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Demystify Lindley’s paradox by connecting
P -value and posterior probability

Guosheng Yin
∗
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In the hypothesis testing framework, p-value is often com-
puted to determine whether to reject the null hypothesis or
not. On the other hand, Bayesian approaches typically com-
pute the posterior probability of the null hypothesis to evalu-
ate its plausibility. We revisit Lindley’s paradox and demys-
tify the conflicting results between Bayesian and frequentist
hypothesis testing procedures by casting a two-sided hy-
pothesis as a combination of two one-sided hypotheses along
the opposite directions. This formulation can naturally cir-
cumvent the ambiguities of assigning a point mass to the null
and choices of using local or non-local prior distributions. As
p-value solely depends on the observed data without incor-
porating any prior information, we consider non-informative
prior distributions for fair comparisons with p-value. The
equivalence of p-value and the Bayesian posterior probabil-
ity of the null hypothesis can be established to reconcile
Lindley’s paradox. More complicated settings, such as mul-
tivariate cases, random effects models and non-normal data,
are also explored for generalization of our results to various
hypothesis tests.

AMS 2000 subject classifications: Primary 62A01,
62F15; secondary 62F03.
Keywords and phrases: Bayesian posterior probability,
Hypothesis testing, Interpretation of p-value, Point null hy-
pothesis, Two-sided test.

1. INTRODUCTION

Lindley’s paradox [1] refers to a case in the hypothesis
testing framework where the Bayesian and frequentist ap-
proaches produce opposite conclusions for certain choices of
the likelihood function or prior distribution. The paradox is
of paramount importance as it highlights the major differ-
ences between the frequentist and the Bayesian approaches
to hypothesis tests.

Extensive research has been conducted to reconcile the
differences between Bayesian and frequentist analysis [2].
Frequentist hypothesis testing commonly relies on the com-
putation of p-value [3], which is defined as the probability
of obtaining the results at least as extreme as the observed
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one given the null hypothesis being true. Frequentist meth-
ods do not utilize any prior information but the observed
data, and thus for a fair comparison, non-informative prior
distributions should be used in the Bayesian analysis. In
particular, Berger and Sellke [4], Berger and Delampady [5],
and Casella and Berger [6] investigate the relationships be-
tween the p-value and Bayesian measure of evidence against
the null hypothesis for hypothesis testing. Robert [7] discuss
the Jeffreys–Lindley paradox by considering the role of the
prior hypothesis probability. Sellke, Bayarri, and Berger [8]
propose to calibrate p-values for testing precise null hypothe-
ses. More recently, extensive discussions on modern statisti-
cal inference in a special issue of The American Statistician
highlight several insights regarding the role of p-value and
Bayesian statistics [9, 10, 11, 12, 13, 14, 15]. One impor-
tant yet rarely visited issue in the reconciliation between fre-
quentist and Bayesian approaches is the ambiguity on prior
specification with the point null and composite alternative
hypotheses in the Bayesian paradigm [6, 16]. Greenland and
Poole [17] discuss the p-value as the probability measure of
the distance, and several discussions on the p-value from the
Bayesian perspectives are also provided [18, 19, 20, 21]. In
particular, Shi and Yin [22] make a new interpretation of
p-value as the posterior probability of the null hypothesis
under both one- and two-sided hypothesis tests by slightly
twisting the definition of the posterior probability under
non-informative priors, which contradicts one of the state-
ments of [23].

We revisit Lindley’s paradox, exploring the connection
between the frequentist p-value and Bayesian posterior prob-
ability. We emphasize that the paradox may result from
certain choices of the prior distribution (e.g., the witch hat
prior—a point mass at the null and flat elsewhere), or certain
sampling distributions. We provide various formulations and
show that the p-value and the posterior probability of the
null have an asymptotic equivalence relationship under non-
informative priors, leading to a reconciliation of the para-
dox. Moreover, we extend the results to non-normal data
and multivariate tests, as well as hypothesis testing of vari-
ance components under random effects models.

The rest of the paper is organized as follows. In Section 2,
we present a motivating example to demonstrate how a point
null hypothesis in a two-sided test can be reformulated as
a combination of two one-sided tests, which naturally rec-
onciles Lindley’s paradox. In Section 3, we analyze Lind-
ley’s paradox original example in depth and show that the
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paradox can be resolved under a negative binomial distribu-
tion rather than a binomial distribution. Section 4 consid-
ers hypothesis testing under more complicated settings and
demonstrates the generalization of our result. In Section 5,
we present real data examples to illustrate reconciliation of
Bayesian and frequentist inferences, and Section 6 concludes
with some discussion.

2. MOTIVATING EXAMPLE

In the two-sided hypothesis testing framework, it may
happen that the Bayesian and frequentist approaches pro-
duce opposite conclusions. Such a conflict is primarily
caused by certain choices of the prior distribution (e.g.,
the witch hat prior—a point mass at the null and flat else-
where). By reformulating the prior distribution to be non-
informative without using a point mass at the null hypothe-
sis, e.g., a uniform prior, we can circumvent the paradox and
establish the equivalence between Bayesian and frequentist
inferences.

2.1 Illustration of Lindley’s paradox

To illustrate the paradox, we start with a simple example.
Suppose that 28,298 boys and 27,801 girls were born in a
city last year. The observed proportion of male births in the
city is r = 28298/56099 ≈ 0.5044297. Let θ denote the true
proportion of male births, and we are interested in testing

(1) H0 : θ = 0.5 versus H1 : θ �= 0.5.

2.1.1 P -value from an exact test

The number of male births follows a binomial distribu-
tion with mean nθ and variance nθ(1−θ), where n = 56, 099
is the total number of births. Let R denote the male sam-
ple proportion. Under the frequentist paradigm, the p-value
based on the binomial exact test is

Pr(R ≥ r|H0) =
n∑

x=28298

(
n

x

)
0.5n ≈ 0.01812363.

2.1.2 P -value using normal approximation

Because the sample size n is large and the observed male
proportion r is not close to 0 or 1, we can use normal
approximation to simplify the computation by assuming
R ∼ N(θ, σ̂2) with σ̂2 = r(1 − r)/n. The frequentist ap-
proach calculates the p-value as the upper tail probability
of as or more extreme than the observed data under the null
distribution,

Pr(R ≥ r|H0)

=

∫ ∞

28298/56099

1√
2πσ̂

exp

{
− (x− 0.5)2

2σ̂2

}
dx

≈ 0.01793329.(2)

Evidently, the exact and approximate p-values are very
close. As the hypothesis test is two-sided, the final p-value
is 2 × 0.01793329 ≈ 0.03586658, and thus H0 should be re-
jected at the typical significance level of 5%.

2.1.3 Posterior probability of H0

If we proceed with a Bayesian approach, the usual prac-
tice is to first assign an equal prior probability to H0 and H1

without any preference, i.e., P (H0) = P (H1) = 0.5. Under
H0, θ has a point mass at 0.5. Under H1, θ is not equal to
0.5 and we assign a uniform prior distribution to θ on [0, 1].
As a result, the posterior probability of H0 is

P (H0|r)

=
P (r|H0)P (H0)

P (r|H0)P (H0) + P (r|H1)P (H1)

=

exp

{
− (r − 0.5)2

2σ̂2

}

exp

{
− (r − 0.5)2

2σ̂2

}
+

∫ 1

0

exp

{
− (r − θ)2

2σ̂2

}
dθ

≈ 0.9543474,

which strongly supports H0.

Such conflict between Bayesian and frequentist hypothe-
sis testing approaches may happen when the prior distribu-
tion is a mixture of a sharp peak atH0 and no sharp features
anywhere else, which is often known as Lindley’s paradox.
We explain as follows that such a conflicting result can be
resolved if we view the two-sided hypothesis as a combina-
tion of two one-sided hypotheses, and further demonstrate
the equivalence of p-value and the posterior probability of
the null when a non-informative prior is used.

2.2 One-sided hypothesis test

For ease of exposition, we start with a one-sided hypoth-
esis test,

H0 : θ ≤ 0.5 versus H1 : θ > 0.5.

The p-value is still calculated in the same way as the up-
per tail probability of as or more extreme than the observed
data under the null distribution. Under the normal approx-
imation, following (2), we have p-value = 0.01793329.

2.2.1 Using Bayes’ theorem

In the Bayesian approach, we assign a uniform prior dis-
tribution to θ, i.e., θ ∼ Unif[0, 1], so the prior probabilities
P (H0) = P (H1) = 1/2. Under normal approximation, the
posterior probability of H0 is

P (H0|r)

=
P (r|H0)P (H0)

P (r|H0)P (H0) + P (r|H1)P (H1)
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=

∫ 0.5

0

exp

{
− (r − θ)2

2σ̂2

}
dθ

∫ 0.5

0

exp

{
− (r − θ)2

2σ̂2

}
dθ +

∫ 1

0.5

exp

{
− (r − θ)2

2σ̂2

}
dθ

≈ 0.01793329,

which is the same as the p-value in (2).

2.2.2 Using the posterior distribution

Under the normal approximation, an alternative way is to
first obtain the posterior distribution of θ, by assuming the
prior distribution of θ to be flat, i.e., p(θ) ∝ 1. The posterior
distribution of θ is then given by

P (θ|r) ∝ exp

{
− (θ − θ̂)2

2σ̂2

}
,

i.e., θ|r ∼ N(θ̂, σ̂2) where θ̂ = r. As a result, we can compute

P (H0|r) = P (θ ≤ 0.5|r)

=

∫ 0.5

−∞

1√
2πσ̂

exp

{
− (θ − 28298/56099)2

2σ̂2

}
dθ,

which is exactly the same as the p-value in (2), because it is
easy to show that

∫ a

−∞

1√
2πσ

exp

{
− (x− b)2

2σ2

}
dx

=

∫ ∞

b

1√
2πσ

exp

{
− (x− a)2

2σ2

}
dx,

for any values of a and b on the real line.

2.2.3 Bayesian exact Beta distribution

If we do not assume the asymptotic normal distribution,
we can proceed with Bayesian exact computation. Under the
Bayesian paradigm, if we adopt a uniform prior for θ, i.e.,
θ ∼ Beta(1, 1), the posterior distribution of θ is still Beta,
i.e., θ|r ∼ Beta(nr+1, n−nr+1). The posterior probability
of the null can be directly calculated as

Pr(H0|r)

=

∫ 0.5

0

Γ(n+ 2)

Γ(nr + 1)Γ(n− nr + 1)
θnr(1− θ)n−nrdθ

≈ 0.01793728,

which is close to the p-value in (2). Note that this pro-
cedure does not rely upon the normal approximation. We
further experiment other non-informative Beta prior dis-
tribution by choosing θ ∼ Beta(α, β) with α = β =
0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, and the result is
given in Table 1. Clearly, under non-informative prior distri-
butions, the posterior probabilities of the null are very close
to the p-value.

Table 1. Relationship between the posterior probability of the
null hypothesis, P (H0|r), and the values of the

hyperparameters in the Beta(α, β) prior distribution with
α = β under the Bayesian exact Beta posterior distribution

for the newborn motivating example

α = β P (H0|r)
1 0.01793728
0.1 0.01793580
0.01 0.01793565
0.001 0.01793564
0.0001 0.01793563
0.00001 0.01793563
0.000001 0.01793563

2.3 Two-sided hypothesis test

In a two-sided hypothesis test, the prior specification on
the point null is often ambiguous by assigning a point prob-
ability mass. To circumvent the issue of the point mass at
the null, we rewrite the two-sided hypothesis in (1) as a
combination of two one-sided hypotheses:

(3)

{
H0 : θ ≤ 0.5 versus H1 : θ > 0.5,
H0 : θ ≥ 0.5 versus H1 : θ < 0.5.

Under the frequentist paradigm, the p-value for the first
one-sided hypothesis test in (3), H0 : θ ≤ 0.5 versus H1 :
θ > 0.5, is given by

Pr(R ≥ r|H0) = 1− Φ(28298/56099; 0.5, σ̂2) ≈ 0.01793329,

where Φ(·;μ, σ̂2) denotes the cumulative distribution func-
tion (CDF) of a normal random variable with mean μ and
variance σ̂2. The p-value for the second one-sided hypothesis
test in (3), H0 : θ ≥ 0.5 versus H1 : θ < 0.5, is given by

Pr(R ≤ r|H0) = Φ(28298/56099; 0.5, σ̂2) ≈ 0.9820667.

Therefore, the p-value under the two-sided hypothesis test
in (3) is given by

p-value2 = 2×min{Pr(R ≤ r|H0),Pr(R ≥ r|H0)}
= 2× 0.01793329

= 0.03586658.

As a counterpart, we adopt the concept of the two-sided
posterior probability (PoP2) in [22], defined as

PoP2 = 2×min{Pr(θ ≤ 0.5|r),Pr(θ ≥ 0.5|r)}
= 2×min{0.01793329, 0.9820667}
= 0.03586658.

Therefore, it is evident that the value of PoP2 is the same
as the frequentist two-sided p-value under normal approxi-
mation.
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Furthermore, a connection between the Bayes factor and
p-value can be established. If an equal prior probability is
assumed for H0 and H1, then the Bayes factor (BF) in favor
of H0 over H1, denoted as BF0,1, can be calculated as the
odds of the p-value,

BF0,1 =
p-value

1− p-value
.

Using a uniform prior on the whole interval [0, 1], we can
reconcile the frequentist and Bayesian inferences. The uni-
form prior is non-informative and, as a result, the posterior
distribution is dominated by the data. On the contrary, the
witch hat prior distribution under which a point mass is as-
signed at 0.5 with P (H0) = P (H1) = 0.5, is in fact a highly
informative prior, as the null value 0.5 is far more likely
than all other possible values in the parameter space. Such
an informative prior leads to enormous differences between
frequentist and Bayesian inference results.

3. DEMYSTIFY LINDLEY’S PARADOX

It is well-known that Bayesian methods adhere to the like-
lihood principle; that is, all that we know about the data or
the sample is contained in the likelihood function. If the like-
lihood functions with respect to the parameter of interest θ
under two different sampling plans or sampling distributions
are proportional, Bayesian inferences on θ should be iden-
tical based on these two sampling distributions. However,
frequentist approaches may result in conflicting conclusions
in the hypothesis testing framework when multiple sampling
distributions are feasible.

3.1 Original coin-tossing example

In the original example provided by Lindley [1], an exper-
iment was conducted with a coin flipped for 12 times, and 9
heads and 3 tails were observed. Let θ denote the probability
of observing a head, and we test the hypotheses,

H0: θ = 0.5 versus H1: θ > 0.5.

We consider two proposals for the likelihood function
given the observed data. Let n denote the number of tosses
and let Y denote the number of heads. The random variable
Y may follow a binomial distribution, Y ∼ Bin(n, θ), and
the likelihood function is

LB(θ|y) =
(
n

y

)
θy(1− θ)n−y =

(
12

9

)
θ9(1− θ)3.

Another proposal of the likelihood function is based on
the negative binomial distribution. If we let Y be the num-
ber of heads until we observe q = 3 tails. The random
variable Y would follow a negative binomial distribution,
Y ∼ Neg-Bin(q, θ), and the likelihood function is

LNB(θ|y) =
(
y + q − 1

y

)
θy(1− θ)q =

(
11

9

)
θ9(1− θ)3.

It is evident that LB(θ|y) ∝ LNB(θ|y), and hence the pos-
terior distributions of θ under these two likelihood functions
are the same under the Bayesian paradigm. In contrast, sta-
tistical inferences under the frequentist paradigm are quite
different, because the computation of p-value is contingent
on the assumed sampling distribution. The p-value under
the binomial sampling distribution is

p-valueB = Pr(y ≥ 9|H0) =
12∑
y=9

(
12

y

)
0.512 ≈ 0.07299805,

while that under a negative binomial sampling distribution
is

p-valueNB = Pr(y ≥ 9|H0)

=

∞∑
y=9

(
y + 2

y

)
0.53+y ≈ 0.03271484.

If the significance level for frequentist hypothesis testing is
set as α = 0.05, the two hypothesis tests would lead to
contradictory results.

The difference between p-values under the binomial dis-
tribution and the negative binomial distribution can be
partly attributed to the difference in the sampling space.
The support under the binomial distribution is constrained
by the number of tosses, i.e., ranging from 0 to 12. How-
ever, the support under the negative binomial distribution
ranges from 0 to infinity. Essentially, the two p-values cor-
respond to two different perspectives on the observed data.
The frequentist paradigm assumes that the parameters are
fixed but the data are random, but does not specify how
the data are associated with the parameters. When multi-
ple sampling distributions can explain the data, conflicting
frequentist inferences may arise.

3.2 One-sided hypothesis test

Suppose that we conduct a one-sided hypothesis test,

H0 : θ ≤ 0.5 versus H1 : θ > 0.5.

Under the Bayesian paradigm, if we assume a symmetric
Beta prior distribution for θ, i.e., θ ∼ Beta(α, β) with α = β,
then the posterior distribution of θ is Beta(y+α, n−y+β).
The posterior probability of the null can be computed as

Pr(H0|y)

=

∫ 0.5

0

Γ(n+ α+ β)

Γ(n− y + β)Γ(y + α)
θy+α−1(1− θ)n−y+β−1dθ.

The top panel of Figure 1 shows the posterior probabil-
ity of H0 under different hyperparameter values α = β from
10−6 to 2 in the Beta(α, β) prior distribution. Under such
symmetric Beta prior distributions, the implicit probability
of landing on a head for a coin toss is 0.5, which is smaller
than the one observed in the actual data, 9/12 = 0.75. When
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Figure 1. The posterior probability of H0 under different
Beta(α, β) prior distributions with α = β in the top panel;
the zoom-in plot at the corner (0, 0) by taking the log
transformation of the Beta prior hyperparameters in the

bottom panel.

the value of α = β increases, the prior distribution becomes
more concentrated at the null value 0.5. As the information
in the prior distribution strengthens, the prior plays an in-
creasingly important role in the posterior distribution, so
that the posterior probability of H0 increases under the in-
fluence of the strengthening prior information. The bottom
panel in Figure 1 shows the zoom-in plot at the corner (0, 0)
of the top panel by taking the log transformation of the x-
axis. Table 2 shows the values of the posterior probability
P (H0|y) for different values of the hyperparameters in the
Beta(α, β) prior distribution with α = β. The conclusion is
that as the values of the hyperparameters decrease toward
zero, i.e., the prior becomes more and more non-informative,

Table 2. Relationship between the posterior probability
P (H0|r) and the values of the hyperparameters in the
Beta(α, β) prior distribution with α = β for the original

coin-tossing example in Lindley’s paradox

α = β P (H0|r)
2 0.059235
1.5 0.052752
1 0.046143
0.9 0.044809
0.8 0.043471
0.7 0.042131
0.6 0.040789
0.5 0.039445
0.4 0.038099
0.3 0.036753
0.2 0.035406
0.1 0.034060
0.01 0.032849
0.001 0.032728
0.0001 0.032716
0.00001 0.032715
0.000001 0.032715

P (H0|y) approaches the p-value obtained from the negative
binomial distribution but not the one from the binomial dis-
tribution.

3.3 Equivalence between negative binomial
P -value and posterior probability

The CDF of a negative binomial distribution, Y ∼
Neg-Bin(q, θ), is given by

FNB(y; q, θ) = 1− Iθ(y + 1, q),

where Ix(a, b) is the regularized incomplete Beta function
defined as

Ix(a, b) =
B(x; a, b)

B(a, b)
,

with

B(x; a, b) =

∫ x

0

ta−1(1− t)b−1dt,

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt.

Therefore, the p-value based on the assumption Y ∼
Neg-Bin(q = n− y, θ) is

p-valueNB = Pr(Y ≥ y|H0)

= 1− FNB(y − 1; q, θ = 0.5)

= I0.5(y, r) = I0.5(y, n− y).(4)

Under the Bayesian paradigm, if we assume a Beta(α, β)
prior distribution for θ, the posterior distribution of θ is
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Beta(y+α, n−y+β). The CDF of a Beta(a, b) distribution
is FBeta(x; a, b) = Ix(a, b). Hence, the posterior probability
of the null is

P (H0|y) = FBeta(0.5; y + α, n− y + β)

= I0.5(y + α, n− y + β).(5)

Comparing (4) and (5), when the hyperparameters α and
β are very small relative to n and y, the p-value under the
negative binomial distribution is close to the posterior prob-
ability of the null. The equivalence between the negative
binomial p-value and the posterior probability of the null
is due to the algebraic connection between the CDF of the
Beta distribution and the CDF of the negative binomial dis-
tribution, i.e., both CDFs are based upon the regularized
incomplete Beta function.

3.4 Numerical study

We further conduct numerical studies to explore the re-
lationship between the posterior probability of the null hy-
pothesis and p-value. By mimicking the newborn male pro-
portion example, in the first numerical experiment we set
y = 0.5044297 × n while increasing n gradually. In other
words, the ratio between y and n is fixed at the observed
value 0.5044297, while both the values of y and n are in-
creased to enlarge the sample size. As shown in Figure 2,
the range of sample size is chosen such that p-values can
cover from 0 up to around 0.5. Clearly, the p-values under
the negative binomial distribution match well with the pos-
terior probabilities of H0, while those under the binomial
distribution show some deviation, particularly for p-values
near 0.5 when sample sizes are relatively small. Furthermore,
we consider the case where the data are randomly generated
from a binomial distribution with probability 0.5044297, and
the results are shown in Figure 3. We observe that for the
negative binomial distribution, the ratio between the p-value
and posterior probability is maintained at 1, whereas for the
binomial distribution, such a ratio is not maintained exactly
but would converge to 1 as the sample size increases.

In the second numerical experiment, we follow the coin-
tossing example by fixing y/n = 9/12, while gradually
increasing n up to 120. A non-informative Beta prior,
Beta(10−6, 10−6), is used. Figure 4 again shows that the p-
values under the negative binomial distribution match well
with the posterior probabilities of H0, while those under the
binomial distribution do not. In addition, we evaluate the
results when the data are randomly generated from a bino-
mial distribution with probability 9/12 = 0.75, which are
shown in Figure 5. We observe that the agreement between
the p-value and posterior probability of H0 is better under
the negative binomial distribution than that under the bi-
nomial distribution.

Figure 2. The ratio between p-values (p-valueB is based on
the binomial distribution, and p-valueNB is based on the

negative binomial distribution) and the posterior probability
(PoP) of the null hypothesis, as sample size increases while

fixing y/n = 0.5044297.

4. EXTENSIONS

Reconciliation between the frequentist and Bayesian in-

ferences can be achieved not only in the case where the out-

come is binary, but can also be extended to other cases where

the outcomes follow a univariate or multivariate normal dis-

tribution, a non-normal distribution, or are generated from

random effects models.

4.1 Hypothesis tests with normal data

We consider hypothesis tests with normal data and dis-

cuss how an equivalence relationship between the Bayesian

posterior probability and frequentist p-value can be estab-

lished.
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Figure 3. The ratio between p-values (p-valueB is based on
the binomial distribution, and p-valueNB is based on the

negative binomial distribution) and the posterior probability
(PoP) of the null hypothesis, as sample size increases with
outcomes generated randomly from a binomial distribution

with probability equal to y/n = 0.5044297.

4.1.1 Improper flat prior

Consider a two-sample test with normal data. Let n de-

note the sample size for each group, and let D denote the

observed data. We assume that the two groups are inde-
pendent, and within each group the outcomes are indepen-

dent and identically distributed as y1i ∼ N(μ1, σ
2) and

y2i ∼ N(μ2, σ
2) with unknown means μ1 and μ2 but a

known variance σ2 for simplicity. Let ȳ1 =
∑n

i=1 y1i/n and

ȳ2 =
∑n

i=1 y2i/n be the sample means, and θ = μ1−μ2 and

θ̂ = ȳ1 − ȳ2.

We are interested in the one-sided hypothesis test,

H0: θ ≤ 0 versus H1: θ > 0,

Figure 4. The relationship between p-values (p-valueB is
based on the binomial distribution, and p-valueNB is based on

the negative binomial distribution) and the posterior
probability (PoP) of the null when y/n is fixed at 0.75. The
red solid point in the first row corresponds to the original

experiment with n = 12 and y = 9. The second row presents
the zoom-in plot at the corner (0, 0) of the first row, i.e., the
logarithm of the p-value and PoP for p-values smaller than

0.002.

the frequentist Z-test statistic is formulated as

z =
ȳ1 − ȳ2√
2σ2/n

=
θ̂√

2σ2/n
,

which follows the standard normal distribution under H0.
In a one-sided hypothesis test, the corresponding p-value is

p-value1 = Pr(Z ≥ θ̂
√

n/(2σ2)|H0)

= 1− Φ(θ̂
√

n/(2σ2)),(6)

where Z denotes the standard normal random variable and
Φ(·) is the corresponding CDF.

Under the Bayesian framework, if we adopt an improper
flat prior distribution for θ, i.e., p(θ) ∝ 1, the posterior
distribution of θ is

θ|D ∼ N(θ̂, 2σ2/n).

Hence, the posterior probability of H0 is

PoP1 = Pr(H0|D) = Pr(θ ≤ 0|D) = 1− Φ(θ̂
√

n/(2σ2)),
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Figure 5. The relationship between p-values (p-valueB is
based on the binomial distribution, and p-valueNB is based on

the negative binomial distribution) and the posterior
probability (PoP) of the null with outcomes generated

randomly from a binomial distribution with probability equal
to y/n = 0.75. The second row presents the zoom-in plot at
the corner (0, 0) of the first row, i.e., the logarithm of the

p-value and PoP for p-values smaller than 0.002.

which is exactly the same as (6). We can thus establish an ex-
act equivalence relationship between p-value and Pr(H0|D)
given an improper prior distribution of θ.

If we are interested in a two-sided hypothesis test,

H0: θ = 0 versus H1: θ �= 0,

the p-value is given by

p-value2 = 2[1−max{Pr(Z ≥ z|H0),Pr(Z ≤ z|H0)}]
= 2− 2max{Φ(θ̂

√
n/(2σ2)),Φ(−θ̂

√
n/(2σ2))}.(7)

The two-sided test can be viewed as a combination of two
one-sided tests (along the opposite directions), and thus the
prior distribution can be easily specified as that in the one-
sided test [22]. Otherwise, the point mass under the null
hypothesis poses great challenges for Bayesian prior speci-
fications. As a result, the two-sided posterior probability is
defined as

PoP2 = Pr(H0|D)

= 2[1−max{Pr(θ ≤ 0|D),Pr(θ ≥ 0|D)}]
= 2− 2max{Φ(θ̂

√
n/(2σ2)),Φ(−θ̂

√
n/(2σ2))},

which is exactly the same as the (two-sided) p-value in (7).

4.1.2 Normal prior

If the prior distribution for θ is assumed to be normal,
i.e., θ ∼ N(μ0, σ

2
0), the posterior distribution of θ is also

normal, θ|D ∼ N(μ̃, σ̃2), where the corresponding posterior
mean and the posterior variance are given by

μ̃ =
θ̂σ2

0 + μ0(2σ
2/n)

σ2
0 + 2σ2/n

, σ̃2 =
σ2
0(2σ

2/n)

σ2
0 + 2σ2/n

.

Under a one-sided test, the posterior probability of H0 is

PoP1 = Pr(H0|D)

= Pr(θ ≤ 0|D)

= 1− Φ(μ̃/σ̃)

= 1− Φ

(
θ̂σ2

0 + μ0(2σ
2/n)√

σ2
0 + 2σ2/n

· 1

σ0

√
2σ2/n

)

= 1− Φ

(
θ̂ + μ0(2σ

2/n)/σ2
0√

1 + (2σ2/n)/σ2
0

· 1√
2σ2/n

)
.

As the prior variance increases and hence the prior distri-
bution becomes more non-informative, then

PoP1 = Pr(H0|D) → 1− Φ(θ̂
√

n/(2σ2)), as σ0 → ∞,

which equals the p-value under a one-sided hypothesis test.
For a two-sided hypothesis test, we can also assume a

normal prior distribution for θ, i.e., θ ∼ N(μ0, σ
2
0), and the

asymptotic equivalence between the p-value and the pos-
terior probability of the null can be derived similarly. In
particular, we view the two-sided hypothesis test as a com-
bination of two one-sided tests and Pr(θ ≤ 0|D) is the same
as (6). For the other one-sided test, as σ0 → ∞,

Pr(θ ≥ 0|D) = 1− Φ(−μ̃/σ̃)

= 1− Φ

(
− θ̂ + μ0(2σ

2/n)/σ2
0√

1 + (2σ2/n)/σ2
0

· 1√
2σ2/n

)

→ 1− Φ(−θ̂
√

n/(2σ2)).

By combining the two one-sided tests, the two-sided poste-
rior probability is given by

PoP2 = Pr(H0|D)

= 2[1−max{Pr(θ ≤ 0|D),Pr(θ ≥ 0|D)}]
= 2− 2max{Φ(θ̂

√
n/(2σ2)),Φ(−θ̂

√
n/(2σ2))},

which is the same as the (two-sided) p-value in (7).

4.2 Hypothesis tests for multivariate normal
data

In hypothesis testing with multivariate normal data, we
consider X ∼ Np(μ,Σ), where p is the dimension of the
multivariate normal distribution. For ease of exposition,
the covariance matrix Σ is assumed to be known. Let
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D = {X1, . . . ,Xn} denote the observed multivariate vec-
tors, let X̄ =

∑n
i=1 Xi/n denote the sample mean vector,

and thus X̄ ∼ Np(μ,Σ/n).
Consider the one-sided hypothesis test,

H0: c
�
k μ ≤ 0 for some k = 1, . . . ,K

versus

H1: c
�
k μ > 0 for all k = 1, . . . ,K,

where c1, . . . , cK are K prespecified p-dimensional vectors.
The likelihood ratio test statistic [24] is given by

(8) Zk =
c�k X̄√

c�k Σck/n
, k = 1, . . . ,K,

and the corresponding p-value is

p-value1(k) = 1− Φ(Zk).

The null hypothesis is rejected if all of the K p-values are
smaller than α.

In the Bayesian paradigm, we assume a conjugate multi-
variate normal prior distribution for μ, i.e., μ ∼ Np(μ0,Σ0).
The posterior distribution is μ|D ∼ Np(μn,Σn), where

μn = Σ0

(
Σ0 +

Σ

n

)−1

X̄+
1

n
Σ

(
Σ0 +

Σ

n

)−1

μ0,

Σn =
1

n
Σ0

(
Σ0 +

Σ

n

)−1

Σ.

The one-sided posterior probability corresponding to ck is

PoP1(k) = Pr(c�k μ ≤ 0|D).

As c�k μ|D ∼ N
(
c�k μn, c

�
k Σnck

)
, if we set μ0 = 0, the one-

sided posterior probability can be further derived as

PoP1(k) = 1− Φ

⎛
⎝ c�k μn√

c�k Σnck

⎞
⎠

= 1− Φ

⎛
⎝ c�k Σ0 (Σ0 +Σ/n)

−1
X̄√

c�k Σ0 (Σ0 +Σ/n)
−1

Σck/n

⎞
⎠ .

With a slight abuse of notation, let ∞ denote an infinitely
large positive definite matrix. When Σ0 → ∞, it is easy
to verify that Σ0 (Σ0 +Σ/n)

−1 → Ip, where Ip is a p-
dimensional identity matrix, and thus

PoP1(k) → p-value1(k).

The two-sided hypothesis test [25] can be formulated as

H0: c
�
k μ ≤ 0 for some k = 1, . . . ,K, and

c�k μ ≥ 0 for some k = 1, . . . ,K

versus

H1: c
�
k μ > 0 for all k = 1, . . . ,K, or

c�k μ < 0 for all k = 1, . . . ,K.

Based on (8), the p-value is given by

p-value2(k) = 2− 2Φ(|Zk|) = 2[1−max{Φ(Zk),Φ(−Zk)}].

The null hypothesis is rejected if all of the K p-values are
smaller than α. Similar to the univariate case, we propose a
definition of the two-sided posterior probability,

PoP2(k) = 2[1−max{Pr(c�k μ > 0|D),Pr(c�k μ < 0|D)}].

As Σ0 → ∞, the asymptotic equivalence between the poste-
rior probability and p-value can be established along similar
lines.

For illustration, we conduct a numerical study to com-
pute the posterior probabilities of c�k μ ≤ 0 for k = 1, . . . ,K,
and compare them with the corresponding p-values. We take
K = 2 and ck to be a unit vector with 1 on the kth el-
ement and 0 elsewhere. We assume a normal prior distri-
bution for μ, i.e., μ0 = 0 and Σ0 = σ2

0Ip. We experiment
with σ2

0 = 1, 10 and 1000 by increasing the prior variance.
The relationship between the posterior probability of the
null and p-value is shown in Figure 6. As the prior variance
increases, the equivalence relationship becomes evident for
both one-sided and two-sided multivariate tests.

4.3 Random effects model

We further consider a random effects model,

yij = β0 + β1xij + bi + εij ,

where yij is the outcome of observation j in cluster i,
i = 1, . . . , n; j = 1, . . . , J , and covariates xij ’s are gen-
erated from Unif(−1, 1). We assume the random intercept
bi ∼ N(0, τ2) and the error εij ∼ N(0, σ2). We set the true
parameter values to be β0 = 0.2, β1 = 1 and τ = σ = 0.5,
and the sample size n = 100, 500, and the cluster size
J = 2, 5. In the Bayesian analysis, we set the prior dis-
tributions for β0 and β1 as N(0, 100), and the priors for τ2

and σ2 as inverse Gamma distributions, IG(0.01, 0.01).

We conduct hypothesis testing for both the regression
coefficient and variance component; in particular, for β1,

Test 1 : H0 : β1 ≤ δ versus H1 : β1 > δ,

and for τ ,

Test 2 : H0 : τ2 ≤ ξ versus H1 : τ2 > ξ.

We vary the values of δ and ξ, and for each configuration
we obtain the p-values using the Wald tests to and compare
them with the posterior probabilities of the null. For the
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Figure 6. The relationship between the p-value and posterior
probability over 1000 replications under one-sided and

two-sided hypothesis tests with multivariate normal data with
sample size 100, σ2

0 = 1, 10, 1000 in the prior covariance
variance matrix Σ0 = σ2

0Ip.

frequentist test on τ2, we use the asymptotic distribution
based on the Fisher information,

√
N(τ̂2 − τ2)

D−→ N

(
0,

2σ4

J(J − 1)
+

2(Jτ2 + σ2)2

J

)
,

and via the log transformation, we apply the delta method,
√
N{log(τ̂2)− log(τ2)}

D−→ N

(
0,

{
2σ4

J(J − 1)
+

2(Jτ2 + σ2)2

J

}
1

τ4

)
.

Figure 7 shows that the p-values and the posterior proba-
bilities of the null hypothesis under different values of δ and
ξ are very close, especially for large sample size n = 500.
The matching pattern between the two quantities appears

Figure 7. The relationship between the p-values and posterior
probabilities for test 1 (coefficient) and test 2 (variance) with
n = {100, 500} and J = {2, 5} under a random effects model.

to be better for the tests of the regression coefficient than

those of the variance component.

4.4 Hypothesis tests with non-normal data

For data that are assumed to follow a distribution other

than a normal distribution, we can establish the equivalence

relationship between the p-value and posterior probability

using the theoretical results on asymptotical normality of

the posterior probability of the half-space in [26]. As exam-

ples, we consider an exponential distribution for continuous

data and a Poisson distribution for discrete data.

4.4.1 Exponential distribution

Consider a one-sample test with exponentially distributed

data, Y ∼ exp(θ). Let n denote the sample size, and let D

denote the observed data. Under the exponential distribu-

tion,

f(y) =
1

θ
exp(−y/θ),
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with mean θ and variance θ2, we are interested in testing
the hypotheses,

H0 : θ ≤ μ versus H1 : θ > μ.

Let ȳ =
∑n

i=1 yi/n be the sample mean. Based on the Cen-

tral Limit Theorem, ȳ
D−→ N(θ, θ2/n), and the Wald test

statistic is

Z =
ȳ − μ

μ/
√
n
,

therefore the corresponding p-value is

p-value = 1− Φ(Z).

Under the Bayesian framework, we adopt an inverse
gamma prior distribution θ ∼ IG(a, b), and based on the
conjugate property, the posterior distribution of θ is

θ|D ∼ IG(a+ n, b+ nȳ).

The posterior probability of the null is

PoP = Pr(H0|D) = Pr(θ ≤ μ|D) = FIG(μ; a+ n, b+ nȳ),

where FIG represents the CDF of an inverse gamma distri-
bution. To establish the asymptotical equivalence between
the p-value and PoP, based on the theoretical results from
[26], the posterior probability of H0 converges to the stan-
dard normal CDF transformation of the likelihood ratio
test statistic, Φ(−

√
Δ), where Δ is the likelihood ratio test

statistic, which is asymptotically equivalent to the Wald test
statistic Z2 [27]. Therefore, we can establish the asymptoti-
cal equivalence between the p-value and posterior probabil-
ity,

PoP → 1− Φ(Z) = p-value.

For illustration, we conduct a numerical study by simulat-
ing data from an exponential distribution with mean θ = 3
and sample size 300. We are interested in testing H0 : θ ≤ 3
versus H1 : θ > 3. For the prior distribution, the hyper-
parameters of the inverse gamma distribution are set as
a = b = 0.001. The upper panel of Figure 8 shows the results
under 1000 data replications, from which the equivalence re-
lationship between the p-value and posterior probability is
evident.

4.4.2 Poisson distribution

We consider another one-sample test where the data fol-
low a Poisson distribution, Y ∼ Poi(λ), with the probability
mass function,

Pr(Y = y) =
λyeλ

y!
,

where both the mean and variance are λ. We are interested
in testing the hypotheses,

H0 : λ ≤ μ versus H1 : λ > μ.

Figure 8. The relationship between the p-value and the
posterior probability over 1000 replications under an

exponential and a Poisson distribution with sample size 300.

Let n denote the sample size, let D denote the observed

data, and ȳ =
∑n

i=1 yi/n is the sample mean. Based on the

Central Limit Theorem, ȳ
D−→ N(λ, λ/n), and the Wald test

statistic is

Z =
ȳ − λ√
λ/n

,

therefore the corresponding p-value is

p-value = 1− Φ(Z).

For the Bayesian method, we adopt a gamma prior dis-

tribution λ ∼ Gamma(a, b), and based on the conjugate
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property, the posterior distribution of λ is

λ|D ∼ Gamma(a+ nȳ, b+ n).

The posterior probability of the null is

PoP = Pr(H0|D) = Pr(λ ≤ μ|D) = FGamma(μ; a+nȳ, b+n),

where FGamma represents the CDF of a gamma distribution.
The asymptotical equivalence between the p-value and PoP
follows the same derivation as in the previous section. We
conduct a numerical study where data are simulated from a
Poisson distribution with mean 3 and sample size 300. We
are interested in testing H0 : λ ≤ 3 versus H1 : λ > 3.
The hyperparameters of the gamma prior distribution are
taken as a = b = 0.001. As shown in the lower panel of
Figure 8, the p-values and the posterior probabilities are
closely matched, indicating an equivalence relationship.

5. REAL DATA APPLICATION

We consider two real examples where Lindley’s paradox
can be constructed, leading to an unignorable influence on
the interpretation of the numerical results under the fre-
quentist and the Bayesian inferences. We consider two case
studies from the Framingham Heart Study discussed in [28].

The Framingham Heart Study is a long-term and ongoing
cohort study with a goal of understanding the risk factors
that predispose to cardiovascular disease [29]. Initiated in
1948, the study is now on its fourth generation of partici-
pants. The demographical and medical information of the
subjects is gathered every 3 to 5 years. The original cohort
consisted of 5209 subjects between age 30 and 62, and an
offspring cohort, which our data analysis is based upon, was
added in 1971.

5.1 Cardiovascular disease among
smokers/non-smokers

At the fifth examination in the Framingham Heart Study,
we analyze the proportion of cardiovascular disease patients
among smokers and non-smokers. Out of 744 smokers and
3055 non-smokers, 81 and 298 individuals had history of
cardiovascular disease, respectively.

Let p1 and p2 denote the probabilities of cardiovascular
disease for smokers and non-smokers, respectively, and let
θ = p1 − p2 denote the difference in the occurrence proba-
bility of cardiovascular disease. We are interested in testing
the hypotheses, H0 : θ = 0 versus H1 : θ �= 0.

The sample proportion difference is ŷ = ȳ1 − ȳ2, where
ȳ1 = 81/744 and ȳ2 = 298/3055. Under normal approxima-
tion, ŷ ∼ N(θ, σ2), where σ2 = p1(1−p1)/n1+p2(1−p2)/n2.
Naturally, we use σ̂2 = ȳ1(1 − ȳ1)/n1 + ȳ2(1 − ȳ2)/n2 =
0.000159 to estimate σ2. Thus, the p-value is

p-value = 2{1− Φ(ŷ/σ̂)} = 0.3692.

Under the Bayesian framework, Lindley’s paradox would
occur if we assign a prior distribution on θ with a point
mass at 0, i.e., P (H0) = P (H1) = 0.5. For the case where
θ �= 0, we assume a diffuse prior distribution for θ, i.e.,
θ|θ �= 0 ∼ N(0, σ0

2) with σ0 = 100. For the case with
θ = 0, the marginal distribution of ŷ given θ = 0 is
ŷ|θ = 0 ∼ N(0, σ̂2).

Let φ(y; θ, σ) denote the probability density function of a
normal distribution with mean θ and standard deviation σ.
Using Bayes’ theorem, the posterior probability of H0 is

P (H0|ŷ) =
f(ŷ|H0)P (H0)

f(ŷ|H0)P (H0) + f(ŷ|H1)P (H1)

=
φ(ŷ; 0, σ̂)

φ(ŷ; 0, σ̂) +
∫∞
−∞ φ(ŷ; θ, σ̂)φ(θ; 0, σ0)dθ

= 0.9998,

which does not match with the frequentist p-value.
On the other hand, if we assume an improper prior p(θ) ∝

1, the posterior distribution is given by

P (θ|ŷ) ∝ exp

{
− (θ − ŷ)2

2σ̂2

}
,

i.e., θ|ŷ ∼ N(ŷ, σ̂2). As a result, we can compute the two-
sided posterior probability,

PoP2 = 2×min{P (θ ≤ 0|ŷ), P (θ ≥ 0|ŷ)}
= 2×min{Φ(−ŷ/σ̂),Φ(ŷ/σ̂)}
= 0.3692,

which reconciles with the frequentist p-value.

5.2 Systolic blood pressure difference
between genders

Among the 3539 subjects who participated in the sev-
enth examination of the Framingham Heart Study, there
were n1 = 1623 men and n2 = 1911 women. The mean sys-
tolic blood pressures for men and women were ȳ1 = 128.2
and ȳ2 = 126.5 respectively, and the corresponding sample
standard deviations were s1 = 17.5 and s2 = 20.1. Let μ1

and μ2 denote the mean systolic blood pressures for men and
women, respectively, and let θ = μ1−μ2 denote their differ-
ence. We are interested in testing whether the mean systolic
blood pressures are different between men and women; that
is, H0 : θ = 0 versus H1 : θ �= 0.

The sample mean difference is ŷ = ȳ1−ȳ2. Under the nor-
mal assumption, ŷ ∼ N(θ, σ2), and we approximate σ2 using
the pooled estimate σ̂2 = ((n1 − 1)s21 + (n2 − 1)s22)(1/n1 +
1/n2)/(n1 + n2 − 2) = 358.0862. Thus, the p-value is

p-value = 2{1− Φ(ŷ/σ̂)} = 0.0078.

Under the Bayesian framework, Lindley’s paradox would oc-
cur if we assign a prior distribution on θ with a point mass

500 G. Yin and H. Shi



at 0, i.e., P (H0) = P (H1) = 0.5. Following similar settings
for θ as in the previous section, the posterior probability of
H0 is

P (H0|ŷ) =
f(ŷ|H0)P (H0)

f(ŷ|H0)P (H0) + f(ŷ|H1)P (H1)

=
φ(ŷ; 0, σ̂)

φ(ŷ; 0, σ̂) +
∫∞
−∞ φ(ŷ; θ, σ̂)φ(θ; 0, σ0)dθ

= 0.8193,

which does not match with the frequentist p-value. Under
a significance level of 0.05, the frequentist inference would
reject H0 while the Bayesian one would not. On the other
hand, if we assume an improper flat prior p(θ) ∝ 1, the two-
sided Bayesian posterior probability can be reconciled with
the frequentist p-value.

6. DISCUSSION

The p-value is the most commonly used summary mea-
sure for evidence-based studies, and it has been the center
of controversies and debates for decades. Recently reignited
discussion over p-value has been more centered around the
proposals to adjust, abandon or provide alternatives to the
p-value. By definition, p-value is not the probability that the
null hypothesis is true given the observed data. Contrary to
the conventional notion, it does have a close correspondence
to the Bayesian posterior probability of the null hypothesis
under both one-sided and two-sided hypothesis tests. The
necessary condition for the asymptotical equivalence rela-
tionship between the p-value and the posterior probability is
primarily the assumption of a non-informative prior. More-
over, we have shown that under certain conjugate priors
(e.g., normal data with a flat prior), exact equivalence can
be established. Certainly, such an equivalence relationship
would not hold when informative priors are used, because
the p-value is computed without any prior information in-
volved. Lindley’s paradox mainly arises when a point mass is
put on the parameter of interest under the null hypothesis.
We circumvent the controversy by recasting a two-sided hy-
pothesis into two one-sided hypotheses, and then the para-
dox can be explained: the p-value and the Bayesian posterior
probability of the null hypothesis coincide.

We have established the asymptotical equivalence rela-
tionship between the p-value and posterior probability under
normal approximation. Specifically, we have considered an
exponential distribution for continuous data and a Poisson
distribution for discrete data, and used normal approxima-
tion to establish the asymptotical equivalence relationship.
Shi and Yin [22] discuss similar results for binomial data,
and our results can be regarded as an extension. Moreover,
we have also discussed the exact p-value for binomial data,
which also leads to an evident equivalence.
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