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ABSTRACT

As a convention, p-value is often computed in frequentist hypothesis testing and compared with the
nominal significance level of 0.05 to determine whether or not to reject the null hypothesis. The smaller
the p-value, the more significant the statistical test. Under noninformative prior distributions, we establish
the equivalence relationship between the p-value and Bayesian posterior probability of the null hypothesis
for one-sided tests and, more importantly, the equivalence between the p-value and a transformation of
posterior probabilities of the hypotheses for two-sided tests. For two-sided hypothesis tests with a point
null, we recast the problem as a combination of two one-sided hypotheses along the opposite directions
and establish the notion of a “two-sided posterior probability,” which reconnects with the (two-sided)
p-value. In contrast to the common belief, such an equivalence relationship renders p-value an explicit
interpretation of how strong the data support the null. Extensive simulation studies are conducted to
demonstrate the equivalence relationship between the p-value and Bayesian posterior probability. Contrary
to broad criticisms on the use of p-value in evidence-based studies, we justify its utility and reclaim its
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importance from the Bayesian perspective.

1. Introduction

Hypothesis testing is ubiquitous in modern statistical applica-
tions, which permeates many different fields such as biology,
medicine, psychology, economics, engineering, etc. As a critical
component of the hypothesis testing procedure (Lehmann and
Romano 2005), p-value is defined as the probability of observing
the random data as or more extreme than the observed given the
null hypothesis being true. In general, the statistical significance
level or the Type I error rate is set at 5%, so that a p-value below
5% is considered statistically significant leading to rejection of
the null hypothesis.

Although p-value is the most commonly used summary mea-
sure for evidence or strength in the data regarding the null
hypothesis, it has been the center of controversies and debates
for decades. To clarify ambiguities surrounding p-value, the
American Statistical Association (Wasserstein and Lazar 2016)
issued statements on p-value and, in particular, the second point
states that “P-values do not measure the probability that the
studied hypothesis is true, or the probability that the data were
produced by random chance alone” It is often argued that p-
value only provides information on how incompatible the data
are with respect to the null hypothesis, but it does not give
any information on how likely the data would occur under the
alternative hypothesis.

Extensive investigations have been conducted on the prop-
erties of the p-value and its inadequacy as a summary statis-
tic. Rosenthal and Rubin (1983) studied how p-value can be
adjusted to allow for greater power when an order of importance
exists in the hypothesis tests. Royall (1986) investigated the
effect of sample size on p-value. Schervish (1996) described

computation of the p-value for one-sided point null hypotheses,
and also discussed the intermediate interval hypothesis. Hung et
al. (1997) studied the behavior of p-value under the alternative
hypothesis, which depends on both the true value of the tested
parameter and sample size. Rubin (1998) proposed an alterna-
tive randomization-based p-value for double-blind clinical trials
with noncompliance. Sackrowitz and Samuel-Cahn (1999) pro-
moted more widespread use of the expected p-value in practice.
Donahue (1999) suggested that the distribution of the p-value
under the alternative hypothesis would provide more infor-
mation for rejection of implausible alternative hypotheses. As
there is a widespread notion that medical research is interpreted
mainly based on p-value, Ioannidis (2005) claimed that most
of the published findings in medicine are false. Hubbard and
Lindsay (2008) showed that p-value tends to exaggerate the
evidence against the null hypothesis. Simmons, Nelson, and
Simonsohn (2011) demonstrated that p-value is susceptible to
manipulation to reach the significance level of 0.05 and cau-
tioned against its use. Nuzzo (2014) gave an editorial on why
p-value alone cannot serve as adequate statistical evidence for
inference.

Criticisms and debates on p-value and null hypothesis
significance testing have become more contentious in recent
years. Focusing on discussions surrounding p-values, a special
issue of The American Statistician (2019) contains many
proposals to adjust, abandon or provide alternatives to p-value
(e.g., Benjamin and Berger 2019; Betensky 2019; Billheimer
2019; Manski 2019; Matthews 2019, among others). Several
academic journals, for example, Basic and Applied Social
Psychology and Political Analysis, have made formal claims to
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avoid the use of p-value in their publications (Trafimow and
Marks 2015; Gill 2018). Fidler et al. (2004) and Ranstam (2012)
recommended use of the confidence interval as an alternative
to p-value, and Cumming (2014) called for abandoning p-
value in favor of reporting the confidence interval. Colquhoun
(2014) investigated the issue of misinterpretation of p-value as
a culprit for the high false discovery rate. Concato and Hartigan
(2016) suggested that p-value should not be the primary
focus of statistical evidence or the sole basis for evaluation
of scientific results. McShane et al. (2019) recommended that
the role of p-value as a threshold for screening scientific
findings should be demoted, and that p-value should not
take priority over other statistical measures. In the aspect
of reproducibility concerns of scientific research, Johnson
(2013) traced one major cause of nonreproducibility as the
routine use of the null hypothesis testing procedure. Leek
et al. (2017) proposed abandonment of p-value thresholding
and transparent reporting of false positive risk as remedies
to the replicability issue in science. Benjamin et al. (2018)
recommended shifting the significance threshold from 0.05 to
0.005, while Trafimow et al. (2018) argued that such a shift is
futile and unacceptable.

Bayesian approaches are often advocated as an alternative
solution to the various aforementioned issues related to the p-
value. Goodman (1999) strongly supported use of the Bayes
factor in contrast to p-value as a measure of evidence for medical
evidence-based research. Rubin (1984) introduced the predic-
tive p-value as the tail-area probability of the posterior pre-
dictive distribution. In the applications to psychology, Wagen-
makers (2007) revealed the issues associated with p-value and
recommended use of the Bayesian information criterion instead.
Briggs (2017) proposed that p-value should be proscribed and
be substituted with the Bayesian posterior probability, while
Savalei and Dunn (2015) expressed skepticism on the utility
of abandoning p-value and resorting to alternative hypothesis
testing paradigms, such as Bayesian approaches, in solving the
reproducibility issue.

On the other hand, extensive research has been conducted in
an attempt to reconcile or account for the differences between
frequentist and Bayesian hypothesis testing procedures (Pratt
1965; Berger 2003; Bayarri and Berger 2004). For hypothesis
testing, Berger and Sellke (1987), Berger and Delampady (1987),
and Casella and Berger (1987) investigated the relationships
between p-value and the Bayesian measure of evidence against
the null hypothesis. In particular, they provided an in-depth
study of one-sided hypothesis testing and point null cases, and
also discussed the posterior probability of the null hypothesis
with respect to various prior distributions including the mixture
prior distribution with a point mass at the null and the other
more broad distribution over the alternative (Lindley 1957).
Sellke, Bayarri, and Berger (2001) proposed to calibrate p-value
for testing precise null hypotheses.

Although p-value is often regarded as an inadequate repre-
sentation of statistical evidence, it has not stalled the scientific
advancement in the past years. Jager and Leek (2014) surveyed
publications in high-profile medical journals and estimated the
rate of false discoveries in the medical literature using reported
p-values as the data, which led to a conclusion that the medical
literature remains a reliable record of scientific progress. Mur-

taugh (2014) defended the use of p-value on the basis that it is
closely related to the confidence interval and Akaike’s informa-
tion criterion.

By definition, p-value is not the probability that the null
hypothesis is true. However, contrary to the conventional
notion, p-value does have a simple and clear Bayesian interpre-
tation in many common cases. Under noninformative priors,
p-value is asymptotically equivalent to the Bayesian posterior
probability of the null hypothesis for one-sided tests, and is
equivalent to a transformation of the posterior probabilities of
the hypotheses for two-sided tests. For hypothesis tests with
binary outcomes, we can derive the asymptotical equivalence
based on the theoretical results in Dudley and Haughton (2002),
and conduct simulation studies to corroborate the connection.
For normal outcomes with known variance, we can derive the
analytical equivalence between the posterior probability and
p-value; for cases where the variance is unknown, we rely on
simulations to show the empirical equivalence when the prior
distribution is noninformative. Furthermore, we extend such
equivalence results to two-sided hypothesis testing problems,
where most of the controversies and discrepancies exist. In
particular, we formulate a two-sided test as a combination
of two one-sided tests along the opposite directions, and
introduce the notion of “two-sided posterior probability” which
matches the p-value from a two-sided hypothesis test. It is
worth emphasizing that our approach for two-sided hypothesis
tests is novel and distinct from the existing approaches
where a probability point mass is typically placed on the null
hypothesis. We assume a continuous prior distribution and
establish an equivalence relationship between the p-value and a
transformation of the posterior probabilities of the two opposite
alternative hypotheses.

The rest of the article is organized as follows. In Section 2,
we present a motivating example that shows the similarity in
operating characteristics of a frequentist hypothesis test and its
Bayesian counterpart using the posterior probability. Section 3
shows that p-value and the posterior probability have an equiva-
lence relationship for binary data, and Section 4 draws a similar
conclusion for normal data. Finally, Section 5 concludes with
some remarks.

2. Motivating Example

Consider a two-arm clinical trial comparing the response rates
of an experimental treatment and the standard of care, denoted
as pg and pgs respectively. In a one-sided hypothesis test, we
formulate

Hy: pg < ps versus Hj:pg > ps. (1)

Under the frequentist approach, we construct a Z-test statistic,
PE—DPs
Z== 5 5 5 172
[{pe(1 — pp) + ps(1 — ps)}/n]'/
where n is the sample size per arm, pg = yg/nand ps = ys/nare
the sample proportions, yg and ys are the numbers of responders
in the respective arms. We reject the null hypothesis if Z > z,

where z, is the 100(1 — «)th percentile of the standard normal
distribution.

(2)




Under the Bayesian framework, we assume beta prior dis-
tributions for pg and pg, that is, pp ~ Beta(ag, bg) and ps ~
Beta(as, bs). The binomial likelihood function for group g can
be formulated as

P(yglpg) = (;)ng(l —p)"%, g=ES.
4

The posterior distribution of p, is given by

Pelyg ~ Beta(ag + yg, by + 1 — yo),

for which the density function is denoted by f(pg|ye). Let n be
a prespecified probability cutoff. We declare treatment superi-
ority if the posterior probability of pg greater than pg exceeds
threshold »; that is,

Pr(Hilyg,ys) = Pr(pe > pslyesys) =2 n=1—a, (3)

where

1,1
Pr(pg > pslye,ys) = / / Sfpelye)f (pslys)dpedps.
0 ps

For one-sided tests with binary data, the asymptotical equiva-
lence between the posterior probability of the null (PoP;) and
p-value can be derived from the theoretical results in Dud-
ley and Haughton (2002). Controlling the posterior probability
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Pr(Holyk, ys) < a would lead to the frequentist Type I error rate
below «. Thus, we can set = 1 — & to maintain the frequentist
Type I error rate at «r.

The Type I and Type II error rates under the frequentist
design are respectively given by

n n
Pr(Reject Hy|Hp) = Z ZP(y}zlpE = ps)P(yslps)I(Z > zg),
YE=0ys=0

Pr(Accept HolHy) = Y > " P(yelpe = ps + 8)P(ys|ps)I(Z < za),

yE=0ys=0

where § is the desired treatment difference and I(-) is the
indicator function. The corresponding error rates under the
Bayesian design can be derived as above by replacing Z > z,
with Pr(pg > pslye,ys) = 1 — o and Z < z, with Pr(pg >
pslye, ¥s) < 1 — « inside the indicator functions.

As a numerical illustration, we set Type I error rates at 10%
and 5% and target power at 80% and 90% when (ps, pg) =
(0.2,0.3) and (ps, pr) = (0.2,0.35), respectively. To achieve the
desired power, the required sample size per arm is

(za +28)*
n= ———
82

where § = pg — ps. Under the Bayesian design, we assume
noninformative prior distributions (e.g., Jeftreys’ prior), ps ~

{PE(1 — pp) + ps(1 — ps)},

Probability of Rejection with pe=ps
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Figure 1. Comparison of the Type | error rate and power under the frequentist Z-test and Bayesian test based on the posterior probability for detecting treatment difference

8 = 0.1 (left) and § = 0.15 (right).
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Beta(0.5,0.5) and pg ~ Beta(0.5,0.5). For comparison, we
compute the Type I error rate and power for both the Bayesian
test with 7 = 1—q and the frequentist Z-test with a critical value
Zy. As shown in Figure 1, both designs can maintain the Type I
error rates at the nominal level and the power at the target level.
It is worth noting that because the endpoints are binary and the
trial outcomes are discrete, exact calibration of the empirical
Type I error rate to the nominal level is not possible, particularly
when the sample size is small. When we adopt a larger sample
size by setting the Type I error rate to be 5% and the target
power to be 90%, the empirical Type I error rate is closer to
the nominal level. Due to the discreteness of the Type I error
rate formulation, near the boundary points, for example, where
PE = ps is close to 0 or 1, the Type I error rate might be subject
to inflation.

3. Hypothesis Test for Binary Data

Following the motivating example in the previous section, the
frequentist Z-test for two proportions in (2) leads to the (one-
sided test) p-value,

p-value; = 1 — &(2),

where @ (-) denotes the cumulative distribution function (CDF)
of the standard normal distribution. At the significance level of

n=20
< | f
o | 9‘59
o ,&OB
/
-
o | fg
3 7
o
=2 /
3
4 A
L S/
+ | /
S by/
-
i
" g
a ye’
| &
=4
T T T T T T
0.0 0.2 0.4 0.6 08 1.0
Pr(pe<ps|¥e. ¥s)
n=100
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@ |
3
o |
=
P
= /
3
* A
I
= |
S
o~
o
<
=
T T T T T T
0.0 02 0.4 0.6 08 1.0

Pr(pe<ps|ye.¥s)

o, we reject the null hypothesis if p-value is smaller than or equal
to .. In the Bayesian paradigm, as given in (3), we reject the null
hypothesis if the posterior probability of Hy : pg < ps is smaller
than or equal to o; that is,

PoP; = Pr(pg < pslye,ys) < c.

In a numerical study, we set n = 20, 50, 100, and 500, and
enumerate all possible integers between 2 and n — 2 to be the
values for ygr and ys (the extreme cases with 0, 1, n — 1, and
n are excluded as the p-values cannot be estimated well using
normal approximation). We take Jeffreys’ prior for pg and ps,
that is, pg, ps ~ Beta(0.5,0.5), which is a well-known noninfor-
mative prior distribution. For each configuration, we compute
the posterior probability of the null hypothesis Pr(Hy|yg, ys)
and the p-value. As shown in Figure 2, all the paired values
lie very close to the straight line of y = x, indicating the
equivalence between the p-value and posterior probability of
the null. Figure 3 shows the histograms of differences between
p-values and posterior probabilities Pr(Hp|yg, ys) under sam-
ple sizes of 20, 50, 100, and 500, respectively. As sample size
increases, the distribution of the differences becomes more cen-
tered toward 0, further corroborating the asymptotic equiva-
lence relationship.

For two-sided hypothesis tests, we are interested in exam-
ining whether there is any difference in the treatment effect
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|

p-value
o

!

T T T T T T
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Figure 2. The relationship between p-value and the posterior probability of the null in one-sided hypothesis tests with binary outcomes under sample sizes of 20, 50, 100,

and 500 per arm, respectively.
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Figure 3. Histograms of the differences between p-values and posterior probabilities of the null over 1000 replications in one-sided hypothesis tests with binary outcomes

under sample sizes of 20, 50, 100, and 500, respectively.

between the experimental drug and the standard drug,

Hy: pg = ps versus Hj: pg # ps,

for which the (two-sided test) p-value is given by
p-value; = 2{1 — ®(|Z|)} = 2[1 — max{P(Z), P(—2)}].

It is worth emphasizing that under the frequentist paradigm,
the two-sided test can be viewed as a combination of two one-
sided tests along the opposite directions. Therefore, to construct
an equivalent counterpart under the Bayesian paradigm, we may
regard the problem as two opposite one-sided Bayesian tests
and compute the posterior probabilities of the two opposite
hypotheses. This approach to Bayesian hypothesis testing is
different from those commonly adopted in the literature, where
a prior probability mass is imposed on the point null (see, e.g.,
Berger and Delampady 1987; Berger and Sellke 1987; Berger
2003). If we define the two-sided posterior probability (PoP,)
as

PoPy = 2[1 — max{Pr(pg > pslye, ys), Pr(pe < pslye, ys)}l;
(1)
then its equivalence relationship with p-value is similar to that
under one-sided hypothesis testing as shown in Figure 4.
The PoP; in (1) is a transformation of two posterior proba-
bilities of opposite events, and it does not correspond to a single

event of interest. However, there exists a sensible interpretation
of PoP; under the Bayesian framework by a simple twist of the
definition. Consider a Bayesian test with a point null hypothesis,
Hy : pg = ps versus Hy : pg # ps. If the null Hy : pr = ps
is not true, then either pg > ps or pg < ps is true. In the
Bayesian framework, it is natural to compute Pr(pg > ps|yE, ys)
and Pr(pg < pslye, ys), and define

PoP; = max{Pr(pg > pslye.ys), Pr(pe < pslye, ys)}>

which would be compared to a certain threshold ¢ for decision
making. If PoPj is large enough, then we reject the null hypoth-
esis. Compared with (1), it is easy to show that the decision rule
of

PoPy > ¢y =1—a/2,
is equivalent to
PoP; < «,

which would lead to rejection of the null hypothesis. In this case,
PoP, behaves exactly like p-value in hypothesis testing. That is,
by taking c7 = 1 —«/2 and comparing the larger value between
Pr(pg > pslye,ys) and Pr(pe < pslyEe, ys) with ct, we are able
to construct a Bayesian test that has an equivalence connection
to the frequentist test.
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Figure 4. The relationship between p-value and the transformation of the posterior probabilities of the hypotheses in two-sided tests with binary outcomes under sample

sizes of 20, 50, 100, and 500, respectively.

More importantly, the definition of PoP, is uniquely dis-
tinct from the traditional Bayesian hypothesis testing of the
two-sided test where Hy is a point null. Under the traditional
Bayesian method, a point mass is typically assigned on the prior
distribution of Hy, while various approaches to defining the
prior density under H; have been discussed (Casella and Berger
1987; Berger and Delampady 1987; Berger and Sellke 1987).
Using such an approach, it is difficult to reconcile the classic
p-value and the posterior probability. In contrast, instead of
assigning a prior probability mass on the point null Hy, our
approach to a two-sided hypothesis test takes the maximum of
posterior probabilities of two opposite events, under a continu-
ous prior distribution with no probability mass assigned on the
point null.

The equivalence of the p-value and the posterior probability
in the case of binary outcomes can be established by applying
the Bayesian central limit theorem. Under large sample size, the
posterior distributions of pr and ps can be approximated as

Pglyg ~ N(pg, pg(1 — pg)/n), g =E,S.

As yg and yg are independent, the posterior distribution of pg —
ps can be derived as

PE — pslye, ys ~ N(pg — ps, {pe(1 — pg) + ps(1 — ps)}/n).

Therefore, the posterior probability of Hy : pg < ps is

PE — s

PoP, =P s ~ Q| — — = = =

0Py = Pr(pg < pslye, ys) ( [{pe(1 — pE) + ps(1 —ps)}/n]1/2>
= ®(-2),

which is equivalent to p-value; = 1 — ®(Z) = ®(—2). The
equivalence relationship for a two-sided test can be derived
along similar lines.

More generally, the equivalence relationship between the
posterior probability and p-value can be derived from the the-
oretical results in Dudley and Haughton (2002), where the
asymptotic normality of the posterior probability of half-spaces
is studied. More specifically, a half-space H is a set satisfying a
linear inequality,

H=1{0:a"0 >0},

where @ € RY is a vector of interest, a € R% and b is a
scalar. Let A denote the log likelihood ratio statistic between
the unrestricted maximum likelihood estimator (MLE) in the
entire support of the parameter and the MLE restricted on the
boundary hyperplane of #, 34 = {6 : aT@ = b}. Dudley
and Haughton (2002) proved that under certain regularity con-
ditions, the posterior probability of a half space converges to
the standard normal CDF transformation of the likelihood ratio
test statistic, ®(—~/2A). In our case, the half-space under the



context of hypothesis testing is {(pg,ps) : ps — pg > 0} for a
two-arm trial with binary endpoints. Based on the arguments
in Dudley and Haughton (2002), it can be easily shown that the
posterior probability of the null is asymptotically equivalent to
the p-value from the likelihood ratio test.

4. Hypothesis Test for Normal Data
4.1. Hypothesis Test With Known Variance

In a two-arm randomized clinical trial with normal endpoints,
we are interested in comparing the means of the outcomes
between the experimental and standard arms. Let n denote the
sample size for each arm, and let yg; and ys;, i = 1,...,n,
denote the observations in the experimental and standard arms,
respectively. We assume that yg; and ys; are independent, and
yEi ~ N(ug,02), ysi ~ N(us,0?), with unknown means ug
and pg but a known variance o> = 1 for simplicity. Let yp =
Yo yei/nandys = >, ysi/n denote the sample means, and
let 0 = pug — us and 6 = YE — ys denote the true and the
observed treatment difference, respectively.

4.1.1. Exact Equivalence
Considering a one-sided hypothesis test,

H;:6 >0, (1)

the frequentist test statistic is formulated as 6./n/2, which
follows the standard normal distribution under the null hypoth-
esis. Therefore, the p-value under the one-sided hypothesis test
is given by

p-value, = Pr(U > 0/n/2|Hp) = 1 — ®(H/n/2), (2)

where U denotes the standard normal random variable.

Let D denote the observed values of yg; and ys;, i =1, ..., 1.
In the Bayesian paradigm, if we assume an improper flat prior
distribution, p(8) o 1, then the posterior distribution of 9 is

01D ~ N(6,2/n).

Hyp: 60 <0 versus

Therefore, the posterior probability of the null is
PoP; = Pr(6 < 0|D) = 1 — ®(6/n/2),

which is exactly the same as (2). Under such an improper
prior distribution of €, we can establish an exact equivalence
relationship between p-value and Pr(Hy|D).

Under a two-sided hypothesis test,

Hy:0 =0 versus H;:0 #0,
the p-value is given by
p-value; = 2[1 — max{Pr(U > é\/n_/2|H0),
Pr(U < 0/n/2|Ho)}]
=2 — 2max{®(—0./n/2), ®(B/n/2)}.  (3)

Correspondingly, the two-sided posterior probability is defined
as

PoP; = 2[1 — max{Pr(6 < 0|D),Pr(6 > 0|D)}]
=2 — 2max{®(—6+/n/2), q’(év n/2)},

which is exactly the same as the p-value, in (3).

THE AMERICAN STATISTICIAN 271

4.1.2. Asymptotic Equivalence
If we assume a normal prior distribution, & ~ N(0, 002), then
the posterior distribution of 6 is 6|D ~ N(ji, 52), where
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The posterior probability of the null under the one-sided
hypothesis test in (1) is

PoP; = Pr(@ < 0|D)
—1- ®(i/5)

A / 1

Therefore, it is evident that as oy — o0 (i.e., under noninfor-
mative priors), the posterior probability of the null converges to
the p-value, that is, p-value; = 1im002—> oo P1(0 < 0|D). For two-
sided hypothesis tests, asymptotic equivalence can be derived
along similar lines. Moreover, it is worth noting that the same
asymptotical equivalence holds when the sample size n goes to
infinity, in which case the prior has a negligible effect on the
posterior and both the p-value; and PoP; would converge to 0.
For one-sided hypothesis testing problems, Casella and Berger
(1987) provided theoretical results reconciling the p-value and
Bayesian posterior probability for symmetric distributions that
enjoy the properties of a monotone likelihood ratio. The results
under normal endpoints can be regarded as corroboration of the
theoretical findings in Casella and Berger (1987).

4.2. Hypothesis Test With Unknown Variance

In a more general setting, we consider the case where (g, s,
and o are all unknown parameters. For simplicity, we define
Xi = YEi — ¥si» which follows the normal distribution N(6, 20°2)
under the independence assumption of yg; and yg;. Similar to a
matched-pair study, the problem is reduced to a one-sample test
for ease of exposition. In the frequentist paradigm, Student’s ¢-
test statistic is

~

0

T= >
X ki — 02/ — 1)

where 6 = ¥ = jp — ys. The p-value under the one-sided
hypothesis test (1) is

p-value; =1 —F, (1),

where F;,_, (-) denotes the CDF of Student’s ¢ distribution with
n — 1 degrees of freedom.

In the Bayesian paradigm, for notational simplicity, we let
v = 20 and model the joint posterior distribution of 6 and
v. Under Jeffreys’ prior for 6 and v, f(0,v) v=3/2 the
corresponding posterior distribution is

S (i — 0) + n@ — 0)>
2v ’

f(6,v|D) x p~ (372 exp { -
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which matches the normal-inverse-chi-square distribution,

n
0,v)|D ~ N-Inv X2<é, nn, Z(x,- —0)*/n

i=1

N———"

As a result, the one-sided posterior probability of the null
hypothesis is PoP; = Pr(6 < 0|D).

To study the influence of prior distributions, we also consider
a normal-inverse-gamma prior distribution for 6 and v,

6,v) ~ N-IG(6p, vy, o, B).

One-sided test, Jeffreys’ prior, n = 20

One-sided test, Jeffreys' prior, n =50

The corresponding probability density function (PDF) can be
written as the product of a normal density function and an
inverse gamma density function,

_ m ,3“ 1 a+1

- V2mu D) \v op ’

where fn(+16p, v/vg) denotes the PDF of a normal distribution
with mean 6 and variance v/ vy, and fig(-|«, B) denotes that of

f6,v) = @160, v/vo)fic(vle, B)
28400 — 60)*
2v

One-sided test, Jeffreys’ prior, n =100
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Figure 5. The relationship between p-value and the posterior probability over 1000 replications under one-sided and two-sided hypothesis tests with normal outcomes
assuming Jeffreys’ prior and the non-informative normal-inverse-gamma prior under sample sizes of 20, 50, and 100, respectively.



an inverse gamma distribution with parameters « and . Due to
the conjugate prior property, the corresponding posterior dis-
tribution is also a normal-inverse-gamma distribution; that is,
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For a two-sided hypothesis test, the p-value is

p-value; =2 —2F,  (|T|)
= 2[1 — max{F;,_, (1), Fy,_, (=D)}].

Similarly, we can define the two-sided posterior probability as

PoP; = 2[1 — max{Pr(6 > 0|D),Pr(6 < 0|D)}].

4.3. Numerical Studies

As a numerical illustration, we simulate 1000 data replications,
and for each replication we compute the p-value and the pos-
terior probability of the null. We consider both Jeffreys’ prior
and the normal-inverse-gamma prior. The data are generated
from normal distributions, that is, x; ~ N(0, v). To ensure the
p-values from simulations to cover the entire range of (0, 1),
we generate values of 6 from N(0,0.05) and v from truncated
N(1, 0.05) above zero. To construct a noninformative normal-
inverse-gamma prior distribution, we take 6y = 0, vp = 100,
ando = B = 0.01. Under Jeffreys’ prior and the noninformative
normal-inverse-gamma prior distributions, Figure 5 shows the
equivalence relationship between p-values and the posterior

Gamma distribution, n = 20

Beta distribution, n = 20
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probabilities of the null under both one- and two-sided tests
with sample sizes of 20, 50, and 100, respectively.

In addition, we conduct sensitivity analysis to explore
different data generation distributions and informative priors.
In particular, we generate x; from Gamma(2, 0.5), Beta(0.5, 0.5),
as well as a mixture of normal distributions of N(—1, 1) and
N(1,1) with equal weights. To allow the p-values to cover the
entire range of (0, 1), the simulated values of x; are further
deducted by the mean of the corresponding distribution.
Under Jeffreys’ prior, Figure 6 again exhibits the equivalence
relationship between p-values and the posterior probabilities of
the null under one-sided tests with sample sizes of 20 and 50,
respectively.

To study the effect of informative prior and sample size on
the relationship between p-value and the posterior probability,
we assign an informative prior distribution on 6 by setting

6y = 6 + 0.01, vy = 0.01 (a small prior variance), and & =
B = 0.01. The left panel of Figure 7 shows that under such
an informative prior distribution the equivalence relationship

between p-values and the posterior probabilities of the null
is lost, while it can be gradually gained back with increasing
sample sizes. Moreover, we consider the case where the sample
size is fixed at 1000 but the prior variance is increased by setting
vo from 0.001 to 1, and we still keep 6y 0 + 0.01. The
right panel of Figure 7 exhibits that as the prior distribution
becomes less informative, the equivalence relationship turns
out to be more evident. This is as expected, because the p-
value is obtained using the observed data alone without bor-
rowing any prior information, and thus noninformative priors
should be used to compute the posterior probability for fair
comparisons.

Mixture normal distribution, n = 20
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Figure 6. The relationship between p-value and the posterior probability of the null over 1000 replications under one-sided hypothesis tests with outcomes generated
from Gamma, Beta, and mixture normal distributions, assuming Jeffreys’ prior for the mean and variance parameters of normal distributions under sample sizes of 20 and

50, respectively.
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Figure 7. The relationship between p-value and the posterior probability of the null over 1000 replications under one-sided hypothesis tests with normal outcomes; left
panel: assuming a fixed informative normal-inverse-gamma prior under increasing sample sizes of 1000, 10,000, and 100,000 (from top to bottom), right panel: assuming
a fixed sample size of 1000 with an increasing prior variance of 0.001, 0.01, and 1 (from top to bottom).

5. Discussion

Berger and Sellke (1987) studied the point null for two-sided
hypothesis tests, and noted discrepancies between the frequen-
tist test and the Bayesian test based on the posterior proba-
bility. The major difference between their work and ours lies
in the specification of the prior distribution. Berger and Sellke
(1987) assumed a point mass prior distribution at the point null
hypothesis, which violates the regularity condition of continuity
in Dudley and Haughton (2002), and thus leads to the discrep-
ancy between the posterior probability and p-value. An underly-
ing condition for our established equivalence is that the union of
the support of the parameter under the null and the alternative

is the natural whole space of the parameter support, for example,
the natural whole space for a normal mean parameter is the
real line, that for a probability parameter is (0, 1), and that for
a variance parameter is the positive-half real line (0, 00).
Casella and Berger (1987) provided theoretical results
attempting to reconcile the p-value and Bayesian posterior
probability in one-sided hypothesis testing problems. Especially,
they showed that for certain distributional families the infimum
of the Bayesian posterior probability can be reconciled with
p-value. Our established equivalence between the p-value and
Bayesian posterior probability for normal endpoints can be
regarded as more in-depth corroboration of their theoretical



results. Furthermore, we demonstrate a similar equivalence
relationship for binary endpoints, which was not discussed in
Casella and Berger (1987). More importantly, for two-sided
hypothesis tests, we establish the notion of the “two-sided
posterior probability” by recasting the problem as a combination
of two one-sided hypotheses along the opposite directions,
which reconnects with the two-sided p-value.
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