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Summary. Simon’s two-stage design is one of the most commonly used methods in phase II clinical trials with binary
endpoints. The design tests the null hypothesis that the response rate is less than an uninteresting level, versus the alternative
hypothesis that the response rate is greater than a desirable target level. From a Bayesian perspective, we compute the
posterior probabilities of the null and alternative hypotheses given that a promising result is declared in Simon’s design. Our
study reveals that because the frequentist hypothesis testing framework places its focus on the null hypothesis, a potentially
efficacious treatment identified by rejecting the null under Simon’s design could have only less than 10% posterior probability
of attaining the desirable target level. Due to the indifference region between the null and alternative, rejecting the null does
not necessarily mean that the drug achieves the desirable response level. To clarify such ambiguity, we propose a Bayesian
enhancement two-stage (BET) design, which guarantees a high posterior probability of the response rate reaching the target
level, while allowing for early termination and sample size saving in case that the drug’s response rate is smaller than the
clinically uninteresting level. Moreover, the BET design can be naturally adapted to accommodate survival endpoints. We
conduct extensive simulation studies to examine the empirical performance of our design and present two trial examples as
applications.
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1. Introduction
Recently, a multicenter, multinational, double-blind, random-
ized phase III clinical trial comparing the efficacy of erlotinib
plus the standard drug (sorafenib) versus the standard drug
alone in patients with advanced hepatocellular carcinoma
(Zhu et al., 2015) concluded with a failure. A total of 720
patients were randomized and the primary endpoint was the
overall survival time. At the end of the study, the overall sur-
vival, the progression-free survival, and the overall response
rate all failed to achieve statistically significant treatment dif-
ferences. Such a large-scale phase III trial was preceded by a
single-arm phase II study on erlotinib (Philip et al., 2005),
where the drug was declared as promising for further studies.
The primary endpoint of this phase II trial was binary, which
equaled 1 if the patient was progression-free at 24 weeks and
0 otherwise. The phase II study adopted Simon’s two-stage
design, with a specified uninteresting null response rate of 5%
and a target response rate of 20%.

The failures of large-scale phase III studies with promis-
ing drugs identified in phase II trials are not uncommon. In
fact, studies revealed that approximately 45% of all drugs
that entered the phase III programs ended with statistically
insignificant results, and in oncology, this percentage is as
high as 59% (Kola and Landis, 2004). A more recent report
showed that 62% of the 235 phase III randomized cancer tri-
als published in 10 journals between 2005 and 2009 failed
to achieve significant results (Gan et al., 2012). Considering

the substantial amount of time and resources consumed when
conducting a phase III study, such a failure percentage is con-
sidered as unacceptably high. In reality, a large proportion of
phase II “promising” drugs unfortunately fail in phase III
studies, which casts doubt on the reliability of existing phase
II methods. There are studies that reflected on the underlying
reasons for such a high failure rate and called for an improve-
ment in the efficiency of phase II trial designs (Retzios, 2009).
It is critical to obtain more adequate information and make
a more sound go/no-go decision at the end of phase II trials,
which would improve the success rate in phase III trials and
achieve substantial cost saving (Yin, 2012).

Single-arm trials are often preferred and utilized in phase
II studies due to the low sample size requirement and the
adaptive feature of futility stopping. Simon (1989) proposed
a hypothesis testing framework that fulfills the requirements
on the type I and type II error rates. Green and Dahlberg
(1992) developed designs when the attained sample size varies
from the originally planned one. Ensign et al. (1994) extended
Simon’s two-stage design to the three-stage setting. Shuster
(2002) proposed a two-stage design that allows the effi-
cacy stopping rule and aimed at minimizing the maximum
expected sample size over a group of response rates. Similarly,
Chen and Shan (2008) developed optimal and minimax three-
stage designs with efficacy stopping rules. Koyama and Chen
(2008) studied how to draw proper inference under Simon’s
two-stage design. Mander and Thompson (2010) considered
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optimizing the expected sample size in Simon’s design based
on the alternative hypothesis when the efficacy stopping rule
is allowed. Liu et al. (2010) extended Simon’s design based on
beta–binomial distributions and derived its asymptotic prop-
erties. Baey and Le Deley (2011) studied the effects of the
misspecification of the prespecified response rates in Simon’s
design. Shan et al. (2016) proposed a flexible modification
of Simon’s design by allowing the second-stage sample size
to depend on the first-stage response rate, which leads to a
smaller expected sample size compared with Simon’s optimal
design. Along the line, phase II trial designs have also been
developed extensively under the Bayesian paradigm. Thall
and Simon (1994) proposed a Bayesian single-arm design
for phase II trials that continuously monitors the binary
outcomes and makes adaptive decisions based on posterior
probabilities, and Lee and Liu (2008) extended the design
using predictive probabilities of future possible outcomes
at the end of the trial. Tan and Machin (2002) proposed
Bayesian single and dual threshold designs, and Sambucini
(2010) developed a two-stage Bayesian predictive method
which adjusts the sample size based on the observed data
in the first stage.

For single-arm phase II trials, the two-stage design devel-
oped by Simon (1989) is the most commonly used approach,
which has been adopted by over 20% of all phase II stud-
ies (Lee and Feng, 2005) and cited over 2000 times. From
a Bayesian perspective, we study the posterior probabilities
of the null and alternative hypotheses given that a promis-
ing result is declared in Simon’s two-stage design. Our study
reveals that in some cases, a potentially efficacious treatment
identified by Simon’s design could have only less than 10%
posterior probability of actually reaching the desirable target
level. We consider such a low probability of achieving the min-
imum efficacy level as a potential culprit for the high failure
rate among those seemingly promising drugs that are carried
forward from single-arm phase II trials into phase III studies.
To address this issue, we propose the Bayesian enhancement
two-stage (BET) design, where both the first and the sec-
ond stages base decisions on the posterior probabilities: the
first stage compares the drug’s response rate with a clini-
cally uninteresting rate for futility stopping, and the second
stage compares it with the desirable target level for declar-
ing efficacy. Compared with Simon’s design, the BET design
guarantees a high posterior probability of the response rate
reaching the target level, while allowing for trial early termi-
nation and sample size saving in case the drug’s response rate
is lower than the clinically uninteresting level.

The article is organized as follows. In Section 2, we present
an analysis based on the posterior probabilities under Simon’s
two-stage design, and propose the BET designs for binary and
survival endpoints. Section 3 describes the simulation studies
of the BET designs and Section 4 presents two trial examples.
Finally, Section 5 concludes the article with some remarks.

2. BET Design

2.1. Simon’s Two-Stage Design

Simon (1989) proposed a single-arm two-stage design based
on the hypotheses H0 : p ≤ p0 versus H1 : p ≥ p1, where p0

denotes a clinically uninteresting response rate, p1 represents

the desirable target response rate, and the gap between p0

and p1 is called the indifference region. Simon’s design is
characterized by four parameters (n1, n, r1, r). Let y1 and y2

denote the number of responses observed in the first and sec-
ond stage, respectively. The first stage sample size is n1, and
if y1 ≥ r1, the trial would proceed into the second stage; oth-
erwise, the trial is terminated early for futility. In the second
stage, an additional sample size of n2 = n − n1 is enrolled, and
if the total number of responses y1 + y2 reaches r, the null
hypothesis H0 is rejected and the drug is declared as promis-
ing; otherwise, the drug is considered as nonpromising. It is
worth emphasizing that the notations r1 and r here differ from
those in the original article by Simon (1989), that is, in our
article, the drug is declared as futile if y1 < r1, whereas using
the same notation in Simon (1989), the trial stops for futility
if y1 ≤ r1. Subtracting one from the threshold values in our
design would result in the same interpretation as in Simon’s
original design. The design parameters are calibrated under
the constraints on type I and type II error rates, denoted as α

and β, respectively. Among all the admissible design parame-
ters that satisfy such constraints, we may choose the one with
the smallest expected sample size when p = p0 (the “optimal”
design), or the one with the smallest total sample size (the
“minimax” design).

It should be cautioned that in Simon’s two-stage design
rejecting the null hypothesis H0 does not imply accepting the
alternative H1 due to the indifference region between p0 and
p1. In fact, Simon’s design only warrants good confidence in
concluding that the drug’s response rate is larger than p0, the
clinically uninteresting rate. Often, the data corresponding to
the design parameters in Simon’s two-stage design often fall
in the indifference region (close to the middle of p0 and p1),
that is, the data would support rejection of H0 as well as
rejection of H1. The frequentist hypothesis testing framework
only examines whether the data would be rare under the null,
but does not consider whether the data would also be rare
under the alternative.

A more straightforward way to understand such an inher-
ent problem is to look at the posterior probabilities of the
null and alternative hypotheses when the response number
equals r1 and r at the end of the first stage and the final
stage. Table 1 presents Simon’s optimal designs under various
common specifications of (p0, p1) and constraints of (α, β).
Assuming a uniform prior on p, that is, p ∼ Beta(1, 1), the
posterior distribution of p also follows a beta distribution due
to the conjugacy property between a beta prior and a bino-
mial likelihood. As a result, it is easy to compute the posterior
probabilities of H0 and H1. For example, Pr(H0|r1, n1) denotes
the posterior probability of p ≤ p0 when the response num-
ber among n1 patients reaches r1, the minimum required level
for continuation at the end of the first stage, and Pr(H1|r, n)
denotes that of p ≥ p1 when the total response number among
n patients is equal to r, the minimum required level for
declaring the drug promising at the end of the whole trial.
Because Simon’s optimal two-stage design is more focused on
p0, under the scenarios where the effectiveness of the drug is
declared, the posterior probability of H0 is close to or smaller
than α. However, when the drug is declared as promising
at the end of the second stage, or when the continuation
criterion is met at the end of the first stage, the posterior
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Table 1
Simon’s optimal two-stage designs under various specifications of (p0, p1) and (α, β), and the posterior probabilities of H0

and H1 when the response numbers reach the minimum required levels at the end of the first and second stages, respectively

p0 p1 α β n1 n r1 r Pr(H0|r1, n1) Pr(H1|r1, n1) Pr(H0|r, n) Pr(H1|r, n)

0.05 0.25 0.1 0.1 9 24 1 3 0.0861 0.2440 0.0341 0.0962
0.1 0.2 6 23 1 3 0.0444 0.4449 0.0298 0.1150
0.2 0.2 6 16 1 2 0.0444 0.4449 0.0503 0.1637

0.1 0.3 0.1 0.1 12 35 2 6 0.1339 0.2025 0.0628 0.0536
0.1 0.2 7 18 1 4 0.1869 0.2553 0.0352 0.2822
0.2 0.2 6 15 1 3 0.1497 0.3294 0.0684 0.2459

0.2 0.4 0.1 0.1 17 37 4 11 0.2836 0.0942 0.0623 0.1089
0.1 0.2 12 25 3 8 0.2527 0.1686 0.0592 0.2255
0.2 0.2 11 16 3 5 0.2054 0.2253 0.1057 0.2639

0.3 0.5 0.1 0.1 22 46 8 18 0.2291 0.1050 0.0831 0.0719
0.1 0.2 15 32 6 13 0.1753 0.2272 0.0884 0.1481
0.2 0.2 6 20 2 8 0.3529 0.2266 0.1477 0.1917

probability of H1 being true is also very small. It is evident
that the column showing Pr(H1|r, n) indicates that the pos-
terior probability of the response probability reaching the
target desired level is in fact very low, ranging from 5% to
28%. As a conclusion, rejection of H0 under Simon’s two-stage
design only indicates that the drug cannot be claimed to be
futile but still it cannot be claimed to be promising or clini-
cally meaningful, because the observed data often fall inside
the indifference region that shows little support to either
H0 or H1.

Alternatively, we can gain more insight by examining the
density curve of the posterior distribution. The upper panel
of Figure 1 displays the posterior distributions when the
response number reaches r at the final stage, under a range of
values of p0 and p1 (the distance between p0 and p1 becomes
smaller). It is clear that the modes of the posterior distri-
butions always fall halfway between p0 and p1 regardless of
how close p0 and p1 are. In other words, when Simon’s design
claims a drug to promising, the observed response rate in fact
falls in the middle of the indifference region, so that the col-
lected information does not support H0, while it does not
support H1 either.

2.2. BET Design for Binary Endpoint

To impose a more stringent efficacy evaluation in single-arm
phase II trials, we propose a Bayesian enhancement two-
stage (BET) design based on posterior probabilities of H0

and H1. In the first stage, n1 subjects are enrolled, and sup-
pose that we observe y1 responses, then y1|p ∼ Bin(n1, p),
where Bin(n, p) denotes the binomial distribution with a suc-
cess probability p. The response rate of the experimental drug
is assumed to follow a beta prior distribution, p ∼ Beta(a, b).
If there is little information on the efficacy of the experimen-
tal drug, we may take the uniform prior distribution for p

with a = b = 1. By the conjugacy property of the beta dis-
tribution, the posterior distribution of p at the end of the
first stage is Beta(a + y1, b + n1 − y1). Based on the poste-
rior distribution, we compute the posterior probability of the

experimental response rate being greater than p0 as

PoP1 ≡ Pr(p > p0|y1, n1) =
∫ 1

p0

pa+y1−1(1 − p)b+n1−y1−1

B(a + y1, b + n1 − y1)
dp,

where B(a, b) = �(a)�(b)/�(a + b) denotes the beta function
with parameters a and b.

At the end of the first stage, if PoP1 > π1, where π1 is a
prespecified cutoff for the posterior probability, the trial pro-
ceeds into the second stage; otherwise, the trial is terminated
for futility. In the second stage, additional n − n1 subjects
are enrolled and let y2 be the number of responses among
these subjects. The posterior distribution of p at the end of
the second stage is Beta(a + y1 + y2, b + n − y1 − y2), and the
posterior probability of the experimental response rate being
greater than p1 is

PoP2 ≡Pr(p>p1|y1+y2,n)=
∫ 1

p1

pa+y1+y2−1(1−p)b+n−y1−y2−1

B(a+y1+y2, b+n−y1−y2)
dp.

We claim the experimental drug promising if PoP2 > π2;
otherwise, we declare the drug nonpromising. Although the
sampling distribution of y = y1 + y2 is conditional on the
event y1 ≥ r1, such a condition regarding the response num-
ber and the stopping rule at the end of the first stage does
not affect the beta posterior distribution of p in the second
stage (Sambucini, 2008).

To determine the sample sizes and the minimum required
numbers of responses at the end of the first and second
stages, respectively, we define the following criteria based on
the lengths of the highest posterior density (HPD) intervals.
Given a response number y and the sample size n, an HPD
interval on the posterior distribution Beta(a + y, b + n − y)
can be obtained for p with a coverage probability of π,
and let lp(π|y, n) denote its length. The design parameters
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Figure 1. Comparison of posterior distributions when the
total response number reaches the minimum required level
over a range of specified (p0, p1) under (a) Simon’s optimal
two-stage designs and (b) Bayesian enhancement two-stage
designs.

(n1, n, r1, r) should satisfy

lp(π1|r1, n1) < �1, Pr(p > p0|r1, n1) > π1,

lp(π2|r, n) < �2, Pr(p > p1|r, n) > π2,

where �1 and �2 are the desirable lengths of the HPD intervals
at stage 1 and stage 2, respectively. The values of �1 and �2

can be determined with consideration of the sample size con-
straint. As the cost of falsely stopping for futility is smaller
than that of falsely continuing the trial with an inefficacious
drug into further phase III studies, we typically set π2 ≥ π1.
The first two inequalities are used for solving (n1, r1) and the
remaining two for (n, r). Under a given sample size n, the

minimum required number of responses is pinpointed first, as
the posterior probability is a monotonic function of r. The
length of the HPD interval is then computed based on n and
r. We enumerate the sample size (n1 or n) until the corre-
sponding minimum required number of responses (r1 or r) is
associated with an adequately narrow HPD interval.

The searching algorithm for the optimal parameters (n1, r1)
is described as follows.

(1) We start with n1 = nmin, the minimum sample size in the
first stage, and typically nmin = 1.

(2) Given n1 = i, find the minimum number of responses
y1 such that Pr(p > p0|y1, n1) > π1, and calculate the
corresponding HPD interval length lp(π1|y1, n1).

(3) If lp(π1|y1, n1) < �1, we stop the algorithm and set n1 =
i and r1 = y1; otherwise, we set n1 = i + 1 and repeat
step (2).

The algorithm for (n, r) can be developed along similar lines
by substituting �1 for �2, π1 for π2, and p0 for p1.

2.3. BET Design for Survival Endpoint

While it is difficult to develop the counterpart of Simon’s
two-stage design for survival endpoint, our BET design can
be naturally adapted to accommodate time-to-event data. We
denote T as the time of failure, and C as the time of censoring.
The observed event time is Y = min(T, C), with a censoring
indicator � = I(T ≤ C), where I(·) is the indicator function.

The survival time is assumed to follow a Weibull distribu-
tion, with a density function

f (t|k, λ) = k

λ
tk−1 exp

(
− tk

λ

)
, k > 0, λ > 0.

Let θ = (λ ln 2)1/k denote the median of the Weibull distri-
bution. We are interested in testing hypotheses on the median
survival time θ, H0 : θ ≤ θ0 versus H1 : θ ≥ θ1, where θ0 is the
maximum median survival time for a futile drug, and θ1 > θ0

is the minimum median survival time for an efficacious drug.
We specify a diffuse exponential prior distribution for k,

that is, k ∼ Exp(bk) with bk = 0.01, and a diffuse inverse
gamma prior distribution for λ, that is, λ ∼ IGamma(aλ, bλ)
with aλ = bλ = 0.01, whose density functions are denoted by
p(k) and p(λ), respectively. Let D = {(yi, �i), i = 1, . . . , n}
denote the observed data, where n is the cumulative sam-
ple size. The joint posterior distribution of k and λ is given
by

p(k, λ|D)=
(

k

λ

)∑n

i=1
�i

(
n∏

i=1

yi
�i(k−1)

)
exp

(
−

∑n

i=1
yi

k

λ

)
×p(k)p(λ).

Due to the conjugacy relationship between the inverse gamma
distribution and the Weibull likelihood function, the full
conditional distribution of λ also follows an inverse gamma
distribution,

λ|k, D ∼ IGamma

( n∑
i=1

�i + aλ,

n∑
i=1

yi
k + bλ

)
.
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We denote d = ∑n

i=1
�i and ȳ = ∑n

i=1
yk

i /n, and denote the
full conditional distribution of λ as p(λ|k, d, ȳ). The full con-
ditional distributions of k is given by

p(k|λ, D) ∝ k

∑n

i=1
�i

(
n∏

i=1

yi
�i(k−1)

)
exp

(
−

∑n

i=1
yi

k

λ
− kbk

)
.

To determine the stopping boundaries for the first and second
stages, we define the following criteria based on the lengths of
the HPD intervals. Let kHPD denote a prespecified value of k

for calculating the HPD interval. The length of the HPD inter-
val of θ given k = kHPD with a coverage probability of π1 is
lθ(π1|kHPD, d, ȳ) = (λU ln 2)1/kHPD − (λL ln 2)1/kHPD , where λL

and λU denote the lower and upper boundaries of the HPD
interval of λ based on p(λ|kHPD, d, ȳ), respectively. It is worth
emphasizing that kHPD is only used for the calculation of the
HPD interval and thus the sample size, whereas k is unknown
and needs to be estimated.

During the first stage, upon the observation of a failure
event, we check whether the HPD interval length satisfies

lθ(π1|kHPD, d1, m1) < �1, (2.1)

where �1 is the prespecified desirable length of the HPD inter-
val for the first stage, and d1 = ∑n1

i=1
�i is the cumulative

number of events. Moreover, m1 can be understood as the
minimum value of ȳ1 = ∑n1

i=1
yk

i /n1 that corresponds to the
posterior probability of θ > θ0 being no less than π1; that is,

Pr(θ > θ0|kHPD, d1, m1) = π1,

based on θ = (λ ln 2)1/kHPD and the conditional distribution
p(λ|kHPD, d1, ȳ1). If (2.1) is not satisfied, we extend the follow-
up time and continue to recruit more subjects. If (2.1) is
satisfied, the trial has acquired sufficient amount of infor-
mation for decision making: if the posterior probability of
θ > θ0 exceeds π1, that is, PoP1 ≡ Pr(θ > θ0|D1) > π1, where
D1 denotes the observed data in the first stage, the trial would
proceed into the second stage; otherwise, the trial would be
stopped early for futility.

In the second stage, we continue to recruit more subjects,
and upon the observation of a failure event, we check whether
the data are adequate for decision making based on the HPD
interval length,

lθ(π2|kHPD, d, m) < �2, (2.2)

where �2 is the prespecified desirable length of the HPD inter-
val for the second stage. Moreover, m can be understood as
the minimum value of ȳ that corresponds to the posterior
probability of θ > θ1 being no less than π2; that is,

Pr(θ > θ1|kHPD, d, m) = π2,

based on θ = (λ ln 2)1/kHPD and the conditional distribution
p(λ|kHPD, d, ȳ). If (2.2) is not satisfied, we extend the follow-
up time and recruit more subjects; otherwise, we terminate
the trial for a conclusion. As a final decision, we declare the

drug as promising if the posterior probability of θ > θ1 exceeds
π2, that is, PoP2 ≡ Pr(θ > θ1|D) > π2, and unpromising
otherwise.

Due to the complexity caused by censoring, instead of
prespecifying fixed sample sizes, we let the data determine
whether the trial should be stopped for decision making. The
HPD interval length serves as an indicator of the amount of
information that the trial has accumulated. Unlike the binary
data case, the BET design with survival endpoint does not
search for the minimum sample size that satisfies certain con-
straint on the posterior distribution, due to the uncertainty
caused by censoring. The BET design with survival endpoint
also consists of an interim and a final analysis. However,
the times when such analyses are performed cannot be pre-
fixed but determined by the accumulated data in the trial.
This allows the trial conduct to adapt flexibly in accord with
the censoring percentage: the higher the censoring percent-
age, the more samples required for delivering a conclusive
decision.

The motivation behind computing the HPD interval under
a prefixed value of k = kHPD instead of the actual HPD inter-
val from the data is to improve the stability and manageability
of the design characteristics. With a fixed k = kHPD, the HPD
interval length is less variable and has a decreasing relation-
ship with the accumulated sample size. Moreover, such a
method reduces the computational burden as there is no need
to conduct Markov Chain Monte Carlo every time a failure
event is observed, but only after the HPD interval length is
short enough. As the design parameters (�1, �2) need to be
calibrated based on the sample size constraints, the actual
value of kHPD is of minor importance; for example, we may
set kHPD = 1 as default.

3. Simulation Studies

We conduct extensive simulation studies to examine the per-
formance of the proposed BET design. We assess paired values
of (p0, p1) where p0 ranges from 0.05 to 0.3, and the effect size
(i.e., the difference between p1 and p0) takes a value of 0.2.
For each pair of (p0, p1), we calibrate the design parameters
(n1, n, r1, r) based on three sets of the desired HPD inter-
val length, (�1, �2) = (0.25, 0.2), (0.3, 0.22), and (0.35, 0.25).
We take a noninformative prior distribution p ∼ Beta(1, 1),
and set (π1, π2) = (0.8, 0.9). Table 2 shows the solutions of
(n1, n, r1, r) under different trial specifications. In addition,
we compute the posterior probability of H0 and H1 when
r1 responses are observed in stage 1, and when a total of
r responses are observed at the end of stage 2, respectively.
Clearly, at the end of stage 1, if the response number meets the
continuation criterion, the BET design ensures that the poste-
rior probability of H0 being true is smaller than 1 − π1 = 0.2.
If the drug is declared as promising in stage 2, the posterior
probability of H1 being true is greater than π2 = 0.9, and the
posterior probability of H0 being true becomes very close to
zero. As expected, the sample size decreases when the length
of the HPD interval increases. Comparing the posterior prob-
abilities under Simon’s optimal two-stage design in Table 1
with those under the proposed design, it is evident that the
BET design is more directed toward the effectiveness of the
drug by demonstrating the response rate to be greater than
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Table 2
Bayesian enhancement two-stage designs for binary endpoint with (π1, π2) = (0.8, 0.9) under Beta(1,1) and Beta(8,12) prior

distributions and various specifications of (p0, p1) and (�1, �2), and the posterior probabilities of H0 and H1 when the
response numbers reach the minimum required levels at the end of the first and second stages, respectively

p0 p1 �1 �2 n1 n r1 r Pr(H0|r1, n1) Pr(H1|r1, n1) Pr(H0|r, n) Pr(H1|r, n)

Prior: p ∼ Beta(1, 1)
0.05 0.25 0.25 0.2 10 58 1 19 0.1019 0.1971 0.0000 0.9203

0.3 0.22 8 48 1 16 0.0712 0.3003 0.0000 0.9164
0.35 0.25 7 37 1 13 0.0572 0.3671 0.0000 0.9290

0.1 0.3 0.25 0.2 13 61 2 23 0.1584 0.1608 0.0000 0.9107
0.3 0.22 10 51 2 20 0.0896 0.3127 0.0000 0.9283
0.35 0.25 7 40 1 16 0.1869 0.2553 0.0000 0.9211

0.2 0.4 0.25 0.2 19 65 5 32 0.1958 0.1256 0.0000 0.9363
0.3 0.22 14 54 4 27 0.1642 0.2173 0.0000 0.9339
0.35 0.25 10 41 3 21 0.1611 0.2963 0.0000 0.9294

0.3 0.5 0.25 0.2 23 63 9 37 0.1528 0.1537 0.0000 0.9157
0.3 0.22 16 51 7 31 0.1046 0.3145 0.0000 0.9368
0.35 0.25 11 39 5 24 0.1178 0.3872 0.0000 0.9231

Prior: p ∼ Beta(8, 12)
0.2 0.4 0.25 0.2 15 47 2 25 0.1254 0.0732 0.0000 0.9363

0.3 0.22 15 36 2 20 0.1254 0.0732 0.0000 0.9339
0.35 0.25 15 23 2 14 0.1254 0.0732 0.0000 0.9294

0.25 0.45 0.25 0.2 15 47 4 28 0.1193 0.0940 0.0000 0.9240
0.3 0.22 15 35 4 22 0.1193 0.0940 0.0000 0.9222
0.35 0.25 15 22 4 16 0.1193 0.0940 0.0000 0.9432

0.3 0.5 0.25 0.2 15 45 5 30 0.1929 0.0607 0.0000 0.9157
0.3 0.22 15 33 5 24 0.1929 0.0607 0.0000 0.9368
0.35 0.25 15 21 5 17 0.1929 0.0607 0.0000 0.9231

the target p1, rather than focusing on the uninteresting null
value p0.

For the lower panel of Figure 1, we specify π2 = 0.9 and
�2 = p1 − p0, and the plots represent the posterior distribu-
tions under the BET design with different specifications of
(p0, p1) as the indifference region shrinks gradually. Clearly,
the proposed BET design ensures that the majority of the
posterior distribution lies beyond p1, whereas under Simon’s
optimal design the mode of the posterior distribution always
lies halfway between p0 and p1.

Moreover, we consider the use of a relatively informative
prior for p and examine its impact on the design’s operat-
ing characteristics. Based on the estimated success rate of
around 40% in phase III trials (Gan et al., 2012), if we assume
some exchangeability between phase II and phase III trial
results, we may take the prior distribution to be Beta(8,12),
which is equivalent to the information of 8 responses among
20 subjects (with a sample proportion of 40%). For such an
informative prior distribution, the resultant first-stage sam-
ple size might be too small, and thus we set the minimum
sample size in the first stage to be nmin = 15 to allow more
data to be accumulated before making a continuation deci-
sion. To be conservative, we only consider using such a prior
distribution on hypotheses tests with p1 ≥ 0.4. The lower part
of Table 2 shows the performances of the BET design under

such an informative prior, which are more pessimistic and
stringent than the case with a noninformative prior. Cor-
respondingly, Figure 2 shows the plots of the prior density,
likelihood and the posterior density under such an informa-
tive prior. As the prior mean is less than p1, it is evident that
under the influence of such a pessimistic prior distribution,
the posterior distribution is shifted to the left of the likelihood
function.

Further, we compare the operating characteristics of the
BET design with those of two Bayesian phase II single-arm
designs by Tan and Machin (2002), namely, the single thresh-
old design (STD) and the dual threshold design (DTD). Both
designs consist of two stages, and the decision boundaries at
the end of each stage are based on the posterior probabilities.
More specifically, let pL and pU denote two threshold response
rates. At the end of the first stage, if Pr(p > pU |y1, n1) >

γ1, the trial would proceed into the second stage, other-
wise it would stop for futility. At the end of the second
stage, if Pr(p > pU |y, n) > γ2, the drug would be declared
as promising. The sample size n1 is chosen as the smallest
integer such that Pr(p > pU |y1 = (pU + 0.05)n1, n1) > γ1, and
n is chosen as the smallest integer such that Pr(p > pU |y =
(pU + 0.05)n, n) > γ2. The DTD design has the same deci-
sion boundary and sample size as those of the STD design
for the second stage, but its design parameters for the first
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Figure 2. Comparison of the prior density, likelihood, and
the posterior density at the end of the second stage when
the response number reaches the minimum required levels
under the Bayesian enhancement two-stage design for binary
endpoint with (p0, p1) = (0.4, 0.6), (�1, �2) = (0.4, 0.2), and a
prior distribution of Beta(8,12).

stage are different. The DTD design would stop for futility
at the end of the first stage if Pr(p < pL|y1, n1) > γ1, and its
sample size for the first stage is calculated as the smallest
integer satisfying Pr(p < pL|y1 = (pL − 0.05)n1, n1) > γ1. In
the original article, Tan and Machin (2002) recommended the
settings of (γ1, γ2) = (0.6, 0.7), (0.6, 0.8), and (0.7,0.8). For a
head-to-head comparison, we set pL = p0 and pU = p1, and
compare the BET design with (π1, π2) = (0.7, 0.8) against the
STD and DTD designs with thresholds (γ1, γ2) = (0.7, 0.8).
Moreover, Tan and Machin (2002) recommended a prior dis-
tribution of Beta(η + 1, 2 − η) for the response rate p where
η is the prior mode; we adopt the same prior distribution by
choosing η = 0.1.

Table 3 compares the operating characteristics of the
BET, STD, and DTD designs, as well as Simon’s two-stage
design for various combinations of (p0, p1). We set (�1, �2) =
(0.15, 0.2) for the BET design and set (α, β) = (0.05, 0.05) for
Simon’s design, such that their maximum sample sizes are
roughly similar to those of the STD and DTD designs. In
terms of the posterior probabilities of H0 and H1 at the deci-
sion boundaries, it is evident that Pr(H1|r, n), the posterior
probabilities of H1 at the second-stage decision boundaries,
all exceed 0.8 for the three Bayesian designs, but are quite
low for Simon’s design. On the other hand, Pr(H0|r1, n1), the
posterior probabilities of H0 at the first-stage decision bound-
aries are quite different across the three Bayesian designs:
those under the STD design are the lowest and are con-
sistently close to zero, those under the BET design remain
below 1 − π1 = 0.3, and those under the DTD design exceed
0.5 and could be as high as 0.68. The reason for such high val-
ues of Pr(H0|r1, n1) in the DTD design is that its first-stage
decision boundary only requires the posterior probability

Pr(p > p0|r1, n1) to be greater than 1 − γ1 = 0.3, as the DTD
design focuses on the stopping rule for futility regarding p0,
that is, the trial stops if Pr(p < p0|r1, n1) > γ1. We compute
the probabilities of early termination for futility at the end
of the first stage (denoted by PET0 and PET1), and the
expected sample sizes (denoted by ESS0 and ESS1) when the
response rate equals p0 and p1, respectively. It appears that
the STD design has much higher probabilities of early termi-
nation than the other designs and, as a result, its expected
sample sizes under H1 are quite low, indicating that the design
might be overly stringent. For the two-stage designs, it is
worth emphasizing that when the number of responders at
the end of the first stage y1 reaches the continuation criterion
r1, but is too small to result in any possible trial success in
the second stage, that is, y1 + n − n1 < r, the trial should be
terminated early despite the continuation criterion being met
(Tan and Machin, 2006). None of the cases in Table 3 would
have such a problem as they all satisfy r1 + n − n1 > r.

For the survival endpoint, we study the design characteris-
tics under various specifications of the median survival times
(θ0, θ1) = (1, 2) and (0.8, 1.8), and the lengths of HPD inter-
vals (�1, �2) = (0.4, 0.7) and (0.5, 0.8). The cutoff values for
the posterior probabilities are (π1, π2) = (0.7, 0.8), and kHPD

is specified to be 1. We simulate failure times from Weibull
distributions with shape parameter k = 1, 1.5, and 2. The
median of the Weibull distribution is set to be θ1 + 2. We
examine different censoring rates c = 0.1 and 0.2, and simulate
the censoring times from a uniform distribution Unif(0, L),
where L is solved numerically such that Pr(T < C) = 1 − c.
We assume that the rate of accrual is 10 patients per time
unit, and the interim monitoring starts after observing 10 fail-
ure events. Based on 1000 data replications, we compute the
average sample sizes for the first stage and the entire trial,
as well as the average posterior probabilities of H0 and H1

when a trial satisfies the continuation criterion in the first
stage, denoted as Pr(H0|Stage 1) and Pr(H1|Stage 1), respec-
tively, and when the drug is declared as promising in the
second stage, denoted as Pr(H0|Stage 2) and Pr(H1|Stage 2),
respectively.

Table 4 presents the design characteristics under various
values of k, censoring rates c, and specifications of (θ0, θ1) and
(�1, �2). The design is able to flexibly expand the sample size
according to the censoring rate, as the average sample sizes
are larger for higher values of c. A larger sample size is also
associated with a shorter HPD interval. Moreover, when the
HPD interval lengths (�1, �2) are fixed, the larger the values
of (θ0, θ1), the larger the average sample size, because in rela-
tive terms the required HPD interval length becomes smaller
for larger values of θ0 and θ1. The sample size appears to be
insensitive to the value of k. As k is an unknown parame-
ter, such a property makes the trial design more manageable,
as it enables the investigators to gauge and adjust the aver-
age sample size at the design stage. The average posterior
probability of H0 is less than 1 − π1 when continuation is
warranted in the first stage, and the average posterior prob-
ability of H1 is more than π2 when efficacy is declared in
the second stage. This indicates that the design guarantees a
high posterior probability of the alternative hypothesis being
true when the drug is declared as promising at the end of the
trial.
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Table 3
Comparison of Bayesian enhancement two-stage (BET) design, single threshold design (STD), dual threshold design (DTD)
and Simon’s two-stage design, in terms of posterior probabilities of H0 and H1 at the decision boundaries, probabilities of

early termination, and expected sample sizes

Design p0 p1 n1 n r1 r Pr(H0|r1, n1) Pr(H1|r1, n1) Pr(H0|r, n) Pr(H1|r, n) PET0 PET1 ESS0 ESS1

BET 0.1 0.3 13 63 2 22 0.165 0.140 0.000 0.801 0.621 0.064 31.9 59.8
STD 24 61 9 22 0.000 0.783 0.000 0.845 1.000 0.725 24.0 34.2
DTD 27 61 2 22 0.540 0.003 0.000 0.845 0.233 0.001 53.1 61.0
Simon 20 49 3 9 0.157 0.075 0.025 0.036 0.677 0.035 29.4 48.0

BET 0.15 0.35 15 67 3 27 0.226 0.113 0.000 0.809 0.604 0.062 35.6 63.8
STD 30 70 12 28 0.000 0.702 0.000 0.801 0.999 0.655 30.0 43.8
DTD 29 70 3 28 0.685 0.002 0.000 0.801 0.168 0.001 63.1 70.0
Simon 28 60 6 14 0.142 0.064 0.036 0.026 0.765 0.039 35.5 58.7

BET 0.2 0.4 19 70 5 32 0.216 0.104 0.000 0.820 0.673 0.070 35.7 66.4
STD 35 78 16 36 0.000 0.729 0.000 0.853 0.999 0.700 35.0 47.9
DTD 29 78 5 36 0.589 0.005 0.000 0.853 0.284 0.002 64.1 77.9
Simon 28 62 7 18 0.226 0.047 0.040 0.035 0.678 0.031 38.9 60.9

BET 0.25 0.45 20 70 6 36 0.284 0.077 0.000 0.840 0.617 0.055 39.1 67.2
STD 40 84 20 42 0.000 0.702 0.000 0.801 0.999 0.684 40.0 53.9
DTD 29 84 6 42 0.673 0.003 0.000 0.801 0.232 0.002 71.3 83.9
Simon 30 70 9 24 0.251 0.042 0.040 0.031 0.674 0.031 43.1 68.8

BET 0.3 0.5 22 69 8 39 0.261 0.082 0.000 0.835 0.671 0.067 37.5 65.9
STD 44 88 25 49 0.000 0.778 0.000 0.834 1.000 0.774 44.0 53.9
DTD 27 88 7 49 0.664 0.005 0.000 0.834 0.256 0.003 72.4 87.8
Simon 34 71 12 28 0.252 0.035 0.046 0.032 0.693 0.029 45.4 69.9

4. Trial Applications

4.1. Advanced Hepatocellular Cancer Trial

Back to the phase II study on erlotinib in patients with
advanced hepatocellular cancer, the outcome of interest was
the proportion of progression-free patients at 24 weeks (Philip
et al., 2005). Simon’s optimal two-stage design was used to
calibrate the design parameter of this phase II study, with
(p0, p1) = (0.05, 0.2) under the type I and type II error rate
constraints (α, β) = (0.09, 0.08). The optimal design parame-
ters under such specifications are (n1, n, r1, r) = (15, 35, 1, 4).
The trial enrolled three additional patients beyond the orig-
inally planned 35 subjects, and ended with trial success (12
responses among 38 subjects) and continuation into a phase
III study of 720 patients, which however concluded with fail-
ure eventually (Zhu et al., 2015).

As an illustration, we apply the BET design to such a phase
II trial. During the design stage, we specify the minimum
required posterior probability to be π1 = π2 = 1 − α, and we
may set �2 = 0.25 and �1 = 0.4, which would result in the
design parameters of (n1, n, r1, r) = (8, 35, 1, 10). The design
would require eight patients in the first stage and 27 patients
in the second stage, and a total of 10 responses are necessary
for declaring the drug promising. The total sample size of the
proposed design would be same as that of Simon’s optimal
two-stage design. The trial enrolled three additional patients
beyond the originally planned sample size in Simon’s design.
To be conservative, we assume that these patients are respon-
ders and remove them from the total number of responses.
Had the trial been conducted under the BET design, the drug

would not have been declared as promising and would not
have proceeded into the phase III study.

4.2. Soft Tissue Sarcoma Trial

Patel et al. (1997) reported a phase II study on the effects
of paclitaxel (taxol) in the treatment of soft tissue sarcoma.
The study was conducted based on Simon’s optimal two-
stage design with (p0, p1) = (0.05, 0.2) under the type I and
type II error rate constraints (α, β) = (0.1, 0.1). The optimal
design parameters under such specifications are (n1, n, r1, r) =
(14, 37, 1, 3). The trial was terminated early for futility at the
end of the first stage, as no response had been observed in
the first 14 subjects. Had the trial been conducted under the
BET design with the same first-stage sample size, it would
also have been stopped early for futility as the threshold of
the BET design is more stringent than that of Simon’s design,
and thus the same conclusion as the original design would
have been drawn.

As another illustration, we apply the BET design to such
a phase II trial. In the trial design, we specify the mini-
mum required posterior probability to be π1 = π2 = 0.9, and
require the desirable length of the HPD interval to be �2 =
p1 − p0 = 0.15 and �1 = 2�2 = 0.3. With such specifications,
the parameters of our Bayesian two-stage design would be
(n1, n, r1, r) = (14, 90, 2, 23). The stage 1 sample size n1 = 14
is the same for Simon’s and our designs, while the stage 1 cut-
off values r1 are different: r1 = 2 in our design but r1 = 1 in
Simon’s design. Our total sample size is much larger than
Simon’s, while it can be reduced if we take a large value
of �2. At the boundary parameters, p̂ = r/n = 3/37 ≈ 0.08
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Table 4
Bayesian enhancement two-stage designs for survival endpoint with (π1, π2) = (0.7, 0.8) under various values of the

parameter k in the Weibull distribution and censoring rates c, specifications of (�1, �2) and (θ0, θ1), the average sample sizes
for the first stage and the whole trial (denoted as n̄1 and n̄), and the average posterior probabilities of H0 and H1 when a

trial achieves success in the first stage, and when the drug is declared as promising in the second stage, respectively

k c θ0 θ1 �1 �2 n̄1 n̄ Pr(H0|Stage 1) Pr(H1|Stage 1) Pr(H0|Stage 2) Pr(H1|Stage 2)

1 0.1 1 2 0.5 0.8 23.2 57.7 0.0660 0.1437 0.0000 0.9127
0.4 0.7 35.4 73.1 0.0255 0.2572 0.0000 0.9346

0.8 1.8 0.5 0.8 15.3 47.5 0.0719 0.1063 0.0000 0.9148
0.4 0.7 23.2 60.9 0.0353 0.2135 0.0000 0.9331

0.2 1 2 0.5 0.8 25.6 63.9 0.0503 0.1932 0.0000 0.9275
0.4 0.7 39.1 81.1 0.0131 0.3689 0.0000 0.9531

0.8 1.8 0.5 0.8 16.9 52.8 0.0571 0.1844 0.0000 0.9348
0.4 0.7 25.4 67.4 0.0220 0.2774 0.0000 0.9505

1.5 0.1 1 2 0.5 0.8 24.0 58.8 0.0024 0.6191 0.0000 0.9893
0.4 0.7 36.4 74.2 0.0000 0.8669 0.0000 0.9979

0.8 1.8 0.5 0.8 16.1 48.5 0.0052 0.5409 0.0000 0.9871
0.4 0.7 24.0 62.1 0.0006 0.7303 0.0000 0.9967

0.2 1 2 0.5 0.8 27.7 66.6 0.0013 0.7447 0.0000 0.9958
0.4 0.7 41.3 84.0 0.0000 0.9106 0.0000 0.9994

0.8 1.8 0.5 0.8 18.6 55.0 0.0028 0.6009 0.0000 0.9938
0.4 0.7 27.3 69.6 0.0002 0.7913 0.0000 0.9988

2 0.1 1 2 0.5 0.8 24.6 59.1 0.0000 0.9381 0.0000 0.9999
0.4 0.7 36.8 74.6 0.0000 0.9895 0.0000 0.9999

0.8 1.8 0.5 0.8 16.7 49.1 0.0002 0.8594 0.0000 0.9998
0.4 0.7 24.6 62.4 0.0000 0.9676 0.0000 0.9999

0.2 1 2 0.5 0.8 28.5 67.2 0.0000 0.9686 0.0000 0.9999
0.4 0.7 42.2 84.6 0.0000 0.9963 0.0000 0.9999

0.8 1.8 0.5 0.8 19.6 56.0 0.0001 0.8981 0.0000 0.9999
0.4 0.7 28.5 71.2 0.0000 0.9823 0.0000 0.9999

under Simon’s design, but p̂ = r/n = 23/90 ≈ 0.26 using our
design. Considering p1 = 0.2 as the minimum efficacy level for
the experimental drug, it is obvious that Simon’s estimated
response rate does not achieve this minimum level.

5. Discussion

Based on posterior probabilities, the BET design is more nat-
ural and ensures that the drug’s response rate reaches the
desirable target level, while using the clinically uninteresting
level as the continuation criterion. We consider it necessary
to choose a target level that exceeds the uninteresting rate by
a certain margin, rather than targeting the uninteresting rate
as Simon’s design does. In that sense, the proposed design
is more stringent than Simon’s design, that is, if our design
claims the experimental drug promising, it is more likely to
be true and thus would reduce the failure possibility of the
subsequent phase III trial. The BET design, which utilizes
posterior probabilities and HPD interval lengths for decision
making, is flexible and can be easily adapted to accommodate
different types of endpoints and prior distributions.

Joseph et al. (1995) and M’Lan et al. (2008) proposed sev-
eral Bayesian sample size criteria for binomial proportions.
Based on the prior predictive distribution of the number
of responses, which follows a beta–binomial distribution, we
may obtain a series of HPD interval lengths corresponding
to different numbers of responses. The sample size criteria

can be constructed based on the average, median, or the
maximum these HPD interval lengths. Their approaches take
into account the randomness of the data, while our posterior
probabilities are calculated under the assumption that the
smallest number of responses necessary for continuation or
for declaring the trial success is observed without considering
the random nature of the data.

6. Supplementary Materials

The software for implementing the BET designs for binary
and survival endpoints is available with this article at the
Biometrics website on Wiley Online Library.
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