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ABSTRACT
Chest computed tomography (CT) scanning is one of the most
important technologies for COVID-19 diagnosis and disease moni-
toring, particularly for early detection of coronavirus. Recent ad-
vancements in computer vision motivate more concerted efforts in
developing AI-driven diagnostic tools to accommodate the enor-
mous demands for the COVID-19 diagnostic tests globally. To help
alleviate burdens on medical systems, we develop a lesion-attention
deep neural network (LA-DNN) to predict COVID-19 positive or
negative with a richly annotated chest CT image dataset. Based on
the textual radiological report accompanied with each CT image,
we extract two types of important information for the annotations:
One is the indicator of a positive or negative case of COVID-19,
and the other is the description of five lesions on the CT images
associated with the positive cases. The proposed data-efficient LA-
DNN model focuses on the primary task of binary classification for
COVID-19 diagnosis, while an auxiliary multi-label learning task is
implemented simultaneously to draw the model’s attention to the
five lesions associated with COVID-19. The joint task learning pro-
cess makes it a highly sample-efficient deep neural network that can
learn COVID-19 radiology featuresmore effectivelywith limited but
high-quality, rich-information samples. The experimental results
show that the area under the curve (AUC) and sensitivity (recall),
precision, and accuracy for COVID-19 diagnosis are 94.0%, 88.8%,
87.9%, and 88.6% respectively, which reach the clinical standards for
practical use. A free online system is currently alive for fast diag-
nosis using CT images at the website https://www.covidct.cn/, and
all codes and datasets are freely accessible at our github address.
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1 BACKGROUND
The novel coronavirus disease 2019 (COVID-19) is undergoing an
unprecedented global outbreak. On March 11, 2020, COVID-19
was declared as an international public health emergency by the
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World Health Organization (WHO). By May 28, 2020, more than
200 countries or territories have been affected by COVID-19 with
a total of more than 5.8 million confirmed cases and over 357,000
deaths. Both the numbers of confirmed cases and deaths continue
climbing up quickly worldwide.

The fast increasing numbers of COVID-19 cases and deaths have
caused overburdens onmany localmedical systems across theworld.
Currently, the reverse-transcription polymerase chain reaction (RT-
PCR) test is the standard method for detecting the coronavirus in
COVID-19 patients. However, the laboratory RT-PCR test usually
takes a rather long time (in days) to deliver the final result. To
shorten the time of diagnosis, the real time RT-PCR test is recom-
mended which can deliver a reliable diagnosis result much faster
(in 6–8 hours). Such tests need a collection of a sample with a swab
that goes deep in a person’s nose or throat, i.e., parts of the body
where the coronavirus gathers. However, if the swabbed areas do
not have coronavirus accumulated, the tests may fail to identify
a COVID-19 patient correctly. Many countries are experiencing
a backlog of test results due to a lack of diagnostic kits at their
medical facilities, and the test results may even take longer time
than anticipated due to the increasing demands for testing globally.
Not only are these tests insufficient to meet the urgent and vast
demands in many countries (particularly those with poor medical
infrastructures), but they are also inefficient as the time lag of test
reporting may cause treatment delay, especially for patients with
critical conditions. Moreover, the sensitivity of the current RT-PCR
testing kits is not high; that is, a large number of COVID-19 patients
cannot be identified accurately after their first tests due to false
negatives. As a result, it usually requires several tests to make a
final confirmation. Hence, patients may not receive appropriate
treatment and necessary quarantine during the RT-PCR testing
period. On the other hand, chest CT scan is another critical tool
for COVID-19 diagnosis and disease monitoring, particularly for
early detection when the symptoms are yet onset. After entering
the body, coronavirus often first attacks the lung and thus certain
lesions would manifest before a swab can collect virus in the nose
or throat. According to many existing studies [1, 3], CT scanning
serves as a important and necessary supplement for the RT-PCR
test and sometimes can even outperform the laboratory test for
COVID-19 diagnosis. In contrast to the RT-PCR test, the chest CT
scans are common and the corresponding diagnostic results can be
obtained in a much faster way.

To improve the efficiency of the CT-based diagnosis, automatic di-
agnostic systems have been developed with AI technologies by read-
ing patients’ chest CT images as inputs and then output the diagno-
sis results [6, 9, 11, 13]. These AI-drivenmethods have demonstrated
very promising performances on COVID-19 prediction. However,
most of the existing work do not share the training data publicly,
while He et al. [6] constructed the first openly accessible COVID-
19 chest CT dataset by extracting the CT images from over 760
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(Top) Representative chest CT im-

ages with various radiographic ab-

normalities: bilateral diffuse consoli-

dation with air bronchograms.

(Middle) Example images from a

60 years old female patient with

clinical and CT findings suggestive

of COVID-19 infection, but with re-

peated negative RT-PCR analysis.

Axial (A) and coronal (B) CT images

show typical bilateral subpleural ar-

eas of ground glass opacities. The

patient was considered to be prob-

ably COVID-19 positive and quar-

antined. Note incidental finding of

moderate thoracic dextroscoliosis.

(Bottom) The progress of CT findings in a patient with COVID-19. On

the tenth day of admission, a follow-up chest CT scan showed an

increase of extent of GGO with crazy paving appearance.

Figure 1: Illustration of the multi-label chest CT images col-
lected from online papers. All of them have been confirmed
asCOVID-19 positive.Wehighlight the six labelswith differ-
ent color: COVID-19 in red, Ground glass opacities (GGO) in
blue, Consolidation (Csld) in brown, Crazy paving appear-
ance (CrPa) in violet, Air bronchograms (AirBr) in orange,
and Interlobular septal thickening (InSepThi) in magenta.
Taking the CT scans of the second patient (Middle) as an
example, these chest CT images have been annotated with
three labels: COVID-19, GGO, and InSepThi.

preprints in medRxiv and bioRxiv. This publicly available dataset
contains 746 samples, among which 345 of them are COVID-19
positive and the rest 401 are negative1. We keep expanding the
dataset by continuously collecting new samples appeared in the
latest publications on COVID-19.

Figure 1 shows the CT images in the dataset annotated with
professional textual analysis, accompanied with the radiological
reports in the right side. The text reports usually narrate the results
on whether the patients are COVID-19 positive or not. In addi-
tion to the flag of COVID-19, the text also contains information on
descriptions of lesions of COVID-19 patients. Based on our compre-
hensive statistical analysis over the entire text annotations, there
are five different lesions associated with COVID-19, including the
Ground glass opacity (GGO), Consolidation (Csld), Crazy paving
appearance (CrPa), Air bronchograms (AirBr), and Interlobular sep-
tal thickening (InSepThi). Figure 1 shows that each of the confirmed
COVID-19 cases is attached with one up to five lesion labels. Our
experiments corroborate that the auxiliary information on these le-
sions is extremely valuable for COVID-19 diagnosis and can greatly
improve the diagnostic accuracy. However, the pioneering work [6]
only focused on the COVID-19 diagnosis by conducting a binary
classification task on predicting the flag of COVID-19, but ignored
the significant amount of information on the common lesions which
are distinctive from other types of pneumonia.

1The original dataset [6] has 349/397 positive/negative samples, while the authors
assigned 4 negative samples with positive labels by mistake.

We develop a highly accurate COVID-19 diagnosis system based
on the chest CT images as well as the corresponding rich annota-
tions on the five lesions. Our model adopts a double-task learning
process which contains a primary binary classification task on the
flag of COVID-19 and an auxiliary multi-label attention learning
task on the five lesions. Both tasks are trained synchronously, while
it shows that the auxiliary task promotes the primary task to focus
its attention on the lesion areas and, as a result, the diagnostic accu-
racy of COVID-19 is improved above the level of the state-of-the-art
method. Due to the incorporation of the attention mechanism on
the five lesions, we refer to our new model as the lesion-attention
deep neural network (LA-DNN).

Experimental results demonstrate that our LA-DNN model can
achieve great improvements by using the textual information. The
area under the curve (AUC), recall (sensitivity), F1 score, and ac-
curacy for predicting the diagnosis of COVID-19 are 94.0%, 88.8%,
87.9%, and 88.6%, respectively. These results improve drastically
beyond the existing work and reach the clinical standards for
COVID-19 diagnosis [3, 8]. Therefore, our system can be deployed
for practical use to alleviate the enormous burdens of COVID-19
diagnostic tests [3]. The annotated lesion label file and the imple-
mentation codes in Python can all be freely accessed at https://
github.com/xiaoxuegao499/LA-DNN-for-COVID-19-diagnosis. An
online system has been developed and is openly available for fast
COVID-19 diagnosis using chest CT images at the website https:
//www.covidct.cn/. Our online system also welcomes medical staff
to upload new patients’ CT image data to validate the diagnostic
results, as well as keeping the system routinely updated with the
data shared publicly.

2 METHODOLOGY
2.1 Motivation and model
There has been an increasing amount of work on developing an AI-
based COVID-19 diagnostic system using patients’ chest CT scans
[11]. Unfortunately, most of the data used in the deep learning
models are not publicly available, which makes the existing models
and results difficult to verify and reproduce. He et al. [6] published
the first open-access COVID-19 chest CT scans dataset based on
the CT images appeared in online preprints of research work on
COVID-19. In a supervised learning process, classification based on
deep learning models typically requires a relatively large number
of annotated samples to train the model for accurate prediction.
However, the current publicly available dataset [6] only contains
746 public chest CT images. The shortage of labeled samples and the
urgency for the development of automated COVID-19 diagnostic
tools motivate us to derive a sample-efficient deep model that can
integrate all sources of information for optimal decision making.

Through careful studies on the preprints associated with the
patients’ chest CT scans, we can extract valuable textual annota-
tions of these CT scans. One is the flag of COVID-19, and the other
is the radiological reports on five potential lesions in the lung. In
the pioneering work by He et al. [6], they trained a binary classi-
fication model based on the COVID-19 flag only while ignoring
all the lesion information which requires further annotations. To
improve the performance of diagnosis, we propose to integrate the
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Figure 2: The architecture of the proposed lesion-attention
deep neural networks with a primary task of binary classi-
fication and an auxiliary task of multi-label learning of five
lesions.

information on the lesion descriptions into the classification of the
flag of COVID-19.

Our goal is to make accurate classification of the COVID-19
positive or negative directly using the chest CT images. However,
different from the work of He et al. [6] which focused on making a
complex knowledge transfer, we aim to fully exploiting the richly
annotated textual information in the data. After annotating the
five-category lesions on the COVID-19 positive images, we propose
an auxiliary multi-label learning model based on the summarized
five different lesion labels, in addition to the primary objective of
the binary classification for COVID-19. The auxiliary task applies
multi-label learning over the five lesions annotated based on the
corresponding radiological reports: Ground glass opacities (GGO),
Consolidation (Csld), Crazy paving appearance (CrPa), Air bron-
chograms (AirBr), and Interlobular septal thickening (InSepThi),
as shown in Figure 2. The primary and auxiliary tasks are trained
synchronously in our LA-DNN model, so that the unknown pa-
rameters can be learned much more effectively than those by only
training the primary task for binary classification. The auxiliary
multi-label learning task promotes the fine-grained information on
the radiology-revealed lesions to be integrated into the primary
task, which makes the primary task pay more attention to the lesion
areas rather than other uninteresting areas when making a final
decision. This lesion-attention mechanism drastically improves the
diagnostic accuracy up to the level of clinical standards by medical
experts.

2.2 Implementation of LA-DNN
Figure 2 shows the architecture of the proposed LA-DNN model.
Using the ImageNet, we first pre-train the backbone networks,
and then via the idea of transfer learning, a pre-trained backbone
network takes the patient’s chest CT images as inputs. Seven well-
known deep neural networks are explored one at a time to be used
as the backbone networks in the experiments, including VGG-16
[10], ResNet-18 [5], ResNet-50 [5], DenseNet-121 [7], DenseNet-169
[7], EfficientNet-b0 [12], and EfficientNet-b1 [12]. The output of
the last layer of the backbone networks is carried forward to two
branches. One is used to predict whether a patient is COVID-19
positive or not, which is the primary task. Simultaneously, the other
branch aims to make a multi-label prediction on the five lesions.
The prediction errors from both the primary binary task and the
auxiliary multi-label task are fed back to fine-tune the backbone
network.
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Figure 3: Descriptions of COVID-19 positive and negative
samples: (a) Histogram of the numbers of lesions in the
COVID-19 positive set; (b) Lesion concordance matrix; and
(c) Composition of the COVID-19 negative samples.

2.3 COVID-19 chest CT scans
We train the proposed LA-DNN model on the dataset published
by He et al. [6] in conjunction with our newly collected dataset.
This original dataset contains 345 samples of COVID-19 positive
and 401 COVID-19 negative CT scans, which are collected from
760 research preprints related to COVID-19 from medRxiv and
bioRxiv, posted from January 19th to March 25th 2020. We keep
expanding the dataset of chest CT images by further collecting 219
new positive samples from 57 COVID-19 confirmed patients and
259 new negative samples from 164 non-COVID-19 patients from
the newly appeared publications up to May 21th. We denote the
original dataset with 746 samples as D0, and denote the dataset
with newly collected 483 samples as D1. The combined dataset
D0 +D1 contains a total of 564 (269 patients) positive samples and
660 (339 patients) negative samples. Table 1 illustrates the details
of data splitting.

The negative samples of the combined dataset include the CT
scans of normal individuals as well as patients with other types of
diseases, e.g., lung cancer or other types of pneumonia. The COVID-
19 positive CT images are further annotated with the corresponding
radiological reports, which are the textual clinical conclusions for
the patients. The radiological information is proven to be extremely
valuable for the COVID-19 diagnosis. From the textual annotations,
we extract two types of important information:
• The first type of information is on whether patients are diag-
nosed positive or negative for COVID-19, which corresponds
to the binary classification labels;
• The second significant but often ignored information is
a common description of the five lesions associated with
COVID-19. Each CT image of a confirmed COVID-19 patient
has been identified with one up to five lesions in the lung as
shown in Figure 1.

Figure 3 shows the visualization of the positive and negative
samples in our dataset. Specifically, Figure 3 (a) and (b) exhibit
the distribution of the five lesion labels and their concordance
matrix (i.e., the number of times two lesions appeared in the same
sample). From the histogram of the numbers of labels for all positive



Table 1: Stratified by COVID-19 positive or negative, the number of samples (CT images) and the number of patients (in
parentheses) in each dataset based on the patient ratios of data splitting 60%, 15%, 25% for training, validation, and testing sets.

COVID-19 COVID-19 + COVID-19 −
Datasets + − Training/Validation/Testing Training/Validation/Testing
D0 345(212) 401(175) 187(126)/60(32)/98(54) 238(109)/58(24)/105(42)
D1 219(57) 259(164) – –
D0+D1 564(269) 660(339) 340(169)/81(34)/143(66) 398(215)/97(44)/165(80)

samples, we find that most of the positive samples have either
one or two lesion labels. The paired-label concordance matrix of
the 212 COVID-19 positive samples which have two lesion labels
demonstrates that GGO and consolidation often appear together in
the CT images, as shown in Figure 3 (b). Moreover, GGO are the
lesion that has the most frequent interactions with all the other four
lesions. Figure 3 (c) illustrates the composition of the COVID-19
negative samples. The negative sample set contains lung cancer,
lung nodules (LNodules), pulmonary viral pneumonia (PVP) which
is non-COVID-19, and normal samples. The lung cancer covers
many types of common cancers including lung adenocarcinomas
(LungAden), lung squamous cell carcinoma (LungSCC), and others.

3 RESULTS
3.1 Overall performance
In our experiments, we split both the original dataset D0 and the
combined dataset D0 +D1 respectively into a training set, a vali-
dation set, and a testing set by patients’ IDs with the same ratios of
60%, 15%, 25% as those in [6]. One patient may possibly has multiple
CT images in the dataset, while all CT images belonging to the same
patient would be allocated together to the same set. We need to
ensure that the COVID-19 patients in the training, validation, and
testing sets cover the one to five lesion labels based on the new
annotations using the radiological reports.

Given the limited training samples, we first take a classical neural
network that has been well pre-trained on a large dataset ImageNet
[4] as a feature extraction function, and then fine-tune the weights
with the COVID-19 chest CT dataset. We select seven popular
architectures as the backbone networks, including VGG-16 [10],
ResNet-18 [5], ResNet-50 [5], DenseNet-121 [7], DenseNet-169 [7],
EfficientNet-b0 [12], and EfficientNet-b1 [12].

We take the pioneering work of He et al. [6] as the baseline
for comparison. We train the baseline and the proposed LA-DNN
model on the original dataset D0 as well as the combined dataset
D0 +D1 with the same data splitting strategies. Tables 2 summa-
rizes the overall performances of the baseline and our LA-DNN
model with different backbone networks. Clearly, the proposed
LA-DNN model significantly improves the prediction of COVID-19
positive or negative on all of the four metrics with both datasets.
Experimental results demonstrate that the auxiliary task learning
process by using the five lesions from the textual information can
greatly improve the primary task for binary classification of COVID-
19. Moreover, the additional dataset D1 can further improve the
model’s prediction accuracy. Among all the methods considered,
the best performance is delivered by the LA-DNN using the VGG-16
as the backbone net with the combined dataset. The correspond-
ing AUC, recall (sensitivity), precision, and accuracy for predicting
the diagnosis of COVID-19 patients are 94.0%, 88.8%, 87.9%, and

Table 2: Comparisons of sensitivity, AUC, F1 score, and accu-
racy (%) between the baselinemodel and our LA-DNNmodel
on the original datasetD0 and the combined datasetD0+D1.

D0 D0 + D1Metrics Backbone Net Baseline LA-DNN Baseline LA-DNN
VGG-16 75.5 84.7 85.3 88.8
ResNet-18 71.4 80.6 75.5 82.5
ResNet-50 67.3 78.6 82.5 87.4

DenseNet-121 77.6 79.6 86.0 86.0
DenseNet-169 77.6 85.7 85.3 87.4
EfficientNet-b0 68.4 87.8 86.7 88.1

Sensitivity

EfficientNet-b1 70.4 77.6 76.2 86.0
VGG-16 81.3 89.8 92.7 94.0
ResNet-18 83.0 88.2 93.1 93.1
ResNet-50 87.6 90.5 91.6 93.8

DenseNet-121 86.0 88.7 92.8 93.2
DenseNet-169 88.2 91.2 93.1 93.3
EfficientNet-b0 87.7 90.0 92.0 92.4

AUC

EfficientNet-b1 84.1 87.6 91.6 94.7
VGG-16 74.8 83.0 84.1 87.9
ResNet-18 74.0 79.8 80.6 84.6
ResNet-50 75.9 83.2 82.8 86.8

DenseNet-121 80.0 81.2 84.2 85.4
DenseNet-169 81.3 84.8 86.2 86.8
EfficientNet-b0 74.9 83.9 85.2 86.6

F1 score

EfficientNet-b1 73.4 80.0 79.8 87.9
VGG-16 75.4 83.2 85.1 88.6
ResNet-18 75.9 80.2 83.1 86.0
ResNet-50 79.3 84.7 84.1 87.7

DenseNet-121 81.3 82.3 85.1 86.4
DenseNet-169 82.8 85.2 87.3 87.7
EfficientNet-b0 77.8 83.7 86.0 87.3

Accuracy

EfficientNet-b1 75.4 81.2 82.1 89.0

88.6%, which reach the clinical standards for COVID-19 diagnosis
in practice [3, 8].

3.2 Curves for assessment
To further assess the proposed LA-DNNmodel, a receiver operating
characteristic (ROC) curve and a precision-recall curve are exploited
to evaluate performances under different threshold values when
interpreting probabilistic predictions. Figure 4 demonstrates the
results on the dataset D0. Figure 4 (a) exhibits the ROC curves of
the baseline and our LA-DNN model by selecting the backbone
network as VGG-16 [10] and DenseNet-169 [7] respectively. The
results show that our model can predict the COVID-19 based on
patients’ chest CT scans with an area under the ROC curve (AUC) of
0.912 (when choosing DenseNet-169 as the backbone net) and 0.898
(when choosing VGG-16 as the backbone net), which demonstrate
significant improvements from the corresponding AUC values of
0.882 and 0.813 from the baseline. Figure 4 (b) shows the precision-
recall curves of the baseline and our LA-DNNmodel when choosing
the VGG-16 [10] and DenseNet-169 [7] as the backbone networks



(a) ROC curves of the baseline and LA-DNN on D0 (b) Precision-recall curves of the baseline and LA-DNN on D0

(c) ROC curves of the baseline and LA-DNN on D0 + D1 (d) Precision-recall curves of the baseline and LA-DNN on D0 + D1

Figure 4: Performances of our proposed LA-DNN model for COVID-19 diagnosis in comparison with the baseline on D0 and
D0 +D1.

respectively. The precision-recall curve plots the precision and the
recall under different threshold values. The ideal model with a
perfect prediction corresponds to the point with the coordinates of
(1,1). As shown in Figure 4 (b), the curves of our LA-DNN models
using the backbone nets VGG-16 and DenseNet-169 bend towards
the point (1,1) much closer than those of the baseline.

Figure 4 (c) and (d) are the results on the dataset D0 +D1. The
best AUC of the ROC curve is 0.947 when choosing EfficientNet-b1
as the backbone net as shown in Figure 4 (c). Figure 4 (d) shows
that the precision-recall curves of LA-DNN are much closer to (1,
1) than the baseline.



Figure 5: Grad-CAM++ visualization for the baseline and our LA-DNNmodel with the backbone net of DenseNet-169. The first
column represents the original CT scans; Columns 2 and 3 are the class activation maps of the baseline [6]; Columns 4 and 5
are the class activation maps of our LA-DNNmodel. The color from deep red to dark blue corresponds to the activation values
from large to small.
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Figure 6: Plots of the pairwise relationships among the five lesions on making the final binary classification of COVID-19 or
non-COVID-19.

4 ANALYSIS
4.1 Lesion attention map
To gain more insights into our LA-DNN model, we can visualize
the lesion attention map (i.e., the class activation map) concerning
the five lesion labels with a convolutional neural network (CNN)
visualization tool, Grad-CAM++ [2]. Grad-CAM++ can localize the
lesions in a CT image even if there are multiple occurrences of
one lesion. Subsequently, Grad-CAM++ renders a class activation
map, which illustrates the importance of each pixel in a feature
map towards the final classification result. The attention heat-map
exhibits the pixel-wise weighting of the gradients back-propagated
from the output with respect to a particular spatial position in the
final convolutional feature map of the CNN. In other words, the
class activation map is a saliency map indicating which areas the
model has paid attention to.

Based on the selected 10 chest CT image samples, Figure 5 shows
the class-specific attention maps for the baseline and our LA-DNN
model with both choosing DenseNet-169 as the backbone network.
The first column represents the original COVID-19 CT images, and
the lesion areas of these images are bounded with green boxes.
Columns (b) and (c) in Figure 5 show the results of the baseline. In
particular, column (b) is the class-specific attention map learned by
the baseline. In column (c), the class attention map of the baseline
is superimposed on the original images to show the activated areas.
The color of the maps from deep red to dark blue corresponds to the
values of pixels’ class-specific saliency from large to small. Columns
(d) and (e) exhibit the corresponding results of the proposed LA-
DNN model. The class-specific saliency map is a visual explanation
of the lesions of COVID-19 CT scans that are predicted by the
network. By comparing the results between the baseline and our



model, we observe that the proposed LA-DNN model can capture
almost all the salient areas for the COVID-19 prediction.

4.2 Visualization of the primary vs. auxiliary
tasks

During the testing, the primary task of our LA-DNN model outputs
a binary label on COVID-19 diagnosis, and meanwhile the auxil-
iary task outputs a five-dimensional vector to predict the labels
of five lesions. Figure 6 shows the numeric components of these
five-dimensional vectors paired with the COVID-19 classification
labels. The paired plot creates a matrix for the five lesions of GGO,
Csld, CrPa, AirBr and InSepThi. The diagonal figures exhibit the
distributions of values of each lesion from the auxiliary task in
distinguishing COVID-19 positive or negative. The off-diagonal
axes display the distribution of each paired lesions over the two
categories: COVID-19 or non-COVID-19. Not only are the GGO and
Csld lesions common in COVID-19 but they also frequently appear
in non-COVID-19 cases (i.e., other types of pneumonia). As a result,
both lesions are less powerful in helping to triage COVID-19 or
non-COVID-19. In summary, the paired plots in Figure 6 corrobo-
rate that the three lesions of CrPa, AirBr, and InSepThi are more
important factors than GGO and Csld in distinguishing COVID-19
from non-COVID-19.

5 CONCLUSION
To accommodate the urgent and enormous demands for COVID-19
testing, we develop a multi-lesion attention deep neural network
for automating the COVID-19 diagnosis using richly annotated
chest CT image data. The samples of our dataset are collected from
over 760 preprinted papers as well as from newly added images. To
overcome the limitation of the sample size, we extract two types
of supervised information from the radiological text: One is the
flag of COVID-19, and the other is the multiple labels for the five
lesions of COVID-19. The rich annotations allow us to propose
a sample-efficient deep neural network to learn valuable features
with a limited number of samples. The proposed highly data-driven
deep model contains a primary task on the binary classification for
COVID-19 and an auxiliary multi-label attention task which forces
the model to pay close attention to the five lesions of COVID-19
during the training process. The experimental results demonstrate
that the proposed LA-DNNmodel is capable of achieving the current
clinical standards for diagnostic testing and thus our system should
be broadly deployed for practical use. Currently, an online version
of the AI-driven COVID-19 diagnostic system is set up for validation
and continual collection of the data. All our codes and annotated
data are publicly available to help other researchers to further
develop more accurate systems to defeat the COVID-19.
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