gehan's two-stage design and Simon's op-
timal and minimax two-stage designs; both are cast in the frequentist hypothesis 
testing framework. From Bayesian perspectives, we discussed how to use pos-
terior probabilities and predictive probabilities to monitor clinical trials. With 
the emergence of more randomized phase II trials, Bayesian posterior predic-
tive probabilities provide very helpful guidance for trial conduct. In addition, 
adaptive randomization may be incorporated to phase II designs to enhance trial 
ethics by assigning more patients to better treatment arms. Phase II trials of-
ten collect multiple outcomes, such as both efficacy and toxicity measurements, 
which could be binary or time-to-event endpoints. For each case, we presented 
the trial design that accounts for the multivariate endpoints and also constructed 
the corresponding stopping rules. 

EXERCISES 

5.1 In Simon's two-stage design, suppose that the design parameters are given 
as (ni = 5,ri2 = 6, r± = l , r = 3), where n\ and ri2 are the respective 
numbers of patients in stages 1 and 2, r\ is the number of responses in stage 
1, and r is the total number of responses at the end of the trial. Compute 
Pr{(yi > Γχ) (Ί (yi + 1/2 > r) \ p} under HQ: p = 0.2 and under Hi: p = 0.4, 
respectively. Compare these two probability values with the type I error rate 
a = 0.1 and power 80%, and interpret the results. Repeat the calculation for 
another set of design parameters {n\ = 25, ri2 = 25, n = 8, r = 21). 

5.2 Download the software of Simon's two-stage design from the website of 
Biometrie Research Branch of National Cancer Institute. Develop an optimal 
design and a minimax design with the type I error rate a = 0.1, power 85%, 
Po = 0.1, and pi = 0.35, and describe the trial conduct. 

5.3 In a single-arm trial, let p denote the response rate of the investigational 
drug, with a prior distribution of p ~ Beta(a, ß). Suppose that we observe y 
responses out of n subjects; that is, Y\p ~ Bin(n,p). Derive the likelihood 
function, the posterior distribution of p, and the posterior predictive distribution 
ofy . 

5.4 In a ii-arm trial, let pk denote the response rate of treatment k, for k = 
1,...,K. Under Bayesian hierarchical modeling, the prior distribution for 
Pk is pk ~ Beta(a,/3), with a ~ Ga(r/,?7) and ß ~ Ga(r/, 77). Suppose 
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that we observe yk responses among η& subjects treated in arm fc; that is, 
Yk\pk ~ Bm(^fe)Pfc)· Derive the likelihood function, and the joint posterior 
distribution of the model parameters and their full conditional distributions. 

5.5 Download the software for phase II trial monitoring with the Bayesian 
posterior probability from the Biostatistics website of M. D. Anderson Cancer 
Center. 

( 1 ) For the standard treatment, we take a beta prior distribution for the response 
rate, ps ~ Beta(15,35); and for the the experimental treatment, assign a 
prior distribution PE ~ Beta(0.6,1.4). The total sample size is N = 40, 
the cohort size is 1, take θι = 0.05 and δ = 0. Under this setup, obtain 
the stopping boundaries for response. 

(2) Take #¿ = 0.1 and δ = 0.02 while keeping other design parameters the 
same as before, obtain the response stopping boundaries, and interpret the 
design's operating characteristics. 

(3) Consider jointly modeling both toxicity and efficacy in a phase II trial. The 
prior distributions for the efficacy and toxicity rates of the standard drug are 
i]E ~ Beta(0.3,0.7) and ητ ~ Beta(0.2,0.8), respectively; and those for 
the experimental drug are PE ~ Beta(0.6,1.4) and ρχ ~ Beta(0.4,1.6). 
The cutoff probability for efficacy is 0¿ = 0.05, and that for toxicity is 
θτ — 0.95, and 6E = δχ = 0. In practice, we set θυ = 1, because the 
efficacy stopping rule is typically not implemented for a promising drug. 
The maximum sample size is N = 30, and the cohort size is 1. Based on 
these design specifications, obtain both the efficacy and toxicity stopping 
boundaries. 

5.6 Download the software of using the predictive probability to monitor a 
two-arm randomized trial from the Biostatistics website of M. D. Anderson 
Cancer Center. For the frequentist hypothesis testing, use a two-sided binomial 
test at a significance level of a = 0.05. For the Bayesian approach, take a 
prior distribution Beta(0.2,0.8) for both the response rates of the two drugs in 
comparison. Set θχ = 0.95 to determine the superiority of treatment 1 over 
treatment 2 (see Section 5.5). Suppose that we observe 10 responses in arm 1 
and 9 responses in arm 2 after 20 patients were treated in each arm. If we plan 
to enroll a total of 100 patients, compute the predictive probability of rejecting 
the null hypothesis at the end of the trial using the frequentist and Bayesian 
approaches, respectively. 



CHAPTER 6 

PHASE III TRIAL DESIGN 

6.1 POWER AND SAMPLE SIZE 

If an experimental agent exhibits adequate short-term therapeutic effects in a 
phase II trial, the drug will be moved forward to a phase III study for confirmative 
testing of its long-term effectiveness. Phase III clinical trials are randomized and 
controlled studies that directly compare the investigational drug with the current 
"gold standard" treatment or a placebo when there is no standard of care. The 
sample size of a phase III trial is large, usually ranging from hundreds up to 
thousands of participants. The typical endpoint in a phase III trial is a time-to-
event measurement, such as progression-free survival or overall survival. Due 
to their enormous sizes, large scales, and long follow-ups, phase III trials are the 
most costly comparative studies to evaluate the drug's efficacy. 

In a phase III trial, sample size calculation is the most critical component of 
the study design (Chow, Shao, and Wang, 2007; Julious, 2010). In the hypothesis 
testing framework, one needs to specify the type I error rate a, the type II error 
rate ß (or power 1 — ß), and the effect size (including die treatment difference to 
be detected and the associated variance). The common practice is to compute the 
minimum sample size that is necessary to detect a clinically important treatment 
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difference with sufficient power. If the sample size is inadequate, the trial may 
fail to discover a truly effective drug because the statistical test cannot reach the 
conventional significance level due to a lack of power. On the other hand, if the 
sample size is overestimated, enormous resources and efforts would be wasted 
and, more importantly, the drug development may be delayed because patient 
enrollment is often the bottleneck of a trial. 

EXAMPLE 6.1 

A multi-center two-arm randomized phase III trial was designed to compare 
the combination of gemcitabine and docetaxel versus gemcitabine alone 
for treating patients with advanced or metastatic unresectable soft tissue 
sarcoma. Each patient received up to four courses of chemotherapy, with 
each course lasting for six weeks. The goal of the study was to compare 
progression-free survival (the primary objective) and overall survival (the 
secondary objective) between the two treatment groups. 

6.1.1 Statistical Hypothesis 

For ease of exposition, we consider a two-arm clinical trial with dichotomous 
outcomes. Let p\ denote the response rate of the experimental drug, and let p2 
denote that of the standard drug. In the hypothesis testing, the null hypothesis 
states that there is no difference between the two treatments, while the alternative 
hypothesis claims that there exists a clinically meaningful difference between 
them: 

HQ:pi = p2 versus Hi: pi φρ2· 

If the data provide enough evidence to support H\, we would reject HQ and 
claim that there is a significant difference between the two treatments. A type 
I error is rejection of HQ given HQ is true; a type II error is acceptance of HQ 
given Hi is true. The probabilities of committing the type I and type II errors 
are given by 

a = Pr(reject HQ \ HQ is true), 
and 

β = Pr (accept HQ | HI is true), 
respectively. Power is defined as 

power = 1 — β = Pr (reject HQ | H\ is true). 

The p-value of a statistical test is the probability of observing the sample statistics 
at least as extreme as the test statistic based on the data, assuming that HQ is 
true. In general, the significance level of hypothesis testing is set at 0.05. If the 
p-value is smaller than 0.05, we claim that the statistical test is significant and 
thus reject the null hypothesis; otherwise, we accept (or fail to reject) the null 
hypothesis. 
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6.1.2 Classification of Phase III Trials 

Depending on the study goal, a phase III clinical trial may be designed to test for 

• any treatment difference: p\ φ P2, 

• superiority: p\ > P2, 

• noninferiority: p\ > P2 — ¿>N, or 

• equivalence: \pi — P2I < &E, 

where ON > 0 and δβ > 0 are called the noninferiority and equivalence margins, 
respectively. 

It is more intuitive to illustrate these four types of clinical trials using the 95% 
confidence interval of p\ — P2- When we are concerned with any difference 
between the two treatments regardless of which one is better, the hypothesis test 
is two-sided with 

HQ'-P\=P2 versus Ηι:ρι^ρ2. (6.1) 

If the 95% confidence interval of p\ — p2 does not contain zero along either 
direction, we claim that there is a significant difference between the two treat-
ments. 

[ 1 ] Difference shown 

[ 1 ] Difference not shown 

[ 1 ] Difference shown 

0 
Treatment difference p\ — p2 

Superiority trials aim to test whether the experimental drug is clinically supe-
rior to the standard treatment. Based on the one-sided hypothesis test, 

Ho:pi<p2 versus H^. ρχ > p2, 

if the lower bound of the confidence interval of p\ — p2 does not cover zero, the 
experimental treatment is claimed to be superior to the standard treatment. 
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f 1 ] Superiority shown 

[ 1 3 Superiority not shown 

0 
Treatment difference pi — pi 

Noninferiority trials intend to demonstrate that the therapeutic effect of the 
experimental treatment is not worse than that of the standard treatment by more 
than a prespecified noninferiority margin, SN > 0. This corresponds to a one-
sided hypothesis test with 

Ηο:ρι<ρ2-δκ versus Hi: pi > pi - SN-

In a noninferiority trial, the new treatment is expected to be at least similar to the 
existing therapy in terms of efficacy, while the advantages of the new treatment 
may include being more convenient to administer, inducing fewer side effects, 
or being less expensive. 

[ 1 ] Noninferiority shown 

[ 1 ] Noninferiority not shown 

-δΝ 0 
Treatment difference pi — pi 

To establish equivalence of two treatments, we need to specify the equivalence 
margin SE > 0, which is the maximal difference between pi and p2 that is 
considered clinically acceptable. In contrast to (6.1 ), the fundamental strategy for 
testing equivalence is to reverse the roles of the null and alternative hypotheses; 
that is, 

HQ: \pi - p2¡ > SE versus Hi: \pi — p2¡ < SE. 

The two treatments are claimed to be equivalent if the null hypothesis is rejected. 
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[ 1 ] Equivalence shown 

[ 1 ] Equivalence not shown 

£ j ^ Equivalence not shown 

-δΕ 0 δΕ 

Treatment difference p\ — p2 

6.1.3 Superiority versus Noninferiority 

Superiority and noninferiority often cause much confusion in clinical trial de-
signs. A noninferiority trial is recommended for use only when the experimental 
treatment is not expected to be superior to the active control in a superiority 
trial. The use of a placebo is not allowed in a noninferiority trial. In general, 
noninferiority trials are more difficult to design, implement, and interpret, and 
they cannot be simply regarded as "underpowered" superiority trials. 

In clinical trials, minimizing trial conduct errors and protocol deviations 
are of paramount importance. At the end of a superiority trial, the primary 
analysis is often based on the intent-to-treat (ITT) population, which consists 
of all the patients randomized regardless of their noncompliance, crossover, or 
dropouts. ITT analysis tends to draw the effectiveness of two treatments closer 
to each other; that is, the trial findings would be biased toward the null. On the 
other hand, the per-protocol (PP) analysis only includes the compilers who have 
strictly followed the protocol, which tends to exaggerate the treatment difference. 
In contrast to a superiority trial, the converse is true for a noninferiority trial: 
Misconduct such as patient noncompliance or missing data would bias the results 
toward the alternative. It is thus common to carry out both the ITT and PP 
analyses in the end, and expect the findings to be similar and interpretable. More 
discussions on ITT, PP, and other population-based analyses of clinical trials are 
given in Section 6.8. 

In a noninferiority trial, if the 95% confidence interval for the treatment 
benefit excludes both the noninferiority margin and zero, we may directly claim 
superiority without the need to adjust for multiplicity due to the close testing 
principle (Moyé, 2003); see Section 6.6.1 for multiple testing issues. However, if 
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a superiority trial fails to reject the null hypothesis, one cannot infer noninferiority 
as a backup. To claim noninferiority of an experimental therapy to the standard 
treatment, the noninferiority margin must be explicitly specified prior to the trial 
conduct. However, if a trial is designed as a superiority trial to begin with, there 
is no such a noninferiority margin specified in advance. 

6.2 COMPARING MEANS FOR CONTINUOUS OUTCOMES 

6.2.1 Testing for Equality 

The sample size is calculated under the alternative hypothesis based on the 
type I error rate a and power 1 - ß. First of all, one needs to specify a 
clinically meaningful difference that is to be detected at the conclusion of the 
trial. Intuitively, if a small difference is expected between the two treatments in 
comparison, a large sample size would be required, and vice versa. Not only 
does the sample size estimation depend on the effect size, it also depends on the 
variance. The larger the variance, the harder it is to detect the difference and 
thus a larger sample size is needed. 

Consider a two-sample comparison with continuous outcomes. Let Yik be the 
observed outcome for the ith subject in the Mi treatment arm, for i = 1 , . . . , η^ 
and k — 1,2. The outcomes in the two groups are assumed to be independent 
and normally distributed with different means but an equal variance σ2, 

Yik~N(ßk,a
2), Ä = 1,2. 

Let θ = μχ — μ2, the difference in the mean between treatment 1 (the new 
therapy) and treatment 2 (the standard of care). 

To test whether the effects of the two treatments are the same, we formulate 
the null and alternative hypotheses as 

H0: Θ = 0 versus Hx: θ φ 0. 

Based on the observed data, we first construct a test statistic Tn for discriminat-
ing HQ and Hi, and then calculate the p-value by gauging the observed value of 
Tn against its distribution under Ho. The hypothesis testing procedure assesses 
the strength of evidence contained in the data in favor of or against the null hy-
pothesis. If the p-value is adequately small, say, less than 0.05 under a two-sided 
test, we reject the null hypothesis and claim that there is a significant difference 
between the two treatments; otherwise there is no significant difference. 

More specifically, the sample mean for each group is given by 

1 nk 

Yk = — Y,Yik, A; = 1,2, 
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and the pooled-sample variance is 

i 2 nk 

Then the two-sample t test statistic is given by 

sny/l/ni + l /n2 ' 

which follows a central tv distribution with v = n\ + n2 — 2 degrees of freedom 
under Ho, and a noncentral tv(c) distribution with a noncentrality parameter 

Θ 
c = — 

σχ/1/ni + l / n 2 ' 
under i/χ. The null hypothesis would be rejected, if |Tn| > t„ta/2, where the 
critical constant tVfií¡i is the 100(1 - c*/2)th percentile of the central t distribution 
with v degrees of freedom. 

To determine the sample size, we need to control the type I error rate a, and 
also to achieve power 1 — ß under the alternative hypothesis. Let T(-,c) denote 
the cumulative distribution function of the noncentral i„(c) distribution. Under 
Hi, the power of the two-sample t test is given by 

1-/3 = 1 - T(t„,e / 2 , c) + Τ ( - ί „ , α / 2 , c). (6.2) 

The sample size for the planned study can be solved from (6.2), which, however, 
does not have a closed form. 

If the variance σ2 is known, the test statistic becomes 

σ^/1/rii + l / W 

which follows the standard normal distribution under HQ, and a normal distribu-
tion with a nonzero mean and a variance of one under Hi. In a two-sided test, the 
null hypothesis is rejected at a significance level of a if \Tn \ > za/2, where za/2 

is the 100(1 - a/2)th percentile of the standard normal distribution. The sample 
size calculation can be dramatically simplified based on normal distributions, 
and the sample size formula becomes more explicit. 

We specify the treatment difference to be detected as Θ and define 

ay/l/ni + l/n2 

which is the standard normal random variable. Figure 6.1 shows the type I error 
rate and power in a two-sided hypothesis test. Under the alternative hypothesis, 
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á 

□ P(fla>1.96|H,) = 0.85 
□ Prp>1.96|Ho) = 0.05 

Figure 6.1 Type I error rate and power under the null and alternative hypotheses 
based on normal distributions. 

the power is given by 

1 - ß = Pr ΥΛ-Υ* 
> ¿a/2 

θ 

Ht 
ayjl/m + l/n2 

= Pr[Z>za/2-
\ oy/l/ni + l/n2 

+ vĄz<-za/2-

Ηχ 

σ^/1/ni + l /n 2 
ΗΛ (6.3) 

We now consider the case with positive Θ and that with negative Θ, separately. 
If Θ > 0, we can ignore the second term in (6.3) because it is smaller than a/2, 
and then 

β « Pr(z < za/2 u ,θ _ , Ηι\ . 
asjl/ni + l/n2 
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Similarly if Θ < 0, we can ignore the first term in (6.3), and then 

/ 3 « P r Z < z e / 2 + 
σ-ν/1/ni + l /n 2 

# 1 

By combining the Θ positive and Θ negative cases and ignoring the terms that are 
smaller than a/2, (6.3) is simplified as 

σ-y/l/m + l /n 2 

where Φ(·) is the cumulative distribution function of the standard normal distri-
bution. Therefore, the sample size is obtained by solving 

\θ\ 
- Za/2 + Ζβ. ayjl/n-i + l/ra2 

Using an equal allocation of the trial participants with m = n2 = n/2, the total 
sample size for the trial is 

4σ 2 (ζ α / 2 + ^ ) 2 

n = 02 · 

Often in practice, relatively more patients are assigned to the new treatment than 
those to the standard treatment in order to learn more about the experimental 
drug. If the patient allocation ratio between arm 1 and arm 2 is r — ni/ra2, then 

(l + l/r)a2(za/2 + zß)
2 

m = rri2 and n2 = -— -̂ —■ . 

When using an unbalanced patient allocation, the total sample size needs to be 
increased in order to maintain the same power as that with a balanced allocation. 
Figure 6.2 shows that imbalance in the numbers of patients typically leads to 
some power loss. 

EXAMPLE 6.2 

Suppose that an experimental drug is compared with the standard treatment 
in terms of lowering a continuous biomarker measurement. The expected 
treatment difference is Θ = 1 and the variance is σ2 = 4. If we conduct 
a two-sided normal Z-test at a significance level of a = 0.05, the total 
sample size to achieve a power of 90% is 168, with 84 for each arm. If 
the assignment ratio between the new and standard treatments is 2:1 (i.e., 
r = 2), then we need 126 subjects in the experimental arm and 63 in the 
standard arm to achieve the same power 90%. 
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σϊ -
d 

! i J 

Allocation ratio r 

Figure 6.2 Power versus the allocation ratio with the total sample size fixed at 
n = 168 and the significance level a = 0.05. 

6.2.2 Superiority Trial 

In a superiority trial, one is interested in assessing whether the new treatment 
is better than the standard treatment. This can be formulated in a one-sided 
hypothesis test with 

H0: Θ < 0 versus Ηχ: Θ > 0. 

Under Hi, we choose a clinically meaningful difference Θ > 0 and define 

z = ΫΧ-Ϋ2-Θ 
ay/l/ni + l /n2 ' 

which follows the standard normal distribution. In a one-sided test, the power is 
given by 

1- /3 = Pr Y1-Y2 
ay/l/ni + l/ra2 

= Pr \Z>za-

> zn 

Θ 

ΗΛ 

ay/l/ni + l /n 2 
i / 1 > 
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which leads to 
Θ 

=Za + Zß. ay/l/ni + l /n 2 
If the numbers of patients in the two groups are the same with ri\ = n<2 = n/2, 
then the total sample size is 

_ Ασ2(ζα + ζβ)
2 

n - θ2 

and if the patient allocation is unequal with n\ = m>¿, then 

{l + l/T)a\za + zßf 
n2 = Ψ · 

6.2.3 Noninferiority Trial 

In a noninferiority trial, we are interested in examining whether the new treatment 
is not worse than the standard treatment by a noninferiority margin, ON > 0. The 
threshold SN specifies the lower bound beyond which the experimental drug is 
considered unacceptably inferior to the standard drug. In a one-sided hypothesis 
test with 

HQ\ Θ < —SN versus Η\\θ> —δ^, 

by rejecting Hę,, the experimental treatment would be claimed to be noninferior 
to the standard treatment. 

-δΝ 0 
Treatment difference μ\ — μι 

It is critical to choose an appropriate noninferiority margin in such a trial. 
The noninferiority margin typically should not be larger than the smallest effect 
size that the standard treatment (active control) would be expected to have in 
comparison with a placebo. The noninferiority margin ON can be determined 
based on 

• the clinical rationale, for example, ON is specified as the maximum differ-
ence that the investigator would tolerate; 

• regulatory requirements using the information from previous trials; or 
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• the statistical "putative placebo" approach, that is to preserve a relevant 
proportion of the benefit of the active control over the placebo in historical 
studies. 

The sample size for a noninferiority trial is determined as follows. In a one-
sided noninferiority test, the null hypothesis is rejected at a significance level of 
a, if 

Ϋ\-Ϋ2 + δΝ ^ 
— 7 = = = 2^ za. ay/l/m + l /n 2 

Define the standard normal variable 

Ϋ1-Ϋ2-Θ 
Z 

ay/l/ni + l/rc2' 

and the power is given by 

1 - β = Pr —====== > za Hi 
\ay/l/ni + l/n2 , 

= Pr(z>Zn-
 δΝ + θ 

Hi 
σ^/Ι/ηι + l /n 2 

which leads to 
θ + δΝ — = za + ζβ. 

ay/l/ni + l /n 2 

If the numbers of patients in the two groups are equal with n\ = n2 = n/2, 
then the total sample size is 

4σ2(ζα + ζβ)
2 

{θ + δΝγ ■ 

If the numbers of patients in the two groups are different with n\ = rn2, then 

(l + l/r)a2(za + zß)
2 

" 2 
(θ + δΝ)2 

Often in a noninferiority trial, the true mean difference is assumed to be zero (i.e., 
Θ = 0), when estimating the sample size. Because the noninferiority margin <5jv 
is typically smaller than the specified treatment difference in a superiority trial, 
the sample size required for a noninferiority trial is in general much larger than 
that for a superiority trial. 

6.2.4 Equivalence Trial 

In practice, the therapeutic effects of two treatments cannot be shown to be ex-
actly the same. Equivalence trials aim to demonstrate that the difference between 
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two treatments is less than a prespecified equivalence margin, SE > 0. If the 
therapeutic effects of two treatments differ by more than the equivalence margin 
along either direction, the equivalence does not hold. Sometimes, a noninferior-
ity trial is also called an equivalence trial because we are only concerned about 
whether the new treatment is not worse than the standard treatment. 

-SE O SE 
Treatment difference μ\ — μ2 

An equivalence trial formulates the null and alternative hypotheses as 

HQ: |0| > SE versus Hx\ \θ\ < SE. 

The null hypothesis HQ would be rejected, leading to the equivalence of two 
treatments, if 

Ϋι - % + SE Ϋ1-Ϋ2- SE 
/— — > za and __, — 

ay/l/ni + l/n2 ay/l/ni + l/n2 

< -za. 

The rejection region can be rewritten as 

SE Ϋι - Ϋ2 
Z/y < 

Gy/l/nx + l /n 2 ayjl/m + l /n 2 

As defined before, let 

Ϋχ-Ϋ2-Θ 
A = - r· 

ay/l/m + l /n 2 

Under Ηχ, the power is given by 

SE + Θ 

< -za + 

N(0,1) 

SE 

ay/l/m + l /n 2 

l-ß = Prlza-

= Φ[~ζα + 

ay/l/ni + l /n 2 

SE-Θ 

<Z<-za + 

Φ [za 

SE-Θ 

ay/l/m + l /n 2 

SE + Θ \ 

ΗΛ 

σ-ν/1/ni + l /n 2 y \ ay/1/πι + l/n2J ' 

In a conservative derivation with no power inflation, we have that 

SE - \θ\ 
1-βπ2Φ\-ζα + 

σ^/1/ηχ + 1/η2 
- 1 , 



172 PHASE III TRIAL DESIGN 

which leads to 
SE - \θ\ 

σ^Ι/ηχ + l/n2 

If the sample sizes of the two groups are the same with n\ — n2 — n/2, then 
the total sample size is 

_ 4 σ 2 ( ζ α + ζ / 3 / 2 ) 2 

n~ {δΕ-\θ\? · 
If the sample sizes of the two groups are different with n\ = rn2, then 

(l + l/r)a2(za + zß/2)
2 

™2 ~ (SE - \θ\)2 

where Θ is often set as zero in practice. 

EXAMPLE 6.3 

Most of the equivalence trials compare a generic drug with the originally 
approved drug, aiming to establish bioequivalence. The two drugs are 
generally expected to have similar pharmacokinetic profiles. A bioequiva-
lence trial often uses the 90% rather than the 95% confidence interval. In 
a clinical trial with cardiovascular disease, both the experimental and the 
standard therapies target lowering a continuous measurement, such as the 
blood pressure or cholesterol level. The study is to establish equivalence 
of the two treatments in terms of therapeutic effects with an equivalence 
margin SE = 0.2. The variance of the medical measurements is estimated 
as 1 from previous studies. With a type I error rate a = 0.1, we need a 
total sample size of 740 patients in order to achieve a power of 85%. 

6.3 COMPARING PROPORTIONS FOR BINARY OUTCOMES 

6.3.1 Testing for Equality 

In many clinical trials, the primary endpoint is dichotomous, for example, 
whether a patient has responded to the treatment, or whether a patient has 
experienced toxicity. More specifically, consider a two-arm randomized trial 
with binary outcomes. Letpi denote the response rate of the experimental drug, 
p2 as that of the standard drug, and the difference is Θ = p\ — p2. Let Yik be the 
binary outcome for subject i in arm k; that is, 

v _ [ 1, with probability pit, 
-{I: with probability 1 — pk, 
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for i = 1 , . . . , nk and k = 1,2. The sum of i.i.d. Bernoulli random variables 
follows a binomial distribution, 

«fc 

J2Yik ~Bin(nfc>Pfc)> A; = 1,2. 
i = l 

The sample proportion for arm k is 

1 «it 

n ^ = i 

and E(yfc) = pk and Var(Y"fc) = pk(l - pk)/nk. 
To test whether there is any difference between p\ and p2, we formulate a 

two-sided hypothesis with 

Η0:θ = 0 versus # i : 0 ^ 0. (6.4) 

Under the null hypothesis, we may construct a test statistic 

Tn= ΫΧ-Ϋ2 

^Ϋ{\-Ϋ){1/η1 + 1/η2) 

where Ϋ is the pooled-sample mean, 

Ϋ = ηιΫι n2Y2 

ni + n2 n\ + n2 

Noting that F is a consistent estimator of 
ηιρι n2p2 

p= — - — + — - — ' 

n\ + n2 n\+ n2 the test statistic can be approximated by 

ΫΙ-Ϋ2 
^p{l-p){l/ni + l/n2y 

Under the null hypothesis, Tn follows the standard normal distribution, 

Τ η | # 0 ~ Ν ( 0 , 1 ) , 

and under the alternative hypothesis, 

Θ Pi{l-pi)/ni+p2(l-p2)/n2 

(6.5) 

T n | # i ~ N 
^/Pil-p^l/ni + l/n^ p(l - p)( l /nx + l /n2) 
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We control the type I error rate at a, specify the treatment difference to be 
detected as Θ, and define the standard normal random variable 

Z = 
ΫΙ-Ϋ2-Θ 

\ /pi ( l -Pi)/ni + p2(l - P 2 ) / W 

The sample size is computed under H\ to achieve a power of 1 — ß, 

Ϋ1-Ϋ2 

(6.6) 

1-/3 = Pr >z. a/2 Hi 

= Pr \Z> 

V p ( l - p ) ( l / n i + l /n2 

Zgßy/PO- - p) (V"i + V"^2) - Θ 

+ PT[Z< 

v/pi(l - P i ) / n i + p2(l -p2)/n2 

V 2 \ / p ( i - p ) ( i /m +1/^2) - ô 
VPit1 - P i ) M +P2(1 -P2)/ri2 

Hi 

Similar to the case with normally distributed endpoints in (6.3), we simplify the 
derivation by ignoring the term that is smaller than a /2 in the situations with 
Θ > 0 and Θ < 0, respectively. So for Θ > 0, 

0 « P r Z < 
2 a / 2 v

/ p ( l - p ) ( l / n 1 + l /n2) - 0 

and for Θ < 0, 

^ « P r U < 

V P I ( 1 - P i ) / n i +P2(1 -p2)/n2 

za/2 V p ( l - p ) ( l / n i + l /n2) + 0 

# 1 

\ /pi ( l - P i ) M +P2(1 - p 2 ) / n 2 
# 1 

Therefore, 

/ 3 * Φ V 2 ^ P ( l - p ) ( l / n i + l / » 2 y - | g r 
V P I ( 1 -Pi)/ni + p 2 ( l - p 2 ) / n 2 / 

and the sample size can be obtained by solving 

mi /-/Ί - ^ 1 , M , Pi(l-Pi) , P2(l-P2) 
|Ö| = W P ( I - P ) ( - + - J + W + n i TC2 

If ni = n2 = n/2, then the total sample size is 

n Θ2 [za/2\j2p{\ -p) + zßy/Pl(l -pi) +p2(l - p 2 ) | , (6.7) 

and if ni = rn2, then 

n2 
l + 1 / r í /— IT. /pi(l - p i ) / r + p2(l - p2) Y 

= -ör-{v2Vp(1-p)+^y ττττ^ } 
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6.3.2 Sample Size Formula with Unpooled Variance 

In the derivation of the sample size formula (6.7), the samples in the two groups 
are pooled together under the null hypothesis to estimate the variance. However, 
if we do not pool the samples, a slightly different but simpler sample size formula 
can be derived. Under the same two-sided hypothesis as in (6.4), we consider 
the test statistic 

T„ = Y1-Y2 

y / y 1 ( i - f 1 ) / n 1 + y 2 ( i - y 2 ) / n 2
: 

which can be approximated by 

„ Ϋ1-Ϋ2 
y/pi(l - pi) /ni + p2(l -P2) /n 2 ' 

Under the null hypothesis, 

T n | f r 0 ~N(o , i ) , 

and under the alternative hypothesis, 

Θ 

(6.8) 

Γ „ | # ι ~ Ν 
y/pi(l -pi)/ni + p 2 ( l - p 2 ) / n 2 ' 

Given the specified effect size Θ, the power is given by 

Ϋ1-Ϋ2 1-/3 = Pr 

= Pr Z> z, 

y/pi{l -p\)/n\ + p 2 ( l -p2)/ri2 

Θ 

> Za/2 Hi 

VPi(l~Pi)/ni +P2(1 -P2)/n2 

Θ 

ΕΛ 

+ Pr Z < -za/2 -
V VPÚ1 -Pi)/ni +P2(1 -P2)/ri2 

Hi 

where Z is defined the same as in (6.6). If we ignore the term that is smaller 
than a/2 when considering Θ > 0 and Θ < 0, respectively, then 

0 « Φ Za/2 - 1*1 
y/pi(l -P\)/ni + p 2 ( l -P2)/n2) ' 

and the sample size can be obtained by solving 
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If m = ri2 = n/2, then the total sample size is 

n = ^ 2 Ι Ρ ι ( 1 - Ρ ι ) + Ρ 2 ( 1 - Ρ 2 ) } , (6-9) 

and if n\ = rri2, then 
za/: 

02 
{Za/2+Zßfr ,Λ M , (Λ \\ 

EXAMPLE 6.4 

Suppose that the standard treatment has a response rate of 30% for metastatic 
breast cancer patients, and the new treatment is expected to improve the 
response rate with an increment of 10%. Under this setup, we have that 
Pi = 0.4, p2 = 0.3, and Θ = 0.1. We take a two-sided test with a type 
I error rate of a = 0.05 and a power of 90%. Based on (6.7), the total 
sample size for this study is 952 patients, with 476 in each arm. Using the 
alternative sample size formula in (6.9), we need 946 subjects in total, with 
473 in each arm. 

6.3.3 Superiority Trial 

Superiority trials are designed to assess whether the new treatment is better than 
the standard treatment, for which a one-sided hypothesis is formulated as 

Η0:θ<0 versus Hu Θ > 0. 

After we specify a clinically meaningful difference Θ > 0 under Hi, the sample 
size is determined as follows. The power is given by 

\-β = Ί>τ[Ζ> W p ( l - p ) ( l / n 1 + l/n2)-0 
\/Pl(l -Plihl +P2(1 -Ρ2)/Π2 

where Z is the standard normal variable defined as 

VPi(l -Ρι)/ηι + p 2 ( l -P2)/ri2 

Therefore, the sample size can be obtained by solving 

Hi 

V \nl n2/ V nl '' n2 

If ni = ri2 = n/2, then the total sample size for the trial is 
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and if ni = rn,2, then 

l + l/r f— - , / p i ( l - P i ) / r + P 2 ( l - P 2 ) l 

If we use the test statistic in (6.8) without pooling two samples for the variance 
estimation, the sample size formula for a superiority trial would be slightly 
different. If n\ = n2 = n/2, then the total sample size is 

n = Q2
 μ {ρι(1 - pi) + p 2 ( l - P2)}, 

and if rai = rn2, then 

n2 = Za
 Q2

Zß { ρ ι ( 1 - Ρ ι ) Α + Ρ2(1-Ρ2)>· 

EXAMPLE 6.5 

If the response rate of the standard chemotherapy for prostate cancer is 
20%, and we expect that the experimental drug would double the response 
rate of the standard treatment, so pi = 0.4 and p2 = 0.2. In a one-sided 
test, we specify the type I error rate a = 0.025 and power 80%. The 
total sample size required for such a superiority trial is 162 patients. If 
the allocation ratio between the experimental and the standard arms is 
3:1, we need 159 and 53 subjects in the experimental and standard arms, 
respectively. 

6.3.4 Noninferiority Trial 

Noninferiority trials are conducted to assess whether the new treatment is not 
worse than the standard treatment by a noninferiority margin, δχ > 0. The 
hypothesis test for a noninferiority trial is one-sided, which is formulated as 

Ho'· Θ < —ON versus H\: Θ > —ON-

-δΝ 0 
Treatment difference p\ — p2 
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The sample size for a noninferiority trial is determined as follows. The null 
hypothesis is rejected at a significance level of a, if 

ñ - γ2 + δΝ 
> z, V p ( l - p ) ( l / n i + l /n2) 

Define the standard normal random variable 

Ϋλ-Ϋ2-Θ 

a-

z = VPi(l - P i ) / n i +P2(1 -P2)/n2' 

and the power is given by 

1 _ 0 = p r ( Z > W P ( 1 - P)( l /" i + l/"2) - (0 + ¿JV) 
V W 1 - P l ) / n l + P2(l - P2)/"2 

Therefore, the sample size can be obtained by solving 

Hi 

. X l-fi -M1 i 1\±. / P l ( l - P l ) , P2( l -P2) 
vni ni) V ni n2 

If ni = n2 = n/2, then the total sample size is 

2 
n = (θ + δΝ)2 

and if n\ = mi, then 

\za^1p{\ -p) + Zßy/pi{l-pi) + p2(l - p 2 ) J , 

<ZayJp(l-p) + ZßJ--
_ 1 + 1/r J__ / ^ — i _ /pi(l - p i ) / r + p2(l -P2) 

{θ + δΝγ ρ ν ^ ^ "ργ i + i/r j · 
If we use the test statistic in (6.8) without pooling two samples for the variance 

estimation, the sample size formula for a noninferiority trial would be slightly 
different. If ni = n2 = n/2, then the total sample size is 

2(Zg + Ζβ) 

(θ + δΝ) 

and if ni = rri2, then 

n = )?, x S ( P i ( l - P i ) + » ( 1 -P2)} , 

n 2 = (g*+ SN)2 ^ 1 ~ P l ^ r + P2^ ~ P 2 ^ ' 

In practice, we typically take pi = p2 for a noninferiority trial; that is, 0 = 0. 
The sample size for a noninferiority trial heavily depends on the choice of the 
noninferiority margin ON- In the following example, we illustrate how to specify 
ON using the "putative placebo" approach, which preserves a certain proportion 
of the benefit of the standard treatment versus placebo. 
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EXAMPLE 6.6 

We are interested in testing whether a new drug is noninferior to the standard 
of care, while the new treatment is less toxic and easier to administer. 
From the statistical perspective, we first estimate the treatment difference 
between the active control (the standard treatment) and the placebo based 
on previous studies. Suppose that the estimated difference of the response 
rates between the active control and placebo is 20%, with a 95% confidence 
interval of [0.16,0.24]. We may set δχ as one half of the minimal estimated 
difference between the active control and placebo (the lower bound of the 
95% confidence interval), that is, SN = 0.08. For a one-sided test with 
a = 0.025 and power = 80%, we take p\ = p2 — 0.2, and thus the sample 
size required for the trial is 785. 

6.3.5 Equivalence Trial 

Equivalence trials are designed to demonstrate that the difference of the ther-
apeutic effects between two treatments is less than a prespecified equivalence 
margin, SE > 0. For this purpose, a one-sided hypothesis can be formulated as 

H0: \θ\ > δΕ versus Hx: \θ\ < δΕ. 

The null hypothesis is rejected at a significance level of a, if 

<Tn< -za + 
V p ( l - p ) ( l / n i + l /n2) " " " y/p(l - p)(l/m + l / n 2 ) : 

where Tn is defined the same as (6.5). 

—SE 0 SE 
Treatment difference p\ — p2 

Under H\, the power is given by 

1 _ β « 2 $ ( - * « v W - P ) ( l M + l /n2j + <yg-|flh _ 1 

V VPÁ1 - Ρι)/ηι +ρ2(1 - V2)¡n2 J 
Therefore, the sample size can be obtained by solving 

P i ( l - P i ) , P2O- -P2) fc-w-^«i-Ä(± + i ) + , , J a < ^ + Π2 
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If n\ = ni = n/2, then the total sample size is 

2 
n = (SE -10|)2 

and if n\ = rn2, then 

\zay/2p(l -p) + Zß/2y/pi(l - Pi) + P2U - P2)} , 

1 + 1/r j /— - / p i ( l - p i ) / r + P2( l -P2) 1 

As in Section 6.3.2, if we take the test statistic in (6.8) for an equivalence trial, 
a different sample size formula can be derived. If m = n2 — n/2, then the total 
sample size is 

2{Zg + Ζβ/2)
2 

n = (S - |fl)2 fa(1~^l)+P2(l-P2)}, 

and if ni = rn2, then 

U2= i§ _jg|2)2 {Pl ( 1 -P l ) / r +^2( l -P2)} · 

6.4 SAMPLE SIZE WITH SURVIVAL DATA 

6.4.1 Comparison of Survival Curves 

In clinical trials with continuous or binary endpoints, responses of patients are 
typically observed immediately or shortly after treatment. However, for cancer 
and other chronic diseases, it is often of interest to compare the duration of 
the time from treatment till occurrence of an event (e.g., disease progression or 
death) between different groups. Phase III trials often collect such time-to-event 
data to examine whether there are survival differences between treatment groups. 
As discussed in Section 3.3, survival data are subject to right censoring due to 
loss of follow-up, interim data monitoring, or the termination of the study. 

Consider a two-arm trial, and let T,fc denote the failure time of subject i 
in arm k, for i = 1, . . . ,η^ and k = 1,2. Correspondingly, let Cik denote 
the censoring time, and we observe X^ = min(T¿fc,C¿fc) and the censoring 
indicator Δ ^ = I(Tik < Cik), where /(·) is the indicator function. Under 
the independent censoring assumption, the survival function for each group, 
Sk{t) = P(Tik > t), can be estimated using the Kaplan-Meier (1958) estimator. 
Let Xk(t) be the hazard function for group k, and thus λ^(ί) = —dlog Skit)/at. 

The null hypothesis states that there is no difference in patients' survival 
between the two groups, 

H0: Si(t) = S2{t) or λι(ί) = λ2(ί), for all t, 
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while the alternative hypothesis claims that Hi: Si(t) Φ S2(t) for some t. 
The log-rank test is most powerful when the hazards of the two groups are 
proportional to each other under the alternative hypothesis, 

Hi: Xi(t) = X2(t)e
e or logXi(t) - logX2(t) = Θ. 

If Θ > 0 (i.e., the hazard ratio ee > 1), patients in arm 1 are at a higher risk, 
resulting in worse survival, than those in arm 2; if Θ = 0 (i.e., ee = 1), there 
is no survival difference between the two arms, implying that Ho is true; and if 
Θ < 0 (i.e., ee < 1), patients in arm 1 have better survival than those in arm 2. 

To construct the log-rank test, we first order all the distinct failure times in 
the pooled samples. Let m denote the total number of distinct failure times. For 
i = 1 , . . . , m, at each of the distinct failure times, we organize the data in a 2 x 2 
contingency table as follows, 

Arm 1 Arm 2 
Du 

Ru — Du 
Ru 

D2i 

R-¿i - D2i 
RK 

Di 
Ri — Di 
Ri 

Number of failures 
Number of survivors 
Number of subjects at risk 

As in the Mantel-Haenszel test for multiple 2 x 2 tables, Du follows a hyper-
geometric distribution conditional on all the marginal counts under HQ. After 
standardization, the log-rank test statistic is given by 

T = 
12iLi(Dii — RiiDi/Ri) 

[ΣΖι RuR2iDi(Ri - Di)/{R*(Ri - 1)}]1/2 ' 

which asymptotically follows the standard normal distribution under HQ. 

(6.10) 

6.4.2 Parametric Approach under Exponential Distribution 

In survival analysis, the number of events rather than the number of subjects 
is more relevant. After entering a trial over a period of accrual time, patients 
are followed till the occurrence of the event of interest or being censored. If 
we assume an exponential distribution for the survival time, Γ ~ Εχρ(λ), the 
survival function and the hazard function are given by 

S{t) = βχρ(-λί) and λ(ί) = λ, 

respectively. The median survival time is A_1log2, the mean survival time 
E(T) = l /λ, and Var(T) = 1/λ2. 

Consider a two-arm clinical trial with an equal allocation of the number of 
patients. Let Xk(t) = Xk be the constant hazard for group k, k = 1,2. We are 
interested in testing a one-sided hypothesis, 

HQ: Xi = X2 versus Hi: Xi > X2, 
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which is equivalent to testing whether the mean or the median survival times are 
the same across the two groups. 

Heuristically speaking, when the number of events is relatively small com-
pared with the number of patients at risk, the variance in (6.10) can be approxi-
mated as 

^-v RiiR2jDi{Rj — Dj) sr-^ RiiRijDj 

If the log hazard ratio Θ is small and the accrual rate for each treatment group is 
similar, then Ru « R^i ~ R%/2, and the variance of the log-rank statistic can be 
further simplified to J2?Li A / 4 = D/A, where D is the total number of events, 
D = Y^Li Di « nP(A = 1), and Δ is the censoring indicator. 

Under the null hypothesis, HQ: λι = X2, 

T n | f f 0 ~N(0 , l ) , 

and under the alternative hypothesis, H\\ λι/λ2 = exp(ö), with Θ > 0, 

Τη\Ηχ^-ίί^θ/2,1), 

where the mean of Tn under Hi can be derived using similar arguments as those 
in Schoenfeld (1981) and Collett (1994). Therefore, for a one-sided test to 
maintain a type I error rate of a and achieve a power of 1 — β, the number of 
events required for a trial is 

4{Zg + Ζβ)2 

In a clinical trial, let ra be the accrual period, and let r¡ be the follow-up 
period, then the entire trial duration is τα + ry. 

Accrual period: ra Follow-up period: r¡ 

0 τα τα + Tf 

If a(t) denotes the accrual rate at calendar time t, the total number of subjects 
to be enrolled in the study is 

fTa 

n = / a(t)dt. 
Jo 

If we only consider administrative censoring by the end of the study, the number 
of expected events is 

D 
fTa 
/ a(t) 
Jo 

1 - ^{Si(ra + Tf-t) + S2{ra + rf - t)} di, 
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where 5Ί (·) and S2 (·) are the survival functions for the experimental and standard 
arms, respectively. Furthermore, if the accrual rate is constant, a(t) = a, then 
under the exponential assumption for the survival time, 

D = a - exp(AiTg)-l exp(A2Ta) - 1 
|_ a 2λι exp{Ai{τα + Tf)} 2λ2βχρ{λ2(τα + T / ) } J ' 

More discussions on the sample size calculation with survival endpoints are 
given in Lachin and Foulkes (1986), Lakatos (1988), and Collett (1994). 

EXAMPLE 6.7 

Suppose that the median survival time for patients with brain tumor is 6 
months under the standard treatment, and the new treatment is expected 
to prolong the median survival time to 8 months. Under the exponential 
model, the hazard for the new treatment is λι = log(2)/8 «¿ 0.0866 and 
that for the standard treatment is λ2 = log(2)/6 « 0.1155, and thus the log 
hazard ratio Θ = log(Ai/À2) ~ —0.2877. If we take a one-sided log-rank 
test at a significance level of a = 0.025 and aim at a power of 80%, the 
total number of events will be D = 380. 

The design parameters involved for calculating the total number of sub-
jects include the accrual rate a, the length of the accrual period ra, and the 
follow-up time r/. Among the three design parameters (a, ra, r / ) , we can 
fix any two of them to compute the third based on (6.11). For simplicity, 
consider a constant accrual rate of a = 25 patients per month, and T¡ = 24 
months, then we can compute the accrual period ra = 16 months and thus 
the total number of patients is n = 400. If we take a = 20 and r / = 12, 
then we obtain τα = 22 in order to have D = 380 events, so we need 
n = 440 subjects. On the other hand, given ra = 24 and r j = 6 months, 
we can obtain the accrual rate of a — 20 patients per month, which leads 
to a total sample size of n = 480. The shorter the follow-up time, the 
more subjects are needed to achieve the required number of events. If the 
number of patients n is fixed, we may extend the follow-up time to reach 
the target number of events D. 

6.4.3 Nonparametric Approach with Counting Process 

The sample size calculation does not necessarily rely upon the exponential 
distribution for the survival time. To derive the sample size nonparametrically, we 
introduce the counting process, Nik(t) = I{X%k < t, Δ ^ = 1), and the at-risk 
process, l¿fc(í) = I(Xik > t), for subject i in group k, i = 1 , . . . , η^; k = 1,2. 
We can write the martingale as 

Mik(t) = Nik(t) - [ Yik(u)dAk(u), 
Jo 
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where Ak (ί) is the cumulative hazard function for group k, Ak (t) = /0* Xk (u) du. 
Let Nk(t) = E ë i N*(t), Mk(t) = E ^ i Mik(t), Yk(t) = ¿%Łi Yik(jt), and 
Y(t) = Y\{t) + Y2(t). The limiting function of Yk(t)/nk is denoted by irk(t) = 
P(Xik > *)■ Let the total sample size be n = n\ + ri2 with an allocation ratio 
r = ni/ri2, then the limiting function of Y{t)/n is 

π ( ί ) = !Ξί(ί)+ *?(*). 
v ; l + r 1 + r 

The Nelson-Aalen estimator of the cumulative hazard function for group k is 
given by 

rt dNk(u) 
A, 

JO /o yfc(u) ' 
where dNk(u) = Nk((u + du)—) — Nk(u—). The usual log-rank statistic 
(Fleming and Harrington, 1991) can be written as 

Under the null hypothesis, HQ: Λχ(ί) = Λ2(ί) = Λ(ί), the variance of Un can 
be approximated by 

"-¿rw** y(i) 

which converges in probability to 

f^WdA(i). 2 _ r i - πι(ί)π2(ί) 

(l + r)27o 7r(t) σ> = — — \ n^>'?u'dA(t). (6.12) 

Let Gfe(i) = P(C¿fc > i) denote the survival function for the censoring time in 
group k, k = 1,2. If the censoring time distributions of the two groups are the 
same, G\(t) = G2(i) = G(t), the variance of Un can be simplified as follows, 

„2 = * f°° Si(t)Gi(*)g2(*)G2(t) . , , , , 
(l + r)2 7o 5 i ( í ) G i ( í ) r / ( l + r ) + 52(í)G2(í)/(l + r ) a W 

r /■oo 

/ S(i)G(t)dA(t) (l + r)2 
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where Si(t) = »ί>2(ί) = S(t) under the null hypothesis HQ. Therefore, if using 
an equal allocation for the two arms with r = 1, the variance of Un reduces to 

σ2 = 1ρ(Δ = 1). 

To determine the sample size for a clinical trial with a survival endpoint, we 
consider a one-sided log-rank test with the type I error rate of a and a power of 
1 — β. Under the local alternative hypothesis Hi: λι(ί) = A2(i)eö where Θ is 
small, the Taylor series expansion yields ee « 1 + Θ. The log-rank statistic Un 

converges in distribution to Ν(μ, σ2), where 

μ (1 + r)2 h π(ί) V ; ' 

and σ2 is given in (6.12). Let Θ be the specified log hazard ratio (the effect size) 
under Hi, then the power is given by 

1 _ β = p r ( _ίί > Za 

σ 
Hi ) = Pr ( ^ τ - ^ > 2α Hi 

where (Î7n — /χ)/σ follows the standard normal distribution. Therefore, 

Za + ZR = — = y/ηθσ, 
σ 

which leads to the number of subjects 

= (l + r)2(za + zß)
2 

n rP(A - 1)02 ' 

and the number of events 

{1 + r)2{Za + Zß)2 

D = nP{A = 1) = 
rQ2 

If r = 1, that is an equal allocation with ni = n^ = n/2, then the total number 
of subjects required for the trial is 

n 
Φ α + Zßf 
Ρ ( Δ = 1)02' 

If the numbers of patients assigned to the two treatment groups are different with 
ni = rri2, then 

(1 + r)(za + Ζβ)2 

U2 rP(A = 1)θ2 ' 
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6.5 SAMPLE SIZE FOR CORRELATED DATA 

6.5.1 Linear Model with Continuous Data 

We have focused on sample size estimation for the i.i.d. data thus far, while cor-
related data may also arise in clinical trials. In a longitudinal study, the outcome 
of interest is repeatedly measured over time for each patient, which may induce 
serial correlations among intra-patient observations. For example, cardiovascu-
lar patients may have their systolic and diastolic blood pressures measured once 
a week to monitor the trend. On the other hand, the data may be naturally or 
artificially clustered; for example, ophthalmology research often involves paired 
eyes of each patient, and dental studies may take multiple measurements on 
several teeth belonging to the same subject. Under such circumstances, corre-
lations are induced among the observed data within each subject/cluster, while 
the data across different individuals remain independent. Not only does the 
sample size calculation need to consider all the design parameters pertaining to 
the independent case (i.e., the effect size and variance), but it also must account 
for the underlying correlations (Vonesh and Schork, 1986; Rochon, 1991; Liu 
and Liang, 1997; Liu, Shih, and Gehan, 2002). 

Under the generalized estimating equation, Liu and Liang (1997) extend the 
sample size computation for the generalized linear model (Self and Mauritsen, 
1988) to correlated data. For ease of exposition, we consider a two-arm trial, 
in which each participant has an equal number of measurements; that is, all 
the cluster sizes are the same, say K. Let Z¿ = 0 if patient i is under the 
standard treatment, and Z¿ = 1 if he/she is under the new treatment. Let 
Yik denote the observed outcome for the fcth measurement on the ith subject, 
i = 1 , . . . , n; fc = 1,... ,K. We apply the marginal linear regression model to 
examine the treatment effect, 

Yik = 7 + OZi + eik, 

where 7 is the intercept and Θ represents the marginal treatment effect. We 
assume the error vector e¿ = (e¿i,... ,ej#)T follows a multivariate normal 
distribution with mean zero and variance-covariance matrix a2R; that is, e¿ ~ 
NK(U, a 2 R) , where σ2 is the marginal variance and R is the correlation matrix. 

We specify the type I error rate a and power 1 — β, and assume that subjects 
are equally allocated between the two treatment arms. Under the two-sided 
hypothesis test with 

Η0:θ = 0 versus Ηϊ.θφΟ, 

the total sample size required for the trial is 

Φ α / 2 + *β?σ2 , Ä 1 „ 
n = 02(1TR-11) ' ( 6 · 1 3 ) 
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where 1 is a if-vector of l's, and Θ is the specified effect size under H\. If we 
further assume an exchangeable correlation matrix, 

A p · · · p\ 

P '·· : 
R = . 

: ·· p 

\P ■■■ P V 
where p is the correlation coefficient, the sample size formula in (6.13) can be 
simplified as 

4(ζα/2 + ζβγσ2{1 + (Κ-1)ρ} 
n~ Θ2Κ 

Therefore, the design parameters θ, σ, and p should all be calibrated from 
previous studies or expert opinions. Compared with the effective sample size 
nK for the independent normal data, the total number of observations is inflated 
by a factor of 1 + (K — ï)p due to correlations. The sample sizes for a superiority 
trial, a noninferiority trial, and an equivalence trial with correlated data can be 
derived similarly as those independent cases. 

EXAMPLE 6.8 

To illustrate the influence of correlations on the effective sample size, we 
consider a longitudinal study with six consecutive measurements; that is, 
the cluster size is K = 6. For simplicity, we assume an exchangeable 
correlation structure with p = 0.2, and take Θ = 0.2 and σ — 1. We 
specify the type I error rate a = 0.05 and power 85%. Then the number 
of clusters required for the trial is n = 300, leading to a total number of 
observations of nK = 1800, which doubles the effective sample size of 
900 if all of the settings are the same except that the data are assumed to be 
independent (p = 0). Certainly, the higher the correlation, the larger the 
sample size needed to achieve the same power. 

6.5.2 Logistic Model with Binary Data 

Consider a longitudinal study with two treatments; and for simplicity, suppose 
that each patient has the same number of measurements, K. Let Z¿ = 0 if subject 
i is treated in the control arm, and otherwise Z¿ = 1 for the experimental arm. 
For i — I,... ,n and k = 1,...,K, let Y¿fc denote a binary outcome for the kth 
measurement of the ith subject, which takes a value of 1 with probability pik, and 
0 with probability 1—pik- The observations for the żth subject, Ya,..., Υ\κ, are 
correlated due to repeated measurements. We apply a logistic regression model 
to examine the marginal treatment effect, 

logit(pifc) = 7 + eZi. 
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We are interested in testing whether there is a difference in the response rates 
between the treatment and control groups; that is, 

Η0:θ = 0 versus Ηχ: Θ φ 0. (6.14) 

Following the logistic model, the probabilities of response for the control and 
treatment are given by 

e*P(7) . n exp(7 + 0) 
PO = 7 - ΓΤ a n d Pi 1 + exp(7) y 1 + exp(7 + Θ) ' 

respectively. Hence, the hypothesis testing in (6.14) is equivalent to 

Ho-Po= Pi versus Ηχ-.ροφρι. 

With an equal allocation between the two arms, the total number of patients 
needed is 

2(zQ/2 + ^ ) 2 f a ) ( l - p o ) + P i ( l - p i ) } 
n ^ ( l T R - i l ) 

where R is the K x K correlation matrix. If we further assume an exchangeable 
correlation matrix with correlation coefficient p, the sample size is simplified to 

2 (V2 + ^)2{Po(l - Po) + Pi(l - Pi)}{l + {K- l)p} V n = 
Θ2Κ 

Compared with the sample size formula for the i.i.d. binary data in (6.9), the 
inflation factor 1 + [K — \)p indicates that the higher is the correlation, the more 
observations are needed. 

6.6 GROUP SEQUENTIAL METHODS 

Conventional clinical trial designs typically determine the total sample size in ad-
vance and only perform one final analysis after all the data are collected according 
to the planned sample size. These methods are known as fixed-sample designs, 
which are easy to plan and implement, but lacks flexibility. In addition, the trial 
conduct is rigid, strictly complying with the prefixed sample size, regardless of 
unexpected interim results, such as better-than-expected superiority or futility. 
By contrast, group sequential methods are much more flexible, which regularly 
examine the efficacy data over administratively convenient intervals, and also 
monitor possible futility stopping along the course of the study (Jennison and 
Turnbull, 2000). If the experimental treatment shows an overwhelmingly strong 
beneficial effect at the interim analyses, it would be desirable to stop the trial 
early to allow patients on the inferior arms to receive the more effective treatment 
and, more importantly, to move the drug developmental process rapidly such as 
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to benefit more patients in the general population (Pocock, 1977; O'Brien and 
Fleming, 1979; Lan and DeMets, 1983). 

Continuous data monitoring refers to a fully sequential analysis of the accu-
mulating data after observing every single outcome, which, however, may be 
practically infeasible. Group sequential methods offer a compromise between 
trial flexibility and practicality. In particular, Pocock (1977) and O'Brien and 
Fleming (1979) describe two-arm group sequential tests with different stopping 
boundaries for the significance region: The former takes equal testing boundaries 
throughout the trial, while the later allocates more stringent levels of significance 
at the beginning of the study and alleviates the significance levels towards the 
end of the trial. Based on a more general boundary specification, Wang and 
Tsiatis (1987) develop a class of group sequential tests, which includes Pocock's 
design and O'Brien and Fleming's design as special cases. Classical sequential 
designs aim for early termination of a trial when interim data demonstrate no-
table treatment differences. Modified one-sided group sequential designs may 
also allow trials to terminate early for a lack of treatment effects (DeMets and 
Ware, 1980; 1982; Gould and Pecore, 1982; Whitehead and Stratton, 1983). 

6.6.1 Multiple Testing 

Multiplicity may arise when several hypotheses are tested simultaneously or the 
same hypothesis is tested sequentially over time as in the group sequential trial 
design. As a consequence, the p-value needs to be adjusted in order to control 
the familywise type I error rate. To be more specific, let Θ denote the parameter 
of interest, and there are K hypotheses to be tested, denoted as {HQI ,..., HQK } · 
Define the parameter space of Θ under the null hypothesis, 

θ = | β : f]Hok is t rue l . 

The familywise error rate is controlled at level a, if 

sup Pr(reject at least one Hok, k = 1 , . . . , K) < a. 

Suppose that we perform K hypothesis tests. If each test is conducted at a 
significance level of a — 0.05, then the overall type I error rate will be inflated, 
which deteriorates as the number of tests K increases. For K from 1 to 10, we 
list the overall type I error rate below: 

Number of Tests (K) 

Type I Error Rate 

1 

0.05 

2 

0.083 

5 

0.142 

10 

0.193 

We first introduce the closed testing principle to maintain the overall type I 
error rate at a (Marcus, Peritz, and Gabriel, 1976). Based on {HQI, . . . , HQK}, 
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we may reject any one of the hypotheses, say i/ofc» if all possible intersection 
hypotheses involving Hok can be rejected by using level-a tests. This would 
control the familywise error rate for all the K hypotheses at the significance 
level of a. As an example, if there are three hypotheses {HQI, Ü02, #03} under 
consideration, and the overall type I error rate is 0.05, then HQI can be rejected at 
a significance level of 0.05 if #01 > #01ΓΊ #02 > -#01 Π #03 and Η0ι Π Η02 ΓΊ Η03 

can all be rejected using statistical tests at a — 0.05. 
Controlling the familywise type I error rate is an effective way to prevent 

the occurrence of false positives, which is of paramount importance in the new 
drug development. The easiest way to preserve the overall type I error rate is 
to use the Bonferroni correction by splitting a over all the tests. Suppose that 
there are K hypotheses to be tested, and as usual we test one hypothesis at a 
statistical significance level of a. The familywise error rate will be preserved if 
each individual hypothesis is tested at a significance level of a/K. Despite its 
simplicity, Bonferroni's correction is the most stringent and conservative way 
to control false positives. The split of a over the K hypothesis tests may not 
necessarily be even. The familywise type I error rate is maintained as long as 
a\-\ \-ακ = oí-, where α& is the significance level of test k, for k = 1 , . . . , K. 

Compared with Bonferroni's correction, Holm's step-down method (Holm, 
1979) is less conservative and thus yields higher power, which is described as 
follows: 

(1) Order all the p-values from the K tests, 

P(i) < P(2) < ■ · ■ < P(Ä--I) < P(K). 

and denote the corresponding hypotheses as {#0(1)> · · · > Ho(K)}· Com-
pare the smallest p-value p^ to a/K. If p^ < a/K, then reject #0(1) 
and go to step (2); otherwise stop. 

(2) Compare the second smallest p-value p(2) to a / ( X — 1). If p(2) < 
a/(K — 1), then reject #0(2) and go to step (3); otherwise stop. 

(K) Compare the largest p-value p^ to a. If p(K) < a, then reject the 
corresponding hypothesis ϋο(ΑΓ) and stop. 

Holm's procedure sequentially compares the p-values from the smallest to the 
largest with a sequence of significance levels {a/K, a/(K-l),..., a}, until the 
first hypothesis cannot be rejected. At that point, stop and accept the hypothesis 
that was not rejected and all the remaining hypotheses that have not been tested. 
Based on the Bonferroni inequality, Holm's method is valid regardless of the 
joint distribution of the test statistics. 

On the other hand, Hochberg's step-up method (Hochberg, 1988) proceeds in 
a reversed order, which is described as follows: 
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(1) Order all the p-values from the K tests, 

P(i) < P(2) < · · ■ < P(ir-i) < P(K), 

and denote the corresponding hypotheses as {Ho(i)> · · · > ^o(A")}· Com-
pare the largest p-value p(^) to a. If p(#) < a, then reject all the 
hypotheses {.Ho(i)> · · · > ^o(if)} an(* stop; otherwise go to step (2). 

(2) Compare the second largest p-value Ρ(κ-ΐ) t o α / 2 · If P{K~i) < al% 
then reject the hypotheses {#0(1)1 · · · > #o(K-i)} a nd stop; otherwise go 
to step (3). 

(K) Compare the smallest p-valuep^) to a/K. Ifp(i) < OL/K, then reject the 
hypothesis #0(1) a nd stop. 

In general, Hochberg's step-up procedure is relatively more powerful than 
Holm's step-down procedure, while more restrictions are required for Hochberg's 
test statistics—for example, independence or having distributions with multivari-
ate total positivity of order two or a scale mixture thereof (Sarkar, 1998; Huang 
and Hsu, 2007). Clearly, both Holm's and Hochberg's methods are not applica-
ble in group sequential designs for which the tests are sequentially conducted on 
the data that accrue over time. 

6.6.2 Pocock's Design 

If multiple tests are conducted during the interim monitoring of a trial, spurious 
treatment effects may arise due to chance or random fluctuations of the efficacy 
data. As a consequence, the type I and type II error rates would be inflated. 
Controlling the type I error rate would prevent an undesirably large number 
of false-positive findings into the drug development. In the group sequential 
design, stopping boundaries are developed for sequential tests along the trial to 
maintain the overall type I error rate. Toward this goal, Pocock (1977) proposes 
conducting repeated significance tests at a constant nominal level during the 
course of a trial. 

In a two-arm trial, suppose that the outcomes are i.i.d. normal with a known 
variance σ2; that is, Yu ~ Ν(μι,σ2) for subject i in the experimental arm, 
and Yii ~ Ν(μ2, σ2) for that in the standard arm. The treatment difference is 
θ = μ\ — μ2, and we are interested in testing the hypotheses, 

Ηο:θ = 0 versus Ηι:θφ0. 

For simplicity, patients are divided into K equal-size groups according to 
their enrollment dates. For each sequentially accrued group, an equal number of 
patients are allocated to each treatment. Let Nk denote the cumulative sample 
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Table 6.1 Critical Constants cp0 (K, a) under Pocock's Design, with K Two-Sided 
Sequential Tests and the Type I Error Rate a 

K a = 0.01 a = 0.05 a = 0.1 
1 2.576 1.960 1.645 
2 2.772 2.178 1.875 
3 2.873 2.289 1.992 
4 2.939 2.361 2.067 
5 2.986 2.413 2.122 
6 3.023 2.453 2.164 
7 3.053 2.485 2.197 
8 3.078 2.512 2.225 
9 3.099 2.535 2.249 

10 3.117 2.555 2.270 

size up to group k, and a total of Νχ subjects are needed in such a group 
sequential study. After enrolling k groups, we observe the accumulated data 
{{Yu,Y2i),i = 1, · · · ,Nk/2}, and the standardized test statistic for the kth 
interim analysis is 

Nk/2 

zfc = - 7 = ^ ¿ ( y l i - y 2 i ) , k = i,...,K. 

Based on a two-sided test, if \Z^\ is large enough to exceed the critical boundary, 
we stop the trial with a rejection of the null hypothesis. However, due to multiple 
testing with K > 1, the family wise or overall type I error rate is inflated, such 
that we cannot use the usual significance level a = 0.05 for each of the K tests. 

To preserve the overall type I error rate at a = 0.05, Pocock (1977) computes 
the critical constant cp0(K, a) such that 

Pr(|Zfc| > cp0(K, a) at any k in a sequential order | HQ) = a. 

The critical value cp0 (K, a) is a constant across all the K tests, which are given 
in Table 6.1 for different K's under each specified significance level a. More 
specifically, Pocock's design is carried out as follows. 

• Interim analysis: 
After observing the accumulated data up to group k, k = Ι,.,.,Κ — 1, 
if \Zk\ > cp0(if, oi), stop the trial with a rejection of HQ; otherwise, 
continue to enroll group k + 1. 

• Final analysis: 
After observing all the data from the planned K groups, if \Ζκ\ > 
cp0(K, a), reject H0; otherwise, accept HQ. 
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Table 6.2 Critical Constants C0F{K, CC) under O'Brien and Fleming's Design, 
with K Two-Sided Sequential Tests and the Type I Error Rate a 

a = 0.01 

2.576 
2.580 
2.595 
2.609 
2.621 
2.631 
2.640 
2.648 
2.654 
2.660 

a = 0.05 

1.960 
1.977 
2.004 
2.024 
2.040 
2.053 
2.063 
2.072 
2.080 
2.087 

a = 0.1 

1.645 
1.678 
1.710 
1.733 
1.751 
1.765 
1.776 
1.786 
1.794 
1.801 

In principle, the type I error rate a is split among the K analyses such that 
the overall test size of a is maintained at the desired level. In the general 
sequential setting, the critical constants for the K tests, C( l Q ) , . . . , C(ÄT,Q), may 
not necessarily be all the same, as long as they are chosen to yield the overall 
type I error rate of a. We can solve for C(k,a) from t n e following equations 
iteratively, 

~Pr{\Zi\ >c ( l i a ) | f l 0 } = û!1, 

and for k — 2 , . . . , K, 

Oik-i + Pr{|Zi| < C(i;Q),...,|Zfc_i| < ąk_ha), \Zk\ > c^a)\H0} = ak, 

with Q.K = a. 

6.6.3 O'Brien and Fleming's Design 

Intuitively, a more stringent threshold should be exceeded if a trial is to be 
terminated earlier. Thus, instead of using a constant nominal level for all the 
K tests, O'Brien and Fleming (1979) propose making the rejection of HQ much 
more difficult at the earlier interim analyses, and alleviating the test boundaries 
as the trial proceeds. In other words, the trial would only be terminated for 
superiority if an extreme treatment difference could be shown earlier. Still, the 
overall type I error rate should be preserved. O'Brien and Fleming's design is 
described as follows. 

• Interim analysis: 
After observing the accumulated data up to group k, k = 1 , . . . , K — 1, if 
\Zk\ > COF(K, a)y/K/k, stop the trial with a rejection of Ho; otherwise, 
continue to enroll group k + 1. 
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Table 6.3 Critical Constants CWT(K,O> = 0.05,7) under Wang and Tsiatis's 
Design, with K Two-Sided Sequential Tests and Different Values of the 
Transformation Parameter 7, while Fixing the Type I Error Rate a = 0.05 

7 = 0.1 

1.960 
1.994 
2.026 
2.050 
2.068 
2.083 
2.094 
2.104 
2.113 
2.120 

7 = 0.25 

1.960 
2.038 
2.083 
2.113 
2.136 
2.154 
2.168 
2.180 
2.190 
2.199 

7 = 0.4 

1.960 
2.111 
2.186 
2.233 
2.267 
2.292 
2.313 
2.329 
2.343 
2.355 

• Final analysis: 
After observing all the data from the planned K groups, if \Ζκ\ > 
COF(K, a), reject HQ; otherwise, accept HQ. 

Table 6.2 presents the critical constants at different significance levels for the 
final stage K, and thus the rest of the critical constants along the sequential tests 
can be computed as COF(&, ex) = COF(K, a)y/K/k, for k = 1 , . . . , K. Clearly, 
as k increases, the critical values become smaller and the critical intervals become 
narrower, which makes it easier to cross (i.e., to reject the null). 

More generally, Wang and Tsiatis (1987) propose a family of sequential tests 
indexed by a power transformation parameter 7, which includes Pocock's and 
O'Brien and Fleming's designs as special cases. For a fixed value of 7, the critical 
constant at stage k is CWT(&, a, 7) = C\VT (K,a,>y)(k/K)'y-1/2,k = l,...,K. 
Table 6.3 gives CWT(K, a, 7), the critical constant at the Kth stage for a = 0.05 
and a particular value of 7. Obviously, Wang and Tsiatis's design reduces to 
Pocock's design if 7 = 1/2, and to O'Brien and Fleming's design if 7 — 0. Other 
values of 7 between 0 and 1/2 produce some encompassing shapes of critical 
boundaries. The trial design using Wang and Tsiatis's stopping boundaries 
proceeds as follows. 

• Interim analysis: 
After observing the accumulated data up to group k, k = 1 , . . . , K — 1, 
if \Zk\ > cwT(K,a,j)(k/K)1~1^2, stop the trial with arejection of HQ; 
otherwise, continue to enroll group k + 1. 

• Final analysis: 
After observing all the data from the planned K groups, if \Ζχ\ > 
CWT(K, ot, 7), reject HQ; otherwise, accept HQ. 
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Figure 6.3 Critical constants under two-sided group sequential tests with K = 5 
groups: Pocock's design (Po), O'Brien and Fleming's design (OF) and Wang and 
Tsiatis's design (WT) with 7 = 0.25. 

To illustrate different shapes of stopping boundaries, we take K = 5 and 
a — 0.05. Figure 6.3 shows the three stopping boundaries: Pocock's stopping 
boundaries are constant and parallel to the horizontal axis; those of O'Brien 
and Fleming's test are wider (more stringent) at the early interim analyses, and 
become narrower (more relaxed) toward the end of the trial; and Wang and 
Tsiatis's boundaries with 7 = 0.25 lie in the between. 

6.6.4 Information and Asymptotic Distribution 

In a group sequential design, suppose that we monitor the trial at the prespecified 
calendar times, τ\,...,τκ· Let Θ be the treatment difference that is of clinical 
interest, for example, θ = μ\ — μ^ for the difference of normal means with 
continuous endpoints; Θ = p\ — p2, P1/P2, or {pi/(l - i»i)}/{P2/(l - P2)} for 
the difference, ratio, or odds ratio of response rates with binary outcomes; and 
Θ = log(Ài/À2) for the logarithm of the hazard ratios with time-to-event data. 
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During the trial, as more subjects are accrued and longer follow-ups are taken, 
more information would be accumulated in the study. If the primary endpoint 
is normal or binary, the accumulating number of subjects Nk by calendar time 
Tfc characterizes the trial information Ik, while for time-to-event endpoints, the 
accumulating number of events or failures Dk up to τ^ determines T^. In general, 
the information increases as the trial proceeds because more subjects are enrolled 
and more events are expected to occur with a longer follow-up. The information 
at Tfe can be characterized by the usual Fisher information, Ik = {Var(öfc)}-1, 
where §k is the maximum likelihood estimator (MLE) of Θ based on the data 
accumulated up to 7>¡. If a total of K tests are planned for a trial that includes 
K—1 interim analyses and the Kth final analysis, then the maximum information 
IK is characterized by the maximum sample size, Νχ, or the total number of 
events by time τχ, DK- We take the accumulated information from r\ up to τχ 
as some fraction of the maximum information IK, and define 

{ Nk/Νκ, for normal or binary endpoints, 
Dk/Dx, for survival endpoints, 
Zfc / IK , for general cases, 

where Ik/IK — Var(ö#)/Var ((?&). Note that tk increases from 0 to 1 as A: 
approaches K, which can be viewed as a standardized internal time of a trial. At 
the internal time tx = 1, the trial stops and attains the maximum information of 
IK. 

At the internal monitoring time tk, we obtain the MLE §k and its variance 
based on all the data accumulated up to tk- The Wald test statistic is given by 

Z(tk) = * — r = 4v5fe, k = l,...,K. 
V ' {Var(0fc)}V2 

Across all the internal monitoring times t\,..., ÍR-, the sequential test statistics 
Z(t\),..., Ζ(ίκ) jointly follow a multivariate normal distribution (Scharfstein, 
Tsiatis, and Robins, 1997; Jennison and Turnbull, 1997). The marginal distribu-
tion of Z{tk) is 

z(tk)~mVTk,i), k = i,...,K, 

and the covariance function between Z(tj) and Z(tk) for 0 < t3 < tk < 1 is 

Cov{Z(íj),Z(ífc)} = v /V2fc. 

EXAMPLE 6.9 

As an illustration, we consider a two-arm randomized trial with normal 
endpoints. Given a common known variance σ2, Yu ~ Ν(μι,σ2) for 
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subject i in arm 1 (the experimental treatment), and Y<n ~ ~Ν(μ2,σ2) for 
that in arm 2 (the standard treatment). For k = 1 , . . . , K, let Nk be the 
cumulative sample size up to group k, and Nk/2 patients are allocated to 

- (k\ - (k\ each arm. Let Y{; ' and Y¿ denote the sample means of arm 1 and arm 2 
up to stage k, respectively. The treatment difference Θ = μχ — μ2 can then 
be estimated by 

êk = Y}k) - i f > = - f Σ (yu - Y2i). 

At the internal time ί^, the standardized test statistic for the kth interim 
analysis is 

z(tk) = ^ ( fw - ψ) = (ψ - ?^)vrk. 

The test statistics Z{t\),..., Z{tx) jointly follow a multivariate normal 
distribution, since marginally each Z(tk) is a linear combination of normal 
random variables, and 

z(i f c)~N(0v^,i) , fc = i,...,ür. 
The covariance function between Z(tj) and Z(tk) for 0 < tj < tk < 1 is 
given by 

Cov{Z(tj), Z(tk)} = Cov{(if'> - Y¡j)) y/Ę, ( i f > - Y2
(k))VTk} 

( 2 2 JVj 2 2 2 iV7· , \ / - — = — x — x —σζ H x — x — σ J J 9 Î t ^ iVfc 2 ^ Nj Nk 2 j V ' fc 

= \Jxjßk 

If we denote the drift parameter 77 = ΘΛ/ΤΚ, then 

Z(tjO~N(W*fc,l)> Λ = 1,...,Α-. 

Under the null hypothesis, #0: # = 0, the drift term η = 0. We can derive a 
simplified version of the Gaussian process with independent increments, 

W(tk) = y/ĘZ(tk), k = l,...,K, 

such that the joint distribution of W ( i i ) , . . . , W ( Í R · ) is also multivariate normal. 
For each k, the marginal distribution of W(tk) is 

W(tk)~X(T¡tk,tk), 
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and the covariance function between W(tj) and W(tk) for 0 < tj < tk < 1 is 

Cav{W{tj),W{tk)} = tj, 

which implies that W(tj) and W(tk) — W(tj) are independent. Based on the 
independent increment property of the process W(tk), the stopping boundaries 
of a group sequential design can be computed efficiently through recursive 
integration, as will be discussed in the next section. 

6.6.5 Stopping Boundary Computation 

We outline the basic steps for calculating the stopping boundaries in a group 
sequential design with a total of K analyses. The vector of the standard test 
statistics (Z(ti),..., Ζ{ίκ))Ύ follows a multivariate normal distribution: 

. E{z(tk)} = ejrk, 

• Οον{Ζ(ί;·), Z{tk)} = y/lj/Ik, l<j<k<K, 

• Z{t\) ~ N(6y/Tî, 1), and the increment 

Z(tk)y/Tk- Z(tk^i)^JXk^i ~ N(0(Zfe - Xfc-i), Ik - Ifc-i), 

which is independent of all the previous test statistics Z(ti ) , . . . , Z(tk-i). 

Let c\,..., CK be the stopping boundaries corresponding to the interim mon-
itoring times i i , . . . , tx- We stop the trial with a rejection of HQ at the first tk 

that satisfies 

\Z(h)\ < c i , . . . , |Z(tfc_i)| < cfc_i, and \Z(tk)\ > ck. 

To preserve the type I error rate at the conventional significance level of a, the 
Cfc's need to be chosen such that 

K 

Pr lf](\Z(tk)\<ck] 
U=i 

H0} = l-a, 

which, however, by itself cannot uniquely determine the values of ck. Based on 
the concept of the a-spending function (Lan and DeMets, 1983), we can specify 
a monotone increasing function a(t), such as 

a(i) = alog{l + ( e - l ) t } , í G [0,1], 

which corresponds to the stopping boundaries of Pocock (1977). To generate the 
stopping boundaries of O'Brien and Fleming (1979), the a-spending function 
takes the form of 

a W = « - « ( ^ ) . 
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Figure 6.4 The a-spending functions corresponding to Pocock (1977) and O'Brien 
and Fleming (1979) group sequential designs, respectively. 

Figure 6.4 exhibits the shapes of the a-spending functions for these two designs, 
while other a-spending functions may also work in group sequential designs. 
No matter which a-spending function is used, it must be specified in advance 
before any data are collected. 

Based on the predetermined a-spending function, we can construct the fol-
lowing set of equations, 

a(t1) = Pv(\Z(t1)\>cl)\H0), 

a(t2) = α(ίι) + Pr( |Z(íi) | < a, \Z(t2)\ > c2)\H0), 

a(tK) = a(ÍK-i) 
+ Pr( |Z(ti) | < c i , . . . , |Z(ttf_i)| < cK-U \Z(tK)\ > cK)\H0). 

By recursively solving these K equations, we can obtain the stopping boundaries 
c i , . . . , CK- During the entire trial conduct, the probability of ever crossing the 
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efficacy boundary under Ho is 

Pr(|Z(ti) | > ci|#o) + Pr(|^(*i)| < cu \Z(t2)\ > c2\H0) + ■ ■ ■ 
+ Pr(|Z(Í!)| < c i , . . . , \Z(tK-!)\ < CK-i, \Z(tK)\ > cK\H0), 

which simplifies to 

α(ίι) + {Q(Í 2 ) - α(ίι)} + · · · + {a{tK) - a{fK-i)} = Φκ) = a. 

Therefore, group sequential designs continuously spend a over each interim test 
until the overall type I error rate a is exhausted. 

6.6.6 Sample Size and Inflation Factor 

With the drift parameter η = ΘΛ/ΧΚ, the marginal distribution of the test statistic 
at the fcth interim analysis is 

Z(i f c )~N(Wifc, l ) , k = l,...,K. 

To determine the sample size for a group sequential trial, we first compute the 
drift term η such that the trial is able to detect the treatment difference Θ with 
power 1 — β. Under the alternative hypothesis, the type II error rate is given by 

< Cfe) ΗΛ=β, (6.15) 

from which we can obtain η. Thus, the amount of information needed to achieve 
power 1 - β is Χχ = (τ?/#)2· The total information by the end of the trial 
is XK = {ΥΆΤ(ΘΚ)}~1, where θχ is the MLE based on all K groups of data. 
Intuitively, we should keep enrolling patients into the trial until the reciprocal of 
the variance of θχ is equal to XK-

More specifically, consider a two-arm trial with normal endpoints sharing a 
common known variance σ2; that is, Yu ~ Ν(μι,σ2) and Y-a ~ Ν(μ2,σ2). 
The goal is to calculate an adequate sample size in order to detect the treatment 
difference θ = μ\ — μ2. Let Ϋ\ and Y<¿ denote the sample means of arm 1 and 
arm 2 after all the K groups of patients are enrolled, respectively. The difference 
of the sample means between the two arms, θκ = Ϋ\ — Ϋι, can be used to 
estimate Θ. Let Νχ denote the total sample size, and each arm is allocated 
Νχ/2 subjects, then 

4σ2 

V a r < « - Ñ-K 
Therefore, the maximum sample size for the group sequential trial is Νκ = 
4σ2Χκ. 

If we consider a two-arm trial with binary endpoints, let p\ be the response 
rate of the experimental treatment, and let p2 be that of the standard treatment. 
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Table 6.4 Sample Size Inflation Factors of Group Sequential Designs Relative to 
Fixed-Sample Designs for Two-Sided Tests with a = 0.05 

Q-Spending Function 
Power = 1 - / 3 

K 

2 
3 
4 
5 

2 
3 
4 
5 

0.80 

1.11 
1.17 
1.20 
1.23 

1.01 
1.02 
1.02 
1.03 

0.90 

1.10 
1.15 
1.18 
1.21 

1.01 
1.02 
1.02 
1.03 

0.95 

1.09 
1.14 
1.17 
1.19 

1.01 
1.02 
1.02 
1.02 

Pocock 

O'Brien and Fleming 

The dichotomous outcomes are Yn ~ Bernoulli(pi) and Y<n ~ Bernoulli(^2), 
and the difference of the response rates is Θ = p\ — p2- The estimate for Θ is 
θχ = Ϋ\ — Ϋ2, and the corresponding variance is given by 

2 { p i ( l - p i ) + P 2 ( l - P 2 ) } V a r ( ^ ) = 
NK 

which yields the maximum sample size ./V^ = 2{pi(1 — pi) + P2(l — νι)}Ί-κ· 
When designing a group sequential trial, besides the specification of the type 

I and type II error rates (i.e., a and /?), we also need to determine the number 
of planned analyses, K, and the «-spending function. We can then compute 
the drift parameter η from (6.15) through recursive integration, and we can 
also obtain 1χ = (η/θ)2 and eventually the total sample size Νκ- It is more 
convenient to express the maximum information as 

'Ζα/2 + Ζβγ 
Ικ = 

— 
x I F , 

where the inflation factor (IF) is defined as 

IF = V 
y
za/2 + zß, 

Therefore, for a group sequential trial with continuous outcomes, the total sample 
size needed is 

4 σ 2 ( ζ α / 2 + ζ / 3 ) 2 

NK = Ασ'1κ = */2 

02 x I F , 

and for a group sequential trial with binary outcomes, 

NK = 
2(^/2 + Zßf 

02 {P i ( l -P i )+P2( l -P2)}xIF . 
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The sample size required for a group sequential trial is enlarged by the infla-
tion factor compared with that of the corresponding fixed-sample design. For 
convenience of sample size calculation, Table 6.4 provides the inflation factors 
under the commonly encountered configurations of the Pocock and O'Brien and 
Fleming designs, respectively. 

EXAMPLE 6.10 

We illustrate group sequential methods with a two-arm clinical trial de-
sign. The endpoint is a continuous measurement, which is assumed to 
be normally distributed. The treatment difference between the new and 
standard drugs is specified as Θ — 1, and the variance is σ2 = 4. Under a 
two-sided test with a = 0.05 and β = 0.1, the fixed-sample design needs 
a total sample size of n = 168. If we use Pocock's stopping boundaries 
with K = 3 groups, the required sample size is Np0 = 168 x 1.15 = 194, 
with approximately 64 subjects in each group. During the trial conduct, we 
perform one hypothesis test of H0: Θ = 0, after enrolling every 64 patients 
in a sequential order, and each test statistic is compared with the same 
critical constant 2.289. The trial will be stopped when for the first time 
one of the three tests crosses the critical boundary, and then we claim that 
there is a significant difference between the two treatments. Otherwise, we 
continue to enroll the next group of patients till the end of the trial. 

On the other hand, if we use O'Brien and Fleming's stopping boundaries 
with K = 5, then the total sample size is NOF = 168 x 1.03 = 174 with 
approximately 36 subjects in each group. In a sequential order, the five 
critical constants are 4.562, 3.226, 2.634, 2.281, and 2.040, computed by 
2.040 x y/5/k, for k = 1 , . . . , 5. The trial proceeds until one of the five 
tests along the sequential order first crosses the corresponding boundary, 
and then we reject the null hypothesis; otherwise we continue to enroll the 
next group till the end of the trial. If the trial runs to the last group, the 
final test statistic will be compared with the critical constant 2.040. 

6.6.7 Futility Stopping Boundary 

During the interim monitoring, if the observed effect size is too small to warrant 
continuation, we may stop the trial early. Such futility stopping boundaries can 
be derived in parallel to the aforementioned efficacy stopping boundaries. The 
probability of ever crossing the futility boundaries under Hi is the type II error 
rate β, which leads to the /3-spending function to generate the futility boundaries. 
We force the stopping boundaries for efficacy and futility to meet at the final 
analysis by choosing an appropriate drift parameter η. Therefore, at the end of 
the trial, a definitive conclusion must be drawn: Either the null hypothesis is 
rejected (for superiority), or the null hypothesis is accepted (for futility). 
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Ü 

Reject H0(efficacy) 

Continue 
Definitive conclusion 

Stage k 

Figure 6.5 Critical constants under one-sided group sequential tests with superiority 
and futility stopping boundaries and K = 4. 

To determine the efficacy and futility boundaries and the drift parameter η, 
we need to spend both the type I and type II error rates, a. and β, simultaneously, 
based on the following iterative procedure: 

(1) Initiate a value for η. 

(2) Find the paired values of (Ιχ, u\ ) satisfying 

a{t1) = -Pr{Z(tl)>ul\Ho}, 

and 
ß(t1) = Pi{Z(t1)<l1\H1}, 

where the upper bound u\ is for efficacy stopping and the lower bound l\ 
is for futility stopping. 

(3) For k = 2 , . . . , K, solve recursively for (lk,Uk), such that 

a(tk) = a(ifc_i) 
+ Pr{h <Z(ti) <ui,...,lk-i <Z(i f c_i) < uk-i,Z(tk) > uk\H0} 
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and 

ß(tk) = /3(*fc_i) 
+ Pr{^i < Z(ii) < MI, . . . , Zfc_i < Z(tk-i) < uk-UZ(tk) < ί* |# ι} , 

with α(ίκ) = OÍ and β{ίκ) = β· 

(4) Repeat steps (l)-(3) by fixing η at different values until we find the value 
of η such that Ιχ = υ,χ-

This guarantees that the upper and lower stopping boundaries meet at the end of 
the trial (stage K), as shown in Figure 6.5. 

6.6.8 Repeated Confidence Intervals 

In a group sequential trial, repeated confidence intervals may be constructed 
along the sequential tests (Jennison and Turnbull, 1989). For k = 1 , . . . , K, the 
usual Wald test statistic is given by 

where §k is the MLE of the parameter Θ at the kth interim analysis. Let ck be 
the stopping boundary for stage k. Under HQ\ 0 = 0, Z(tk) ~ N(0,1), and 

K 

Pr \Ç](\Z(tk)\<ck) 
U=i 

tfn > = 1 - a. 

Under Hx: Θ^Ο, 

Ζ ( ί * ) - 0 ν ^ ~ Ν ( Ο , 1 ) , k = l,...,K, 

while the covariance structure is still the same as that under Ho- The fcth 
confidence interval for Θ is given by 

êk--%;Jk + ^=), k=l,...,K, 

and the probability that all the K repeated confidence intervals simultaneously 
cover Θ is 1 — a, 

P r ( ¿ f e - - ^ < 0 < 4 + 4 = , foTk = l,...,K) =l-a. 

6.7 ADAPTIVE DESIGNS 

6.7.1 Motivation 

In a phase III clinical trial, patients are randomized to different treatment arms 
for comparing their therapeutic effects. In the planning stage, we need to specify 
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the type I error rate and power, and determine the effect size and variance for 
the treatment. Classical fixed-sample designs require precise information on 
these design parameters to produce an accurate sample size. The effect size 
and variance are typically elicited from expert experience or estimated from 
historical data, such as previous phase II trials. However, due to different study 
conditions and patient populations, as well as small sample sizes in early-phase 
trials, the estimates of the effect size and variance may not be reliable for the 
current phase III trial design. Consequently, the sample size for the phase III 
trial may be overestimated and thus wasting resources, or underestimated and 
leading to a low power. Imagine a situation in which a p-value lies between 0.05 
and 0.1 ; that is, the p-value barely misses the conventional significance level 
of a = 0.05. Clearly, in this case there is considerable evidence showing the 
treatment to be effective, but it is still not strong enough to reach the nominal 
level. As a result, the trial may fail to detect a clinically meaningful difference 
due to inadequacy of the sample size. If we extend the patient enrollment to 
collect a few more samples in order to reach the statistical significance, the type 
I error rate is generally inflated if the original fixed-sample test is used. On the 
other hand, if we abandon the current study to redesign and rerun such a large 
pivotal trial, it would certainly be expensive and time-consuming. Therefore, 
it is desirable to develop more flexible designs that are capable of extending a 
trial based on the cumulated data while still controlling the type I error rate. 
Otherwise, the trial may use a sample size that is not large enough to detect 
an important clinical difference, due to either an overestimation of the actual 
treatment difference or an underestimation of the standard error. 

Group sequential methods may terminate a trial early for some extreme in-
terim findings, such as markable treatment effects of a particular arm, a lack of 
beneficial effects of a certain treatment, or severe adverse events in a subgroup. 
Whether to call a trial design adaptive or nonadaptive is relative; some designs 
could be more adaptive than others. Compared with fixed-sample designs, group 
sequential methods are clearly more flexible, which, however, still require fixing 
the total number of subjects, or the maximum number of tests with prespecified 
group sizes in advance. In other words, group sequential methods do not allow 
the maximum sample size to be modified in the middle of the trial for achieving 
a desired power. 

Adaptive designs have been developed to offer the possibility of re-estimating 
the sample size based on the observed data in the course of a trial (Wassmer, 
1998; Gould, 2001; Shun et al., 2001; Shih, 2001). These "real" adaptive 
methods are more flexible because they update the initial design parameters 
using the ongoing trial data and re-estimate the sample size at the interim stages 
to ensure an adequate testing power. Colton and McPherson (1976), Elashoff and 
Reedy (1984), and Proschan and Hunsberger (1995) propose various two-stage 
designs to re-estimate the sample size using the data in the first stage, while 
constraining the significance level at each stage to preserve the overall type I 
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error rate. Gould (1992) and Shih (1992) re-estimate variances at the interim 
analyses without unblinding the trial. Fisher (1998), Shen and Fisher (1999), 
and Yin and Shen (2005a, 2005b) propose self-designing trials, in which the 
variance or the weight function is sequentially spent to modify the sample size 
to achieve the desired power. Bauer and Köhne (1994), Cui, Hung, and Wang 
(1999), Liu and Chi (2001), Lehmacher and Wassmer (1999), Posch and Bauer 
(2000), and Müller and Schäfer (2001) develop various adaptive methods with 
similar motivations by modifying a design based on interim data. 

6.7.2 Fisher's Combination Criterion 

Consider a randomized trial to compare an experimental treatment and a control. 
The null hypothesis is that there is no difference between the two treatments, 
and the alternative is that there is a difference. In the notion of sample size 
re-estimation, Bauer and Köhne (1994) propose a two-stage trial design, in 
which the sample size in stage 2 may depend on the data observed in stage 1. 
In the middle of a trial, there is an adaptation point that switches the design 
from stage 1 to stage 2. This switching point partitions the entire trial data 
into two nonoverlapping samples, and each sample is used to test the same null 
hypothesis. At the end of the trial, the error probabilities are combined from the 
two disjoint samples to control the overall type I error rate. 

We examine the data observed before and after the adaptation takes place 
separately. By formulating the null hypotheses HQI and H02 corresponding to 
stage 1 and stage 2, the trial aims to test their intersection: 

HQ: HOI Π HQ2 (there is no treatment difference). 

Let p\ be the p-value from the test of HQI for the data collected prior to the 
sample size re-estimation (the adaptation point), and let p2 be that of i/02 for the 
sample accrued after the adaptation. At the end of the trial, based on Fisher's 
combination criterion, the null hypothesis HQ would be rejected, if 

P1P2 <ca = exp(-x\j2), (6.16) 

where χ\ is the 100(1 — a)th percentile of the chi-squared distribution with 4 
degrees of freedom. We can derive (6.16) based on the fact that pi and P2 are 
independent and uniformly distributed under HQ. 

Suppose that n\ subjects are recruited in stage 1, and the corresponding p-
value, pi, is obtained. Let c*o and «i denote probability cutoffs, with ao < 
a\. The trial proceeds in the following two sequential stages, in which futility 
stopping may also be incorporated for trial early termination. 

• If Pi < OiQ, stop the trial and reject HQ. 

• If pi > ai, stop the trial and accept HQ. 
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• If αο < pi < a i , continue the trial to stage 2 and enroll additional n^ 
subjects, where ri2 may depend on the data observed in stage 1. 

• After the trial is completed with a total of n\ + ri2 subjects, if piP2 < ca, 
reject HQ\ otherwise accept HQ. 

To preserve an overall significance level of a, for a given value of a\ the value 
of »o can be solved from 

a0+ —dpi = a0 + ca(log αχ - loga0) = a. 
Jao P i 

At the conventional significance level a = 0.05, the critical constant co.05 = 
exp(—xl Q os/2) = 0.0087; thus given different values of ot\ for futility stop-
ping, we can obtain the corresponding values of OLQ as follows: 

«1 

a0 

0.1 

0.0426 

0.2 

0.0348 

0.3 

0.0299 

0.4 

0.0263 

0.5 

0.0233 

0.6 

0.0207 

6.7.3 Conditional Power 

Fisher's combination test lays out the framework of combining the two p-values 
in a two-stage adaptive design. However, it does not demonstrate how to re-
estimate the sample size in stage 2 based on the data observed in stage 1. Towards 
this goal, Proschan and Hunsberger (1995) propose using the conditional power 
to re-estimate the sample size in a two-stage sequential procedure. 

For ease of exposition, consider a two-arm clinical trial with normally dis-
tributed outcomes. For subject i in arm 1, Yi¿ ~ Ν(μι, σ2), and for that in arm 
2, Y21 ~ Ν(μ2) σ2)> where the common variance σ2 is assumed to be known. 
Let Θ = μι — μ2 denote the difference in the treatment effect between the exper-
imental and standard arms. We are interested in testing a one-sided hypothesis 
of 

Η0:θ = 0 versus Ηγ. Θ > 0. 

In stage 1, ni patients are enrolled, and for simplicity suppose that rai/2 subjects 
are allocated to each arm. Using the standardized sample means, we can construct 
a test statistic as 

z . Vm(Yi-Y2) 
1 2σ 

In stage 2, we plan to recruit n2 subjects and denote the sample means of 
those subjects in the experimental and standard arms as Xi and X2, respectively. 
Let CPe(n2,c|Zi) denote the conditional power, which is the probability that 
the final test statistic based on ni -f- n2 observations exceeds the critical constant 
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c (the value of c is to be determined) given Z\ and the treatment difference Θ. In 
a one-sided test, 

CPe(n2,c|Zi) 
, (V, - V^ 4- Π.ηί Ϋ, - Ϋηϊ 

Γτ\ηι(Ϋι-Ϋ2)+Π2(Χι-Χ2) > c 

2σΛ/ηι + n 2 

_ p I yn^ÇXi - X2 - ć') \Λ*ι + n2c - ^/ñT-^i \ßöß 
2σ Jrv¿ 2σ 

Ζχ 

Noting that ■sfwi\X\ — Xi — θ)/(2σ) follows the standard normal distribution, 
this leads to 

ΟΡθ(η2,ο|Ζι) = 1 - Φ —-z ■*-— . 
V V™2 2σ / 

Both the critical value c = c(n2, Zi) and the conditional power depend on n2. 
Let φ(·) denote the density function of the standard normal distribution, that is, 
φ(ζ) = άΦ(ζ)/άζ, then the type I error rate in the two-stage design is 

/ 
C P ^ o i r ^ c l Z i M Z O d Z x . 

To compute n2 and the critical constant c(ri2, Z\), we first specify a condi-
tional error function F(-), which is an increasing function over [0,1] and satisfies 

/ 
F ( Z i ) 0 ( Z i ) d Z i = a . 

Given the test statistic Z\ of stage 1, F(Z\) characterizes how much of the 
conditional type I error is allowed at the end of the trial. After collecting n\ 
observations in stage 1, we can determine n2 and the critical constant c{ri2, Z\ ) 
such as to obtain an exact a-level test. To preserve the type I error rate, let 

CPe = 0(n2,c |Zi) = F(Zi) , 

from which we can obtain the critical value 

fñ\Z\ + y/ñ2ZFcZl) c(n2,Zi) = 
ν/πι + n2 

Following this procedure, an exact a-level test is guaranteed no matter how the 
future sample size n2 is chosen. Naturally, we can compute n2 to achieve the 
conditional power of 1 — β, 

CPe(n2,c|Z!) = 1 - φ(ζηΖι) - ^ ) = 1 - / 3 . 
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Therefore, we have 
4 σ 2 ( ζ Ρ ( Ζ ι ) + ζ / 3)2 

n2 = Θ2 

and 
, „ v y/ηϊΖχθ + 2a{zF{Zl) + zß)zF{Zl) 

^ηιθ
2 + Ασ2{ζΡ{Ζι)+ζβ)

2 

If we replace Θ by its MLE Θ based on the data in stage 1, then 

(zF(Zi) + zßf 
n 2 = y—^2 " i 

and 

\JZ\ + {zF(Zl) + zßf 

6.7.4 Adaptive Group Sequential Method 

Group sequential methods and adaptive designs are developed extensively in 
parallel. In general, classical group sequential methods require data-independent 
group sizes and a fixed number of interim looks. In other words, the group sizes 
and the number of tests are typically fixed in the planning stage. It may also 
happen that the interim analyses are performed at specific calendar times rather 
than after accruing a specified number of subjects or observing a fixed number of 
events, so the group sizes may be different and unknown in advance. However, 
the group sizes in the subsequent stages must not depend on the data observed 
in the previous groups. Whereas adaptive designs allow the sample sizes or 
the group sizes in the future stages to depend on the data observed previously. 
Certainly, a flexible design that is capable of updating the sample size, as well as 
terminating the trial early for strong efficacy, is desirable, since it would balance 
both power requirements and ethical concerns at the same time. Lehmacher 
and Wassmer (1999) propose an adaptive inferential strategy within the classical 
group sequential framework, which, however, does not provide a sample size 
updating procedure to achieve the desired power. Cui, Hung, and Wang (1999) 
apply a combination principle with prefixed weights within a group sequential 
trial. Müller and Schäfer (2001) integrate the adaptive interim analyses into 
the classical group sequential testing. These "more" adaptive methods fix the 
maximum number of group sequential tests, while allowing the group sizes to 
change during the trial. Tsiatis and Mehta (2003) compare group sequential 
designs with certain two-stage adaptive designs, and conclude the former to be 
more efficient. 

Lehmacher and Wassmer (1999) compare the average of the test statistics 
with the classical stopping boundaries and conclude that the adaptively varied 
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group sizes will not affect group sequential tests as long as the test statistics are 
conditionally independent and follow the standard normal distribution. More 
specifically, consider a two-arm group sequential trial with normally distributed 
outcomes with a common and known variance σ2; that is, Yu ~ Ν(μχ, σ2) and 
Yii ~ Ν(μ2) σ2) for the ith patient in arm 1 and arm 2, respectively. We are 
interested in testing whether there is a significant difference between the two 
treatments. Suppose that a total of K analyses are planned in advance, with 
group sizes of n i , . . . , ηκ· Let Nf- = Σ£=ι nj denote the cumulative sample 
size up to group k. Using an equal allocation for each group, nfc/2 subjects are 
assigned to each arm for k = 1 , . . . , K. Under Ho, the test statistic based on the 
data in the fcth group is given by 

2σ 

where Y\k and Y¿k are sample means corresponding to arm 1 and arm 2 in group 
k. The cumulative test statistic up to group k also follows the standard normal 
distribution; that is, 

k 

Τ
^^Σ^3~Ν(0,1). 

If the group sizes n\,..., ηκ are all equal, at stage k we may use 

Vkj=1 

as the test statistic, which is compared with the critical boundaries in the classical 
group sequential test. 

In an adaptive design, n^ may depend on the information available prior to 
stage k. That is, group sizes are allowed to be data-dependent and adaptively 
changing throughout the trial. Note that Z\,..., Ζχ are independent, and each 
follows the standard normal distribution irrespective of how the group sizes are 
chosen. If we use (6.17) as the test statistic and the classical group sequential 
boundaries, the type I error rate a will still be preserved. The test statistic in 
(6.17) can be rewritten as 

Γ'-7ϊδ·"'(1 ■Pi) 

where pj is the p-value corresponding to Zj and Φ λ (■) is the inverse cumulative 
distribution function of the standard normal distribution. 
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6.7.5 Self-Designing Strategy 

The goal of the adaptive designs discussed thus far is to re-estimate the total 
sample size based on the cumulated data in the trial so as to achieve the specified 
power. From a slightly different perspective, the self-designing scheme fixes 
the group sizes while allowing the total number of groups to change during the 
trial (Fisher, 1998; Shen and Fisher, 1999; Yin and Shen, 2005a; 2005b). The 
design automatically decides whether to stop the trial for futility or extend patient 
accrual to achieve the desired power, and also preserves the overall type I error 
rate. 

Consider a two-arm trial with normally distributed outcomes sharing a com-
mon and known variance σ2, 

Υ Η ~ Ν ( μ ι , σ 2 ) and Y2i ~ Ν(μ2,σ2), 

for the zth patient in arm 1 and that in arm 2, respectively. Let θ — μι — μ<ι denote 
the treatment difference, and we are interested in testing a one-sided hypothesis, 

Η0:θ = 0 versus ΗΧ: Θ > 0. 

The data are partitioned into groups of fixed sizes ηι,...,ηκ, while the total 
number of groups, K, is not determined in advance. Thus, the total sample size 
Σ/fcLi nk is not prefixed but may be adaptively updated during the trial conduct. 
With an equal allocation between the two arms, n^/2 subjects are assigned to 
each arm for the kth group. Accordingly, the difference in the sample means is 
given by 

íífc-ik-NJO, —Y 
V n k J 

and after standardization we have 

s _ yñkjYik - y~2fc) ^fVñko 
k 2σ V 2σ ' 

Once the trial is completed with a total of K groups, the final test statistic is 
constructed as a weighted sum of the standardized sample means, 

K 

TK = ^2wkSk, 
fe=l 

where the weights wk satisfy ]Cfc=i u>l = 1· Under H0, TK ~ N(0,1), and thus 
we can reject HQ if Τχ > za. 

The weight function plays a key role in extending or stopping the trial. Sup-
pose that there are k — 1 groups in the trial thus far. We compute the future 
sample size Nf. to achieve power 1 - β as if the next group k would be the last 
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group to enroll. Based on the sample means of the future data, X\k and X2k, 
the standardized test statistic is given by 

W*(Xik-X: 2k) 

2σ 

Then the conditional power can be computed as 

(fc-l 
Y^uijSj + wkS*k > ZĄDU^ 

= Pr 5 Î - v * " > 
WÍ0fc_i ^ Za-EUwjSj 

'fc 2σ Wfc 2σ 
L> fc-1 

where 0k-\ is the MLE of Θ based on the data accumulated up to group fc — 1, 
.Djfc-i, and «j | = 1 — Σ)*Ζ* w?. Since the conditional distribution of S£ given 
Dfc-i is normal, the sample size of the next group (assumed to be the last group) 
is given by 

Clearly, the larger the observed treatment effect Â^-i, the smaller the conditional 
sample size needed to achieve the desired power 1 — β. 

Instead of directly enrolling Νζ subjects, we translate the information in the 
conditional sample size into the weight function while keeping the group size 
Uk fixed a priori. Intuitively, the weight should be inversely proportional to the 
conditional sample size. For a larger value of Njl, a smaller weight should be 
assigned to the next group. The weight for the first group may not be too small 
because the trial needs an adequate amount of data before adaptation takes place. 
For group fc, the weight wk is given by 

During the trial, the self-designing strategy assesses the data periodically after 
enrolling every group of subjects. Based on the interim data, if the new treatment 
is ineffective compared with the standard therapy, the trial will be terminated 
for futility (Démets and Ware, 1980). After the (fc - l)th group is enrolled, we 
first compute N£ and u>k· If Σφ=ι W] < 1. m e trial, if not stopped for futility, 
will enroll the next group because more data are needed to draw a conclusion. 
If J2j=iw] > 1» the fcth group would be the last group whose weight will be 
reassigned as (1 - YJ¡z\ luj)1/2. The diagram of the self-designing trial is given 
below. 



CAUSALITY AND NONCOMPL1ANCE 213 

Weight Function Decision Making after k — 1 Groups 

±w]<i 

K-l K 

^2 w"j < 1 and Y2W1 ~ ̂  

When the treatment is truly effective but the effect size is overestimated 
or the variance is underestimated, the trial would not be able to achieve the 
desired power if using the originally planned sample size in the fixed-sample 
design. Suppose that the targeted power of a two-arm randomized trial is 90%. 
Depending on how badly the effect size and variance are specified, the fixed-
sample design may only lead to a power of 70% to 80%. By contrast, the 
self-designing trial has the capability of gaining more power, by extending the 
enrollment based on the cumulative data. 

There is no single definition for adaptive designs; adaptations may involve 
early-stopping due to efficacy, futility, or toxicity, and sample size re-estimation. 
It is also possible to seamlessly bridge phase II and phase III trials through 
jointly modeling their respective endpoints (Inoue, Thall, and Berry, 2002; Liu 
and Pledger, 2005). No matter how adaptive a clinical trial is, the key issue is 
always to maintain the type I error rate. Indeed, adaptive designs are more flexible 
in terms of sample size adjustment, more efficient to achieve the desired power, 
and more ethical for their early-stopping provisions. Nevertheless, such adaptive 
trials often involve enormous logistical planning and complicated information 
tracking and updating, which make them much more challenging to design and 
implement in practice. 

6.8 CAUSALITY AND NONCOMPLIANCE 

6.8.1 Causal Inference and Counterfactuals 

The goal of randomization in a clinical trial is to balance patients in each treatment 
arm, so that patients in different groups are "alike" on average. Ideally, the 
only difference between comparative groups should be the treatment and thus 
a "clean" comparison can be made. However, if certain characteristics of the 
patient groups are confounded with treatments, the difference in the responses 
between different treatments may be attributed to those unbalanced confounding 
effects rather than the treatment effects. 

If futility stopped, accept HQ. 
Otherwise, enroll the next group. 

If TA- > za, reject H0. 
Otherwise, accept HQ. 
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Randomization allows us to make causal inference regarding the treatment 
effects. Consider a two-arm randomized controlled trial with treatment 1 (the 
experimental drug) and treatment 0 (the active control or placebo). Let Y\ and 
YQ be the "imaginary" response if a subject were assigned to arm 1 or arm 0, 
respectively. In reality, it is impossible to observe both outcomes on any given 
individual, because the subject is assigned to either treatment 1 or 0, but not both 
(except for the crossover study which is not considered here). The variables 
Yi and Ϋο are called counterfactuals because they are contrary to the fact of 
observing both Yi and Y~o on the same subject. If we had known which treatment 
works better on a patient, the decision would simply be to assign that patient 
whichever treatment works better on him/her. However, this information is 
unobtainable for any individual subject. At the population level, the population 
mean causal effect is defined as 

0 = E(Yi) -E(y o ) . 
If Θ > 0, we say that on average treatment 1 would lead to a better response 
than treatment 0. Although this does not necessarily guarantee that any specific 
individual will benefit more from treatment 1, the population as a whole will 
do better under treatment 1. If we can estimate the average causal effect at the 
population level, then in the absence of any additional knowledge that would 
distinguish one individual from the other, the best treatment choice for any 
patient in the general population is treatment 1 (given that Θ > 0). 

The data from a clinical trial may be summarized as {(Yi, Ai), i = 1 , . . . , η}, 
where Ai — 0 or 1 indicates the treatment assignment for subject i, Yi denotes 
the actual response, and n is the total number of patients. If all patients comply 
with their treatment assignments, we would observe 

Yi = YliI(Ai = l) + YOiI(Ai = 0), 

where /(·) is the indicator function. Due to randomization, the treatment assign-
ment Ai is independent of (Yu, YQÍ), SO the potential response of an individual 
has no effect on which treatment this subject will receive. We are interested in 
estimating the true population treatment effect, 

9 = E(Yi\Ai = l)-E(Yi\Ai = 0). 

In a randomized clinical trial, we can estimate Θ using the difference between 
the treatment-specific sample averages, 

: _ E ? = 1 Yji(Ai = i) ΣΓ= 1 Yji(Ai = o) 
Σ?=1ΐ(Α = ΐ) EUi(Ai = o) ' 

6.8.2 Noncompliance and Intent-to-Treat Analysis 

In practice, there is almost always some kind of noncompliance or deviation 
from the intended treatment regimen in a randomized clinical trial. For example, 
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noncompliance may be caused by patients' failure to understand and follow 
the detailed instructions. Sometimes, patients may refuse to start the assigned 
treatment because they believe that the other treatment would work better, or 
they may discontinue the assigned treatment due to intolerable side effects. In 
certain situations, physicians may have to switch patients to a salvage therapy 
when a front-line therapy fails, or allow patients to change to a different treatment 
due to severe adverse events, disease progression, or deterioration of patients' 
health. Under all of these circumstances, noncompliance issues arise, which 
make treatment comparison and inference much more difficult. 

When analyzing the data from a randomized clinical trial, there are in general 
three major analysis populations in accommodation with noncompliance, which 
correspond to intent-to-treat, as-treated, and per-protocol analyses, respectively. 
Trials' conclusions and inferences may change under different analysis popu-
lations. In principle, one needs to ensure that exclusion of any patient from 
the analysis should not cause bias in the treatment effects. Thus, excluding 
patients based on post-randomization considerations, such as noncompliance, is 
generally not allowed for the primary analysis. 

Intent-to-treat (ITT) analysis, also called as-randomized analysis, includes all 
of the randomized patients in the treatment groups to which they were originally 
assigned. The data would be analyzed as the patients were randomized regardless 
of their compliance with the entry criteria, the treatment they actually received, 
and subsequent withdrawal from treatment or deviation from the protocol. ITT 
analysis ignores noncompliance, and thus patients who have dropped out of the 
trial should also be included in the analysis. Generally speaking, ITT analysis 
examines the treatment effects as well as accounting for difficulties in drug 
administration and noncompliance issues. On the other hand, per-protocol (PP) 
analysis compares only the patients who have fully complied with their assigned 
treatment regimen while excluding those noncompliers from the analysis. Hence, 
PP analysis evaluates the maximum beneficial effect from a treatment given 
perfect compliance. Finally, as-treated (AT) analysis takes a middle ground 
between the ITT and PP analyses, which compares patients based on the actual 
treatment they received, not the treatment they were originally assigned to. 

Compilers and noncompliers are often prognostically different. For example, 
if patients with refractory or more serious problems tend to drop out (i.e., sicker or 
nonresponding patients are more likely to quit the treatment), then an ineffective 
treatment may appear to be beneficial if one merely compares those who finished 
the treatment with the control. ITT analysis tries to avoid such misleading 
artifacts that may arise during the intervention. It takes everyone who begins 
the treatment as belonging to that treatment group, whether they finish the entire 
treatment or not. Hence, ITT analysis preserves the integrity of randomization. 
Moreover, when some patients do not comply with the intended treatment, ITT 
analysis is a more conservative approach because it would diminish the treatment 
effect towards the null in a superiority trial. On the other hand, both PP and 
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AT analyses may result in bias because the prognostic effect of noncompliance 
cannot be separated out from that of treatment. 

6.8.3 Instrumental Variable Approach 

Let A be the indicator for the treatment assignment with A = 1 if a patient is 
assigned to the experimental arm and A = 0 if he/she is assigned to the control 
arm. Let Z denote the treatment actually received by the patient; that is, Z = 1 if 
the patient received the experimental treatment, and Z — 0 if the patient received 
the control. Each patient in the population may be called a 

• compiler, if(A = l,Z = 1) or (A = 0, Z = 0); 

• never-taker, if (A = 1, Z = 0) or (A = 0, Z = 0); 

• always-taker, if(A = 0,Z = 1) or(A=l,Z = 1); or 

• defter, if (A = 1, Z = 0) or (A = 0, Z = 1). 

Using the counterfactual notation (YQ,YI), let μο = E(Y"o), μ\ = Ε(Υί), 
yo = Yo — μο, and yi=Y\— μ\\ then the observed outcome is 

Y = y„(i -z) + ΫχΖ 
= μο + (μι - μο)Ζ + yo + (m - yo) Z. 

If we define e = yo + {y\ — yo)Z and θ = μ\ — μο, then 

Y = μο + ΘΖ + e. 

The indicator for treatment assignment A can be viewed as a binary instrumental 
variable (IV), because Cov(A, Z) φ 0 and Cov(^4, e) = 0; that is, A is associ-
ated with Z but not associated with e and any effect of A on Y must be through 
an effect of A on Z. Conditional on the IV, 

E(Y\A = 1) - E(y|A = 0) 
= 0{E(Z|A = 1) - E(Z\A = 0)} + E(e|A = 1) - E(e|A = 0), 

and by noting E(e|^4 = 1) — E(e|^4 = 0) = 0, we have 

E(y|A = l ) - E ( y | A = 0) 
E(Z|A = 1) - E(Z|i4 = 0) ' 

For a better understanding of the differences between the IV, ITT, PP and 
AT estimators, we consider a study comparing two treatments (Angrist, Imbens, 
and Rubin, 1996; Bang and Davis, 2007). Let Ai be the treatment indicator for 
patient i, and let Yu and Yoi denote the counterfactuals, for i = 1 , . . . , n. We 
assume that there are counterfactual doses under each treatment, denoted by Zu 
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and Zoi, which also take a value of 0 or 1. In reality, we only observe the actually 
received dose Z¿ and the induced response Y¿, which are given by 

Zi — (1 — Ai)Zoi + AiZu, 

Yi = (l-ZjYoi + ZiYu. 

The ITT estimator of the treatment effect is defined as 

Σ?=ι YiHAi = i) Σ ? = ι Μ = ο ) 
#ITT Ε?=ι/(Λ = ΐ) Σ?=ι/(Αί = ο) 

which ignores post-randomization compliant status and compares the treatment 
groups formed by virtue of randomization. Under noncompliance, the ITT 
estimator is generally attenuated toward the null in a superiority trial, and toward 
the alternative in a noninferiority or an equivalence trial. The IV estimator is the 
ratio of the ITT effect of Ai on Yi and that of Ai on Z¿; that is, 

YZ=1YjI(Ai = l) E?=iYiI(Ai = 0) 

ñ - Σ?=ι*(Λ = ΐ) ΣΓ=ι/(Λ = ο) 
"I V Σ " = ι ^ ( Λ = 1) Y^^ZjI(Ai = 0)-

YJ}=lI(Ai = l) Ε Γ = ι Α ^ = 0) 
The AT estimator examines the difference between actual recipients and nonre-
cipients of the treatment, defined as 

* _ Σ?=ι YjijZi = i) Σ?=ι YiHZj = o) 
Α τ Σ2=ι KZi = i) Σ?=ι i{Zi = o) · 

The PP estimator compares the subjects who have strictly followed the protocol 
and fully complied with their assigned treatments, which is given by 

ê = Σ" = ι YjIJAi = 1, -gj = 1) Σ"=ι YjI{Aj = 0,Zj = 0) 
P P ΣΓ=ι I{Ai = l,Zi = 1) Σ?=ι I(Ai = Q,Zi = 0) ' 

Although the AT and PP estimators are generally not recommended to be used 
alone, they can serve as complementary estimates to the ITT or IV analysis. 

In summary, the ΓΤΤ analysis includes all the randomized patients in the groups 
to which they were randomly assigned, regardless of their adherence with the 
entry criteria, the treatment they actually received, subsequent withdrawal from 
treatment, or any deviation from the protocol (Fisher et al., 1990). The ITT 
estimator compares treatment effects as randomized, which preserves the initial 
randomization and the baseline comparability among treatment groups. It also 
minimizes bias and prevents conscious or unconscious attempts to influence the 
study findings by excluding certain patients. The ITT analysis typically yields 
conservative estimates for treatment differences in superiority trials and thus is 
particularly preferred for comparisons of multiple treatments. 
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6.9 POST-APPROVAL TRIAL—PHASE IV 

6.9.1 Limitations of Phase l-lll Trials 

If an experimental drug is shown to be effective in phase I-III trials, it will be 
filed to the FDA for approval. However, constrained by both the scopes and 
sizes, phase I, II, and III clinical trials have a number of limitations: 

• more homogeneous and selective patient populations due to eligibility 
criteria, 

• small sample sizes and less representative of the entire population, 

• relatively short follow-ups, 

• the use of surrogate endpoints, and 

• a lack of generality of routine clinical practice. 

In a phase IV trial, a larger number of patients with more diverse conditions 
are exposed to the approved drug, such that the "real-world" information on 
the drug's efficacy and safety can be obtained (Glasser, Salas, and Delzell, 
2007; Kelly, Spielberg, and McAuliffe, 2008). The general population is much 
more heterogeneous than the patients studied in randomized controlled clinical 
trials due to the strict and specific enrollment criteria. In addition, the ways that 
patients are treated in routine clinical practice are very different from those in the 
"gold standard" phase III trials: The former may require patients taking multiple 
prescriptions or medications to manage both chronic and acute conditions, while 
the latter generally involves more intensive and well-controlled medical care 
with more frequent clinic visits and extra medical examinations. 

Phase IV trials may be initiated as 

• conditions required by the FDA or post-marketing commitments following 
the drug's approval, 

• further investigations to support various drug development aspects spon-
sored by the pharmaceutical company, 

• scientifically rigorous studies similar to randomized controlled phase III 
trials, or 

• observational studies by investigators. 

6.9.2 Drug Withdrawal 

Phase IV trials aim to delineate more information on the drug's risks and benefits, 
so as to achieve its optimal use. In particular, phase IV trials may study different 
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doses/schedules and routes of administration from those approved, treat patients 
with less stringent medical conditions or other stages of the disease in general 
clinical practice, demonstrate the drug's superiority over other competing agents, 
attain approval of new indications or label changes, and establish safety and 
efficacy in different patient populations. 

As post-marketing studies, phase IV trials keep drug safety under close surveil-
lance. To detect any rare or long-term adverse effects, a much larger patient pop-
ulation needs to be followed for a much longer period of time, which is typically 
not feasible in phase I-III clinical trials. Based on the nature and frequency of 
unintended adverse effects and thorough comparisons with alternative therapies, 
the FDA can add new risks to the warning label on the medication and, in a more 
serious occasion, the approved drug may be taken off the market. Withdrawal 
of a drug may be caused by rare and unpredictable adverse effects that have not 
been observed in previous studies. Prior to the FDA approval, a new drug is 
usually tested among 3,000 to 10,000 patients through phase I—III trials. As an 
example, if some severe drug-induced liver dysfunction or kidney failure only 
occurs at a rate of 1 in 5,000 to 10,000 exposures or less, these rare events will 
only surface when the drug is used in the general public. Some drugs may also 
be taken off the market because they are more toxic than expected, they interact 
with other prescription drugs or those over-the-counter resulting in "dangerous" 
drug combinations, or safer alternatives are developed and become available. 
After the approval, approximately 50% of drugs have label changes due to major 
safety concerns; 20% are issued new black box warnings; and 3% to 4% are 
ultimately withdrawn for severe safety reasons (Strom, 2006). 

Compared with a phase III clinical trial, a phase IV trial enrolls a much larger 
number of heterogeneous samples with more diverse conditions. As usual, we 
can determine the sample size based on the effect size of the intervention and 
the nature of comparisons to be made with other standards of care. Neverthe-
less, phase IV trials often enroll patients attending different clinics, treated in 
different settings, or seen by different doctors. Because the data are often nested 
within clusters (e.g., doctors or clinics), intra-cluster correlations among the 
primary outcomes should be taken into consideration for power and sample size 
calculation; see Section 6.5. 

In summary, interventions that have been shown to be effective in well-
controlled clinical trials should be further evaluated under diverse "real-world" 
conditions. This is particularly important for the drugs that have been given 
accelerated approval, such as some HIV/AIDS drugs. To fulfill these purposes, 
phase IV trials should contain scientifically sound objectives. The design and 
implementation of these studies must allow us to reach firm conclusions on the 
impact and risks/benefits of new drugs through the widespread use in clinical 
practice. 



220 PHASE III TRIAL DESIGN 

EXERCISES 

6.1 In a superiority trial, suppose that the response rate of the standard treat-
ment is 25%, and we expect that of the experimental treatment to be 40%. With 
the type I error rate a = 0.025 and a power of 80%, what is the total sample 
size if the ratio of allocation between the experimental and standard arms is 
2:1? Compare the sample size estimation based on the two different formulae 
(depending on whether to pool data together under the null hypothesis). How 
about the sample size using an allocation ratio of 1:1? 

6.2 In a noninferiority trial, suppose that the noninferiority margin δ^ = 0.05, 
and we take the response rates of both the standard and experimental treatments 
to be 30%. For a type I error rate of a = 0.05 and a power of 90%, what is the 
total sample size of the trial with an allocation ratio of 1:1 ? 

6.3 Consider the parametric approach to calculating the sample size for a 
clinical trial with survival endpoints. Assume exponential models with con-
stant hazards λι and X2 in groups 1 and 2, respectively. Under the alternative 
hypothesis Hi: \i/\2 = exp(0), with Θ > 0, show that 

Tn\Hi~N(VD9/2,l), 

where Tn is the log-rank statistic and D is the total number of events. 

6.4 Due to multiple testing, the overall type I error rate may be inflated. Given 
that each test is conducted at a significance level of a = 0.05, verify that the 
overall type I error rate is 0.083 when two tests are conducted. How about the 
overall type I error rate with three tests? 

6.5 In the group sequential designs, there are many other families of a-
spending functions, such as 

/ l _ e - 7 * \ 
Φ) = a x I 1 _ e _ 7 1 , 7 φ 0, 

or 
ait) = atf. 

Plot these two a-spending functions under different values of 7. For what values 
of 7, Pocock's and O'Brien and Fleming's stopping boundaries can be generated, 
respectively? 

6.6 In a two-arm group sequential trial with normal endpoints, show that the 
covariance function between the two test statistics Z(tj) and Z(tk) is 

Cav{Z(tj), Z(tk)} = y/lj/Ik, 0<tj<tk< 1, 

where Xk is the information up to group k, and also show that 

Z(tk)VTk — Z(tk-i)yjlk-i ~ N(0(ïfc -Xfc-i)) Ik -2fc-i)· 
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Furthermore, prove that Z(tk-i) and Z{t^)\JT^— Z(tk-i)-\/lk-i are indepen-
dent. 

6.7 In the adaptive design with Fisher's combination test, show that the null 
hypothesis Ho would be rejected if the p-values from the two stages satisfy 

P1P2 <ca = exp(-xlj2). 



CHAPTER 7 

ADAPTIVE RANDOMIZATION 

7.1 INTRODUCTION 

The general goals of randomized clinical trials are to 

• treat patients effectively, and 

• differentiate treatment effects efficiently, 

albeit the inherent conflict between the two due to individual versus collective 
ethics. On one hand, a clinical trial tries to discriminate the effects of different 
treatments quickly, so that more patients outside of the trial would benefit from 
the more efficacious treatment sooner. For this purpose, patients' allocation 
should be (nearly) balanced across the comparative arms. On the other hand, each 
trial participant should be treated the most effectively, and patients themselves 
also hope that they would be assigned to the arm that performs better. This often 
leads to an unbalanced allocation through adaptive randomization by equipping 
a better arm with a higher allocation probability. Therefore, randomized clinical 
trials need to strike a balance between individual and collective ethics. 

To ensure an objective comparison of different treatments, patients' allocation 
should be random (or unpredictable) so that different groups are balanced with 
Clinical Trial Design. By Guosheng Yin 223 
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respect to all known and unknown prognostic factors that may affect the response. 
In practice, investigators might consciously or unconsciously assign patients 
under certain conditions to a specific treatment—for example, always giving 
healthier patients the treatment that is believed to work better. Such potential 
selection bias can be prevented if using randomization in conjunction with a 
double-blind scheme. 

Not only can randomization effectively reduce bias and confounding effects, 
but it also forms the fundamental basis for statistical analysis. Although post-
adjustment procedures, such as analysis of covariance or regression models, may 
account for a lack of comparability between treatment groups, clinical trials with 
well-balanced prognostic variables are more credible and efficient. In general, 
randomization can be classified as follows: 

• Simple randomization is the most straightforward way for patient alloca-
tion, which fixes randomization probabilities but may lead to unbalanced 
groups. 

• Permuted block randomization guarantees the number of subjects in each 
group to be the same during the trial. 

• Stratified randomization first stratifies participants by certain important 
prognostic factors, and then allocates them within each stratum. Thus 
at least, the numbers of patients for those stratification factors can be 
balanced. 

• Adaptive randomization allows the allocation probability for each arm to 
change as the trial progresses. It can be covariate-adaptive to balance the 
baseline prognostic factors or outcome-adaptive to assign more patients to 
better treatment arms. 

The first three randomization procedures have fixed allocation probabilities. The 
use of block and stratification in randomization helps to balance different groups 
and also to control unwanted variations. By contrast, adaptive randomization 
allows the randomization probabilities to change throughout the trial. Covariate-
adaptive randomization intends to make patients in different groups more alike, 
while response- or outcome-adaptive randomization aims to treat more patients 
with better treatments. 

Response or outcome-based adaptive randomization, simply abbreviated as 
AR from now on, is the main focus of this chapter. Under such an AR scheme, 
the responses of the currently treated patients in the trial are used to determine 
the treatment allocation for future participants. The purpose is to increase the 
number of patients assigned to the superior arm, so that more patients will benefit 
from the better treatment based upon the evidence accumulated from the data. 

Historically, equal randomization is the standard for treatment assignment 
due to its ease of implementation and the state of equipoise (genuine uncertainty 
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about which treatment is more beneficial). In general, equal randomization leans 
toward collective ethics, because if a trial can demonstrate the effectiveness of 
an experimental treatment earlier (due to higher power), more patients outside 
of the trial would benefit from it sooner. By contrast, AR is more concerned 
with individual ethics; that is to treat patients in the current trial more effectively 
using the better treatment. While it appears to be more ethical and appealing to 
each individual patient, AR may lead to imbalanced numbers of patients among 
different arms and thus result in loss of efficiency for the study. Moreover, real-
time AR requires patients' outcomes to be ascertainable immediately or shortly 
after treatment; otherwise, new participants may have to wait for treatment 
assignment until the responses of all the previous patients are obtained. However, 
it is neither sensible nor ethical to withhold treatment from patients due to others' 
delayed responses. 

The history of AR can be traced back to the pioneering work of Thompson 
(1933) and Robbins (1952). Zelen (1969) introduces the play-the-winner rule 
for a two-arm trial: The next patient is assigned to the same treatment if the 
previous patient responded, or to the other treatment if the previous patient did 
not respond. Wei and Durham (1978) extend the deterministic allocation in the 
play-the-winner rule to a randomized version. Efron (1971) studies the biased 
coin design to balance the patient allocation based on the extent of imbalance 
among different arms. Eisele (1994) develops a doubly adaptive biased coin 
design to target a certain allocation proportion. Berry and Eick (1995) make a 
through comparison of several AR procedures, including a two-arm bandit and 
a robust Bayesian method. Thall and Wathen (2007) take AR as a compromise 
between equal randomization and treatment assignment based on physicians' 
preference. Although AR is useful to mitigate ethical issues, it may cause 
imbalance of the prognostic factors among different groups. To bridge response-
adaptive and covariate-adjusted randomization, the allocation probability may 
be skewed to more effective treatments, while at the same time the distributions 
of the covariates are adjusted toward balance (Ning and Huang, 2010; Yuan, 
Huang, and Liu, 2011). For comprehensive coverage on various randomization 
methods, see Rosenberger and Lachin (2002) and Hu and Rosenberger (2006). 

7.2 SIMPLE RANDOMIZATION 

In simple randomization, the probability that a patient is assigned to each treat-
ment arm is fixed throughout the trial with no regard to the history of patient 
allocations. If equal randomization is used in a trial with K treatments, each 
participant is simply assigned with probability 1/K to one of the K groups. For 
a two-arm trial as shown in Figure 7.1, equal randomization can be achieved 
by tossing a fair coin. In some circumstances, it may be desirable to allocate 
more subjects to a certain treatment, because that treatment is believed to work 
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Figure 7.1 Simple randomization in a two-arm trial. 

better or investigators are interested in learning more about a specific drug. If 
the allocation ratio to the new therapy versus the standard therapy is 2:1, then 
more information can be gained on the new treatment. 

The allocation unit can be either individual-based or group/cluster-based. 
For individual-based randomization, patients are randomized on a one-by-one 
basis. For group-based randomization, a group of subjects belonging to the same 
family, clinic, or community is randomized together to a particular intervention 
group. Simple randomization is straightforward and unpredictable, while it may 
cause imbalance among different groups. 

7.3 PERMUTED BLOCK RANDOMIZATION 

To achieve perfect balance across different groups, we may use the so-called 
permuted block randomization. By permuting the patient allocation within each 
block, the method guarantees an equal number of patients assigned to each 
treatment during the course of the trial (Simon, 1979). For illustration, suppose 
that we want to compare three treatments, say A, B, and C, in a randomized trial. 
If the permuted block randomization uses a block size of three, then the possible 
permutation sequences are 

{ABC, ACB, BAC, BCA, CAB, CBA}. 

At the randomization, a block is randomly chosen first, say BAC; that means, 
the first patient in the block will receive treatment B, the second will receive 
treatment A, and the third will receive treatment C. This ensures that exactly one 
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Randomization 

Figure 7.2 
trial. 

Stratified randomization by the age of 50 years and patient sex in a two-arm 

patient is assigned to each treatment within the block. As another example, we 
consider a randomized two-arm trial with treatments A and B. If we use a block 
size of four, then two patients in each block will be assigned to treatment A and 
the other two will receive treatment B. As a result, the permutation sequences 
can be written as 

{AABB, ABAB, ABBA, BBAA, BABA, BAAB}. 

Obviously, such permuted block randomization guarantees the number of pa-
tients allocated to each treatment arm to be the same. 

However, there is a potential for selection bias if the practitioner is aware 
of the block size. By the end of each block, the treatment assigned to the last 
participant in the block will always be known as long as the previous treatment 
assignments have been kept track of. A natural remedy to prevent such selection 
bias is to make the block size unpredictable as well. For example, in a clinical 
trial with three treatments, the block size may be randomly chosen from {3,6,9}; 
in a study with two treatments, the block size may be randomly selected from 
{2,4,6,8}. This additional randomness in the block size makes the permuted 
block randomization unpredictable. 
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7.4 STRATIFIED RANDOMIZATION 

Simple randomization and permuted block randomization may not be able to 
balance certain prognostic factors of particular interest. To balance over some 
particular covariates of importance, randomization may be stratified by them. 
Subjects entering the trial are first classified into mutually exclusive strata, and 
then within each stratum separately, patients are randomly allocated to each 
treatment. Figure 7.2 displays that patients are stratified by the age of 50 
years and sex, before randomization takes place. However, the number of strata 
increases multiplicatively with the number of stratification factors. If the number 
of strata is relatively large in comparison to the number of subjects, some strata 
may have few or even no patients assigned. This, in turn, may yield considerable 
imbalance among treatment groups (Therneau, 1993). 

In a small study, a few strata for the most important risk factors may be 
identified in advance to assure appropriate balance for those factors at least. In a 
large multi-center trial, the center is often used as one of the stratification factors, 
which may limit the number of additional prognostic factors for stratification. 

7.5 COVARIATE-ADAPTIVE ALLOCATION BY MINIMIZATION 

When there is a large number of prognostic factors in a trial, it becomes dif-
ficult to achieve overall balance across all of the covariates. Taves (1974) and 
Pocock and Simon (1975) propose the minimization method (also known as 
dynamic allocation, covariate-adaptive, or -adjusted randomization) for sequen-
tial treatment assignment. During the randomization process, the allocation of 
each subject is determined by the current overall balance among the treatment 
groups. Hence, the randomization probability to each treatment arm is not fixed, 
but keeps changing as the trial proceeds. The minimization method determines 
treatment assignment based on the distributions of covariates in order to achieve 
desirable balancing properties. 

All of the important prognostic factors should be identified prior to the ini-
tiation of the trial. Continuous prognostic factors need to be categorized into 
meaningful ordinal levels. The dynamic allocation (minimization) procedure 
works toward minimizing the total imbalance of all the prognostic variables, 
which is mainly characterized by 

• the amount of variation or imbalance across different arms for each factor 
level marginally, 

• the measure of the total imbalance across all the treatment groups, and 

• the prespecified assignment probabilities for the K groups, p^ > · · · > 
P(K)> where p^ is the probability of assignment to the treatment that 
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would lead to the least total imbalance, p(2) is t n e second in reducing the 
total imbalance, p^ is the third, and so on. 

More specifically, let / denote the total number of prognostic factors under 
consideration. In a two-arm trial with K = 2, let Tin be the number of subjects 
assigned to treatment 1 and n¿2 be that assigned to treatment 2, then the difference 
for factor i is given by 

9i = \nn -ni2\, i = l,...,I. (7.1) 

For a multi-arm trial with K > 2, define 

Si = max \riij - nik\, i = l,...,I, 
j,k=l,...,K 

which measures the most imbalance in any pair of treatment groups for the ¿th 
factor. 

The total imbalance is measured by summing over the marginal imbalance 
for each factor, G = Σί=ι 9i- If some prognostic factors are considered more 
important than others—for example, tumor stage is clinically more relevant in 
oncology than patients' sex and age—it is more sensible to use a weighted sum, 

G = ^WiÇi, 

¿=1 

where Wi is the prefixed weight characterizing the importance of the ¿th factor. 
If the total imbalance G is the same regardless of which treatment is assigned to 
the new patient, the treatment allocation would be purely at random; otherwise, 
the next patient is more likely to receive the treatment that would lead to the least 
overall imbalance. 

Table 7.1 Illustration of the Minimization Method, with the First 40 Patients 
Distributed across the Three Prognostic Factors of Sex, Race, and Tumor Stage 

Prognostic Factor 

Sex 

Race 

Tumor stage 

Level 

Male 
Female 

Caucasian 
Hispanic 

I 
II 
III 

Treatment A 

10 
9 

11 
8 

7 
9 
3 

Treatment B 

8 
13 

12 
9 

6 
12 
3 

Imbalance 

2 
4 

1 
1 

1 
3 
0 
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We present an example in Table 7.1 to demonstrate how to achieve overall 
balance on three prognostic factors: sex, race, and tumor stage. For any given 
factor level, the measure of imbalance between treatment groups A and B is based 
upon the absolute difference gi in (7.1). The total imbalance G is measured by a 
sum of the (?,'s (with equal weights w\ = u>2 = u>z = 1 for sex, race, and tumor 
stage). The largest assignment probability is prespecified as p^ = 0.75, with 
which the subject will be allocated to the treatment group that would yield the 
least overall imbalance, and thus p(2) = 0.25. The values of p^ and p(2) are 
specified arbitrarily, as long as each new patient will have a higher probability 
to be assigned to an arm that tends to reduce the total imbalance. 

As shown in Table 7.1, 40 subjects have been enrolled in the trial thus far. 
Suppose that the next subject entering the trial is a male Hispanic patient with 
tumor stage II. To determine which treatment this patient will be assigned, we 
consider the following two hypothetical situations: 

• If this subject receives treatment A, the updated table of imbalance would 
be 

Prognostic Factor 

Sex 
Race 
Tumor stage 

Level 

Male 
Hispanic 
II 

Treatment A 

11 
9 

10 

Treatment B 

8 
9 

12 

Imbalance 

3 
0 
2 

which leads to the total imbalance ofG = 3 + 0 + 2 = 5. 

• If this subject receives treatment B, the updated table of imbalance would 
be 

Prognostic Factor 

Sex 
Race 
Tumor stage 

Level 

Male 
Hispanic 
II 

Treatment A 

10 
8 
9 

Treatment B 

9 
10 
13 

Imbalance 

1 
2 
4 

which leads to the total imbalance of (7 = 1 + 2 + 4 = 7. 

The total imbalance between the two treatment groups would be minimized if 
this patient were assigned to treatment A. Therefore, this subject will be assigned 
to arm A with probability p^ = 0.75 and to arm B with probability p^} = 0-25. 

Following covariate-adaptive randomization, the usual two-sample t test with-
out adjusting for any covariate is conservative. Shao, Yu, and Zhong (2010) 
provide a valid statistical test by using the correct model between outcomes and 
covariates, and they also develop a two-sample t test based on the bootstrap 
procedure. 
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7.6 BIASED COIN DESIGN 

In a two-arm randomized study, the biased coin design (BCD) can be used to 
sequentially allocate patients between the two treatments (Blackwell and Hodges, 
1957; Efron, 1971). The BCD specifies the sequential randomization rule by 
the means of hypothetically tossing a biased coin which has a probability of 
p (p > 1/2) landing on the head. For illustration, let n\ and n2 denote the 
numbers of subjects assigned to arm 1 and arm 2, respectively. Let p be the 
randomization probability for arm 1, and thus 1 — p is that for arm 2. As the trial 
proceeds, a new patient will be allocated to arm 1 with a probability of 

( p, i f m < n 2 , 

1/2, if ni = n2, 
1 - p , if ηχ > n2. 

For example, if p = 2/3, then each randomization step favors the treatment that 
has been underrepresented thus far. 

Sometimes, simply using the difference in the number of subjects may not be 
sufficient to characterize how unbalanced the two groups are. For example, an 
allocation with ηχ = 100 versus n2 = 95 is not considered as unbalanced as that 
with m = 10 versus n2 = 5, although the actual differences are the same. In 
this case, the relative difference Δ / η is more relevant, where Δ = n\ — n2 and 
n = n\ + n2 is the total sample size. Let g(-) be a known decreasing function 
with g(0) = 1/2. To put more weight on the relative imbalance, Wei (1978) 
recommends the allocation probability to arm 1 as 

Nevertheless, using the relative difference to characterize the imbalance may 
also cause ambiguity. For example, the case with n\ = 3 and n2 = 2 (i.e., 
Δ / η = 1/5) and that with n\ = 12 and n2 = 8 (i.e., Δ / η = 4/20) are 
indistinguishable based on the relative difference, while the former is as balanced 
as it can be but the later is clearly unbalanced. 

Antognini and Giovagnoli (2004) propose an adjustable BCD—the more 
imbalanced the two groups, the more strength will be imposed to pull the samples 
back to balance. Let g(x) be a function that maps from an integer to a probability, 
which satisfies that g(x) is decreasing and g(—x) = 1 — g(x)· Among a variety 
of allocation probability functions, the one of particular interest is given by 

( |Δ|τ/( |Δ|τ + ΐ), ί ί Δ < - 1 , 
9Ί(Α) = { 1/2, ΐ ί Δ = 0, 

Ι ΐ / ( | Δ | τ + 1), ί ί Δ > 1 , 

where the power parameter 7 > 0 adjusts how much strength is exerted to pull 
the unbalanced sample sizes toward balance. 

Pr(assigned to arm 1) 
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Table 7.2 Play-the-Winner Rule with Dichotomous Outcomes—Treatment 
Success (S) or Failure (F) 

Order of Participants 

Treatment A 
Treatment B 

1 

S 

2 

S 

3 

F 

4 

S 

5 

S 

6 

S 

7 

F 

8 

S 

9 

F 

10 

F 

7.7 PLAY-THE-WINNER RULE 

7.7.1 Deterministic Scheme 

The play-the-winner rule (Zelen, 1969) is a simple response-adaptive design 
as described below. In a study comparing two treatments A and B, suppose 
that patients' responses are dichotomous: success or failure. The first patient 
is randomized to either treatment A or B with an equal probability. If the 
previous patient's response is a success, the next patient will be assigned the 
same treatment as the previous one. If the previous patient's response is a 
failure, the next patient will receive the other treatment. Therefore, once the 
outcome of the previous patient is obtained, the treatment assignment for the 
next patient is completely determined; that is to stay with the winner until a 
failure occurs and then switch to the alternative treatment. 

As illustrated in Table 7.2, the first participant is randomized to treatment A 
or B with a probability of 0.5. Suppose that by chance, this subject received 
treatment A. Because the response of the first patient was a success, the second 
patient was assigned to arm A as well, and the response was again a success. 
Then, the third participant continued to receive treatment A, but a failure was 
observed, which triggered a switch of the treatment. Therefore, the fourth subject 
changed to treatment B; and because a subsequent success was observed, the fifth 
participant stayed on treatment B. Such a process continues until the total sample 
size is exhausted. The ratio of the numbers of subjects assigned to treatment A 
and treatment B tends to (1 — P B ) / ( 1 — PA) as the number of patients in the trial 
goes to infinity, where PA and ps denote the response rates of treatments A and 
B, respectively. 

7.7.2 Randomized Scheme 

The original play-the-winner rule lacks randomness because each treatment 
assignment is fully and only determined by the outcome of the previous patient, 
regardless of the outcomes of other patients. By contrast, the randomized play-
the-winner rule gives a higher probability to change to the other treatment for 
the next patient if a failure is observed from the previous patient, instead of a 
definitive switch of treatment (Wei and Durham, 1978). 
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The randomized play-the-winner rule can be described with an urn model. 
Suppose that in an urn, there are two types of balls, marked as A or B. Starting 
with n balls of each type, we randomly draw a ball with replacement to determine 
which treatment will be assigned to a new patient. If the ball is of type A, the 
subject is assigned to arm A. If the subsequent response of this subject is a 
success, additional a balls of type A and ß balls of type B are added to the urn, 
with a > ß > 0. Therefore, the next subject would have a higher probability of 

Οί ~\~ ΐί 
Pr(next drawn ball is A) = > 0.5, v ' a + β + 2n -

to be assigned to arm A. On the other hand, if the response of this subject is a 
failure, additional β balls of type A and a balls of type B are added to the urn, 
so that the next subject would have a lower probability of 

Pr(next drawn ball is A) = — — < 0.5, 
v ; a + β + 2n -

to be assigned to arm A. In practice, it may happen that when a new patient enters 
the trial, the response of the previous subject is still not available (i.e., delayed 
response). In this circumstance, we may immediately draw a ball from the urn 
of current status for this new participant. We will update the balls' composition 
in the urn whenever the response of that previously treated patient is obtained. 

If the urn starts as empty with n = 0, a patient would be randomized with an 
equal probability of 0.5 to each treatment. Whenever an outcome is observed, the 
allocation probability will be skewed in favor of the better-performing treatment 
thus far. If a = 1 and β = 0, and every time before a ball is drawn we reset the 
urn to be empty with n — 0, then the randomized play-the-winner rule reduces 
to the original design with deterministic treatment allocation. 

7.8 DROP-THE-LOSER RULE 

Similar to the play-the-winner rule, the drop-the-loser rule also assigns more 
patients to a better treatment. The two designs target the same allocation pro-
portion; that is (1 — P B ) / ( 1 — PA) between treatment A and treatment B, where 
PA and PB are the corresponding response rates. The drop-the-loser rule may 
produce a less variable proportion during patients' allocation to treatment groups 
(Ivanova, 2003; Zhang et al., 2007). The reduction in the allocation variability 
often leads to improvement in the statistical power. 

In a two-arm trial with treatments A and B, we describe the drop-the-loser 
rule with an urn model. Suppose that an urn contains three types of balls: Balls 
of types A and B represent treatments, and balls of type 0 are called immigration 
balls whose function is to avoid extinction of those treatment balls. The urn starts 
with UA, riß, and no balls of types A, B, and 0, respectively. Upon a patient's 
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arrival, one ball is drawn at random. If a treatment ball is selected, either A or 
B, the corresponding treatment is given to the subject. If the patient's response 
to the treatment is a failure, the ball will not be replaced back to the urn (i.e., the 
"loser" is dropped); and if the response is a success, the ball will be replaced and 
consequently the composition of the urn remains unchanged. If an immigration 
ball of type 0 is selected, no treatment is assigned to the patient and the ball will 
be replaced back to the urn together with one ball of type A and one ball of type 
B; and then we draw another ball for this patient. 

7.9 OPTIMAL ADAPTIVE RANDOMIZATION 

7.9.1 Dichotomous Outcome 

Adaptive randomization may be optimized with respect to a certain criterion, 
for example, to minimize the variance (equivalently, to maximize power) or to 
minimize the number of nonresponders in a trial (Rosenberger et al., 2001). Such 
a randomization procedure targets a specific allocation proportion, which turns 
into a constrained optimization problem. In general, a trial may be evaluated 
by the target allocation proportion, and the bias and variability of randomization 
procedure (Melfi, Page, and Geraldes, 2001; Hu and Rosenberger, 2003). 

To avoid unnecessary complications, we consider a randomized two-arm trial 
with dichotomous and immediately known responses. Let p\ be the response 
rate of treatment 1, and let p<¿ be that of treatment 2. We are interested in testing 
whether there is a difference between the two treatments, 

Ho:p\=p2 versus Ε\:ρ\φρ2· 

Suppose that at a certain point of trial conduct, y\ patients have responded 
among the n\ patients in arm 1 and y2 have responded among the n2 patients 
in arm 2. If we denote the allocation ratio r = n\¡n2 and the total sample size 
n = n\ + n2, then 

nr n 
n\ = and n2 = 1 + r 1 + r 

The consistent estimators for p\ and p2 are the corresponding sample proportions, 
Pi = Vi/ni and p2 = 3/2/^2. a nd the variance of the response difference is 

V = Var(pi - p2) 

= P i ( l - P i ) P2( l -P2) 
n\ n2 

Mi-PiU1+iV^LziĄ1 + r). (7.2) 
n V r J n 
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The so-called Neyman allocation is obtained by minimizing the variance, which 
leads to the allocation ratio between arm 1 and arm 2 as 

_ y f r i ( l - P i ) 
r N e y m a n " V f c ( i - P 2 ) " 

In other words, the optimal allocation (to maximize power while fixing the total 
sample size) is to assign patients proportional to the squared root of the vari-
ance of the parameter estimate. Neyman's allocation can also be interpreted as 
minimizing the total sample size while fixing the variance. However, Neyman's 
allocation may not be ethical because it may assign more patients to an inferior 
treatment when pi + P2 > 1, say, pi = 0.5 and P2 = 0.6. A simple remedy 
to Neyman's allocation is to take equal randomization whenever the assignment 
probability to the inferior arm is higher than that to the superior arm. 

From an ethical perspective, Rosenberger et al. (2001) propose an optimal 
allocation scheme that minimizes the expected number of nonresponders while 
fixing the variance of the test statistic. Following this route, we can minimize 

TIT Tl· 

ni( l - p i ) + n2(l -P2) = 7 — ( 1 ~Pi ) + τ — ( 1 -P2) , (7.3) 
1 + r 1 + r 

subject to fixing the variance of pi —p2 in (7.2) as a constant. Thus after plugging 
in 

n = 1 | p i ( l - P i ) ( l + i ) + p 2 ( l - p 2 ) ( l + r ) | , 

we take the first derivative of (7.3) with respect to r, which leads to an optimal 
allocation ratio of 

VPÏ 
r0pt = P2 

In the application of adaptive randomization, pi and p2 are unknown; we can 
continuously replace mem by the sample proportions p\ and p2. 

7.9.2 Continuous Outcome 

Although dichotomous outcomes are intuitive and widely used to characterize 
patients' responses after treatment, continuous outcomes may also arise as the 
primary endpoint in clinical trials (Zhang and Rosenberger, 2006). For example, 
the reduction in the diastolic blood pressure may be used to evaluate antihyper-
tensive efficacy of losarían and amlodipine (Wilson, Lacourcière, and Barnes, 
1998), and the Hamilton depression rating scale is often measured on patients 
with depressive disorder treatments (Vieta et al., 2002). To avoid cumbersome 
calculations, we assume mat continuous outcomes are normally distributed, 
Y\ ~ Ν(μι,σι) and Υ"2 ~ Ν(μ2,σ|) for treatment 1 and treatment 2, respec-
tively. We are interested in testing whether there is a difference between the two 
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treatments; that is, 

H0: μι = μ2 versus Hi: μ\ ^ μ2· 

Based on the consistent estimators ¡i\, μ2, a\, and σ\, we can construct a Z-test 
statistic 

Al - # 2 
z = \¡a\¡ni + σ|/η2 

which follows the standard normal distribution asymptotically. By minimizing 
the variance 

2 2 
, . , , „ . at at 
Var μι - μ2 ) = -Ł + -*■ 

ni rc2 

= ^ ( Ι + Γ ) + ^ ( 1 + Γ) (7.4) 

with respect to r, we obtain Neyman's allocation ratio, 

- ^1 
^Neyman — 

σ2 

On the other hand, we may minimize the total expected response from all 
patients if a smaller response is preferred (e.g., lowering the blood pressure). 
Hence, we minimize 

ηιμι + η2μ2 

subject to fixing the variance as a constant V = VarQûi - /x2) given in (7.4). 
This leads to an allocation ratio of 

σ\^/μ~2 
ropt = 

0"2VW 
However, it may happen that more patients are allocated to the inferior treatment 
with certain values of μχ, μ2, a\, and σ2; for example, μι = 0.1, μ2 = 0.2, 
and ai = σ2 = 1. Whenever such an inappropriate allocation is observed, we 
should take equal randomization, so that the assignment probability to a better 
treatment group is guaranteed to be at least 1/2. If a larger response is preferred 
in a trial, we may minimize 

nj_ U2 
Mi M2 

subject to the same variance constraint in (7.4), which results in an allocation 
ratio of 

σΐΛ/μϊ 
ropt = 

<WM2 

Biswas and Mandai (2004) propose an alternative optimal criterion based on 
a probit transformation. Let Φ(·) denote the cumulative distribution function 
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of the standard normal distribution, and let c be a constant beyond which the 
response is considered undesirable. We can minimize 

, / μ ι -c\ Λ / μ 2 - c 
σ\ J \ σ2 

which is equivalent to minimizing the number of patients with responses greater 
than c. The resulting allocation ratio is 

= σ1λ/Φ{{μ2-β)/σ2} 
OPt σ2Λ/Φ{(μι -c)/aiY 

7.9.3 Time-to-Event Outcome 

For time-to-event endpoints, Zhang and Rosenberger (2007) develop an optimal 
allocation while assuming parametric survival models. Let T denote the failure 
time with an exponential density function, 

/ ( ί ) = λβχρ(-λ ί ) , 

and a survival function, 
S(t) = βχρ(-λί) , 

where λ is the constant hazard rate. 
Due to independent right censoring, we actually observe i.i.d. replicates of 

Xi — mm(Ti,Ci) and Δ, = 7(r¿ < Q), where C¿ is the censoring time, for 
i = 1 , . . . , n. Under the exponential model, the likelihood function is given by 

L(X) = fliXexpi-XXi^ieM-^i)}1-^-

We take the first derivative of the log-likelihood function with respect to λ, which 
leads to the score function 

dA -X^Ai~^X^ 

and thus the maximum likelihood estimator (MLE) of λ is 

λ = 
Σ Γ = ι ^ ' 

By taking the second derivative of — log L(X), the observed information for λ is 
given by 

' η ( λ ) = ^ ^ , 
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and the expected information for λ is 

KA) - £ 

where δ = Ε(Δ,) = Pr(A¿ = 1). The estimate for the variance of A is 7"1 (A). 
If we compare two exponential survival distributions with respective haz-

ard rates λι and A2 for treatment group 1 and group 2, the hypothesis testing 
formulates 

HQ\ \\ = À2 versus H\: \\ φ A2. 

The total sample size is n = n\ + Ύ12 and the allocation ratio between arm 1 and 
arm 2 is r — n\/ri2. We can construct a Wald test statistic, 

z= λ ι _ λ 2 

where Δ ^ and A2j are the censoring indicators in group 1 and group 2, respec-
tively. Let δχ = Ε(Δϋ) and ¿2 = E(A2¿). By minimizing the variance 

Var(A1-A2) = - ^ - + X<2 

ηχδ\ n2¿2 

ηδ\ V r) nÖ2 

with respect to r, we obtain Neyman's allocation ratio, 

λ ι ν ^ 

λ ? fi + -) + ̂ ( l + r) (7.5) 

^Neyman A2 

To derive the optimal allocation that minimizes the total expected hazard, we 
minimize 

ηχλχ + η 2 λ 2 

subject to fixing the variance in (7.5) at a constant. The optimal allocation ratio 
is given by 

r°pt " v / W 
Alternatively, we may use a more meaningful optimal criterion; for example, 

to maximize the total number of patients who have survived beyond a constant 
time c, niS\(c) + «2^2(0), where Si(t) and S2(t) are the survival functions for 
group 1 and group 2, respectively. However, such a maximum does not exist. By 
contrast, we may minimize the total number of patients who have experienced 
the event (failure or death) by time c, 

n1{l-S1(c)} + n2{l-S2(c)}, 
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subject to fixing the variance in (7.5) at a constant. As a result, the optimal 
allocation ratio is 

A i V M 1 -exp(-A 2 c)} 
r, opt λ2 ν

/^ι{1 -exp( -Aic)} 

7.10 DOUBLY ADAPTIVE BIASED COIN DESIGN 

When the randomization probability adaptively changes in the course of a trial, 
there is often a target allocation ratio between the two arms. The doubly adaptive 
biased coin design allows the randomization probability to explicitly depend 
on both the observed allocation proportion and the estimated target allocation 
ratio (Eisele, 1994; Eisele and Woodroofe, 1995; Hu and Zhang, 2004). It 
simultaneously takes into consideration both the future goal and the current 
situation by using an allocation function g(x,p) to balance the current allocation 
proportion x and the target allocation probability p: 

g(x,p) = < 

ΜΧ)Ί i f O < s < l , ρ(ρ/χ)τ + ( 1 - ρ ) { ( 1 - ρ ) / ( 1 - χ ) } 7 ' 

k 1 — x, if x = 0 or 1 

The power parameter 7 > 0 controls the degree of randomness of the procedure. 
The target allocation probability p may be obtained by using the optimal 

adaptive randomization methods discussed in the previous section. For example, 
to minimize the number of nonresponders, the target allocation probability to 
arm 1 is p = y/pï/{^/pï + y^2 )· Suppose that y^ patients have responded 
among n¿ patients who were enrolled in treatment arm k. We can estimate 
the response rates by pk = yk/nk> f°r k = 1,2. Since the current allocation 
proportion in arm 1 is x = n\/(n\ + «2), the probability that the next patient 
will be assigned to treatment 1 is g(x, p), where 

VPT+VP^' 

7.11 BAYESIAN ADAPTIVE RANDOMIZATION 

7.11.1 Two-Arm Comparison 

Using the "learn as we go" approach, AR assigns more patients to better treatment 
arms based on the outcomes of previous patients in the on-going trial. There is 
typically a prephase of equal randomization (ER) at the beginning of a trial, due 
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Figure 7.3 Posterior distributions of the response rates in a two-arm randomized trial 
with a small amount of data at the earlier stage of a trial (left panel), and more observed 
data at the later stage (right panel). 

to a lack of information on the treatments. The study design needs to compromise 
between power and the trial ethics: ER yields nearly the highest power, while 
AR benefits more trial participants at the sacrifice of power. 

For ease of exposition, we consider a two-arm randomized trial. Let p\ and p2 
denote the probabilities of response for treatments 1 and 2, respectively. For the 
implementation of AR, a common practice is to take the assignment probability 
proportional to the estimated response rate of each treatment. In fact, AR is 
not uniquely attached to Bayesian or frequentist methods; either approach can 
assign a new patient to arm k with a probability oipk/ipi + íh) f° r k = 1,2, 
where pk is the posterior mean or the MLE of pk- Nevertheless, such an AR 
scheme solely depends on the point estimates of the response rates and does 
not account for their variabilities. From the Bayesian point of view, Figure 7.3 
illustrates that based on a small amount of data observed at the early stage of 
a trial, the posterior distributions of p\ and p% are widely spread and largely 
overlapped. In this situation, the point estimates of the response rates of arms 1 
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and 2, say, p\ = 0.6 and p<i = 0.5, should not play a dominant role in patient 
assignment, because more data are needed to confirm that treatment 1 is indeed 
superior to treatment 2. As more data are accumulated at the later stage of the 
trial, if we still observe pi = 0.6 and £2 = 0.5, the posterior distributions of pi 
and p2 would be much separated as shown in Figure 7.3. At that time, we could 
be more confident in assigning more patients to arm 1, because its superiority 
would then be much more strongly supported. Therefore, in addition to the point 
estimates of the pk's, their variance estimates are also essential in determining 
the randomization probabilities. 

However, it is not straightforward to incorporate the estimation variability 
in the frequentist AR procedure. In the Bayesian approach, we may naturally 
assign patients to treatment 1 with a probability of 

X = PT(PI>P2\D), (7.6) 

where D represents the accumulated data in the trial. By comparing the posterior 
distributions p\ and p2, (7.6) automatically accounts for both the point and 
variance estimates of the treatment response rates. We may explore a more 
flexible class of randomization probabilities through a power transformation, 

π ( λ ' 7 ) = λ 7 + (Τ-λ)7' ( 7 · 7 ) 

where 0 < 7 < 1. If 7 = 0, the randomization scheme reduces to ER with an 
equal assigning probability of 0.5 regardless of the value of λ; and if 7 = 1, 
π(λ, 7) = λ. On the other hand, if λ = 0.5 (the therapeutic effects of the two 
treatments are the same), (7.7) reduces to ER with π(λ,7) = 0.5, no matter 
what value 7 takes. If λ > 0.5 (treatment 1 is more effective than treatment 2), 
then a larger value of 7 would skew more toward the assigning probability to 
arm 1, i.e., π(λ,7) > λ with 7 > 1. Therefore, the family of randomization 
probabilities is much enriched by incorporating the extra power parameter 7 in 
(7.7). 

More interestingly, the power parameter may be allowed to depend on the 
accumulating sample size n, 

n 
7 n = 2 J V ' 

where N is the total sample size planned for the trial (Thall and Wathen, 2007). 
At the beginning of a trial, very few subjects are treated, so ηη is close to 
zero, which would down-weigh λ and virtually lead to ER. As more data are 
collected during the trial, λ starts playing a more dominant role in determining 
the randomization probabilities. At the completion of the trial with n = Ν,ηη 

attains the maximum value of 0.5. 
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7.11.2 Fixed-Reference Adaptive Randomization 

In a multi-arm randomized trial, let pk denote the probability of response for 
treatment k, k = 1 , . . . , K. To construct the randomization probabilities, we 
may compare each pk to a fixed reference, say, a constant po between 0 and 
1. We take the assignment probability for arm k proportional to the posterior 
probability 

Afc = Pr(pfc >po\D), k = l,...,K, 

such that a patient would be assigned to treatment k with probability 

7Tfe(7)= ^ * , k = l,...,K, (7.8) 

where 7 is the same transformation parameter as in (7.7). However, if two or 
more p^'s are much smaller or much larger than po, the corresponding posterior 
probabilities λ^ would be either close to 0 or 1, and thus it would be difficult to 
distinguish which treatment is better. Therefore, the AR procedure with a fixed 
reference may not work well if po is not chosen properly. 

In general, all the treatments in a study are comparable, and one may simply 
take an arbitrary treatment as the reference, say, the first arm with the probability 
of response p\. The randomization probabilities are then based on 

Xk = Pr(pk>Pl\D), k = 2,...,K, (7.9) 

and Ai = 0.5. However, if p\ is much smaller than other p^'s, it would be 
difficult to distinguish those treatments. Suppose that in a three-arm trial with 
Pi = 0.1, P2 = 0.4, and p% = 0.6, the probabilities of assigning a patient to arm 
2 and to arm 3 may be very similar because both A2 and Xs are close to 1. In 
addition, because Ai = 0.5, no matter how "bad" treatment 1 is, it always has 
an assignment probability of at least 1/5. This reveals a serious limitation of the 
fixed-reference AR. In the case of a two-arm trial with p\ = 0.1 and p2 = 0.6, 
arm 1 has an assignment probability of at least 1/3. In the extreme, if pi = 0 
and p2 = 1, there is still a probability of 1/3 that a patient will be assigned to 
arm 1. 

Instead of using an arbitrary treatment as the reference, we may compare 
all treatments with the most effective one. We first identify the best treatment, 
Pmax = max{pi, . . . ,ρκ}, and then we compute Afc = Pr(pfc > pmax\D) to 
form the randomization probabilities as in (7.8). However, if two treatments, say, 
with p\ and p2, are far inferior to the best treatment, it would be difficult to make 
a distinction between them since Pr(pi > pmax\D) « Pr(p2 > pmax|-D) œ 0. 

7.11.3 Moving-Reference Adaptive Randomization 

The fixed-reference AR procedures as discussed previously compare each treat-
ment with the same baseline to determine the randomization probability. By 
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Figure 7.4 Diagram of the Bayesian moving-reference adaptive randomization for a 
three-arm trial. Based on the posterior distributions of pi,P2,P3, and p, we calculate 
Afe = Pr(pfe > p\D) for fc = 1,2,3; and assign the arm with the smallest value of Xk 
(arm 1 in this case) a randomization probability πι. After spending πι, we remove arm 
1 from the comparison set S and distribute the remaining randomization probability to 
the other two arms in a similar way. 

contrast, the moving-reference AR takes the reference to be the average of the 
response rates of the treatments in the comparison set. The randomization prob-
ability to each treatment arm is computed on a one-by-one basis. Once an arm 
is assigned a randomization probability, it will be removed from the comparison 
set, such that we are able to zoom in and accomplish a higher resolution to 
differentiate treatments. 

For illustration, we exhibit the diagram of the Bayesian moving-reference AR 
in Figure 7.4 using a three-arm randomized trial. In a more general setting with 
K treatments, we describe the AR procedure based on the posterior samples of 
pi,... ,ρκ as follows: 
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(1) Let <S denote the set of treatments that needs to be assigned randomization 
probabilities, and let Sc denote the set that has been given randomization 
probabilities. We start with a full set of <S = { 1 , . . . , K} and an empty set 
Sc. 

(2) Obtain the posterior distribution of the average response rate for the treat-
ments belonging to <S, 

- _ T,kesPk 
\S\ ' 

where |«S| represents the number of treatments in S. 

(3) Taking p as the reference, compute Xk = Pr(pk > p\D) for k G S, and 
identify the arm that has the smallest value of λ^, denoted as arm £ with 
X¿ = minfce<s Xk-

(4) Assign arm £ a randomization probability of 

Y,k€S^k\ „vcc / 
1*1 

jes· 

and then remove arm £ from S to Sc. Because the assignment probability 
Y,j&sc π3 n a s t»een " s P e n t " previously, π^ is a fraction of the remaining 
probability 1 — J2jesc Έό· 

(5) Continue to spend the remaining probability until all of the arms are 
assigned randomization probabilities, π ι , . . . , πκ· 

Table 7.3 Comparison of the Number of Patients Randomized to Each Treatment 
Arm Using the Fixed-Reference and Moving-Reference Adaptive Randomization 

Sc. 

1 
2 
3 
4 
5 
6 
7 
8 

Response 1 

Pi P2 

0.1 
0.2 
0.3 
0.1 
0.3 
0.6 
0.01 
0.01 

0.2 
0.1 
0.1 
0.3 
0.6 
0.3 
0.4 
0.01 

Elate 

P3 

0.3 
0.3 
0.2 
0.6 
0.1 
0.1 
0.6 
0.5 

Fixed-Reference AR 

Arm 1 

27.7 
40.5 
61.1 
23.3 
34.4 
82.2 
21.0 
25.8 

Arm2 

31.8 
17.2 
13.7 
33.8 
54.6 
12.5 
38.7 
25.1 

Arm 3 

40.6 
42.4 
25.2 
42.9 
11.0 
5.3 

40.3 
49.1 

Moving 

Arm 1 

12.5 
27.3 
58.4 
5.5 

13.9 
81.8 

3.7 
5.3 

-Référer 

Arm 2 

29.0 
13.0 
13.1 
13.3 
80.5 
12.8 
20.6 

5.3 

ice AR 

Arm 3 

58.5 
59.7 
28.5 
81.3 

5.5 
5.3 

75.7 
89.4 

Note: Sc. stands for Scenario. 
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To compare the performance of the moving-reference AR and the fixed-
reference AR in (7.9), we consider a three-arm trial with a sample size of 100. 
Based the binomial likelihood, if we take a noninformative beta prior distribution 
for each p^, k = 1,2,3, the posterior of pk is also a beta distribution. Table 
7.3 presents the number of subjects allocated to each arm averaged over 1,000 
simulated trials under eight scenarios. Scenarios 1 to 3 simulate cases in which 
the first arm has the lowest, intermediate and highest efficacy, respectively. 
Scenarios 4 to 6 have a similar pattern, but with much larger differences in the 
response rates. There are one or two futile arms in scenarios 7 and 8. Clearly, 
patients could be allocated more efficiently using the moving-reference AR as 
more patients received the best treatment. In scenarios 4 through 6, the number 
of patients assigned to the best treatment (the one with a response rate of 0.6) 

Scenario 1 

p3 = 0.3. 

T 1 1 1 1 — 

0 20 40 60 80 100 

Accumulating # of patients 

Moving-Reference AR 

Scenario 3 

p,=0.3 

T 1 1 1 1 r 

0 20 40 60 80 100 

Accumulating # of patients Accumulating # of patients 

Fixed-Reference AR 

~i r 

40 60 80 100 

Accumulating # of patients Accumulating # of patients Accumulating # of patients 

Figure 7.5 Randomization probabilities of the moving-reference adaptive 
randomization and fixed-reference adaptive randomization with accumulating numbers 
of patients under scenarios 1,3, and 8, respectively. 
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using the fixed-reference AR changed dramatically from 42.9 to 82.2, while 
that using the moving-reference AR stayed approximately the same around 81 
subjects. This phenomenon demonstrates the invariance of the moving-reference 
AR to treatment label switching, while the fixed-reference AR is sensitive to the 
choice of the reference arm. In scenarios 7 and 8, there is a lower bound of 20% 
for the assignment probability to arm 1 if using the fixed-reference AR. 

For scenarios 1, 3, and 8, Figure 7.5 shows the randomization probabilities 
for the three arms with respect to the cumulative number of patients using 
the moving- and fixed-reference AR, respectively. The moving-reference AR 
exhibits a much higher resolution to distinguish these treatments by separating 
their curves much faster than the fixed-reference AR. In scenario 1, the curves 
spread out after approximately 20 patients under the moving-reference AR, 
but are still not well-separated after 40 patients under the fixed-reference AR. 
Furthermore, scenarios 1 and 3 are in fact the same except that the treatment labels 
were switched. The randomization probability curves based on the moving-
reference AR are very similar in these two scenarios, while those under the 
fixed-reference AR unfortunately depend on treatment labeling. 

7.12 ADAPTIVE RANDOMIZATION WITH EFFICACY AND 
TOXICITY TRADE-OFFS 

In conventional settings, AR is often characterized by a binary efficacy endpoint, 
such as partial or complete clinical response. However, it may take a long period 
of time to evaluate such efficacy events after treatment. The potential delay in 
observing patients' responses makes the real-time implementation of AR very 
challenging. When a new cohort arrives, estimation using the currently observed 
data while ignoring the missing data may cause bias, and it is also impractical 
and unethical to withhold treatment from trial participants. Therefore, binary-
endpoint AR may not be the best strategy if the outcomes are not immediately 
ascertainable. A natural remedy is to model efficacy as time-to-event data so that 
the unobserved efficacy events become censored. Along this direction, Louis 
(1977) compares treatments with respect to survival by assuming an exponential 
distribution. Eick (1988) introduces a general two-arm bandit model with de-
layed responses assuming geometric lifetimes. Zhang and Rosenberger (2007) 
study optimized AR procedures under the exponential and Weibull survival 
models, respectively. Besides efficacy, treatments may induce various levels of 
toxicity or adverse events. The trend of jointly modeling efficacy and toxicity has 
grown because neglecting either endpoint is a waste of the information. Rosen-
berger (1996) combines efficacy and toxicity into a trichotomous outcome, and 
develops an urn model-based AR procedure. Ji and Bekele (2009) study an AR 
scheme based on joint efficacy and toxicity outcomes, while Lei, Yuan, and Yin 
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(2011) model efficacy as time-to-event data and toxicity as dichotomous data 
through random effects. 

7.12.1 Survival Model for Efficacy 

Let Ti denote the time to disease progression for the zth patient, and let d 
denote the censoring time due to decision making for AR. The observed data 
consist of Xi = min(T¿,C¿), the censoring indicator A¿ = I (Ti < Ci), and 
covariates Z¿ that may include treatments and other important prognostic factors, 
for i = 1 , . . . ,n. 

Under the proportional hazards model (Cox, 1972), the hazard function for 
patient i is 

X(t\Zi, bi) = λ0(ί) exp(/3TZ¿ + h), 

where λη(ί) is the baseline hazard function, and b¿ is an unobservable frailty 
or random effect, 6, ~ N(0, σ2). Under a Weibull distribution with λη(ί) = 
ατ/ία_1, the conditional survival function is given by 

S(t\Zi, bi) = exp{-7?r exp(/3TZ¿ + bi)}. (7.10) 

Based on the efficacy data _Deff> the conditional likelihood given random effects 
b = (6i , . . . ,6„)is 

L(Des\a,q,ß,b) 
n 

<x Y[{ceqxf-1 exp(/3TZ¿ + bi)}** exp{-Vx? exp(/3TZ¿ + bi)}. 
i=l 

7.12.2 Probit Model for Toxicity 

Since toxicity is often ascertainable shortly after treatment, it is taken as a binary 
endpoint; that is, Y¿ = 1 if patient i has experienced toxicity, and Y¿ = 0 
otherwise. By introducing a latent normal random variable (Albert and Chib, 
1993), Ui ~ N(7TZi + bi, 1), the probit model is given by 

i 1, if Ui > 0, 
ϊι \ o, if Ui < o, 

which is equivalent to 

Pr(Yi = l\Zi,bi) = Φ(7ΤΖί + bi). (7.11) 

Based on the toxicity data Aox, the conditional likelihood given random effects 
b is 

n 

L(Aox|7,b) oc Π Φ(7
ΤΖ, + ^ { l - ^ (7 T Z ¿ + h)}1-*. 
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Treatment A 
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Figure 7.6 Times to disease progression with the same survival probability at r 
months, but different areas under the survival curves. 

1.5 

7.12.3 Efficacy and Toxicity Trade-offs 

Under model (7.10), the survival probability at the end of the follow-up time 
r can be used as a measure of treatment efficacy, which, however, ignores the 
entire path of the survival curve. Figure 7.6 shows that the survival curve under 
treatment B declines faster than that under treatment A, while both treatments 
yield the same survival probability at r. In this case, treatment A is preferred 
to treatment B because patients' qualities of life may be improved with delayed 
disease progression. The area under the survival curve captures the survival path 
toward r; the larger the area, the slower the survival curve declines. For subject 
i assigned to treatment arm k, we define 

PE,k = S(T\Zi,bi) Í S(t\Zi,bi)dt, 
T JO 

which simultaneously characterizes the survival probability at r and the shape 
of the survival curve. 

For each treatment arm k, we can construct a measure for efficacy and toxicity 
trade-offs, 

Afc = PE,k 
PT,k} k = l,...,K, 
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where px,k is the probability of toxicity given in (7.11). At each time of ran-
domization, a patient will be assigned to arm k with a probability of 

TTfc = K , k=l,...,K. 

In contrast to the conventional AR that considers efficacy only, the efficacy-
toxicity AR jointly models both endpoints. By modeling efficacy as time-to-
event data, we allow for uninterrupted accrual and randomization and, more 
importantly, the trial duration is immensely shortened compared with that of 
using a full-length follow-up for efficacy evaluation. 

7.13 FIXED OR ADAPTIVE RANDOMIZATION? 

Although various AR procedures are available, the conventional fixed random-
ization (FR) remains its dominant role in clinical trials. In particular, ER (the FR 
with an allocation ratio of 1:1), which achieves nearly optimal power, appears 
to be the most sensible randomization scheme due to the state of equipoise. 
Notwithstanding the increasing trend of using AR to enhance trial ethics, the 
practical utility of AR has been challenged and debated. In general, AR and 
other adaptive designs in a much broader definition break the tradition and thus 
suffer from concerns as follows: 

• Patients may not be balanced on certain covariates, especially those with 
possible time trends. 

• Hypothesis tests during interim monitoring and at the trial completion are 
unconventional and difficult. 

• Delayed outcomes may affect the practical implementation of AR. 

In the comparison of AR and FR, Korn and Freidlin (2011) conduct simu-
lations for typical two-arm trials, while assuming that patients' responses are 
dichotomous and immediately ascertainable. If FR with an allocation ratio of 
K: 1 is used, patients will be randomized to the experimental arm with probabil-
ity K/{\ + K), and to the standard arm with probability 1/(1 + K). Through 
simulation studies, AR is compared with ER and FR with an allocation ratio of 
2:1 (i.e., twice as many patients are randomly assigned to the experimental arm 
as those to the control arm). Based upon the required sample sizes and the num-
bers and proportions of nonresponders in the simulated trials, Korn and Freidlin 
(2011) conclude that AR may provide modest-to-no benefits over ER, and if the 
experimental treatment is believed to be more appealing to patients, FR with an 
allocation ratio of 2:1 is recommended. Albeit the numerical evidence, Berry 
(2011) argues that the light of AR shines brightest in complicated multi-arm 
settings, while the benefits of AR in a two-arm trial are limited but still real. 
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From a theoretical point of view, Yuan and Yin (201 lc) further compare AR 
and FR in terms of reducing the number of nonresponders. Let p\ and p2 denote 
the response rates of the experimental and standard treatments, respectively. 
The optimal AR that minimizes the expected number of nonresponders should 
target the allocation ratio of y/p~\ / s/pi between the experimental arm and the 
standard arm (Rosenberger et al., 2001). Denote TIAR as the expected number of 
nonresponders in the AR design, and riFR as that in the FR design with the K: 1 
allocation ratio. We formulate the hypothesis testing as 

H0:pi= p2 versus H^ pi > p2, 

and construct a one-sided binomial test using normal approximation as discussed 
in Section 6.3.1. We control the type I error rate at a = 0.1 and target a power 
of 1 — ß = 90%. The minimum expected number of nonresponders for an AR 
design is 

. , v (*« + ^ ) 2 { y W ( l - Pi) + y/ñO- - P2)}2 , 
mm(nAR = -—-, ^ , Pi Φ P2, 

(Pi - VV 
where za is the 100(1 - a)th percentile of the standard normal distribution. 
It follows that when comparing AR and FR with an allocation ratio K:\, the 
maximum percentage of reduction in the number of nonresponders is given by 

^FR -"ARN 
"FR / 
_ K{yîh(i-Pi) + ypi(i-P2)}2 

{ρι{1-ρι) + Κρ2(1-ρ2)}{Κ{1-ρι) + 1-ρ2Υ
 K-

Figure 7.7 displays the maximum percentages of reduction of nonresponders 
for AR versus ER under various response rates. For practical relevance, we are 
only concerned with the cases that the improvement of the response rate by the 
experimental treatment over the standard treatment is less than 200%. Given 
a specific response rate of the standard treatment, the maximum possible gain 
(i.e., reduction in the number of nonresponders) using AR increases with respect 
to the response rate of the experimental treatment. In general, the reduction in 
the number of nonresponders is rather limited: When the response rate of the 
experimental treatment is higher than that of the standard treatment up to 50% 
(the solid segments of the curves), the maximum gain using AR is typically less 
than 1%; and even when the response rate of the experimental treatment doubles 
that of the standard treatment (the dashed segments of the curves), such gain is 
less than 3%. 

Of course no design is perfect, while some designs could be more appropriate 
and informative under certain conditions. Whether to use ER or AR in a clinical 
trial depends on the real situation. If there is a long lag-time to observe response, 
AR may become impractical because it is difficult to learn about treatments 

max 
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Figure 7.7 The maximum percentage of reduction in the number of nonresponders for 
response-adaptive randomization with respect to that for equal randomization. Curves 
from the left to the right correspond to the response rates of the standard treatment of 
0.1,0.2,..., 0.6. The solid, dashed, and dotted segments of each curve represent that 
the response rate of the experimental treatment is 0 to 50%, 50% to 100%, and 100% to 
200% higher than that of the standard treatment, respectively. 

effectively as patients enter the trial. Hence, long delay of response may negate 
the potential benefits of AR. On the other hand, early stopping for superiority or 
futility is another important feature of adaptive designs, which may diminish the 
advantages of using AR in a trial. When ER is equipped with early stopping, the 
design can separate out the treatment effects more efficiently. 

The patient horizon includes the total number of patients in the trial and 
the future patients to be treated by the therapy with a greater proportion of 
favorable responses (Bather, 1981; 1985; Berry and Eick, 1995). Both patients 
in the trial and those outside the trial should be considered and weighed equally. 
The treatment effects should be sorted out as quickly as possible so that patients 
outside the trial will receive the better treatment sooner. If the disease is relatively 
common (i.e., the patient horizon is large), ER may be a preferred approach in 
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order to draw a conclusion quickly. Nevertheless, if the condition is some type of 
rare cancer and the trial involves a substantial proportion of patients, AR designs 
may be more desirable such as to benefit more trial participants. 

EXERCISES 

7.1 In a two-arm randomized trial, suppose that the outcome is a binary in-
dicator of response or no response. The response rate for the new treatment 
is pi and that for the standard treatment is p2. Derive Neyman's allocation 
ratio by minimizing the variance of the estimated difference between the two 
response rates. If the goal of the trial is to minimize the number of nonresponders 
while fixing the variance of the test statistic, derive the corresponding optimal 
allocation ratio. 

7.2 For continuous outcomes, derive Neyman's allocation ratio and the optimal 
allocation ratio 

= σ1χ/Φ{(μ2-ο)/σ2} 
OPt σ2 λ /Φ{(μι-ε)/σι} ' 

7.3 For survival data, derive Neyman's allocation and the optimal allocation 
ratio under the exponential assumption, 

= AiVM1 -exp(-^2c)} 
r ° p t A 2 VMl-exp(-A l C )} ' 

7.4 In the comparison of fixed and adaptive randomization, derive the maxi-
mum percentage of reduction in the number of nonresponders in equation (7.12). 



CHAPTER 8 

LATE-ONSET TOXICITY 

8.1 MISSING DATA WITH DELAYED OUTCOMES 

In a typical phase I oncology trial, the primary objective is to identify the max-
imum tolerated dose (MTD) of an experimental drug. Most of the dose-finding 
methods require dose-limiting toxicities (DLTs) to be ascertainable shortly after 
treatment, so that the toxicity outcomes of all the previously treated patients are 
available by the time for the next dose assignment. However, DLTs may occur 
long after treatment or, relatively speaking, the occurrence of toxicity may not be 
as fast as the patient accrual. If the toxicity assessment cannot keep up with the 
accrual rate, the outcomes of those patients already under treatment might still 
be unobserved when a new cohort arrives. Such delayed toxicity outcomes often 
result in missing or censored data, which inevitably hinders dose assignment for 
incoming cohorts. For example, Muler et al. (2004) describe a phase I clinical 
trial in pancreatic cancer to determine the MTD of cisplatin in combination with 
gemcitabine and radiation therapy. In that trial, the accrual rate was one patient 
per week, while the follow-up time for each patient was nine weeks in order to 
fully assess toxicity. 

Clinical Trial Design. By Guosheng Yin 2 5 3 
Copyright © 2012 John Wiley & Sons, Inc. 
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Figure 8.1 Illustration of missing toxicity outcomes under fast patient accrual. For 
each patient, the horizontal line segment represents the length of the follow-up, at the 
end of which if toxicity occurs, it is indicated by a cross, otherwise censoring is noted 
by a circle. 

Patients enter a trial sequentially and are followed for a fixed period of time 
[0, r] to assess the drug's toxicity. The length of the evaluation period r is 
chosen in a way that if a drug-related DLT occurs, it would occur within [0, r] ; 
any toxicity event occurring after r does not count. During this evaluation 
period, a binary toxicity outcome is taken for each subject i, 

Y 
1, if a DLT is observed in [0, r] , 
0, if no DLT is observed in [0, r] 

Depending on the nature of the disease and treatment, r may range from days to 
months. 

Suppose that a new cohort arrives every time interval a, and a is shorter than r, 
say r = 3a. Figure 8.1 shows that by the time for the next dose assignment, some 
of the patients who entered the trial earlier have only been followed partially and 
their toxicity outcomes have not yet been observed. For example, at time 2a, 
the toxicity outcomes of patients 2 and 3 are unavailable (i.e., Y\ = 1, but Y¿ 
and Y3 are missing); and at time 3a, the toxicity outcomes of all three patients 
are observed (i.e., Y\ = I3 = 1 and Y¿ = 0). Intuitively, patients who will 
not experience toxicity in [0, r] are more likely to produce missing data at the 
decision-making times. The amount of missing data due to late-onset toxicity 
depends on the ratio of the assessment period r and the interarrivai time a. The 
larger the value of τ/α, the more missing data would be induced, because more 
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patients would not have completed their toxicity assessment upon a new cohort's 
arrival. 

The missing toxicity data pose immense difficulties in conducting a dose-
finding trial. One possibility is simply to treat those subjects with missing 
toxicity outcomes as "no toxicity." However, this often underestimates the 
toxicity probabilities, because patients who have not experienced toxicity at 
the moment of dose assignment may yet experience toxicity later during the 
remaining follow-up. This naive strategy may lead to aggressive dose escalation, 
which in turn causes an undesirably large number of patients to be treated at 
excessively toxic doses. A "safer" approach would be to suspend the accrual 
and wait for each patient's outcome to be fully observed prior to the next dose 
assignment, which, however, may result in an unusually lengthy trial duration. 
Moreover, frequently suspending patient accrual is not practical, not only wasting 
resources but also causing tremendous administrative inconvenience. 

To overcome the difficulties associated with late-onset toxicity, Yin and Zheng 
(2011) propose a fractional dose-finding scheme by modeling times to toxicity 
and redistributing censored data to the right. Each censored toxicity observation 
is split into two parts: One fraction stays at the censoring point and the other 
is somewhere larger than r. The fractional contributions can be naturally in-
corporated in the 3 + 3 design and the continual reassessment method (CRM). 
An alternative approach is to use the weighted likelihood function of the CRM 
based on patients' exposure times (Cheung and Chappell, 2000; Braun, 2006). 
Furthermore, predictive risks may also be of help in monitoring trials with late-
onset toxicity (Bekele et al., 2008). In a rigorous missing data framework, Yuan 
and Yin (201 Id) develop an expectation-maximization (EM) approach to ad-
dressing the unobserved toxicity issues in dose finding. The rest of this chapter 
will provide deeper insights into the issues of late-onset toxicity and introduce 
each dose-finding method that is capable of accommodating delayed outcomes. 
The statistical methodologies discussed here can also be used to model other 
endpoints that are not immediately observable, such as the time-lagged efficacy 
event or delayed response. 

8.2 FRACTIONAL 3 + 3 DESIGN 

8.2.1 Redistributing Censored Data to the Right 

Among various dose-finding methods, the 3 + 3 design remains its popularity 
due to the ease of implementation. The 3 + 3 design requires that toxicity be 
ascertainable shortly after treatment. Figure 8.2 displays that three patients are 
enrolled every time interval a, and they will be followed for a period of r = 3a 
to assess toxicity. When a new cohort is ready for treatment, say at times a 
and 2a, the toxicity events of the patients under treatment may be censored but 
possibly will occur later during the rest of the follow-up. 
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Figure 8.2 Illustration of censored toxicity outcomes with late-onset toxicity. Each 
cohort has three patients, with the horizontal line segment representing the follow-up 
time, along which toxicity is indicated by a cross and censoring by a circle. 

To accommodate late-onset toxicity in the 3 + 3 design, Yin and Zheng 
(2011) model the underlying times to toxicity through the Kaplan-Meier (1958) 
estimator by redistributing the mass of each censored observation to the right 
(Efron, 1967; Portnoy, 2003). Within the evaluation window [0, T], if a patient 
experiences the DLT, we take the toxicity outcome Y = 1; if a patient has 
not experienced the DLT by the time of decision making, the toxicity event 
is censored and we split the point mass of 1 between the censoring point and 
somewhere that is larger than r. Only the weight assigned to the censoring time 
point within [0, r] contributes to the estimation, and that assigned beyond r does 
not. 

For subject i, let U denote the time to toxicity, and let u¿ (u¿ < τ) denote 
the actual follow-up time that may censor í¿. We assume that Ui is independent 
of ti\ that is, the time of dose assignment or the arrival time of a new cohort is 
independent of the time to toxicity due to patient staggered entry. The toxicity 
outcome is censored for patients who have not yet experienced toxicity (u¿ < í¿) 
and have not been fully followed up to r (it¿ < τ). If the toxicity event of subject 
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i is censored, we can calculate his/her fractional contribution in the form of 

Prfe < r\U > Ul) = P r ^ V ^ V } ' (8-1} 

Pr(i i > Ui) 

which in fact is the conditional probability of the occurrence of toxicity in (UÍ,T) 

given that it has not occurred by u¿. 

Censoring Failure 
_l 

0 Ui h T 

The fractional contribution for a censored toxicity outcome in (8.1) can be 
estimated by 

^ÊMzM, ( 8 . 2 ) 
S{Ui) 

where S(-) is the usual Kaplan-Meier estimator. 
Suppose that rij patients have been treated at dose level j , at which we count 

the number of patients who have experienced toxicity (y¿ = 1) and those who 
were censored with fractional contributions (j/¿ = y¿). The estimate of the 
toxicity probability of dose j is given by 

p hi^Vi ( 8 3 ) 

no-

where 
0, if no toxicity has been observed by time r , 
1, if toxicity is observed before tt¿, 
yi, if U is censored by i¿¿. 

8.2.2 Dose-Finding Algorithm with a Target 

Let φτ denote the target toxicity probability, and let CL and c¡j (c¿ < cu) 
denote the probability cutoffs for dose escalation and de-escalation, respectively. 
Patients are treated in a cohort size of three, and the first cohort is treated at the 
lowest dose. Before the fractional dose-finding scheme takes effect, there is a 
prephase of using the conventional 3 + 3 design based on a full follow-up for 
each cohort. Once the first DLT is observed, we switch to the fractional 3 + 3 
dose-finding algorithm described as follows: 

(1) Suppose that the current dose level is j . Based on the accumulated data at 
dose level j , we can estimate the toxicity probability pj as in (8.3), and 
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• if pj > cu, de-escalate to dose level j — l', 

• if pj < CL, escalate to dose level j + 1; 
• otherwise, the dose stays at the same level j , for the next cohort of 

patients. 

(2) Once the maximum sample size is reached, the dose with the toxicity 
probability closest to φτ is selected as the MTD. 

Pj 

Dose t Stay Dose | 

0 cL cu 1 

As shown by the above diagram, dose escalation, de-escalation, or staying at the 
same level depends on the comparisons of pj with c¿ and cy. 

8.2.3 Simulation Study 

We investigated the operating characteristics of the fractional 3+3 design through 
simulation studies. We considered six doses and took a maximum sample size 
of 36 patients. The cohort size was three, and the first cohort was treated at 
the lowest dose level. The toxicity assessment period was r = 3 months and 
the interarrival time between two consecutive cohorts was a = 1 month. We 
assumed that times to toxicity at dose level j followed an exponential distribution 
with mean l/Xj, j = 1 , . . . , 6. The hazards were monotonically increasing with 
respect to the doses, λι < · · · < Xj; that is, a higher dose would induce toxicity 
sooner. In each scenario, we first specified all the pj's and then computed Xj 
from 

Pj = l - exp(-Xjr), j = 1 , . . . , 6, 
so that a patient would experience the DLT with probability pj by the end of the 
evaluation period r . The target toxicity probability was φτ = 30%, and we set 
CL = 0.2andc{7 = 0.4. For comparison, we also implemented the standard 3+3 
design (see Section 4.3), and the 3 + 3t design in which dose finding is based on 
the target, CL, and c\j as discussed in the last section, but without the fractional 
scheme. In both the 3 + 3 and 3 + 3t designs, we had to wait till observing all 
the toxicity outcomes of previously treated patients prior to assigning a dose to 
a new cohort. Under the fractional 3 + 3 design with a target (f3 + 3t), each 
cohort was treated immediately upon arrival without any delay. We simulated 
10,000 trials for each case. 

Table 8.1 presents the true toxicity probability, the selection percentage, and 
the number of patients treated at each dose, as well as the number of DLTs, the 
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Table 8.1 Simulation Study Comparing the Fractional 3 + 3 Design with a Target 
(f3 + 3t), the 3 + 3 Design with a Target (3 + 3t), and the Standard 3 + 3 Design 

Design 

Scenario 1 
f3 + 3t 
# Patients 
3 + 3t 
# Patients 
3 + 3 
# Patients 

Selection Percentage at Dose Level 

1 

0.07 
4.4 
3.8 
4.3 
3.9 
8.2 
3.7 

2 

0.12 
11.4 
5.6 

12.2 
5.2 

16.4 
3.9 

3 4 

0.17 0.30 
23.3 41.1 
7.7 10.0 

23.4 42.8 
8.3 10.9 

29.6 31.4 
3.8 3.2 

5 

0.45 
15.2 
5.8 

14.2 
5.9 

11.5 
1.5 

6 

0.60 
1.8 
2.1 
1.3 
1.2 
1.2 
0.3 

Total 

# Toxicity 

9.1 

9.0 

3.1 

Total 

# Patients 

35.0 

35.4 

16.4 

Trial 

Duration 

20.4 

35.4 

16.4 

Scenario 2 0.04 0.08 0.12 0.15 0.30 0.50 
f3 + 3t 3.3 7.3 13.5 20.4 43.0 11.7 
# Patients 
3 + 3t 
# Patients 
3 + 3 
# Patients 

Scenario 3 
f3 + 3t 
# Patients 
3 + 3t 
# Patients 
3 + 3 
# Patients 

3.4 
2.6 
3.4 
3.1 
3.4 

0.20 
16.4 
7.1 

11.1 
8.4 

36.7 
4.6 

4.3 
7.1 
4.1 
9.1 
3.7 

0.30 
43.7 
12.5 
43.5 
11.5 
34.8 

3.5 

5.3 
12.2 
5.0 

13.8 
3.7 

0.45 
14.3 
6.1 

14.5 
7.1 

12.7 
1.7 

6.6 
19.7 
7.7 

28.8 
3.6 

0.55 
2.5 
1.7 
2.1 
1.7 
1.7 
0.4 

9.4 
46.2 
10.4 
34.5 

3.3 

0.60 
0.5 
0.4 
0.2 
0.2 
0.1 
0.0 

6.5 
11.7 
5.3 

10.3 
1.4 

0.70 
0.1 
0.1 
0.0 
0.0 
0.0 
0.0 

8.2 

8.0 

3.1 

9.5 

9.4 

2.9 

35.5 

35.9 

19.1 

27.9 

28.9 

10.2 

22.1 

35.9 

19.1 

15.8 

28.9 

10.2 

total number of patients, and the average trial duration under the f3 + 3t, 3 + 3t, 
and 3 + 3 designs, respectively. In scenario 1, the MTD is at dose level 4; the 
f3 + 3t and 3 + 3t designs yielded similar selection percentages of the MTD, 
while the f3 + 3t design substantially shortened the trial duration. The 3 + 3 
design took much fewer patients and thus had a much shorter trial duration, 
while the selection percentage of the MTD was about 10% less than the other 
two designs. Scenario 2 has the MTD at the fifth dose level; the f3 + 3t and 3 + 3t 
designs yielded much higher selection percentages of the MTD than the 3 + 3 
design. In scenario 3, the second dose is the MTD; the f3 + 3t design performed 
similarly to the 3 + 3t design in terms of the MTD selection, but reduced the trial 
duration almost by half. 

To meet the practical needs with late-onset toxicity, the fractional 3 + 3 
design treats unobserved toxicity outcomes as censored data and estimates the 
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conditional probability that toxicity occurs in the remaining follow-up given 
that it has not yet occurred. This approach is robust as it does not impose any 
parametric modeling structure. To incorporate the dose information, we may 
apply the proportional hazards model (Cox, 1972) or the local Kaplan-Meier 
estimator (Wang and Wang, 2009) to compute the fractional contribution for 
each censored observation. Generally speaking, the fractional design facilitates 
continual trial conduct and shortens the trial duration without sacrificing the trial 
performance much. 

8.3 FRACTIONAL CONTINUAL REASSESSMENT METHOD 

As discussed in Section 4.7, the CRM is a model-based approach to dose finding, 
which often outperforms the 3 + 3 design by pooling all the information across 
different doses in search for the MTD. Under the monotone toxicity assumption, 
we need to prespecify the toxicity probability at each dose, denoted as p\ < 
■ ■ ■ < pj. Via a working dose-toxicity model, the true toxicity probability in the 
CRM is given by 

7 r » = p f p ( a ) , j = l,...,J, (8.4) 

where a is an unknown parameter. As more data are collected in the trial, the 
CRM continuously updates a and the toxicity probabilities of all the considered 
doses. When the maximum sample size is exhausted, the dose that has the 
estimated toxicity probability closest to the target φτ will be recommended as 
the MTD. 

However, the practical implementation of the CRM also requires fully ob-
serving the toxicity outcomes of all the patients who already entered the trial 
prior to the next dose assignment. Due to late-onset toxicity, patients' outcomes 
may not be immediately obtainable. As a result, missing data may be induced 
as the trial proceeds, which limits the general applicability of the CRM in dose 
finding. 

To overcome the difficulty caused by missing data, we model toxicity as time-
to-event data and redistribute censored observations to the right as discussed in 
the fractional 3 + 3 design. For subject i, define 

{ 0, if no toxicity observed, 
1, if toxicity observed, (8.5) 
Pv(ti < r\ti > Ui), if censored, 

where Pr(i, < r|í¿ > «¿) can be estimated by (8.2). For notational clarity, let 
Pj(i) — Pj if subject i is treated at dose level j , let n be the number of patients 
treated in the trial thus far, and let D denote the observed data. Based on the 
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fractional scheme, the likelihood function is given by 

i= l 

where y¿ may take a value of 0, 1, or a fraction of 1 for a censored observation 
as defined in (8.5). 

Once the censored data are fractionized, the rest of implementation of the 
fractional CRM is straightforward. We first specify a zero-mean normal prior 
distribution for a. When a new cohort enters the trial, we update the posterior 
estimates of the toxicity probabilities of all the doses. The dose that has an 
estimated toxicity probability closest to the target φτ is then recommended for 
the new cohort, under the restriction that the dose can only be escalated by one 
level at a time. The trial continues until the total sample size is exhausted, and 
finally the dose whose posterior estimate of the toxicity probability is closest to 
φτ will be selected as the MTD. For safety, we terminate the trial early if the 
lowest dose under consideration is still overly toxic. The dose-finding algorithm 
of the fractional CRM basically follows that of the standard CRM; see Section 
4.7 for details. 

8.4 TIME-TO-EVENT CONTINUAL REASSESSMENT METHOD 

8.4.1 Weighted Binomial Likelihood 

Using patients' exposure times as weights, the time-to-event continual reassess-
ment method (TITE-CRM) addresses the issues associated with late-onset tox-
icity based on a pseudo-binomial likelihood function (Cheung and Chappell, 
2000). In a dose-finding trial, patients who have not experienced toxicity at 
the decision-making time are weighted by their follow-up times with respect to 
the specified evaluation period r . Intuitively, the longer the follow-up time, the 
more information a patient carries, and thus more weight should be given to this 
subject's currently observed outcome. In an extension, Braun (2006) accommo-
dates both early- and late-onset toxicities by incorporating the dose information 
in phase I clinical trials. Mauguen, Le Deleya, and Zohar (2011) apply the same 
weighting scheme in the design of escalation with overdose control; see Section 
4.9. 

Let Ui be the actual follow-up time for subject i, and let y¿ be the observed 
toxicity outcome at time U{. As long as the toxicity event has not occurred, y¿ 
takes a value of 0, and otherwise 1. If a uniform weighting scheme is used to 
assign higher weights to subjects with longer exposure times, the weight takes 
the form of w i = U¿/T. Patients who have experienced toxicity are given a 
full weight of 1. Under the CRM model (8.4), the pseudo-binomial likelihood 
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function is given by 

L ( D | a ) c x n { « * P ^ ( e ) } W { 1 - - ^ Γ Ρ 

Under this formulation, patients who have not experienced toxicity and have not 
been fully followed are treated as "no toxicity" with y¿ = 0, although their data 
are in fact missing. 

The TITE-CRM is built upon an exposure-time weighting scheme. The 
weight function can take a variety of forms, which may even depend on the 
unknown parameter a. However, it is difficult to justify which weight function 
is more appropriate in practice. The uniform weight is simple, but using the same 
weight across all the doses may not be reasonable because it completely neglects 
the dose information. By contrast, the fractional CRM discussed in Section 
8.3 takes a more rigorous approach to redistributing the probability mass for 
censored data to the right (Portnoy, 2003). This censoring redistribution scheme 
can be justified by the self-consistent property of the Kaplan-Meier estimator. 
As a result, the fractionized data can be treated as "complete" data and thus the 
CRM can proceed as usual. 

8.4.2 Numerical Comparison 

For comparison, we implemented both the fractional CRM (fCRM) and the 
TITE-CRM in the simulation study. In each trial, the maximum sample size 
was 36 patients, the cohort size was three, and the first cohort was treated at the 
lowest dose. Every month, a new cohort of patients would enter the trial, and the 
toxicity assessment period was τ = 3 months. The target toxicity probability 
φτ was 30%, and the prespecified toxicity probabilities of the six considered 
doses were (p i , . . . ,p6) = (0.1,0.2,0.3,0.4,0.5,0.6). We generated times to 
toxicity from Weibull distributions, and 10,000 simulations were carried out for 
each configuration. 

In general, the selection percentages of the MTD, the numbers of patients, the 
numbers of toxicities, and the trial durations were all similar between the fCRM 
and TITE-CRM. Figure 8.3 displays the selection percentages of the MTD under 
the two designs in four scenarios. In scenario 1, the MTD is the last dose, while 
the TITE-CRM selected the fifth dose with the highest percentage. The MTD 
selection using the fCRM was 10% higher than that of using the TITE-CRM. 
The performance of the two designs in the other three scenarios was very close. 
In conclusion, both the fCRM and TITE-CRM are able to solve the issues of 
late-onset toxicity and thus facilitate continual trial conduct. 



EM CONTINUAL REASSESSMENT METHOD 263 

m 
ai 

- Ί 
o _ 

o _ 

fCRM 
TITE-CRM 

□J 
0.05 0.14 0.18 0.20 0.23 0.30 

99 
(M 

005 0.10 0.30 0.50 0.65 0.75 

Pr(toxicity) in scenario 1 Pr(toxicity) in scenario 2 

I 1 
0.08 0.10 020 0.30 0.40 0.55 

05 

9 

ffl 
0.04 0.08 0.12 0.15 0.30 0.50 

Pr(toxicity) in scenario 3 Pr(toxicity) in scenario 4 

Figure 8.3 Dose selection percentages in the four scenarios with the target toxicity 
probability φτ = 30% using the fCRM and TITE-CRM, respectively. 

8.5 EM CONTINUAL REASSESSMENT METHOD 

8.5.1 EM Algorithm with Missing Data 

As discussed before, late-onset toxicity often results in missing data during dose 
finding in phase I trials. Simply discarding such missing data may invalidate 
decision making on dose assignment, because not only does it cause bias and 
efficiency loss, but of greater consequence, it may also lead to overly aggressive 
dose escalation. To gain deeper insights into these issues, we denote í¿ as the 
time to toxicity for subject i, and set U — oo if subject i will not experience 
toxicity in the evaluation window [0,r]. At the decision-making time for dose 
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assignment, let Ui (0 < it¿ < r) be the actual follow-up time, and let M¿ be the 
missing data indicator, 

Mi = {o tf?^^liLlr' (8-6) if ί,- < u, or m = r. 

That is, the toxicity outcome is missing with M¿ = 1 if patient i has not 
yet experienced toxicity (í, > it¿) and has not been fully followed up to τ 
(ui < r); and the toxicity outcome is observed with M¿ = 0 if he/she either has 
experienced toxicity (U < U{) or has completed the entire follow-up (u¿ = r) 
without experiencing toxicity. Correspondingly, the toxicity outcome of subject 
i is 

( missing, if ti > Ui and u¿ < r, 
1, iîti<Ui<T, 

0, if U> Ui = T. 

Under the missing data mechanism (8.6), the probability of missingness of Y¿ 
depends on the underlying time to toxicity, and thus implicitly depends on 
the value of Y¿ itself. For patients who will not experience toxicity in [0, r], 
their toxicity data are more likely to be missing compared with those who will 
experience toxicity. 

Based on the missing data theory (Little and Rubin, 2002), a natural approach 
to dealing with the unobserved outcomes is to impute the missing data so that 
the standard complete-data method can be applied (Yuan and Yin, 201 Id). In 
the frequentist paradigm, missing data problems are often tackled using the 
EM algorithm (Dempster, Laird, and Rubin, 1977), which is a general iterative 
procedure for maximizing the likelihood with incomplete data. Each iteration of 
the EM algorithm consists of an E step and an M step. The E step computes the 
conditional expectation of the missing data given the observed data and current 
parameter estimates. After substituting these expectations for the missing data, 
the M step maximizes the likelihood of the filled-in data to obtain the maximum 
likelihood estimators (MLEs) of the parameters. 

As in the mixture cure rate model (Berkson and Gage, 1952), the patient 
population can be viewed as a mixture of patients who will experience toxicity 
(Yi = 1) and those who will not (1¿ = 0). Under the CRM model (8.4), for 
subject i treated at dose level j we have 

v. — j 1> with probability π^-(a), 
1 \ 0, with probability 1 — TTJ (a), 

where Kj(a) = p^xp( , and here we denote p^) = pj to avoid ambiguity. 
Suppose that n patients have been enrolled in a trial thus far, and denote the 
toxicity data as y = {y\,..., yn). If all the j/¿'s are completely observed (i.e., no 
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missing data), the likelihood function is given by 

¿(«)«ftj?(.r(e){1-^ie)}1"w· (8·7) 

¿=i 
However, some of the y¿ 's may be missing due to late-onset toxicity. In particular, 
let y = (yobs, ymis), where yobs and ymis denote the observed and missing toxicity 
data, respectively. 

For patients who will experience toxicity in [Ο,τ], we model their time-to-
toxicity data. Suppose that there are K distinct event times, sorted as r\ < ■ ■ ■ < 
TK- Define the unknown discrete hazard at τ^ as Xk = Pr(í = τ&|ί > Tk), and 
λ = (λ ι , . . . ,λκ)· 

At the rth iteration of the EM algorithm, the parameter estimates for a and λ 
are a^ and X^r\ and the next iteration proceeds as follows: 

• E step 
We replace the missing value of y¿ G ymis with its expectation so as to 
obtain the filled-in data, 

yi = E(yi\ti>Ui,aW,\V) 

= Pr(yi = l\ti>ui,a(r\\^) 

= PT{ti>ui\yi = l,xV)PT{yi = l\aW) 

Pr(y¿ = OlaW) + Pr(íi > u{\yi = l ,A^)Pr (y ¿ = l |aW) 

_ Pj(i) llk:Tk<Ui(L Ak > 

i _ exp (a(r) ) exp (a W ) π (l _ \(r)\' 

• M step 
We update the estimate c*(r+1) by maximizing the likelihood function in 
(8.7) based on the filled-in data. Following the derivation in the mixture 
cure rate model (Taylor, 1995), the kth component of λ^Γ+1) can be 
updated as 

χ(r+l) _ dk 

EJLfc(d¿ + EieCj Vi) ' 

where dk is the number of events occurred at time τ^ and Ck is the set of censored 
observations in the interval [τ^, τ^+ι). 

8.5.2 Robust EM-CRM 

The CRM, as discussed in Section 4.8, is sensitive to the prespecified toxicity 
probabilities (pi, ■ ■ ■ ,pj). Due to a lack of toxicity information on a new 
drug, the values of the p / s are arbitrary and may deviate far from the true 
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dose-toxicity curve and, consequently, the trial may select a wrong dose as the 
MTD. To enhance the robustness of the design, m (m > 1) sets of toxicity 
probabilities may be simultaneously used in conjunction with model selection 
or model averaging. 

Model selection identifies the best-fitting model among the candidates and 
the toxicity probability of each dose is estimated under the chosen model only. 
Commonly used model selection criteria include the Akaike (1973) information 
criterion (AIC) and the Bayesian information criterion (BIC). Under the CRM 
model, 

AIC = -21ogL(a) + 2v, 

BIC = -21ogL(a) + i/logn, 

where logL(a) is the log-likelihood in (8.7) and v is the number of model 
parameters. The smaller the value of the AIC or BIC, the better the model fit. 
By contrast, model averaging explicitly accounts for the uncertainty of different 
models and draws inference based on all the competing models rather than one 
single model (Hoeting et al, 1999; Hjort and Claeskens, 2003). The frequentist 
model averaging estimate of the toxicity probability takes the form of 

m 

fc=l 

where π ^ is the MLE of the toxicity probability at dose level j under the kth 
CRM model, and the weight Wk measures the relative influence of model k, for 
k — 1 , . . . , m. If we use a smoothed AIC estimator (Buckland et al., 1997), then 

exp(-AICfc/2) 
Wk E£iexp(-AIQ/2)· 

8.5.3 Dose-Finding Algorithm 

The trial starts by treating the first cohort of patients at the lowest dose, and 
continues to escalate the dose until the first DLT occurs. Afterwards, we switch 
to the following dose-finding algorithm: 

( 1 ) Suppose that the current dose level is jCUTI. Based on the accumulated data, 
we estimate the toxicity probabilities of all the doses, 7fi, . . . , π j , using 
the EM algorithm coupled with the model selection or model averaging 
procedure. 

(2) We find the dose level j * that has a toxicity probability closest to the target 
toxicity probability φτ', that is, 

j * = argmin \ñj - φτ\, 
je{i,...,J} 
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and 

• if j c u r r > j * , de-escalate to dose level jCUTT — 1; 
• if j c u r r < j * , escalate to dose level j c u r r + 1; 
• otherwise, the dose stays at the same level for the next cohort of 

patients. 

(3) Once the maximum sample size is reached, the dose with the toxicity 
probability closest to φτ is selected as the MTD. 

For safety, we impose an early stopping rule based on the 90% confidence 
interval for the toxicity probability of the lowest dose. If the lower bound of the 
confidence interval is greater than φτ, the trial will be terminated. 

8.5.4 Simulation Study 

We investigated the performance of the EM-CRM designs in conjunction with 
model selection or model averaging by simulating four scenarios as listed in 
Table 8.2. The maximum number of patients was 36, and patients were treated 
sequentially in a cohort size of 3. We took the target toxicity probability φχ = 
30%, the toxicity assessment period r = 3 months, and the interarrivai time 
a = 1 month. For patients who would experience toxicity in [0, r ] , their times 
to toxicity were generated from Weibull distributions. 

Figure 8.4 presents the three sets of prespecified toxicity probabilities: 

r (0.05,0.14,0.18,0.22,0.26,0.30), skeleton 1, 
(ρι,.-.,Ρβ) = < (0.08,0.12,0.20,0.30,0.40,0.50), skeleton 2, 

1 (0.20,0.30,0.40,0.50,0.60,0.70), skeleton 3, 

which were used for model selection (EM-CRMsei) and model averaging (EM-
CRM Avg)· Under the EM-CRMs, each cohort was treated immediately upon 
arrival. For comparison, we also implemented the standard CRM, in which every 

Table 8.2 Four Simulation Scenarios with True Toxicity Probabilities at Six 
Increasing Dose Levels 

Scenario 

1 
2 
3 
4 

1 

0.05 
0.08 
0.06 
0.05 

2 

0.14 
0.10 
0.08 
0.10 

Dose Level 

3 

0.18 
0.12 
0.10 
0.30 

4 

0.22 
0.30 
0.15 
0.50 

5 

0.26 
0.50 
0.30 
0.60 

6 

0.30 
0.60 
0.45 
0.70 
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Dose level 

Figure 8.4 Three different skeletons in the EM-CRM coupled with model selection 
or model averaging with the target toxicity probability φτ = 30%. 

patient was fully followed until all the toxicity data were completely observed 
prior to the next dose assignment. We refer to the individual CRM using each 
of the three skeletons as CRM 1, 2, and 3, and denote EM-CRM 1, 2, and 3 for 
the CRMs coupled with the EM algorithm, respectively. We carried out 10,000 
simulated trials for each configuration. 

Figure 8.5 displays the selection percentages of the MTD under the designs 
of (CRM 1, EM-CRM 1), . . . , (CRM 3, EM-CRM 3), and (EM-CRMSei, EM-
CRM Avg), respectively. In scenario 1, the MTD is the last dose; the three stan-
dard CRMs and corresponding EM-CRMs using skeletons 1, 2, and 3 yielded 
very different selection percentages of the MTD. The designs using skeleton 
1 performed substantially better than those based on the other two skeletons, 
indicating that both the CRM and EM-CRM are sensitive to the prespecified 
skeleton. The MTD selection percentages using the EM-CRMs were slightly 
lower but very close to those of the CRMs, while the trial duration was dramat-
ically reduced from 37 to 21 months. Using multiple skeletons coupled with 
model selection or model averaging, both the EM-CRMsei and EM-CRMAVg 
satisfactorily strengthened the robustness of the designs. Scenario 2 has the 
MTD at the fourth dose level; CRM 1 behaved much worse than the other two 
CRMs, and the EM-CRMs performed similarly to the CRMs in terms of the MTD 
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Figure 8.5 Selection percentages of the MTD in the order of using the CRM and 
EM-CRM under skeletons 1, 2, and 3, respectively. The last two bars correspond to 
the EM-CRM in conjunction with model selection (EM-CRMsei) and model averaging 
(EM-CRMAvg). 

selection, but yielded much shorter trial durations. Scenario 3 has the MTD at 
the fifth dose level; CRM 1 and EM-CRM 1 had the lowest MTD selection, 
whereas both the EM-CRMsei and EM-CRMAvg recommended the MTD with 
much higher percentages. Had the first skeleton been used to conduct the trial in 
scenarios 2 and 3, the performance of the design could have been compromised. 
Similar conclusions can be drawn from scenario 4: The EM-CRMs immensely 
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shortened the trial duration without sacrificing the trial performance much, and 
when coupled with model selection or model averaging the designs became more 
robust. 

By employing the model selection and model averaging procedures, the EM-
CRMsei and EM-CRM A Vg automatically lean toward the best-performing skele-
ton, and greatly limit the influence of those poor-performing skeletons. Hence, 
as long as there is one good-performing skeleton in the set, the design would 
perform reasonably well. As an alternative to the EM approach, the missing data 
may be treated as unknown "parameters" in the model, and the Bayesian data 
argumentation can be used to draw the unobserved toxicity outcomes from their 
full conditional distributions together with other model parameters (Tanner and 
Wong, 1987). After filling in the missing data with their posterior samples, the 
posterior samples of the model parameters can be easily obtained through the 
standard MCMC procedure. 

In this chapter, we have introduced several statistical designs to meet the 
practical needs when toxicity outcomes cannot be observed quickly in a dose-
finding study. In particular, by redistributing the censored data to the right, the 
fractional 3 + 3 design and the fCRM naturally fractionize the point mass of each 
censored observation, so that patients whose toxicity events have not happened 
yet may still contribute to dose finding. The ΤΠΈ-CRM applies a weighting 
scheme to assign higher weights to patients with longer follow-up times. In a 
rigorous missing data approach, the EM-CRM implements the EM algorithm 
coherently for dose finding based on the incomplete data, which can be further 
coupled with model selection or model averaging to enhance the robustness of 
the design. Unlike the standard 3 + 3 design and the CRM which require the 
toxicity outcome to be ascertainable shortly after treatment, these methods allow 
for delayed response and fast and continuous accrual and, most importantly, they 
substantially shorten the trial duration. 

EXERCISES 

8.1 In the fractional 3 + 3 design, derive the local Kaplan-Meier estimator 
to incorporate the dose information, and compute the fractional contribution for 
each censored observation. 

8.2 Following the notation of the EM-CRM in Section 8.5, show that the kth 
component of the hazard estimate λ^Γ+1) in the (r + l)th EM iteration is 

, (r+i) <h 

EjLfc(d¿ + Eiec,· Vi) 



CHAPTER 9 

DRUG-COMBINATION TRIALS 

9.1 WHY ARE DRUGS COMBINED? 

Human diseases are very complicated and often involve various biological mech-
anisms. In particular, cancer cells are the most difficult to tackle due to many 
intricate disease pathways. To optimize the treatment strategy, a combination of 
drugs or treatment interventions may be simultaneously used to target multiple 
and related disease pathways. Traditionally, a phase I clinical trial only evalu-
ates one single treatment at a time. Given the tremendous advances in medicine, 
many new drugs are available for testing in different combinations. Compared 
with single-agent treatments, combination therapies may 

• lead to synergistic treatment effects, 

• target tumor cells with differing drug susceptibilities, and 

• achieve higher dose intensities with nonoverlapping toxicities. 

In the development of combination therapies, it is essential to study the joint 
actions of multiple drugs and pin down their interactive effects. For simplicity, 
we consider a two-drug combination study. Let DA denote the dose of drug A 
Clinical Trial Design. By Guosheng Yin 271 
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and let DB denote the dose of drug B that would produce the same toxicity (or 
efficacy) effect, when each drug is administered alone. When drug A and drug B 
are combined, let ĆA denote the dose of drug A and let dß denote that of drug B, 
such that the dose combination would achieve the same toxicity/efficacy effect as 
that of DA or DB when each drug is administered alone. Many statistical models 
can be used to characterize the drug-drug interactive effects; for example, the 
Bliss (1939) independence model implies that in a two-drug combination study 
each drug behaves independently of each other. 

The Loewe (1953) additivity model defines the interaction index as 

To understand the meaning of r, we rewrite (9.1) as 

à A + pdß = TDA, 

where p = DA/DB is the relative potency of drug B versus drug A (Morgan, 
1992). When r = 1, then d,A + pdß = DA, that is, the combined doses of dA 
and dß induce the same effect as that when drug A is used alone, indicating 
additivity of the combined doses. When r < 1, then dA + pdß < DA, that is, 
the total amount of dosage is less than that when drug A is administered alone, 
indicating synergy of the combination doses dA and dß. When r > 1, then 
dA + pdß > DA, that is, the total amount of dosage is more than that when drug 
A is given alone, indicating antagonism of the combination doses dA and dß. 

In an alternative formulation, Plackett and Hewlett (1967) study the model of 

When 0 < a < 1, the effects of drug A and drug B are synergistic; when a = 1, 
the effects of the two drugs are additive; and when a > 1, the effects of the 
two drugs are antagonistic. Tan et al. (2003) propose modeling the synergy of 
combined drugs based on uniform designs to reduce the variability, and Lee et 
al. (2007) review and expand on the estimation of the interaction index. 

Treating patients with a combination of agents is becoming commonplace. To 
embrace this growing trend, this chapter mainly focuses on dose finding in phase 
I drug-combination trials, in which the goal is to find the maximum tolerated 
dose (MTD) combination. For example, Lokich (2001) combines four doses of 
topotecan with two doses of irinotecan in a clinical trial to treat advanced ma-
lignancy. Single-agent trials often assume that toxicity monotonically increases 
with the dose, and the order of toxicity is known along the one-dimensional 
dose searching line. By contrast, for a two-drug combination study as shown in 
Figure 9.1, there are up to eight adjacent doses in the two-dimensional searching 
plane, and the toxicity order is «oí known along the off-diagonal directions. That 
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Figure 9.1 Dose pairs in a two-drug combination study where the toxicity order is 
unknown alone the off-diagonal direction. 

is, the monotonie toxicity assumption may still hold when fixing one drug at a 
certain dose level, but it is not clear whether the joint toxicity would increase 
when lowering the dose of one drug and increasing that of the other. Of greater 
importance is the need to prevent patients from experiencing excessive toxicities 
when they are treated with multiple agents. 

EXAMPLE 9.1 

A phase I drug-combination trial was designed to study the safety of the 
combination of bortezomib and gemcitabine plus doxorubicin in the treat-
ment of metastatic urothelial cancer. Bortezomib works by entering cancer 
cells and interfering with cell division. Gemcitabine and doxorubicin, 
given together and thus considered as one drug for dose-finding purposes, 
are chemotherapeutic agents that disrupt the growth and cause the death 
of cancer cells. Combining bortezomib with chemotherapies is expected 
to induce drugs' synergistic effects and to enhance treatment efficacy. In 
this drug-combination trial, each drug had eight prespecified dose levels, 
leading to an 8 x 8 matrix of dose pairs. The primary objective was to 
determine the MTD combination of bortezomib and chemotherapies with 
a target toxicity rate of 30%. 

Trial designs for drug combinations can be extended to broader applications, 
for example, to simultaneously determine the optimal dose level and dose sched-
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ule for a single agent (Braun et al., 2007; Li et al., 2008). When a drug is 
given at the same dose but on a more intense or frequent administration sched-
ule, the patient response to treatment may improve (Braun, Yuan, and Thall, 
2005). Hence, optimizing the dose schedule at different dose levels may also 
be viewed as a two-dimensional dose-finding problem, in which one dimension 
is the dose level and the other is the administration schedule (e.g., frequency 
and duration of treatment). As the third kind of two-dimensional dose finding, 
patients may be classified into ordered groups such as good or poor prognosis, 
and the group-specific MTDs may be identified (O'Quigley and Paoletti, 2003). 

9.2 NEW CHALLENGES 

Consider a two-drug combination trial in which drug A has J dose levels, denoted 
as A\ < ■ ■ ■ < Aj, and drug B has K dose levels, denoted as B\ < ■ ■ ■ < Βκ· 
Let (Aj, Bk) denote the combination of drug A at dose level j and drug B at 
dose level k, for j = 1 , . . . , J and k = 1,..., K. When two or more drugs are 
given in combination, drug-drug interactive effects may be very complex and 
often lead to unknown toxicity patterns. As a result, dose finding with combined 
agents poses many new challenges that are beyond the scope of single-agent trial 
designs: 

(1) In a drug-combination trial, the toxicity order of dose combinations is only 
partially known. For example, the dose combination of (A2, B3) is more 
toxic than (Az,B2), while along the off-diagonal direction, the toxicity 
order of (A2, -B3) and (^3, B2) is unknown. Therefore, if the current dose 
combination can be well tolerated, it is not clear which dose pair should 
be assigned to the next cohort of patients. 

(2) The dimension of the dose searching space expands multiplicatively with 
respect to the number of drugs in the combination. For instance, in a two-
drug combination study with eight dose levels for each drug, the search 
space involves 64 dose pairs. This rapid increment of dose combinations 
inevitably calls for an increase of sample size in order to cover the whole 
search space, notwithstanding limited resources in a phase I trial. 

(3) Due to MTD equivalence contours, multiple MTD combinations may exist 
in the two-dimensional dose space. Dose finding may lack the opportunity 
to explore the entire space if trapped in a local region. 

These difficulties severely limit direct applications of single-agent dose-finding 
methods to drug-combination trials. 

As more drug-combination studies emerge, many statistical methods are de-
veloped for combined therapies. Early work on modeling the combination of 
agents can be found in Ashford (1981) and Abdelbasit and Plackett (1982). By 
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Figure 9.2 Independent parallel dose finding for drug combinations by searching 
through the doses of drug A while fixing the dose of drug B. 

introducing a graphical tolerable dose diagram, Korn and Simon (1993) provide 
guidance to target specific MTD combinations. Conaway, Dunbar, and Peddada 
(2004) study both the simple and partial orders for drug combinations based on 
the pool-adjacent-violators algorithm (Barlow et al., 1972). Figure 9.2 shows 
that single-agent trial designs may be applied to a two-dimensional dose-finding 
study, if we fix drug B at each given dose and search through the doses of drug 
A for the MTD. In each of the K one-dimensional subtrials, the monotonie 
toxicity order is preserved (Kuzuya et al., 2001). However, such an independent 
parallel trial design only utilizes the simple toxicity order within each subtrial 
and completely ignores the partial orders across these subtrials. Not only this 
strategy causes efficiency loss, but it also requires a large sample size because 
almost every dose combination needs to be visited. Of more severe consequence 
is that many patients may be treated at doses that are either excessively toxic or 
can be well tolerated and thus are presumably ineffective. If we are interested 
in finding only one MTD combination, we can simply choose the one whose 
toxicity probability is closest to the target from the K identified MTD combi-
nations. On the other hand, we may choose a subset of dose combinations by 
including only the dose pairs with a known toxicity order. Figure 9.3 exhibits 
that the two-dimensional dose-finding space is reduced into a one-dimensional 
searching line (Kramar, Lebecq, and Candalh, 1999). 

In contrast to dimension reduction of the dose searching space, we may directly 
model the joint toxicity probability at each dose pair to guide dose escalation 
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Figure 9.3 Selection of a subset of dose combinations that maintains the monotonie 
toxicity order. 

or de-escalation throughout the trial. Let ZAj and ZBk denote the standardized 
doses for the dose combination (Aj,Bk). Under the usual logistic regression, 
the joint toxicity probability at (Aj,Bk) can be modeled as 

exp( A, + ft ZAj + ß2ZBk + ß3ZAj ZBk ) 
71~jk 1 + exp(/3o + ßi ZAj + ß2ZBk + ß3ZAj ZBk ) ' 

where the interaction term ß3ZAjZBk captures the drug-drug interactive ef-
fects. Through a different modeling structure, Thall et al. (2003) propose a 
six-parameter regression model in the form of 

■ - - A ■ - 4 : + «3(^;zg)Ä' **" 1 + α,Ζ^ + a2Zg 

to characterize the joint toxicity probability π ^ at the dose combination (Aj, Β^). 
Their model, however, appears to be nonparsimonious and thus sheds doubt on 
the stability of parameter estimates, especially with a small sample size. If the 
actual doses of drug A and drug B are replaced by the prespecified toxicity 
probabilities, pi < · · · < pj and q\ < ■ ■ ■ < qx, the joint toxicity probability 
may be modeled as 

TT,·* = 1 - (1 - Pjr(l - qkf+-rW-Pi), (9.2) 
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where α, β, and 7 are unknown parameters (Wang and Ivanova, 2005). For 
clarity, we can rewrite (9.2) as 

log(l — 7Tjfc) = alog(l - pj) + ßlog(l - qk) + j\og(l -pj)log(l - qk), 

where 7 captures drugs' interaction. If the two drugs act independently on 
patients, then 7 = 0, and π ^ = 1 - (1 — p¿)a(l - quY■ 

Since combination therapies become increasingly important, more efficient 
statistical designs are developed to model the unforeseen toxicity order of dose 
combinations. In the next few sections, we will provide in-depth discussions on 
the most updated dose-finding methods for drug-combination trials. In particular, 
Yuan and Yin (2008) propose a simple sequential dose-finding scheme based 
upon both the simple and partial orders of dose combinations. By making use 
of the copula regression structure, Yin and Yuan (2009b) explicitly incorporate 
the single-agent toxicity information to model the joint toxicity probability. In a 
different route, Yin and Yuan (2009c) introduce a latent 2 x 2 contingency table 
for each dose combination and construct a binomial likelihood for combination 
doses of two drugs. Braun and Wang (2010) propose Bayesian hierarchical 
modeling for the joint toxicity probability of two therapeutic agents. In a phase 
I/II drug-combination trial, Yuan and Yin (201 lb) investigate seamless transition 
between these two consecutive phases coupled with adaptive randomization. 

9.3 SEQUENTIAL DOSE-FINDING SCHEME 

The simplest approach to two-dimensional dose finding is based on a sequential 
scheme, which utilizes both simple and partial toxicity orders (Yuan and Yin, 
2008). Denote Α^^Β^ as the ftth subtrial, in which the dose level of drug 
A increases from s to t (s < t) and drug B is fixed at dose level k. We 
divide the entire two-dimensional trial into several groups of one-dimensional 
subtriais: The first group consists of {A^^j^Bi, A^^.j^B2, A^^j^Bs}, the 
second includes {A^J^BĄ, A^J^B*,, A^J^BQ}, and so on. Each group 
is composed of three subtriais, while the last group may contain one or two 
subtrials. Within each group, we refer to the subtrial at the lower dose level 
of drug B as the low-dose subtrial; that at the higher dose level of drug B as 
the high-dose subtrial; and that at the intermediate dose level of drug B as the 
intermediate-dose subtrial. These subtrials are conducted in a specific order, 
such that the MTD that has been determined in the completed subtrial can be 
used as the truncation boundary to shrink the searching space of other subtrials 
that have not been carried out yet. 

Consider an example of combining drug A with six dose levels and drug B 
with three dose levels, as illustrated in Figure 9.4. Under the sequential design, 
the intermediate-dose subtrial A ^ g ) - ^ is conducted first, and suppose that the 
dose combination (^3, B2) is identified as the MTD. Based on the monotonie 
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Figure 9.4 For the first group of subtrials {A^^Bi, Α(1->6)Β2, A^^6)B3}, the 
sequential design proceeds in the order of (a) running the intermediate-dose subtrial, (b) 
conducting the low-dose and high-dose subtrials simultaneously in the reduced searching 
spaces based on the MTD previously found, and (c) identifying a total of three MTDs. 
Crosses denote the MTDs, open circles in the box represent the dose combinations under 
consideration, and solid circles are those removed from the subsequent subtrials. 

order of toxicity, we immediately know that if we fix drug B at dose level 1, 
the MTD level of drug A cannot be lower than dose level 3; and if we fix drug 
B at dose level 3 or higher, the MTD level of drug A cannot exceed dose level 
3. In other words, after (As, B?) is determined as the MTD in the subtrial of 

we can shrink the full-length subtrials A^^Q^BI and A^^Q^B^ to 
Α(3^.6·)Βι and A^^^Bs, respectively. As a result, the dose searching spaces 
of the subsequent subtrials are substantially reduced. 

In a more general setup, the first group of subtrials under the sequential scheme 
is conducted as follows: 
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(1) Run the intermediate-dose subtrial A^_>,j)B2 to find the MTD, which is 
denoted by Aj^B<¿. 

(2) Run the low-dose and high-dose subtrials in the reduced dose-finding 
spaces simultaneously; that is, A(j*_+j)B\ and A^j^B^. 

(3) If the MTD in AQ-^J^BZ does not exist because all the doses are overly 
toxic, run the low-dose subtrial A^__^j^B\ only. 

Suppose that the MTD of the high-dose subtrial in the first group is determined 
as Aj*Bz, then run the second group of subtrials in a similar way, but with 
appropriately truncated dose levels of drug A. 

The most appealing feature of the sequential scheme is that it can be coupled 
with any single-agent dose-find method for a drug-combination trial without extra 
effort. In a sequential order, single-agent dose-find methods, such as the 3 + 3 
design or the CRM, can be easily applied to each of the subtrials. The identified 
MTDs in the completed subtrials will be used to shrink the dose searching space 
of those subtrials yet to conduct. The low-dose subtrial tends to have more 
futile doses, whereas the high-dose subtrial tends to include more excessively 
toxic doses. Based on the location of the MTD in the intermediate-dose subtrial, 
we are able to efficiently remove futile and over-toxic doses from subsequent 
subtrials. Consequently, fewer patients would be allocated to suboptimal dose 
combinations compared with the independent parallel dose-finding method as 
shown in Figure 9.2. 

By adaptively shortening the dose searching length of each subtrial based 
on the MTDs determined in the previous subtrials, the sequential design leads 
to substantial savings in sample size. This, in turn, shortens the overall trial 
time, since patient accrual is often the bottleneck of trial conduct. For each 
subtrial, the sample size may be determined by allocating one cohort of patients 
at each dose—for example, with a cohort size of three. The sequential design 
identifies all the K MTD combinations by fixing drug B at each dose level k, 
k = 1 , . . . , K. If the goal is to find only one MTD combination, we can simply 
choose the dose combination that has an estimated toxicity probability closest to 
the target. 

9.4 DOSE FINDING WITH COPULA-TYPE REGRESSION 

9.4.1 Clayton-Type Model 

Before any drug-combination trial is carried out, each drug must have been 
thoroughly studied when administered alone. These single-agent trials naturally 
provide rich prior information to design a drug-combination study. For ease of 
exposition, we consider combining two drugs, say drug A with J doses and drug 
B with K doses. Let pj be the prespecified toxicity probability for Aj, the jth 
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dose of drug A, satisfying p\ < · · · < pj\ and let qk be that of Bk, the kth 
dose of drug B, satisfying qi < · · · < ακ· Typically, the maximum dose for 
each drug in the combination should not exceed the individual MTD that has 
already be determined in the previous single-agent trials. That is, the highest 
doses Aj and Βκ are the MTDs or the doses below the MTDs for drug A and 
drug B, respectively. The toxicity probabilities of the MTDs of drugs A and B 
are known, and thereby naturally set the corresponding upper bounds for pj and 
qK- As a result, instead of arbitrarily choosing a sequence of values in (0,1), the 
prespecified toxicity probabilities for drug A and drug B can be more precisely 
chosen from (0,pj) and (0, q¡c), respectively. 

When two or more drugs are combined as a treatment, it is unrealistic to 
assume that each drug acts independently on the patient, because the drug-drug 
interactive effects may have a strong influence on the joint toxicity probability. 
Although each drug has its own toxicity profile, the individual drug information 
cannot be delineated in a combination trial. To enhance the flexibility and 
accommodate the uncertainty of the prespecified pj and qk, we incorporate a 
power parameter to each toxicity probability in the form of (pj, q¡.) with a > 0 
and β > 0. By borrowing the structure of the Clayton (1978) copula, the joint 
toxicity probability at (Aj, Bk) is modeled as 

njk = 1 - {(1 - p?H + (1 - 4)~Ί - ΐΓ1/7> (9·3) 

where 7 > 0 characterizes the drug-drug interactions. Nevertheless, it worths 
emphasizing that model (9.3) is in fact not a copula because it does not character-
ize any bivariate distribution with marginal distributions (Yin and Yuan, 2010b). 
In a drug-combination trial, we only observe one single dose-limiting toxicity 
(DLT) outcome for combined agents, in contrast to the bivariate outcomes in the 
usual copula sense. More specifically, for a patient treated at the dose combina-
tion (Aj,Bk), there is only a single toxicity outcome Y that takes a value of 1 
with probability π ^ , and 0 with probability 1 — π ^ . 

Model (9.3) satisfies three intuitive conditions: 

(1) If p° = 0 and αζ = 0, then π ^ = 0. That is, if the toxicity probabilities 
of both drugs are zero (essentially no drugs), the joint toxicity probability 
is zero. 

(2) If pj = 0, then Kjk = q%; and if q^ = 0, then 7rjfe = p j . When the toxicity 
probability of one drug is zero, the joint toxicity probability reduces to a 
single-agent case. 

(3) If either p? -> 1 or <fk -> 1, then irjk -> 1. In other words, if either drug 
causes the DLT with probability one, the joint toxicity probability is one. 

As characterized by the three model parameters (a, β, -y) in (9.3), the toxicity 
probability surface may have various shapes. In particular, for a = β = 2 
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Figure 9.5 Toxicity probability surface and MTD equivalence contour under the 
Clayton copula-type model. 

and 7 = 1.5, Figure 9.5 displays the joint toxicity probability surface in the 
two-dimensional probability space. If the target toxicity probability is 40%, as 
indicated by the horizontal plane, there exists an intersection curve that represents 
the MTD equivalence contour for the two drugs. Therefore, multiple MTD 
combinations may exist in a drug-combination trial. 

Depending on the dosage, cancer drugs often induce multiple toxicities of 
different levels of severity, for example, fatigue, nausea, vomiting, diarrhea of 
different grades, and so on. If one of these toxicities exceeds its threshold such 
as to be qualified as the DLT, then the toxicity outcome Y takes a value of 1 ; only 
if none of these toxicities exceeds the DLT threshold, then Y = 0. Although it 
may happen that certain types of toxicities diminishes or neutralize each other 
when two drugs are administered together, it is rare in reality that all types of 
toxicity effects induced by the two drugs are antagonistic. 

Suppose that among rijk patients treated at the dose combination (Aj,Bk), 
yjk of them have experienced toxicity, for j = 1 , . . . , J and k = Ι,.,.,Κ. 
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Based on the binomial distribution, the likelihood function is given by 

L(D\a,ß,7) <x Π ft AklX - KskY*-*", 
j = l f c = l 

where D denotes the observed data. Given the prior distribution f(a, ß, 7) for 
all the model parameters, the joint posterior distribution is 

f(a,ß,>y\D)KL(D\a,ß,>y)f{ct,ß,>y). 

Since the toxicity information when each drug is administered alone is available, 
the specification of pj and q^ is relatively accurate. In contrast, much less 
information can be elicited for the drug interaction effect. Therefore, relatively 
informative prior distributions may be assigned to a and ß compared with 7; 
for example, α, β ~ Ga(2,2) and 7 ~ Ga(0.1,0.1) if we take independent 
prior distributions for a, ß, and 7. The full conditional distributions of the 
model parameters can be easily derived, from which posterior samples can be 
drawn using the Gibbs sampler in a straightforward way. Upon each new cohort's 
arrival, we update the posterior estimates of rcjk in light of the cumulative toxicity 
data, and determine dose assignment accordingly. 

9.4.2 Multiple Drugs in Combination 

In practice, a drug-combination trial typically involves a pair of agents, while 
it may be more beneficial to treat patients with three or more drugs combined. 
As the dimensionality of the dose-finding space grows, it becomes much more 
challenging to search for the MTD across multiple drugs. Nevertheless, the 
copula-type design can be easily extended to accommodate higher dimensional 
dose-finding problems. 

If three drugs are combined, in addition to pj of drug A and q^ of drug B 
as defined before, we further specify v¡ as the toxicity probability of the Zth 
dose of drug C for I = 1 , . . . , L. Apparently, the dose searching space grows 
multiplicatively to a three-dimensional cube of size J x K x L. The triplet 
{Pj·, <łk>vi) represents the prespecified toxicity probabilities associated with the 
combined doses (Aj,Bk, C¡), and thus the joint toxicity probability is given by 

π,-w = 1 - {(1 - ρ£)-τ + (1 - <¿)~i + (1 - « I V - 2}-V7> 

where all the parameters a, β, η, and 7 are positive, and 7 characterizes the 
synergism among the three drugs. 

9.4.3 Dose-Finding Algorithm 

At the early stage of a trial, very limited information is available, and thus the 
posterior estimates of the toxicity probabilities for dose combinations may not 
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Figure 9.6 Dose escalation or de-escalation in a matrix of 5 x 4 dose combinations. 

be reliable. To alleviate the difficulty associated with sparse data, we initiate a 
prephase: First along the vertical direction, escalate the dose of drug B while 
fixing drug A at dose level 1 until the first DLT occurs; then along the horizontal 
direction, escalate the dose of drug A while fixing drug B at dose level 1 until 
another DLT is observed. Based on the data collected in this prephase, we can 
estimate the toxicity probabilities of all the dose combinations. The starting 
point for the copula-type dose-finding procedure is the dose combination whose 
toxicity probability is closest to the target φχ-

Suppose that the current cohort is treated at the dose combination (Aj,Bk) 
with the toxicity probability of π ^ . For safety, we restrict the next dose as-
signment within the neighborhood of (Aj,Bk) as shown in Figure 9.6, while 
simultaneous escalation or de-escalation of both agents along the diagonal direc-
tion is prohibited. Let ce and Cd {ce + c¡¡ > 1) denote the fixed probability cutoffs 
for dose escalation and de-escalation, respectively. The Bayesian copula-type 
dose-finding algorithm is described as follows: 

(1) If at the current dose combination, 

Pr(7rjfe < φτ\Ό) > ce, 

escalate to the adjacent dose combination whose toxicity probability is 
higher than π ^ and closest to φτ· If the current dose combination is 
(Aj, BK), the doses stay the same. 
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(2) If at the current dose combination, 

Pr(7rjfc > φτ\ΰ) > cd, 

de-escalate to the adjacent dose combination whose toxicity probability 
is lower than π ^ and closest to φχ. If the current dose combination is 
(Αι,Βχ), the trial is terminated. 

(3) Otherwise, treat the next cohort of patients at the same dose combination. 

(4) Once the maximum sample size is exhausted, the dose combination with 
a toxicity probability closest to φτ is selected as the MTD combination. 

9.4.4 Simulation Study 

We examined the performance of the Bayesian copula-type design by simu-
lating four scenarios listed in Table 9.1. Drug A had five dose levels, drug 
B had four, and the numbers and locations of the MTD combinations varied 
from one scenario to another. The target toxicity probability was φχ — 40%, 
the maximum sample size was 60, and patients were treated in a cohort size 
of three. When each drug was administered alone, the toxicity probability 
of the MTD of drug A was 0.4 and that of drug B was 0.3. Bounded by 
these two values, we specified (p\,... ,p5) = (0.08,0.16,0.24,0.32,0.4) and 
(?i, ■ · · ,94) = (0.075,0.15,0.225,0.3). Wesetce = 0.8 for dose escalation and 
Cd = 0.45 for dose de-escalation. In the Markov chain Monte Carlo (MCMC) 
procedure, we recorded 2,000 posterior samples of the model parameters after 
100 burn-in iterations. We simulated 2,000 trials under each scenario. 

Table 9.1 presents the selection percentage of each dose combination and the 
sum of those of the MTD combinations under the Bayesian copula-type design. 
In the four scenarios, we explored the cases with two, three, or four MTD 
combinations, and clearly the overall performance of the Bayesian copula-type 
design was satisfactory. The selection percentages of the MTD combinations 
were the highest among all the dose combinations. Approximately, there was 
a 50% of chance to identify a true MTD combination in each scenario, and 
most of the patients were treated at the MTD or the nearby dose combinations. 
The simulation study demonstrates the advantages of directly modeling the 
joint toxicity probabilities and freely assigning doses across the entire drug-
combination space. 

Not only does the copula-type model fully evaluate the joint toxicity profile of 
the combined drugs, but it also preserves the single-agent property and reduces 
to the usual CRM if only one drug is tested. Based on the accumulated data, the 
toxicity probabilities of the dose combinations can be continuously estimated 
and efficiently ordered, so that each new cohort of patients will be treated at the 
most appropriate dose combination. 
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Table 9.1 Simulation Study Using the Bayesian Copula-Type Dose-Finding 
Method under Four Scenarios for Two-Drug Combination Trials with a Target 
Toxicity Probability of 40% 

Sc. 

1 

2 

3 

4 

Pr{toxicity at (Aj,Bk)} 

0.54 
0.48 
0.40 
0.24 

0.49 
0.40 
0.27 
0.18 

0.31 
0.23 
0.16 
0.09 

0.40 
0.29 
0.20 
0.12 

0.67 
0.59 
0.45 
0.40 

0.58 
0.49 
0.40 
0.29 

0.40 
0.34 
0.25 
0.16 

0.52 
0.40 
0.31 
0.21 

0.75 
0.68 
0.59 
0.47 

0.68 
0.59 
0.45 
0.40 

0.50 
0.40 
0.34 
0.18 

0.72 
0.51 
0.40 
0.30 

0.81 
0.75 
0.67 
0.56 

0.75 
0.68 
0.59 
0.47 

0.61 
0.53 
0.40 
0.22 

0.75 
0.60 
0.50 
0.40 

0.86 
0.81 
0.74 
0.64 

0.81 
0.75 
0.67 
0.56 

0.75 
0.67 
0.52 
0.40 

0.84 
0.68 
0.59 
0.47 

1 

0.9 
10.2 
24.9 

3.1 

5.0 
17.6 
7.3 
0.1 

3.8 
0.7 
0.0 
0.0 

10.2 
5.3 
0.4 
0.1 

Selection Percentage 

0.1 
1.7 

11.6 
19.1 

1.5 
11.6 
19.2 
5.1 

11.7 
5.9 
0.7 
0.0 

8.7 
16.7 
4.7 
0.2 

0.0 
0.1 
1.7 
6.2 

0.0 
1.4 
9.3 

11.2 

8.5 
12.7 
3.5 
0.3 

0.9 
5.9 

14.1 
5.8 

0.0 
0.0 
0.1 
0.3 

0.0 
0.1 
1.7 
5.0 

1.3 
8.0 

12.0 
3.5 

0.0 
0.5 
8.3 

11.5 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.1 
0.3 

0.1 
1.2 

10.3 
15.8 

0.0 
0.0 
1.0 
5.3 

Sum (%) 

44.0 

48.0 

52.2 

52.5 

Note: Sc. stands for Scenario, and Sum (%) is the sum of the selection percentages of all the 
MTD combinations. 

9.5 LATENT CONTINGENCY TABLE APPROACH 

9.5.1 Bivariate Binary Outcomes 

Combining multiple drugs may help to achieve a higher dose intensity by ex-
ploiting nonoverlapping toxicities of different agents. Ideally, the toxicities of 
the two drugs in combination can be explicitly distinguished, such that we can 
formulate a 2x2 contingency table to accommodate the bivariate binary toxicity 
data. 

As defined before, let pj be the prespecified toxicity probability for Aj, 
and let % be the prespecified toxicity probability for B^. By incorporating two 
unknown power parameters a > 0 and ß > 0, the marginal toxicity probabilities 
for Aj and B^ are given by p" and q^, respectively. For patients treated at the 
dose combination (Aj, £?&), if we observe the DLT from drug A, then Xjk = 1, 
otherwise Xjk = 0; if we observe the DLT from drug B, then Yjk = 1, otherwise 
Yjk = 0. As shown in Figure 9.7, we can formulate a 2x2 contingency table at 
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Figure 9.7 In a two-drag combination trial, given the marginal toxicity probabilities 
]ñ and q%, we construct a latent 2x2 probability table at each dose pair. 
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(9.4) 

where each cell TTjk(xy) represents the joint toxicity probability associated with 
the bivariate binary outcomes (Xjk = x, Yjk = y) for x = 0,1; y = 0,1. 

Based on the Gumbel model (Murtaugh and Fisher, 1990), the joint toxicity 
probability for the bivariate outcomes (x, y) is given by 

irJk(Xy)=Pr(l-P'j)1-X<lky(l-<li)1-y 

+ (-l)*^(l-p?)gjJ(l-gf) ę y - i 
e'T + V 

(9.5) 

where the association parameter 7 characterizes drugs' synergistic effect. If 
7 = 0, model (9.5) reduces to the independent case. 

Suppose that among rijk patients treated at the dose combination (Aj,Bk), 
njfc(ii) patients have experienced DLTs from both drugs, η^(10) patients have 
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experienced DLTs from drug A only, n^n i ) patients have experienced DLTs 
from drug B only, and n^nn) patients have not experienced any DLTs. Following 
a multinomial distribution, the likelihood function is given by 

J K 1 1 

L(D\a,ß,7) « Π Π Π I t o W ' 1 ^ ' 
j=lk-lx=0y=0 

which, however, is based on an imaginary situation that the DLTs from the two 
agents can always be distinguished. 

9.5.2 Latent Contingency Table 

In reality, the toxicities from the two drugs in combination are often partially 
overlapping as shown in Figure 9.8. For example, a side effect of hypertension 
can only be induced by drug A, and an elevated lipid level is only caused by 
drug B, while nausea, fatigue, and vomiting are the common toxicities from both 
drugs. 

When an overlapping DLT is observed, it is usually impossible to determine 
whether the toxicity was caused by drug A (Xjk = 1), drug B (Yjk = 1), or 
both drugs (Xjk = Yjk = 1), and also what proportion of toxicity is from each 
drug. Nevertheless, we can introduce a latent 2x2 toxicity probability table 
as in (9.4) for the combined doses (Aj,Bk). The strategy is to collapse the 
three indistinguishable cells with probabilities of iTjk^, ^jk(io), and Kjk(oi) 
into a single cell, representing the probability of any toxicity (Yin and Yuan, 
2009c). The observed data can be modeled using a binomial distribution instead 
of a multinomial distribution due to a lack of information on the toxicities 

Overlapping Toxicity 

Drug A Toxicity Drug B Toxicity 

Figure 9.8 When two drugs are combined, some toxicities may be unique to each 
drug and others may be common to them; π(ΐο) is for drug A, π(0ι) is for drug B, and 
7T(n) corresponds to both drugs. 
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attributed to each drug. Let η,^οο) denote the number of patients who have 
not experienced any toxicity among those n^ patients treated at (Aj, Bk). The 
binomial likelihood function is then given by 

J K 

L(D\a,ß,j) oc Π J J { 1 -^ (οο)} η ^" η ^ ( 0 0 ) {^ (οο)} η ^ ( 0 0 ) · 
i = l fc=l 

The underlying rationale is that once a patient has experienced toxicity, regardless 
of whether the toxicity was caused by drug A, drug B, or their combination, the 
outcome would fall into the collapsed cell associated with probability 1 — 7Tjfc(00) ; 
only the cell with probability TTjk(Qo) corresponds to the patients with no toxicity. 

In the Bayesian paradigm, let f(a, β, η) denote the prior distribution for all 
the model parameters, and then the joint posterior distribution is given by 

/ ( α , / ? , 7 | £ ) α £ ( ο | α , / 3 , 7 ) / ( α , / ? , 7 ) · 
Based on the accumulated data, we sample from the full conditional distributions 
using the Gibbs sampler, and estimate the toxicity probabilities 1 — π^οο) under 
model (9.5). The dose-finding algorithm is the same as that of the Bayesian 
copula-type design described in Section 9.4.3, except that dose escalation or 
de-escalation in the 2 x 2 table design is guided by 1 — Kjk(oo) ■ 

9.5.3 Simulation Study 

We examined the latent 2x2 table dose-finding procedure by simulating four sce-
narios listed in Table 9.2. Each drug had four dose levels, and the target toxicity 
probability φτ was 30%. The total sample size was 60, and patients were treated 
in a cohort size of three. We specified the same toxicity probabilities for drug 
A and drug B; that is, (p l 5 . . . ,p4) = (<?i, · · · ,<&) = (0.075,0.15,0.225,0.3). 
Under each scenario, 2,000 trials were simulated. 

Table 9.2 presents the selection percentage of each dose combination and 
the sum of those for the true MTD combinations. Scenario 1 has four MTD 
combinations, which were all selected with much higher percentages than other 
dose combinations. There are three MTD combinations at different locations in 
scenarios 2 and 3, respectively; and their selection percentages were substantially 
higher than other dose combinations. There are two MTD combinations in 
scenario 4, and the 2 x 2 table design also performed well. 

In conclusion, the toxicities of combined drugs are usually overlapping, but we 
cannot recover the information on which drag has produced what proportion of 
the common toxicities. Through latent 2 x 2 contingency tables, the correlation 
between the bivariate binary outcomes can be easily incorporated. We collapse 
the three indistinguishable probability cells so as to derive a binomial likelihood 
function. The 2 x 2 table design integrates all the data for decision making, and 
also provides the freedom for dose assignment across the entire dose-combination 
space, which would help to pin down the MTD combination faster. 
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Table 9.2 Simulation Study Using the Latent 2 x 2 Table Design with a Target 
Toxicity Probability of 30% 

Scenario Pr{toxicity at (A,·, Bk)} Selection Percentage Sum(%) 
0.30 
0.15 
0.10 
0.08 

0.30 
0.12 
0.10 
0.08 

0.50 
0.30 
0.12 
0.10 

0.48 
0.42 
0.30 
0.15 

0.50 
0.30 
0.20 
0.14 

0.50 
0.30 
0.15 
0.12 

0.55 
0.50 
0.30 
0.15 

0.52 
0.45 
0.40 
0.30 

0.60 
0.52 
0.30 
0.19 

0.55 
0.50 
0.30 
0.16 

0.60 
0.55 
0.50 
0.30 

0.55 
0.50 
0.48 
0.40 

0.70 
0.60 
0.55 
0.30 

0.60 
0.55 
0.45 
0.18 

0.70 
0.60 
0.55 
0.45 

0.58 
0.52 
0.50 
0.45 

19.9 
5.6 
0.3 
0.0 

20.0 
3.9 
0.1 
0.0 

2.5 
27.3 

5.5 
0.0 

0.5 
7.9 

27.1 
4.7 

8.8 
21.5 

5.3 
0.3 

9.4 
19.9 
3.8 
0.0 

0.3 
7.3 

22.9 
5.6 

0.1 
1.0 
8.1 

22.7 

0.1 
4.6 

13.3 
5.7 

0.8 
6.2 

13.1 
2.6 

0.0 
0.2 
6.8 

17.5 

0.0 
0.2 
1.2 
7.3 

0.0 
0.2 
3.7 

10.3 

0.1 
1.2 
9.9 
8.6 

0.0 
0.0 
0.2 
2.6 

0.0 
0.0 
0.1 
0.6 

Note: Sum (%) is the sum of the selection percentages of all the MTD combinations. 

9.6 PHASE l/ll DRUG-COMBINATION TRIAL 

9.6.1 Motivation 

To expedite drug development and reduce the associated cost, the trend of 
integrating phase I and phase II trials has grown. The majority of phase I/II 
seamless designs focus on single-agent clinical trials, while treating patients 
with combination therapies is common. In a two-drug combination trial, multiple 
MTD combinations with similar toxicity may exist due to the toxicity equivalence 
contour in the two-dimensional dose searching space. As a consequence, we 
need to determine which MTD combination among those identified in phase I 
should be carried forward to a subsequent phase II trial for efficacy evaluation. 
Huang et al. (2007) propose modifying the 3 + 3 design in phase I and applying 
adaptive randomization in phase II for the combination of low-dose decitabine 
with Ara-C in the treatment of leukemia patients. Yuan and Yin (2011b) first 
employ the copula-type dose-finding method to identify all the admissible dose 
combinations in phase I, and then seamlessly move to the adaptively randomized 
phase II trial for efficacy evaluation. 
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EXAMPLE 9.2 

A phase I/II trial was designed to find the most effective and safe doses 
for decitabine and peginterferon Alfa-2b when used in combination to 
treat melanoma patients. Decitabine is a DNA methyltransferase inhibitor, 
which has shown clinical activities in leukemia and myelodysplastic syn-
drome (MDS) patients. MDS are bone marrow stem cell disorders char-
acterized by dysfunctional production of myeloid blood cells and risk 
of transformation to myelogenous leukemia. Peginterferon Alfa-2b is a 
derivative of recombinant interferon, which has been used to treat patients 
with advanced solid tumors. In vitro and in vivo data suggest that decitabine 
and interferon synergize and cause apoptosis of melanoma cancer cells by 
direct cytotoxic mechanisms. This joint action motivated the combination 
of decitabine and peginterferon Alfa-2b to enhance patient response in clin-
ical settings. Patients were treated for three cycles in a total of 12 weeks 
to assess their clinical responses, which included stable disease, partial 
response, and complete response. The MTDs of decitabine and peginter-
feron Alfa-2b when each is administered alone were already determined in 
previous single-agent trials. This trial combined two doses of decitabine 
and three doses of peginterferon Alfa-2b below their respective MTDs. 

9.6.2 Phase I/II Seamless Design 

In a phase I/II drug-combination trial, phase I may follow the Bayesian copula-
type design as discussed in Section 9.4 to identify the admissible doses, and phase 
II subsequently evaluates efficacy of these admissible treatments using adaptive 
randomization. Suppose that m admissible doses have been found in phase I, and 
they will be moved in parallel to phase II for further investigation. Let 0¿ denote 
the response rate of the zth admissible dose for i = 1 , . . . , m. If we observe yi 
responses among n¿ patients treated in arm i, the Bayesian hierarchical model 
can be naturally applied to borrow information across multiple arms, 

yi\9i ~ Bin(ra¿,0¿), 
θί\(α,β) ~ Beta(a,ß), 

a~Ga(e,£), 

where the hyperparameter ξ may take a small value, say ξ = 0.01, such as 
to induce noninformative prior distributions. In the phase II component of the 
trial, we continuously update the posterior estimates of 0¿ and apply the moving-
reference adaptive randomization described in Section 7.11.3. 

Let φτ be the toxicity upper limit and φβ be the efficacy lower limit, which 
together set the drug's therapeutic window. Let n\ and ri2 be the maximum 
sample sizes for phase I and phase II of the trial, respectively. In addition, we 
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denote ce, c<¿ {c¿ < ce), ca, and c/ as the probability cutoffs corresponding to 
dose escalation, de-escalation, admissibility, and futility. The seamless phase 
I/II design is displayed in Figure 9.9 and described as follows: 

Phase I 

(1) Treat the first cohort of patients at the lowest dose combination (Αι,Βχ). 

(2) Suppose that the current dose combination is (Aj,Bk), and let D denote 
the accumulated data thus far. 

(i) If Pr(7Tjfe < φτ\Β) > Ce, escalate to the adjacent dose combination 
whose toxicity probability is higher than π ^ and closest to φχ. If 
the current dose combination is (Aj, BK), the next cohort will be 
treated at the same doses. 

(ii) If Pr(7Tjfc < </>T\D) < Cd, de-escalate to the adjacent dose combi-
nation whose toxicity probability is lower than π ^ and closest to 
φτ· If t n e current dose combination is (Αι,Βχ), the trial will be 
terminated. 

(iii) Otherwise, the next cohort of patients will be treated at the same 
dose combination (A,·, B^). 

(3) Once the sample size in the phase I component, n\, is reached, all the 
dose combinations that satisfy Pr(irjk < (¡>T\D) > ca are considered 
admissible and will be carried forward in parallel to phase II. 

Phase II 

(1) The moving-reference adaptive randomization is invoked immediately in 
phase II to randomize patients among the m admissible treatment arms. 
For i = 1 , . . . ,m, let 7r¿ denote the toxicity probability of treatment i 
(i.e., the ¿th admissible dose combination). If either of the following two 
criteria is met: 

Safety stopping: Pr(7r¿ < (fir\D) < ca, 

Futility stopping: Pr(#¿ > ΦΕ\Β) < Cf, 

then arm i will be terminated. 

(2) Once the sample size in the phase II component, n^, is reached, the dose 
combination that has the highest efficacy rate will be recommended as the 
best dose. 
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Start at doses (Α,, B,) 

No 

Escalate De-escalate 

Repeat until n, is exhausted 

Doses (Aj,Bk) enters phase II; conduct adaptive 
randomization among m admissible doses 

Yes 

Yes 

No 

Stay 

Terminate 
arm i 

Repeat until n2 is exhausted 

Identify the most efficacious dose combination 

Figure 9.9 Diagram of the seamless phase I/II drag-combination trial design. 
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Table 9.3 Four Simulation Scenarios for Two-Drug Combinations with Three 
Doses of Drug A and Two Doses of Drug B 

Sc. 

1 

2 

3 

4 

Pr(toxici 

0.10 
0.05 

0.10 
0.05 

0.10 
0.05 

0.10 
0.05 

0.20 
0.15 

0.15 
0.10 

0.40 
0.20 

0.20 
0.15 

■ty) 

0.50 
0.40 

0.20 
0.15 

0.60 
0.50 

0.50 
0.20 

Pr(efficacy) 

0.20 
0.10 

0.20 
0.10 

0.30 
0.20 

0.20 
0.10 

0.40 
0.30 

0.30 
0.20 

0.50 
0.40 

0.40 
0.30 

0.55 
0.50 

0.50 
0.40 

0.60 
0.55 

0.50 
0.40 

Selection % 

4.0 
0.3 

1.7 
0.0 

16.3 
3.9 

4.2 
0.5 

44.5 
24.0 

7.0 
1.9 

25.4 
46.2 

41.8 
10.7 

2.8 
19.2 

67.1 
19.8 

0.2 
3.1 

9.3 
29.8 

# Patients 

11.3 
9.7 

8.3 
8.2 

16.1 
14.2 

10.6 
9.5 

21.2 
15.8 

10.9 
7.9 

15.1 
22.3 

20.3 
12.1 

8.1 
11.4 

31.3 
11.9 

3.7 
5.7 

10.7 
15.0 

Note: Sc. stands for Scenario. The target toxicity and efficacy probabilities are φτ = 33% and 
ΦΕ = 20%, respectively. The target dose combinations are in boldface. 

9.6.3 Simulation Study 

We conducted simulation studies to examine the operating characteristics of the 
seamless phase I/TI drug-combination design. The maximum sample size was 
80 patients, with n\ = 20 for phase I and U2 = 60 for phase II. We specified the 
toxicity upper limit φτ = 0.33 and the efficacy lower limit ΦΕ = 0.2. We set 
ce = 0.8 and ĉ  = 0.45 to direct dose escalation and de-escalation, respectively; 
ca = 0.45 to define admissibility; and c/ = 0.1 for futility stopping. The 
decisions on dose assignment and adaptive randomization were made upon 
observing the outcomes of every patient. In phase I, we adopted the copula-type 
model in (9.3), and assigned noninformative prior distributions to all the model 
parameters. We simulated 1,000 trials, and for each trial we took 2,000 posterior 
samples after 100 burn-in iterations in the MCMC procedure. 

Under each scenario in Table 9.3, the target dose combination is the one that 
is admissible and has the highest efficacy rate. In scenario 1, the target dose 
combination was selected with the highest percentage, at which most of the 
patients were treated. The target dose combination in scenario 2 is the highest 
doses of both drugs; its selection percentage was close to 70%, and almost half 
of the patients were treated at that dose combination. Scenario 4 is an interesting 
case with two target dose combinations: Both of them were selected with higher 
percentages than other dose combinations, and they were also used to treat more 
patients. 

To gain more insights into the design, Table 9.4 displays (i) the percentage 
that each dose combination is selected into the admissible set and (ii) the average 
number of admissible doses, fh, at the completion of the phase I portion. In most 
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Table 9.4 Selection Percentages of Admissible Doses and Average Numbers of 
Selected Admissible Doses, m 

Admissible Dose (%) m Admissible Dose {%) m 

Scenario I 
97.9 92.2 38.2 
98.8 98.2 72.6 

Scenario 3 
93.3 75.9 14.6 
96.5 94.9 52.1 

Note: The true admissible doses are in shaded areas. 

of the cases, the selection percentages of the admissible doses were higher than 
90%, and the average number of admissible doses was close to the true value. 

Due to the existence of toxicity equivalence contours in a dose-combination 
space, multiple MTD combinations with similar toxicity may be identified in 
a phase I trial. With no preference to any of these MTD combinations, they 
are all moved forward to phase II testing. Adaptive randomization in a phase 
II trial tends to assign more patients to more effective doses. As opposed 
to conducting these two phases of trials separately, it appears more natural 
to seamlessly bridge phase I and phase II trials in order to identify the most 
appropriate dose combination. The phase I/II drug-combination design adopts 
the copula-type model to select admissible doses and the moving-reference 
adaptive randomization to evaluate efficacy, which provides a smooth transition 
from phase I to phase II. 

9.7 SUMMARY 

This chapter has covered a broad range of statistical methods for dose finding 
in drug-combination trials. The sequential scheme is the most straightforward 
approach to designing a two-drug combination trial, which can be coupled with 
any single-agent dose-finding method. The sequential scheme can efficiently 
shrink the dose searching space by utilizing the partial order across different 
subtrials. The copula-type design has an elegant structure, which reduces to the 
single-agent CRM if only one drug is tested. The latent 2 x 2 table approach 
can easily incorporate correlations or interactions between the two drugs in 
combination, but the likelihood degenerates to a binomial distribution due to a 
lack of information on toxicities attributable to each drug. In a phase I/II drug-
combination trial, we model both toxicity and efficacy, which in fact is more 
natural because we need to determine the most effective one among multiple 
identified MTD combinations due to toxicity equivalence contours. Although 

4.9 99.6 99.0 91.8 5.9 99.6 
99.7 

97.9 
98.8 

Scen ano 2 
99.0 
99.7 

Scenario 4 
94.6 
98.5 

91.8 
98.3 

55.6 
86.1 

4.2 97.9 94.6 55.6 5.3 
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we have focused on combinations of two drugs, the two-dimensional dose-fmding 
methods can also be applied to two other situations: One is to jointly search for 
the optimal dose level and dose schedule, and the other is dose finding with 
ordered groups. If more than two drugs are combined, dose finding becomes 
much more difficult, while the copula-type design may still be applicable as 
discussed in Section 9.4.2. 

EXERCISES 

9.1 Design a two-drug combination trial using the 3 + 3 design coupled with 
the sequential dose-finding scheme in Section 9.3. 

9.2 The Gumbel-Hougaard copula (Hougaard, 1986) takes the form of 

Cy(u,v) = exp[-{(-loguY^ + (-logvY^y] , 

where C 7 ( · , ·) is a distribution function on [0, l]2 with an association parameter 
7. Based on the Gumbel-Hougaard copula, construct a copula-type regression 
model to link the joint toxicity probability π ^ with the toxicity probabilities 
(p", q% ), such that all the three model conditions in Section 9.4 are satisfied. 

9.3 For a three-drug combination trial as discussed in Section 9.4.2, derive the 
likelihood function. Specify appropriate prior distributions for model parame-
ters, and then derive the joint posterior distribution. 



CHAPTER 10 

TARGETED THERAPY DESIGN 

10.1 CYTOSTATIC AGENTS 

Despite various classifications based on tumor diagnosis and histology, patients 
in the same prognostic group may still be heterogeneous in many aspects. This 
in turn causes patients to respond differentially to the same treatment. To treat 
patients in a more effective way, there is a new trend of developing molecularly 
targeted therapy in the modern era of personalized medicine. Targeted thera-
pies are typically developed along with important biomarkers that regulate cell 
signaling, malignant transformation, and proliferation. 

Traditional cancer treatments, such as chemotherapy, are cytotoxic, which 
may not be able to distinguish rapidly dividing normal cells and cancer cells 
and thus will eradicate both blindly. As a result, cytotoxic agents often induce 
various adverse effects due to their harm to normal tissues as well. Because both 
toxicity and efficacy are assumed to increase with respect to the dose, cytotoxic 
agents are often administered at the maximum tolerated dose (MTD), which 
would help to achieve the maximum therapeutic effect of the drug. Cytotoxic 
agents may be given in a pulsed way with multiple cycles of on-and-off treatment 
periods. Such intermittent drug administration allows normal tissues to recover 
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after acute cellular damage. By contrast, targeted agents follow the drug-receptor 
cytostatic scheme. Because these molecular-based drugs target specific proteins 
that upregulate in malignant transformation, they are more selective and less 
toxic to normal cells. To achieve optimal therapeutic effects, targeted agents 
may be administered continuously as opposed to periodically. In addition, a low 
dose of a cytostatic agent may be as effective as a high dose. 

In accordance, clinical trial designs for cytostatic agents are very different 
from those for cytotoxic agents. In a phase I trial with a cytostatic agent, the 
primary objective is to find the optimum biological dose (OBD) characterized by 
an efficacy endpoint as opposed to the MTD based on a toxicity endpoint. The 
OBD achieves the maximum therapeutic effect of the drug, which, however, may 
be far below the MTD. For cytotoxic agents, the toxicity and therapeutic effects 
are assumed to be parallel to each other, so searching for the MTD is equivalent 
to finding the maximum effective dose that is still tolerable. However, this is not 
true for cytostatic agents—using toxicity alone cannot underpin the searching 
for the OBD. Hunsberger et al. (2005) propose the 3 + 3 type of designs for 
molecularly targeted agents that have little or no toxicity in the therapeutic dose 
range. 

In a phase II trial with a cytostatic agent, the goal is still to evaluate the 
drug's short-term efficacy effect. However, the meaning of efficacy could be 
very different from that of a cytotoxic agent. Targeted agents may prevent tumor 
growth by blocking certain disease pathways without directly shrinking the 
tumor. Hence, the usual clinical response characterized by a certain percentage 
of decrease in the measurable lesions may not be applicable. It is more sensible 
to use some feasible endpoints, such as the time to disease progression, the 
inhibition of the target, or the measurement on the tumor biomarker. Moreover, 
phase II trials for cytostatic agents are often randomized to compare multiple 
treatments instead of using a single-arm study design (Korn et al., 2001). In a 
phase III trial with a cytostatic drug, we aim for a definitive evaluation of the 
drug's therapeutic effect, and the randomized controlled phase III design remains 
as the gold standard. 

10.2 PROGNOSTIC AND PREDICTIVE BIOMARKERS 

A biomarker is a single trait or a signature of multiple traits, which is often as-
sessed by immunohistochemistry, fluorescent in situ hybridization, microarrays, 
and proteomics technologies (Mandrekar and Sargent, 2009). In the development 
of targeted agents, it is essential to identify and validate important biomarkers for 
therapeutic use—for example, to select molecular targets, screen patients, and 
evaluate clinical endpoints (Simon, 2009). A biomarker is called a prognostic 
marker if it reflects patients' prognosis such as their health conditions, tumor 
stages, or disease status. Prognostic markers are associated with the disease 
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outcome regardless of the presence of the treatment. A biomarker is called a 
predictive marker if it can be used to predict differential treatment effects for 
patients belonging to different marker groups. For example, if only marker-
positive patients will benefit from a particular treatment while marker-negative 
patients will not, this biomarker is predictive for the treatment effect. 

EXAMPLE 10.1 

In breast cancer, estrogen receptor (ER) overexpression may be used as a 
prognostic marker because ER-positive patients have longer survival in the 
absence of systematic therapy. In addition, the ER status may also be used 
as a predictive marker because ER-positive patients would benefit from 
anti-estrogens such as tamoxifen, while ER-negative patients may benefit 
more from some cytotoxic chemotherapies. Another important predictive 
marker in breast cancer is the human epidermal growth factor receptor 2 
(HER2) amplification, as only HER2-positive patients may benefit from 
trastuzumab. In colorectal cancer, patients with KRAS mutations appear 
to be poor candidates for treatment with epidermal growth factor receptor 
(EGFR) antibodies. As a result, cetuximab and panitumumab only benefit 
colorectal cancer patients with the wild-type KRAS gene status, but not 
those with mutant KRAS. 

To better understand the differences between prognostic and predictive biomark-
ers, we consider a study with two treatments—standard therapy and targeted 
therapy. Based on a single biomarker expression, patients can be classified as 
marker positive or marker negative. Suppose that the primary endpoint is di-
chotomous indicating whether a patient has responded to the treatment, and a 
response rate of 10% or less is considered of no clinical interest, and that of 
30% or more is considered clinically relevant. To discriminate prognostic and 
predictive biomarkers, we create four 2 x 2 contingency tables, in which each 
cell represents the response rate of that specific group. 

• The biomarker is neither prognostic nor predictive, if 

Marker — Marker + 
Standard therapy 
Targeted therapy 

• The biomarker is prognostic but not predictive, if 

Marker — Marker + 
Standard therapy 
Targeted therapy 

0.1 
0.1 

0.1 
0.1 

0.1 
0.1 

0.3 
0.3 

• The biomarker is predictive but not prognostic, if 
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Marker — Marker + 
0.1 
0.1 

0.1 
0.3 

Standard therapy 
Targeted therapy 

• The biomarker is both prognostic and predictive, if 

Marker - Marker + 
Standard therapy 
Targeted therapy 

0.1 
0.2 

0.3 
0.6 

10.3 PREDICTIVE BIOMARKER VALIDATION 

10.3.1 Marker-by-Treatment Interaction Design 

With rapid technological advance in genomics and proteomics, a large amount 
of biomarker information can be collected in a fast and cost-effective way. 
Identifying and validating important biomarkers for therapeutic use have become 
the key issues in clinical trials for targeted agents. A biomarker has predictive 
value for a treatment if patients with a higher (or lower) value of that marker 
benefit more from the treatment. Sargent et al. (2005) describe a marker-by-
treatment interaction design and a marker-based strategy design for clinical trials 
involving biomarker development. These designs are known as all-comers or 
unselected approaches, because all of the eligible patients are enrolled regardless 
of their marker status. 

The marker-by-treatment interaction design uses the marker status for strat-
ification, and within each stratum (marker positive or negative) patients are 
randomized to the targeted or the standard therapy as shown in Figure 10.1. At 
the end of the trial, the final analysis may test 

Marker H1 /\ Randomization 

Test marker 
for all patients 

Targeted therapy 

Standard therapy 

Targeted therapy 

Standard therapy 

Figure 10.1 Marker-by-treatment interaction design. 
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• whether there is a treatment difference between the targeted and the stan-
dard therapy, separately within each biomarker group, and 

• whether there is a significant interaction between the biomarker and treat-
ment. 

10.3.2 Targeted Therapy Design with Marker-Based Strategy 

To utilize the biomarker information during treatment assignment, the marker-
based or marker-assisted strategy can be implemented. As shown in Figure 10.2, 
patients are first randomized to a group with marker-assisted treatment strategy or 
that without such assistance. In the marker-assisted group, patients with positive 
marker values are given the targeted agent, and those with negative marker values 
are treated by the standard therapy. In the other group with no marker assistance, 
all of the patients are given the standard of care. Hence, randomization only takes 
place at the first enrollment, while treatment assignment is fully determined once 
patients are recruited into marker-based or non-marker-based groups. At the end 
of the study, we can make a comparison between marker-based and non-marker-
based groups. The biomarker is said to has predictive value if the response rate 
in the marker-based group is higher than that in the non-marker-based group. 

The marker-based strategy in Figure 10.2 does not allow marker negative 
patients to be treated by the targeted therapy, and thus it cannot evaluate whether 
the treatment is superior in all the patients regardless of their marker status. As 
shown in Figure 10.3, this design can be slightly modified by further randomizing 
patients in the non-marker-based strategy group to either the targeted or the 

Marker +)>=£> Targeted therapy 

Marker-based 
strategy 

Randomization 

Marker -Jl j)> Standard therapy 

Non-marker-based 
strategy 

l >̂ Standard therapy 

Figure 10.2 Targeted therapy design with the marker-based strategy. 
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Marker-based 
strategy 

Randomization 

Non-marker-based 
strategy 

Marker + ) ι = : ν > Targeted therapy 

■=> 

Marker -Jl [> Standard therapy 

Randomization 

Targeted therapy 

Standard therapy 

Figure 10.3 Modified targeted therapy design with the marker-based strategy. 

standard therapy. Nevertheless, when comparing the marker-based and non-
marker-based groups, the overall detectable difference could be diluted because 
a substantial number of patients are also treated by the targeted agent in the 
non-marker-based group. 

10.4 RANDOMIZED DISCONTINUATION DESIGN 

Among a large number of potential targeted agents, only those showing the 
most promise may pass through the phase II screening for further evaluation, 
while nonactive agents should be filtered out. During the early development of 
targeted agents, it is difficult to select patients in a reliable way for a certain 
target, while inclusion of nonresponding patients might significantly dilute the 
detectable treatment effect. 

It is possible to identify and enrich certain patient subgroups that are more 
likely to benefit from the treatment, such as treating more patients of HER2-
positive status with trastuzumab in breast cancer, or enriching patients with 
rapidly increasing PSA levels in prostate cancer. The randomized discontinua-
tion design (RDD) belongs to the family of enrichment designs, in which only 
a selected more homogeneous subset of patients are randomized. In particular, 
patients who have adhered to the treatment with stable disease and have not 
experienced excessive toxicity will be randomized to continue or discontinue the 
treatment, while other patients will be taken off the study (Kopec, Abrahamow-
icz, and Esdaile, 1993; Rosner, Stadler, and Ratain, 2002; Freidlin and Simon, 
2004). As shown in Figure 10.4, the RDD consists of two stages: 
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Treatment 

Patients with response continue 
therapy, and those with disease 

progression or toxicity discontinue 

Figure 10.4 Randomized discontinuation design. 

• Stage 1 
All the enrolled patients are treated by the cytostatic agent; that is, everyone 
is exposed to the new treatment initially, which makes the RDD more 
attractive to trial participants. 

• Stage 2 
After a fixed period of follow-up, patients who have responded will con-
tinue the treatment; those who had disease progression or experienced 
excessive toxicity will be taken off the study; and those with stable disease 
will be randomized to a group that continues the treatment or that off the 
treatment for observation only (the placebo group). 

Therefore, in the RDD only the patients with stable disease are randomized in the 
second stage, and after randomization, this subset of patients will be followed 
for another fixed period of time. At the completion of stage 2, we compare 
the proportions of patients maintaining stable disease between the continual and 
discontinued treatment groups during the randomization period. 

Based on numerical comparisons of the RDD with the upfront randomization 
design, Freidlin and Simon (2004) conclude that proper enrichment may improve 
trial efficiency and power when there is no reliable assay to select sensitive pa-
tients. Nevertheless, there are limitations associated with the RDD; for example, 
there might be some carryover effects or drug resistance following the treatment 
in the first stage. 
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10.5 ADAPTIVE SIGNATURE DESIGN 

10.5.1 Split-Sample Approach 

By monitoring a large number of gene expressions simultaneously, our knowl-
edge and understanding of tumors are immensely expanded at genomie scales. 
Not only can the genomie information help to identify important genes, but it 
may also provide the potential of classifying different tumor types and disease 
status. Molecularly targeted therapies may only benefit a subset of patients 
who are characterized by certain gene expressions. This subgroup of patients, 
however, might be overlooked if traditional trial designs and hypothesis tests are 
used. 

Freidlin and Simon (2005) propose an adaptive signature design to identify 
sensitive patients through an assay or a signature (known as the gene-expression 
classifier). The adaptive signature trial follows two sequential stages. Suppose 
that there are G genes that can be used to identify sensitive patients who are 
responsive to the treatment and their gene expression levels are denoted by 
(Xn,..., X%G) for subject i. Letp¿ be the probability of response, and let Z¿ be 
the treatment indicator with Z¿ = 1 for the experimental treatment and Z¿ = 0 
for the control. Based on the data collected in stage 1, a gene signature classifier 
is developed to predict which patient is more likely to benefit from the new 
treatment. 

• Stage 1 
For each gene g, the single-gene logistic model is applied to the data in 
stage 1, 

1 Ο § ( Γ ^ ~ ) =ßo + ßlZi + ^ 2 ^ 9 = I,---,G, 

where βι represents the treatment main effect and η9 characterizes the 
interaction between the treatment and gene profiling. At a specified sig-
nificance level 77, all the genes that have significant treatment-gene inter-
actions can be identified. The maximum likelihood estimators of βι and 
7g are denoted as βι and j g , respectively. 

• Stage 2 
For patients enrolled in stage 2, if patient i has a predicted experimental 
versus control odds ratio 

exp(Â + %Xig) > c, 

where c is a prespecified cutoff, for at least S genes (S < G), then this 
subject is considered a "sensitive" patient. 

The gene-expression classifier developed using patients in stage 1 is prospec-
tively applied to the patients in stage 2 to identify a subset of sensitive patients. 



ADAPTIVE SIGNATURE DESIGN 305 

The tuning parameters (η, c, S) can be empirically chosen using the leave-one-
out cross-validation method. 

The adaptive signature design can achieve three goals: 

(1) to identify the subset of patients who are most likely to benefit from the 
new agent; 

(2) to maintain a properly powered test of an overall treatment effect at the 
end of the trial using all randomized patients; and 

(3) to test the treatment effect for the subset of sensitive patients selected from 
the patients enrolled in stage 2. 

At the conclusion of the trial, two tests will be performed in a sequential order. 
To maintain an overall significance level at a = 0.05, we split a = a± + a%\ for 
example, a.\ = 0.04 and a.2 = 0.01. The first test compares the experimental 
treatment and the control for all the subjects at the significance level of a\. If the 
null hypothesis (no treatment difference) is rejected, we stop and claim that the 
experimental treatment works for all patients. Otherwise, we compare treatment 
effects for the subset of sensitive patients from those enrolled in stage 2 at the 
significance level of a^. By choosing the subset of sensitive patients, we try to 
eliminate the nonresponders who would dilute the treatment effect. Hence in 
this more homogeneous subgroup of patients, the treatment effect is expected 
to be much stronger than that in the overall study population. Therefore, even 
using a more stringent significance level, such as Û2 = 0.01, the test may still 
possess adequate power to detect the treatment difference. The gene-signature 
development and verification are carried out on two nonoverlapping subsamples, 
which thus preserves the overall significance level of the test at the nominal level 
of a. 

The adaptive signature design incorporates prospective development of the 
sensitive patient classifier in a properly powered test procedure for the overall 
treatment effect. If the experimental treatment is broadly effective to all patients, 
the adaptive signature design has a similar power to detect the overall treatment 
effect as the traditional design. If the proportion of sensitive patients is low 
and thus the effectiveness of the experimental treatment is much weakened 
in the general patient population, the signature design reduces the chance of 
overlooking a truly effective treatment. 

10.5.2 Cross-Validation Approach 

In the adaptive signature design of Freidlin and Simon (2005), approximately 
one-half of the data is used to develop the gene signature in stage 1, and the 
other half is used for validation in stage 2. However, such a half-half split of the 
sample may incur power loss and lead to low trial efficiency, especially when 
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the proportion of sensitive patients in the study population is small and there is 
a large number of genes to evaluate. 

To enhance efficiency of the adaptive signature design, Freidlin, Jiang, and 
Simon (2010) propose a cross-validation approach to prospectively developing 
the sensitive patient classifier as well as testing for the overall treatment effect. 
In a X-fold cross-validation procedure, the total data D are divided into K 
nonoverlapping verification subsets, D = {Vi, . . . , VR·}. Let Dk denote the 
developmental subset containing the rest of the data excluding Vk from D; that 
is, D = Dk U Vfc for k = 1 , . . . , K. We develop the predictive gene signature 
based on Dk, which is then used to identify the sensitive patients in Vfc. This 
procedure is repeated for each k to identify all of the sensitive patients in the 
entire sample. Because each patient exactly appears once in the validation 
cohorts, all of the patients will be classified as sensitive or nonsensitive at the 
end of the cross-validation procedure. 

Among the selected sensitive patients, the experimental treatment is compared 
with the control. Due to the use of cross validation, the standard asymptotic 
theory may not work for hypothesis testing. For valid statistical inference, we 
may apply the permutation to simulate the null distribution of the test statistic 
by randomly switching treatment labels. After performing a large number of 
permutations, say J times, the original test statistic Tn is compared with the 
permuted test statistics T-f,..., T}, which yields 

i + E/=1/(r;>rn) 
p- value = . V 1 + J 

The cross-validation approach maximizes the number of patients contributing to 
the gene signature development, and thus sensitive patients can be selected in 
a more reliable way. As a result, the power of the adaptive signature design is 
considerably improved. 

10.6 ADAPTIVE THRESHOLD DESIGN 

Targeted agents for cancer are often putative or tumor growth-inhibitory. Sup-
pose that we compare an experimental agent with a control, and the primary 
endpoint is the time to disease progression. The experimental treatment only 
benefits patients with a high expression of a certain biomarker, which is mea-
sured by a continuous biomarker variable. However, there is no binary classifier 
to categorize patients into marker positive (biomarker expression is above a 
cutoff value) or marker negative (biomarker expression is below a cutoff value) 
groups. In this situation, Jiang, Freidlin, and Simon (2007) propose two different 
procedures for hypothesis testing, which are described as follows. 

For i = 1 , . . . , n, let Z¿ be the treatment indicator taking a value of 1 if subject 
i is treated by the experimental drug, and 0 for the control. If we denote the 
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biomarker expression value as Xi, those subjects with Xi > c are considered 
sensitive patients who would respond to the experimental treatment, where c is 
an unknown threshold for classification of marker positive or marker negative. 
The Cox proportional hazards model is used to compare patients' survival times 
in different groups, 

\{t\Zi,Xi) = \0(t)exp{ßZi + "fI(Xi > c) + 9ZiI(Xi > c)}, (10.1) 

where λο(ί) is the baseline hazard function, β represents the treatment main 
effect, 7 stands for the main effect for the dichotomous biomarker status, and Θ 
corresponds to the interaction between the treatment and biomarker status. Based 
on hypothesis testing, if 7 is significantly different from zero, the biomarker is 
a prognostic marker; and if Θ is significantly different from zero, the biomarker 
is a predictive marker. For simplicity, we are only interested in testing whether 
the marker has any predictive value; that is, 7 = 0, and model (10.1) reduces to 

\(t\Zi, Xi) = λο(ί) eMßZi + eZiI{Xi > c)}. (10.2) 

If ß = 0 in (10.2), then the experimental treatment does not work for all patients; 
furthermore, if ß = 0 but θ φ 0, then the treatment only works for a subset of 
sensitive patients whose biomarker expression levels are above c. If β = 0, the 
logarithm of the hazard ratio between the experimental and the control arms is 

( X(t\Zi = 1, Xi) Ί _ J 0, if biomarker expression Xi is below c, 
\ X(t\Zi = 1, Xi) ) ~ \ Θ, if biomarker expression Xi is above c. 

The first strategy takes two sequential tests by splitting the overall type I 
error rate a = a\ + «2 to maintain the overall significance level at a = 0.05. 
It is recommended using a\ = 0.04 and a.2 = 0.01 to perform the two tests, 
respectively. 

• Stage 1 
We first compare the outcomes of all patients between the experimental 
and the control arms at the significance level of αχ. If the test is significant, 
we stop and claim that the new treatment is effective for all patients. 

• Stage 2 
Otherwise, we determine a cutoff value c for the biomarker expression in 
a way that the treatment difference between the experimental and control 
groups is maximized, if the analysis is restricted only to those patients 
whose biomarker levels are higher than c. 

Suppose that the biomarker expression lies in (0,1). We consider the hypothesis 
testing of 

Ηο:θ = 0 versus Η^.θφΟ, 
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for the selected subset of patients with X, > c only. For each chosen value of 
c, we calculate the log-likelihood ratio statistic Rn(c) and take the test statistic 
Tn = maxo.5<c<i-Rn(c); that is, the test statistic maximizes the difference 
between the experimental treatment and the control. 

The second strategy combines the test for the overall treatment effect and that 
for the subset treatment effect by accounting for the correlation between the two 
test statistics. For each value of c, we fit model (10.1) to the data and compute 
the log-likelihood ratio statistic, Rn(c). We test whether there is a treatment 
difference for the subset of patients whose biomarker values are higher than c. 
If c = 0, Rn(c) reduces to testing for the overall treatment effect. The final test 
statistic is the maximum of all the test statistics over the chosen values of c, 

Tn = max{An(0) + 2.2, max Rn{c)}, 
0<c<l 

where the constant 2.2 is recommended to balance between the overall and subset 
tests. 

To determine the statistical significance of the test, the null distribution of 
Tn is simulated by randomly permuting the treatment labels. The permutation 
procedure avoids inflating the type I error rate and thus leads to a valid statistical 
test. We repeat the permutation for a large number of times, say J, and then 
construct the permuted versions of the test statistics, T*,... ,Tj. As a result, 
the p-value is given by 

ι + Σ/=ι/(Γ;>τη) 
p- value = -r . 

1 + J 

By profiling the likelihood function L(ß,j,e,c) based on (10.1), c can be 
estimated by 

c = arg max log Lp(c), 

where the profile log-likelihood is 

logLp(c) =maxlogL(/?,7,0,c). 
β,Ί,θ 

The confidence interval for the optimal cutoff value c can be constructed by the 
bootstrap method. 

With the rapid development of targeted therapy in oncology, the drug discovery 
is marching toward personalized medicine. From a large number of biomarkers, 
we aim to identify the prognostic or predictive markers that are therapeutically 
useful. Through appropriate subgroup analysis, we can examine whether the 
treatment effects are the same or greater in patients with certain features or 
disease characteristics, so that more marker-specific treatment decisions can be 
made. 
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EXERCISES 

10.1 What are the main differences between cytotoxic agents and cytostatic 
agents? How do these differences affect clinical trial designs? 

10.2 Describe how to obtain a p-value through permutation. How is the 
permutation procedure related to bootstrap? 

10.3 Describe the cross-validation procedure. 
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