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Abstract In a multinomial model, the sample space is par-
titioned into a disjoint union of cells. The partition is usually
immutable during sampling of the cell counts. In this paper,
we extend the multinomial model to the incomplete multi-
nomial model by relaxing the constant partition assumption
to allow the cells to be variable and the counts collected
from non-disjoint cells to be modeled in an integrated man-
ner for inference on the common underlying probability. The
incomplete multinomial likelihood is parameterized by the
complete-cell probabilities from the most refined partition.
Its sufficient statistics include the variable-cell formation
observed as an indicator matrix and all cell counts. With
externally imposed structures on the cell formation process,
it reduces to special models including the Bradley–Terry
model, the Plackett–Luce model, etc. Since the conventional
method, which solves for the zeros of the score functions,
is unfruitful, we develop a new approach to establishing a
simpler set of estimating equations to obtain the maximum
likelihood estimate (MLE), which seeks the simultaneous
maximization of all multiplicative components of the like-
lihood by fitting each component into an inequality. As a
consequence, our estimation amounts to solving a system
of the equality attainment conditions to the inequalities. The
resultant MLE equations are simple and immediately invite a
fixed-point iteration algorithm for solution, which is referred
to as the weaver algorithm. The weaver algorithm is short
and amenable to parallel implementation. We also derive
the asymptotic covariance of the MLE, verify main results
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with simulations, and compare the weaver algorithm with an
MM/EM algorithm based on fitting a Plackett–Luce model
to a benchmark data set.

Keywords Bradley–Terry model · Contingency table ·
Count data · Density estimation · Incomplete multinomial
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Weaver algorithm
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1 Introduction

In this paper, we extend the multinomial model to allow
the cells to be variable. In a multinomial model, the like-
lihood is L( p|a) ∝ ∏d

i=1 pai
i , where p = (p1, . . . , pd)ᵀ

are called cell probabilities and a = (a1, . . . , ad)ᵀ are the
corresponding counts. The sample space is the disjoint union
of the cells, and we call the collection of the cells a partition
of the sample space. Such partition cannot be changed dur-
ing multinomial sampling of the counts a. The relaxation of
the constant partition assumption motivates the incomplete
multinomial model, under which an implicit collection of
partitions provide the observed cells which are all measured
by a common probability. As a result, the cells need not be
disjoint. The cell probabilities of the most refined partition,
formed as the intersection of all the observable partitions,
constitute the parameters of the relaxed model, held in the
vector p. Any cell probability p̃ = δᵀ p is expressed as the
sum of some elements of p, via inner product with a subset
indicator vector δ consisted of 0s and 1s, which is responsible
for encoding the formation of a particular variable cell and
is part of the observed information. The form δᵀ p, the term

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-017-9782-2&domain=pdf
http://orcid.org/0000-0003-0931-990X


Stat Comput

probability sub-sum, and the term variable-cell probability
are used interchangeably throughout the paper.

The likelihood function under the incompletemultinomial
model takes the form

L( p|a, b,Δ) ∝
d∏

i=1

pai
i

q∏

j=1

p̃
b j
j =

d∏

i=1

pai
i

q∏

j=1

(δ
ᵀ
j p)

b j (1)

where

1. p = (p1, . . . , pd)ᵀ holds the parameters of the model
and represents the probabilities of the most refined cells.

2. a = (a1, . . . , ad)ᵀ collects the usual multinomial counts
from the most refined cells; b = (b1, . . . , bq)ᵀ collects
the variable cell counts.

3. δ j , j = 1, . . . , q, is an indicator vector containing only
0s and 1s, indicating the variable cell associated with the
count b j .

4. The observed data of this model are a, b, and Δ =
[δ1, . . . , δq ].

The expression and similar forms have appeared in Han-
kin (2010), Ng et al. (2011, Chapter 8), and Huang et al.
(2006). Negative counts are permitted in the vector b =
(b1, . . . , bq)ᵀ, which cause the corresponding probability
sub-sums to appear in the denominator of the likelihood func-
tion and that enables a general way to express conditional
probabilities (Loève 1977, 1978).

The variable partition property makes (1) a flexible model
for probability estimation.With externally imposed structure
on Δ, the incomplete multinomial model reduces to spe-
cialized models. We show in the following examples that it
unifies the Bradley–Terry type multiple comparison models,
the Plackett–Luce analysis of permutation models, certain
contingency table models, and the general counting experi-
ment on a random partition.

Example 1 In an experiment involving a random partition
process, each multinomial sample is collected on a partition
instance.

2 3 5
7 11 13
17 19 23
29 31 37
complete data

observed as−−−−−−→ · · · · · ·

16

78

29
the nth sample

Suppose by the end of the first n − 1 samplings, we are
able to form a prior about the complete-cell probabilities
expressed in aDirichlet distribution.With the newlyobserved
nth sample, which contains a truncation of the sample space,

we can use the following incomplete multinomial likelihood
to update the estimate,

Lobs( p) = pα11
11 pα12

12 pα13
13 pα21

21 pα22
22 pα23

23 pα31
31 pα32

32 pα33
33 pα41

41

× pα42
42 pα43

43 (p11 + p12 + p22)
16 × (p13

+p23 + p33 + p43)
78 × p2941 × (p11 + p12

+p13 + p22 + p23 + p33 + p41 + p43)
−123.

The likelihood is encoded into a, b, and Δ = [δ1, δ2, δ3] as
the following:

aᵀ

= [
p11 p12 p13 p21 p22 p23 p31 p32 p33 p41 p42 p43

α11 α12 α13 α21 α22 α23 α31 α32 α33 α41 + 29 α42 α43
]
,

bᵀ = [
1 2 3

16, 78, −123
]
,

Δᵀ =
⎡

⎣

j p11 p12 p13 p21 p22 p23 p31 p32 p33 p41 p42 p43

1 1 1 1
2 1 1 1 1
3 1 1 1 1 1 1 1 1

⎤

⎦.

The prior information and the new singleton count, 29,
observed in the new sample are held in aᵀ. Each row in
Δᵀ indicates a sub-sum of probabilities and the correspond-
ing exponent is collected in bᵀ at the same position; for
example, the first row of Δᵀ indicates the first sub-sum
(p11 + p12 + p22) in the likelihood and b1 = 16 is its expo-
nent. The zeros have been omitted from the display. The
observed truncation is encoded by the union of all untrun-
cated cells attached with a count equal to the negative sum
of all counts unionized. There are two levels of variability in
this experiment: one in the multinomial counts given a par-
tition instance; the other in the generation of the sequence of
partitions. The randomness of the indicator distribution on
the Δᵀ matrix is a reflection of the underlying random parti-
tion process. In the next examples, we show more structured
patterns for Δᵀ.

Example 2 This example introduces further use of nega-
tive counts based on contingency table data. Suppose that
a population is classified according to the gender and age
combination to understand its distribution over these two
demographic factors. We are interested in the six cell proba-
bilities.

Young Middle Senior
Female p1 p2 p3
Male p4 p5 p6

Four samples of data are collected; three are incomplete
to some degree.

Sample 1 of size 120 completely categorizes all six cells.
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Young Middle Senior
Female 21 24 18
Male 20 25 12

Sample 2 of size 40 contains only gender information,
missing age.

Female 18
Male 22

Sample 3of size 40 contains only age information,missing
gender.

Young Middle Senior
10 20 10

Sample 4 of size 100 is collected in a primary school
environment, where only the young age group is relevant.

Young
Female 53
Male 47

The combined information can bemodeled by the likelihood:

L( p) = p211 p242 p183 p204 p255 p126
× (p1 + p2 + p3)

18(p4 + p5 + p6)
22

× (p1 + p4)
10(p2 + p5)

20(p3 + p6)
10

×
(

p1
p1 + p4

)53( p4
p1 + p4

)47

. (2)

The likelihood is encoded into a, b, and Δ = [δ1, . . . , δ5] as
the following:

aᵀ = [
p1 p2 p3 p4 p5 p6

21 + 53, 24, 18, 20 + 47, 25, 12
]
,

bᵀ = [
1 2 3 4 5

18, 22, 10 − 53 − 47, 20, 10
]
,

Δᵀ =

⎡

⎢
⎢
⎢
⎢
⎣

j p1 p2 p3 p4 p5 p6

1 1 1 1
2 1 1 1
3 1 1
4 1 1
5 1 1

⎤

⎥
⎥
⎥
⎥
⎦

.

The indicator distribution on theΔᵀ matrix is less random
than before. The pattern reflects once again the underlying
cell formation process.

Example 3 The binomial conditional counts modeling is
known as the Bradley–TerryModel (1952), which deals with
the problem of ranking from pairwise preference scores. In
this model, the relative strength of the i th subject is repre-
sented by the i th parameter pi . The strength parameters are

positive and required to sum to one. Hence, they are often
treated as probabilities. The data are generated by a judge
who examines a pair (i, j) and assigns a corresponding pair
of scores (ni j , n ji ) measuring the relative strengths of the
pair. To link the parameters to the judge’s scores, the follow-
ing joint binomial likelihood is proposed:

LBT ( p) ∝
∏

1≤i< j≤t

(
pi

pi + p j

)ni j
(

p j

pi + p j

)n ji

.

A character of the Bradley–Terry model lies in that the
variable cell counts vector b is consisted of all negative num-
bers. For t = 5, there are 10 pairwise comparisons, the
likelihood is encoded into a, b, and Δ = [δ1, . . . , δ10] as
the following:

aᵀ =
[ p1 p2 p3 p4 p5

∑

j : j �=1
n1 j ,

∑

j : j �=2
n2 j ,

∑

j : j �=3
n3 j ,

5∑

j : j �=4
n4 j ,

∑

j : j �=5
n5 j

]

,

bᵀ = − [
1 2 3 4 5 6 7 8 9 10

n12, n13, n14, n15, n23, n24, n25, n34, n35, n45
]
,

Δᵀ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

j p1 p2 p3 p4 p5

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1
10 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Pairwise comparisondata canbe representedbyaweighted
directed graph with the t subjects as vertices. If ni j > 0,
then an edge emits from vertex i towards vertex j . If this
weighted directed graph is strongly connected, then the max-
imum likelihood estimate (MLE) exists and is unique (Ford
1957). Hastie and Tibshirani (1998) developed a classifier
using a formally equivalent likelihood and used its MLE to
classify a new feature vector.

Example 4 A more sophisticated type of conditional scores
known to arise from the neutral sampling process under-
pins models such as the Plackett–Luce model for analysis
of permutations. Connor and Mosimann (1969) defined neu-
trality to characterize a type of independence arising from
the sequential sampling of compositional data, in which
truncation of a data segment does not alter the probability
distribution on the remaining data. They proposed a likeli-
hood for modeling the probability mass function (PMF) in
such a sampling process,
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LCM( p) ∝ pβn−1−1
n

n−1∏

i=1

⎧
⎪⎨

⎪⎩
pαi −1

i

⎛

⎝
n∑

j=i

p j

⎞

⎠

βi−1−(αi +βi )
⎫
⎪⎬

⎪⎭
,

where αi , βi > 1 and n ≥ 2. For n = 5, the likelihood is
encoded into a, b, and Δ = [δ1, . . . , δ3] as the following:

aᵀ = [
p1 p2 p3 p4 p5

α1 − 1, α2 − 1, α3 − 1, α4 − 1, β4 − 1
]
,

bᵀ = [
1 2 3

β1 − α2 − β2, β2 − α3 − β3, β3 − α4 − β4
]
,

Δᵀ =
⎡

⎣

j p1 p2 p3 p4 p5

1 1 1 1 1
2 1 1 1
3 1 1

⎤

⎦.

Plackett (1975) considered the question of how to calcu-
late the probability of a horse ending up in any place after
a race. He started by considering the first-place probability
of each horse and recursively calculated this probability on
a shrinking set of horses by removing the first-place horse
in the current set, until none was left. This process fits the
definition of neutral sampling. The following joint likelihood
is specified for the Plackett–Luce model,

LPL ( p) ∝
R∏

r=1

tr∏

i=1

pir
tr∑

j=i
p jr

,

where tr is the number of horses raced in round r , in a total
of R rounds; ir is the index of the i th ranking horse in round
r .

Hunter (2004) applied this model to a car racing data
with R = 36, ir = 1, . . . , 83, and tr = 43 for all r val-
ues except in five exceptional rounds where tr = 42. As a
result, there are total 43 × 36 − 5 = 1543 terms in the full
expansion of the likelihood; the first and last three of them
are partially produced in the 5th column of Table 1 show-
ing the general shape of the terms. The first four columns
of the table display the number of participants for the cur-
rent round, the ID of the driver, the current round number,
and the final place of the driver in the current round. The
encoding of a and Δ can be programmatically produced.
The vector b consists of−1 at all positions, a shortcut for the
program.

A character of the Plackett–Luce likelihood is that each
term’s numerator contributes one count to an element of
a and the same term’s denominator contributes a variable
cell encoded by a column indicator vector δ j to Δ, together
with one negative count to the corresponding element of
b.

Table 1 Car racing data by the Plackett–Luce model

nDrv ID Rnd Plc Likelihood Component
tr ir r i pir /

∑tr
j=i p jr

43 83 1 1 p83/(p83 + p18 + p20 + · · · )
43 18 1 2 p18/(p18 + p20 + · · · )
43 20 1 3 p20/(p20 + · · · )
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

43 53 36 41 p53/(p53 + p38 + p14)

43 38 36 42 p38/(p38 + p14)

43 14 36 43 p14/p14 = 1

Note: nDrv stands for the number of drivers in each round; ID is the
driver ID; Rnd stands for round; Plc stands for place

1.1 Motivation, contribution, and structure of this paper

Achallenge that follows the introduction of the unified likeli-
hood (1) is its estimation. The theoretical side of the difficulty
is that the MLE equations produced by the conventional
method of setting the score function to zero (with a Lagrange
multiplier term for the normalization constraint, which intro-
duces the multiplier itself as an additional unknown) appear
neither analytically nor computationally tractable. On the
computational side, existing methods usually fit to a spe-
cific sub-class of the model and the burden is on the user
to understand and implement the algorithm for each prob-
lem. A naive construction of an EM algorithm by splitting
the probability sub-sums would fail for the Bradley–Terry,
Plackett–Luce, and other models that have mostly nega-
tive counts associated with the variable cells. This leads
to the invention of an MM algorithm by Hunter (2004)
for both Bradley–Terry and Plackett–Luce MLEs, which,
however, is only applicable to the likelihoods with mostly
negative variable cell counts, antithetic to the EM case.
Thus, a single, simple algorithm for maximizing the most
general likelihood (1) is certainly desirable. In this paper,
we derive a set of simple maximum likelihood estimat-
ing equations for the unified likelihood (1) as a whole
and describe the weaver algorithms for solving those equa-
tions.

The rest of the paper is organized as follows. Section2
uses an inequality technique to establish the maximum like-
lihood estimating equations and also derives the asymptotic
covariance formula for the MLE. Section 3 describes a
fixed-point iteration called the weaver algorithm to solve
the equations. Section 4 presents four simulation studies to
evaluate the algorithms and the covariance formula as well
as to demonstrate usage and estimation of the model. Sec-
tion 5 compares the weaver algorithm with the MM and
EM algorithms and mentions some theoretical considera-
tions.
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1.2 A note on the literature

Numerous works have been done on contingency table and
incomplete categorical data; a small sample are Agresti
(2003), Chen and Fienberg (1976), Dickey et al. (1987),
Haberman (1977), Hartley and Hocking (1971), Turnbull
(1976), and Laird (1978). One of the earliest publications
related to the Bradley–Terry model for a ranking problem
is Zermelo (1929). Davidson and Farquhar (1976) compiles
a long list of works on the related paired comparison mod-
els. Some more recent works on Bradley–Terry model and
ranking methods in general include David (1988), Dwork
et al. (2001), Jech (1983), Marden (1996), Hastie and Tibshi-
rani (1998), and Yan et al. (2012). The Plackett–Luce model
is considered both as a generalization of the Bradley–Terry
model and an instantiation of the choice modeling princi-
ple (Luce 1959). A few works in this space are Thurstone
(1927), Suppes et al. (1971), Tversky (1972), Sattath and
Tversky (1976), Luce (1977), Gormley and Murphy (2008).

2 Estimation of the incomplete multinomial model

In this section, we establish the followingMLE equations for
the incomplete multinomial model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ j

(
δ
ᵀ
j p
)

= b j

pi

(
s − δ

ᵀ
(i)τ

)
= ai

d∑

i=1
pi = 1

s =
d∑

i=1
ai +

q∑

j=1
b j

(3)

where p is the unknown parameter vector to be solved; δ
ᵀ
(i)

and δ j are the i th row and the j th column of Δ, respec-
tively; τ is an auxiliary column vector of length q. The first
two equations in (3) are repeated for j = 1, . . . , q and for
i = 1, . . . , d, respectively. The third equation is the nor-
malization constraint on the probabilities. The last equation
defines the constant s given the observed values of a and b,
which is used in the second equation.

2.1 Derivation of the MLE equations

The MLE equations in (3) are mainly established on two
bases: the simultaneous attainment of equalities in many
inequalities all adopting the form of Lemma 1 and the
invariance of total counts as expressed in Lemma 2. We
state Lemma 1, which may be called the multinomial-MLE
inequality, as a standalone result to begin with. Its proof is
given in “Appendix A.”

Lemma 1 For x1, . . . , xn > 0 and a1, . . . , an > 0,

n∏

i=1

xai
i �

n∏

i=1
aai

i

(
n∑

i=1
ai

) n∑

i=1
ai

(
n∑

i=1

xi

) n∑

i=1
ai

, (4)

where the equality is attained if and only if

ai/xi = τ > 0, (5)

where τ is a positive ratio same for all i.

For example, the incomplete trinomial likelihood (p1 +
p2)4 p3 has the maximum value 44/55:

(p1 + p2)
4 p3 = 44

(
p1 + p2

4

)4

p3

� 44
(
4 p1+p2

4 + p3
5

)5

= 4411

55
(p1 + p2 + p3)

5 ,

where the left-hand side is globally maximized if and only if

4

p1 + p2
= 1

p3
.

Based on the last equation alone, we can solve for p3 = 0.2
and p1 + p2 = 0.8. The idea that follows the above example
is to pad each sub-sum in the unified likelihood (1) such that
it becomes a product ofmany simplemultinomial likelihoods
but all sharing a common MLE. One can multiply each sub-
sum term (δ

ᵀ
j p)

b j by complementing powers on singleton
cells inversely indicated by the zeros of δ j ,

(δ
ᵀ
j p)

b j �→ (δ
ᵀ
j p)

b j ×
∏

i : δ j i =0

p
c ji
i ,

where c ji = τ j pi with

b j

δ
ᵀ
j p

= c ji

pi
= τ j , for all j such that δ j i = 0, (6)

according to the equality attainment condition (5) for each
sub-sum term.

The complete data terms that have been multiplied need
again be collectively divided to the likelihood to keep it
unchanged. This amounts to a process of sorting c ji into the
multinomial cell counts c′

i which is then subtracted from ele-
ments of vector a to create the last multinomial component
in the product:
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∏d
i=1 pai

i
∏q

j=1

∏
i :δ j i =0 p

c ji
i

=
d∏

i=1

p
ai −c′

i
i .

Hence,

d∑

i=1

c′
i =

q∑

j=1

∑

i :δ j i =0

c ji =
q∑

j=1

∑

i :δ j i =0

piτ j .

For fixed i , we have

c′
i = pi

∑

j=1
j :δ j i =0

q
τ j . (7)

This last multinomial component in the padded likelihood
must share the same MLE with the others, which requires

ai − c′
i

pi
= τ0 > 0, for all i. (8)

Combining (7) and (8) with rearrangement, we have

ai = pi

(
τ0 +

(
1ᵀ

q − δ
ᵀ
(i)

)
τ
)

, (9)

where δ
ᵀ
(i) is the i th row of Δ and 1q is a vector of q 1s.

Rearranging it further, we have

⎛

⎝τ0 +
q∑

j=1

τ j

⎞

⎠ pi = ai + pi

q∑

j=1

Δi jτ j ,

where Δi j is the (i, j)th element in matrix Δ, and we have
rewritten 1ᵀ

q τ as the sum of all elements of τ . Summing over
i on both sides, we have

d∑

i=1

⎛

⎝τ0 +
q∑

j=1

τ j

⎞

⎠ pi =
d∑

i=1

ai +
d∑

i=1

pi

q∑

j=1

Δi jτ j .

On the other hand, from the expression of τ j in (6) and sum-
ming over j , we have

q∑

j=1

b j =
q∑

j=1

τ j

d∑

i=1

Δi j pi .

Combining the last two equations with reordering of the
summations on the right-hand side of the last equation, we
arrive at a global invariance stated as Lemma 2, which can
be understood as interpreting the auxiliary variables τ0 and
τ = (τ1, . . . , τq)ᵀ as thicknesses against the probabilities as
base areas so that their product is the information volume, or
total counts.

Lemma 2 For the auxiliary variables τ0 and τ , the observed
counts vectors a and b, and the probabilities p, it holds that

⎛

⎝τ0 +
q∑

j=1

τ j

⎞

⎠

(
d∑

i=1

pi

)

=
d∑

i=1

ai +
q∑

j=1

b j .

With the normalization constraint

d∑

i=1

pi = 1, (10)

Lemma 2 is reduced to

τ0 +
q∑

j=1

τ j =
d∑

i=1

ai +
q∑

j=1

b j .

Hence, (9) can be simplified to

ai = pi

(
s − δ

ᵀ
(i)τ

)
(11)

where

s =
d∑

i=1

ai +
q∑

j=1

b j (12)

is a global constant. We have now completed the derivation
of all four MLE equations in (3) respectively as (6), (11),
(10), and (12).

2.2 The score function and the observed information
matrix

The incomplete multinomial likelihood function (1) has the
score function,

∇d−1� ( p) =
⎡

⎢
⎣

1 · · · 0 −1
...

. . .
...

...

0 · · · 1 −1

⎤

⎥
⎦

︸ ︷︷ ︸
(d−1)×d

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎣

a1
p1
a2
p2
...

ad
pd

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

Δ11 Δ12 · · · Δ1q

Δ21 Δ22 · · · Δ2q
...

...
. . .

...

Δd1 Δd2 · · · Δdq

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1
δ
ᵀ
1 p
b2

δ
ᵀ
2 p
...

bq

δ
ᵀ
q p

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

123

Author's personal copy



Stat Comput

and the observed information matrix,

− ∇2
d−1� ( p) = diag

(
a1
p21

, · · · ,
ad−1

p2d−1

)

+ ad

p2d

⎡

⎢
⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤

⎥
⎦

︸ ︷︷ ︸
(d−1)×(d−1)

+
⎡

⎢
⎣

ψ11 · · · ψ1,(d−1)
...

. . .
...

ψ(d−1),1 · · · ψ(n−1),(d−1)

⎤

⎥
⎦ (13)

where �( p) represents the log-likelihood and

ψik =
q∑

j=1

b j
(
Δi j − Δd j

) (
Δk j − Δd j

)

(
δ
ᵀ
j p
)2 .

The inverse of the observed information matrix (13) eval-
uated at the MLE is used to approximate the asymptotic
variance–covariance matrix of the MLE of the first d − 1
parameters. For the last element of the MLE, p̂d ,

var
(

p̂d
) = var

(
1ᵀ

d−1 p̂[1..(d−1)]
)

= 1ᵀ
d−1 var

(
p̂[1..(d−1)]

)
1d−1, (14)

cov
(

p̂d , p̂i
) = cov

(

p̂i , 1 −
d−1∑

k=1

p̂k

)

= −
d−1∑

k=1

cov
(

p̂i , p̂k
)
, (15)

where the subscript [1.. (d − 1)] denotes the sub-vector of
the first d − 1 elements.

3 Algorithms

The first two equations in (3) suggest a fixed-point itera-
tion on the data structure illustrated in Fig. 1. We refer to
Algorithm 1 as the weaver algorithm. Like the mechanical
weaving machine, its operations are highly parallelizable.
Prior incorporation to the weaver algorithm simply means
adjusting the two counts vectors and adding new rows to the
matrix Δᵀ for new sub-sums carried by the prior. This abil-
ity to easily accommodate Bayesian modeling mitigates the
MLE’s “over-fitting” tendency (Guiver and Snelson 2009;
Caron and Doucet 2012). It also means that weaver is an
online algorithm.

3.1 Convergence measure

Convergence in the log-likelihood sequence becomes diffi-
cult to discern after it reaches a plateau. A better view can

Algorithm 1Weaver
0. Initialize p = (1/d, ..., 1/d) and define the scalar

s = sum(a) + sum(b).
1. Compute τ = b/(Δᵀ p) (element-wise division).
2. Update p = a/(s1d − Δτ ) (element-wise division and

subtraction).
3. Normalize p = p/sum( p).
4. Repeat 1–3 till convergence.

p1 p2 · · · pd

τ1 1 0 · · · 1 b1
τ2 1 1 · · · 0 b2
...

...
...

...
...

...
τq 0 1 · · · 1 bq

a1 a2 · · · ad

p

τ Δ b

a

Fig. 1 Data structure for the weaver algorithm

be obtained if we switch to the space of the exponents a and
b. The kth iteration p̂(k)

i can reconstruct the corresponding

complete exponent â(k)
i by

â(k)
i = p̂(k)

i

⎛

⎝s −
∑

j :Δi j =1

τ
(k)
j

⎞

⎠ .

Similarly, b’s elements are reconstructed by

b̂(k)
j = τ

(k)
j

⎛

⎝
∑

i :Δi j =1

p̂(k)
i

⎞

⎠ .

We therefore define the sum of squared errors (SSE),

SSE =
d∑

i=1

(
â(k)

i − ai

)2 +
q∑

j=1

(
b̂(k)

j − b j

)2

for the kth iteration. The advantage of this definition is that
the new sequence have a known limit (a, b). For the like-
lihood of Example 2, nine iterations reach

√
SSE = 10−3;

another sixmore iterations reach
√
SSE = 10−6; even further

seven iterations reach
√
SSE = 10−9. The weaver algorithm

converges at a linear rate; it is also ascent at every step. A
proof of both statements is given in “Appendix C.” Figure
2 plots the convergence of the weaver algorithm applied to
the likelihood of Example 2. In practice, we believe 30 steps
of the weaver iterations are adequate to satisfy the relatively
low precision requirement of most problems.

3.2 Relation with the Ford (1957) algorithm

Ford (1957) proved a sufficient condition formulated in
graph-theoretical terms for the existence and uniqueness
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Fig. 2 Convergence plot of the Algorithm 1 (Weaver) being applied
to the likelihood of Example 2. The iteration path shows that the log-
likelihood is increased at every step and the rate of convergence is linear
(c.f. the proof in “Appendix C”)

of the Bradley–Terry MLE solution, essentially connect-
ing the paired comparison model to a weighted directed
graph. In fact, every edge in the typical graph connects only
two vertices. An adjacency matrix can be used to represent
a Bradley–Terry likelihood. The following zero diagonal,
asymmetric square matrix of nonnegative elements is an
example in Ford (1957),

A = (
ai j
) =

⎡

⎢
⎢
⎣

0 15 15 0
11 0 10 20
11 10 0 20
0 1 1 0

⎤

⎥
⎥
⎦

where each ai j represents the number of wins of i over j .
The following algorithm is used there for the MLE:

pi ←
⎛

⎝
d∑

j=1

ai j

⎞

⎠

/⎛

⎝
d∑

j=1

ai j + a ji

pi + p j

⎞

⎠, (16)

where ai j is the (i, j)th element in the adjacency matrix. The
i th row sum

∑d
j=1 ai j corresponds to ai , the anti-diagonal

pair sum ai j +a ji corresponds to the opposite sign of one ele-
ment of the variable cell counts vector b, and the probability
sub-sum pi + p j corresponds to one element of Δᵀ p in the
Algorithm 1 notation. The Ford algorithm can be rewritten
as

pi ← ai

δ
ᵀ
(i)(−b/Δᵀ p)

which corresponds to Algorithm 1 with s = 0.

In any adjacency matrix representation, the sum of all
row sums must equal to that of all anti-diagonal pair-
wise sums. Since, as mentioned above, each row sum
corresponds to an element of a and each anti-diagonal
pairwise sum corresponds to −1 times an element of
b, the right-hand side of Lemma 2 equals zero for any
Bradley–Terry likelihood. It is understood now as the
exact condition that permits the original derivation of (16)
by unconstrained maximization. The Plackett–Luce model
also has the zero sum property. The sum of all expo-
nents represents the total volume of the information in the
joint likelihood, which should be nonnegative. For a typi-
cal example of the pathological case, p1 p2 p3(p1 + p2)−4

has this sum equal to −1 and diverges near the vertex
(0, 0, 1).

3.3 The Bayesian weaver

When a pi is very small relative to the other probabilities,
we say the signal is weak at pi . For MLE containing a weak
signal, the solution is very close to the boundary of the sim-
plex. There is a chance for the weaver path to cross that
boundary before reaching the solution. In such cases, thick-
ening the complete counts vector a can help enhance the
stability of the iteration. The Bayesian weaver implements
this idea using a Dirichlet prior. For any incomplete multi-
nomial likelihood, if the prior mode and the posterior mode
are the same, then the MLE equals to them. One can then
develop a new algorithm by making the prior mode converg-
ing to the posterior mode. Computationally, this means to
run a two-layer iteration. The master sequence converges to
the true maximizer/mode while for each term in the mas-
ter sequence there is a weaver iteration converging to the
term. Specifically, we add some positive counts to the com-
plete data by an amount equal to the rescaled current MLE
solution to produce a posterior. A weaver is then launched
to find the posterior mode which determines a new prior.
The iteration repeats to produce a posterior mode sequence
whose limit is the MLE. Algorithm 2 describes the steps
of the Bayesian weaver. Our experience suggests setting
the prior thickness γ = ∑q

j=1

∣
∣b j
∣
∣ or slightly more than

that.

Algorithm 2 Bayesian weaver
0. Initialize p = (1/d, ..., 1/d) and choose the prior thickness γ .
1. Multiply the Dirichlet prior

∏d
i=1 pγ pi

i to the original incomplete
multinomial likelihood to produce a posterior incomplete
multinomial Fnew.

2. Find the MLE of Fnew and update p to this value.
3. Repeat 1–2 till convergence.

123

Author's personal copy



Stat Comput

Table 2 Simulation results for
MLE’s large-sample property
under Example 2

Simulation results of Sect. 4.1.1.

True p

0.1654 0.2024 0.1444 0.1532 0.2301 0.1046

Theoretical asymptotic covariances 
 of MLE p̂ (×10−4)

5.33 −2.20 −1.56 1.63 −2.20 −1.00

−2.20 11.52 −2.32 −1.69 −4.51 −0.80

−1.56 −2.32 8.35 −1.23 −1.35 −1.89

1.63 −1.69 −1.23 4.98 −2.54 −1.15

−2.20 −4.51 −1.35 −2.54 12.84 −2.24

−1.00 −0.80 −1.89 −1.15 −2.24 7.08

Theoretical asymptotic SE( p̂) as
√
diag


0.0231 0.0339 0.0289 0.0223 0.0358 0.0266

Sample mean of p̂’s computed for every simulation

0.1653 0.2026 0.1445 0.1532 0.2299 0.1045

Sample covariance of the p̂’s (×10−4)

5.45 −2.31 −1.63 1.59 −2.15 −0.95

−2.31 11.43 −2.45 −1.74 −4.11 −0.80

−1.63 −2.45 8.58 −1.26 −1.32 −1.92

1.59 −1.74 −1.26 5.00 −2.47 −1.12

−2.15 −4.11 −1.32 −2.47 12.17 −2.11

−0.95 −0.80 −1.92 −1.12 −2.11 6.91

Mean of the covariances computed for every simulation (×10−4)

5.44 −2.28 −1.62 1.55 −2.13 −0.96

−2.28 11.36 −2.42 −1.74 −4.09 −0.83

−1.62 −2.42 8.52 −1.25 −1.38 −1.85

1.55 −1.74 −1.25 4.93 −2.40 −1.10

−2.13 −4.09 −1.38 −2.40 12.05 −2.05

−0.96 −0.83 −1.85 −1.10 −2.05 6.79

Mean of the SE( p̂)’s computed for every simulation

0.0233 0.0336 0.0291 0.0221 0.0347 0.0259

4 Simulations

Simulations are devised in this section to demonstrate usage
of the model, the weaver algorithms to obtain the MLE, and
the covariance formulae.

4.1 Simulation for large-sample properties of the MLE
based on Example 2

We simulate data based on the same configuration as Exam-
ple 2, which involves one complete sample, two marginal
samples, and one conditional sample. The total counts of the
samples are fixed at 120, 40, 40, and 100, respectively. The
true probabilities are set to the MLE of the likelihood (2).
Note that themarginal samples and the conditional sample all
follow multinomial distributions with probabilities adapted
to marginal spaces or normalized to a restricted space. Each

simulation generates a new set of four samples by multi-
nomially resampling the original four, then puts them into
an incomplete multinomial likelihood, and finally computes
an MLE and an observed information matrix. After N sim-
ulations, we obtain N pairs of the MLE and the observed
information matrix.

4.1.1 Large-sample mean and covariance of the MLE

We performed N = 120, 000 simulations. The mean vector
and sample covariance matrix of the N MLEs, the mean
matrix of the estimated asymptotic covariance matrices of
the MLEs, and the mean vector of the standard errors of
the MLEs are reported in Table 2 with comparison to the
true probability, the theoretical covariance derived from (13),
(14), and (15). The results show that the estimates are very
close to their true values.
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Fig. 3 Simulation based on Example 2: Joint (upper) and marginal (lower) coverage probabilities of the MLE confidence region and intervals

4.1.2 Coverage probability

To assess coverage of the true probability vector by the joint
confidence region, we use the χ2-distributed squared Maha-
lanobis distance between the true p and the MLE,

D2
(
p[1..5], p̂

(i)
[1..5]

)

=
(
p[1..5] − p̂(i)

[1..5]

)ᵀ(
S(i)

)−1 (
p[1..5] − p̂(i)

[1..5]

)
iid∼ χ2 (5)

where S(i) is the asymptotic covariance of the i th MLE p̂(i),
and the [1..5] subscript denotes the sub-vector of the first five
elements. The top panel in Fig. 3 is a plot of the sampling
frequency of accepting the null hypothesis,
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1

N
× #

{
i ∈ {1, . . . , N } : D2

(
p[1..5], p̂

(i)
[1..5]

)
� χ2

q (5)
}

versus the quantity q ∈ { 1
N , 2

N , . . . , 1
}
which is the confi-

dence level and regulates the size of the elliptical confidence
region. The joint coverage probability of the true parame-
ter by the region of confidence level q should converge to q
when sample size increases to infinity, as will be verified in
the simulation of Sect. 4.3.

Themarginal coverage probability reduces to the standard
normal case and is computed for every p1, . . . , p6 at all con-
fidence levels. At the 95% confidence level, these empirical
coverage probabilities based on the N = 120, 000 simu-
lations are estimated as 94.35, 94.38, 94.16, 94.41, 94.32,
93.68%, respectively. Also included in Fig. 3 are histograms
of the marginal distributions of every p̂i superposed with the
respective normal density curves. The joint andmarginal cov-
erage probability computations, together with the normality
checks, verify the correctness of both the MLE algorithm
and the asymptotic covariance formula for the incomplete
multinomial model.

4.2 Parameter identification based on the modified
Example 2

If we estimate the PMF using only the incomplete samples
2–4, the parameters p2, p3, p5, and p6 as a group is only
identifiable to two ratios (p2 + p3) : (p5 + p6), from sample
2, and (p2 + p5) : (p3 + p6), from sample 3. The following
table reports the mean MLE and the mean standard error
(SE) of MLE based on N = 120, 000 simulated data from
the same true p.

mean p̂

0.1654 0.2204 0.1261
0.1533 0.2119 0.1229

mean SE(p̂)
0.0410 5805 5805
0.0384 5805 5805

All p2, p3, p5, and p6 have a very large standard error
which indicates their unidentifiability. Note that the group
does succeed to identify the two ratios: (p2+ p3) : (p5+ p6)
is estimated at 1.035 compared to the true value 1.036, and
(p2 + p5) : (p3 + p6) estimated at 1.733 compared to the
true 1.737.

We now simulate for a modified case constructed to deter-
mine the missing ratio: (p2 + p6) : (p3 + p5). Toward this
goal, a 5th conditional binomial sample of size 40 is added.
The two categories in this sample are (i) the union of middle-
aged female and senior male, and (ii) the union of senior

p1 p2 p3

p4 p5 p6

Female

Male

Young
Middle

Senior

Sample 2

Sample 3

Sample 4

Sample 5 (new)

Fig. 4 Simulation study of parameter identification: Modified design
to determine the ratio (p2 + p6) : (p3 + p5)

female and middle-aged male. Figure 4 illustrates the modi-
fied design.

Middle-aged female or senior male p2 + p6

Senior female or middle-aged male p3 + p5

The joint likelihood now adopts the form

L∗ ( p) = (p1 + p2 + p3)
b1(p4 + p5 + p6)

b2

×(p1 + p4)
b3(p2 + p5)

b4(p3 + p6)
b5

×pa1
1 pa4

4 (p1 + p4)
b6

×(p2 + p6)
b7(p3 + p5)

b8(p2 + p3 + p5 + p6)
b9,

where b6 = −(a1 + a4) < 0 and b9 = −(b7 + b8) < 0.
As a result, the mean MLE and mean SE of MLE from the
modified N = 120, 000 simulations are given by

mean p̂

0.1653 0.2023 0.1441
0.1531 0.2298 0.1053

mean SE(p̂)
0.0410 0.0613 0.0593
0.0384 0.0621 0.0582

Note that all SE’s are estimated at reasonable levels and all
elements in the MLE vector are close to the true parameters.

4.3 Simulations of general partition patterns

A true p ∈ T ◦
d−1 is specified to generate n incomplete

multinomial likelihoods L(i)( p), i = 1, . . . , n. For each
likelihood L(i)( p), the weaver algorithm is applied to find
the MLE, p̂(i). The empirical distribution of the MLEs is
studied to confirm the reduction of variance as sample size
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increases. The following describes the two-stage scheme of
the simulation,

p →
(
a(i), b(i),Δ(i)

)
→ p̂(i)

, for i = 1, . . . , n. (17)

The first stage simulates the i th incomplete multinomial
likelihood represented by the tuple (a(i), b(i),Δ(i)), and
the second stage employs the weaver algorithm to find the
MLE of the i th likelihood. The simulation of the tuple
(a(i), b(i),Δ(i)) consists of simulating R multinomial likeli-
hood slices which are subsequently multiplied into a single
joint likelihood.

4.3.1 Random partition

The simulation of every multinomial slice involves a random
partition process of the sample space described as follows.
Denote by (Ω,A,P) the probability space implied by the
PMF, p, and themost basic events inA by e1, . . . , ed . Denote
the P-measurable outcome partition by π , defined as π =
{S0, . . . , Sk} ⊂ A such that 2 ≤ k ≤ d,

⋃k
i=1 Si = Ω ,

Si ∩ S j = ∅ for any i �= j , and Si �= ∅ for any i ≥ 1. Denote
the random partition process that produces π by P , which
consists of the following two random draws.

1. Draw k̄ ∼ U [2, d] as the upper bound of k, the number
of subsets in the partition.

2. Draw γ1, . . . , γd
iid∼ U

[
0, k̄

]
the group labels for each

of the d elements and resolve k = # {i : γi > 0} as
the number of unique group labels except for the label
0. Let

{
ζ1, . . . , ζk : 1 ≤ ζi ≤ k̄

}
be the set of unique

positive values realized by γ1, . . . , γd and define Si =⋃
j :γ j =ζi

e j . Then π+ = {Si : i = 1, . . . , k} is the out-
come partition before conditioning. The group label 0
is included to enable the simulation of conditioning pat-
terns. When

{
j : γ j = 0

} �= ∅, we let S0 = ⋃
j :γ j =0 e j

and use its complement Sc
0 = Ω\S0 as the conditioning

set. In the case of { j : γ j = 0} = ∅, we let S0 = ∅.
The conditioning set Sc

0 is incorporated in the final likeli-
hood with a negative exponent (i.e., on the denominator)
being equal to the minus sum of all exponents of the
positive indexed subsets in the current draw. For exam-
ple, suppose d = 5 and the current draw of (γ1, . . . , γ5)

realizes to (0, 0, 5, 3, 3), then S0 = {e1, e2}, S1 = {e3},
S2 = {e4, e5} and the structure of the corresponding like-
lihood component is

p3α(p4 + p5)β

(1 − p1 − p2)α+β
= p3α(p4 + p5)β

(p3 + p4 + p5)α+β

for any exponents (α, β) subsequently drawn based on
the partition from a multinomial distribution. The final
outcome partition is π = π+ ∪ {S0}.

Let R be the number of multinomial slices whose product
is the final incomplete multinomial likelihood. Let m be a
prespecified constant regulating the level of the total counts
in a single multinomial slice. Each of the R multinomial
likelihood slices is mapped to the random tuple

( y, π, ν) ∼ U (ν|m)P(π | p)M
(
y|ν, pπ

)
,

where the multinomial parameter ν ∼ U [md, 2md] as the
total sum of exponents is drawn from the uniform distribu-
tion, the vector y ∈ Z

d is the multinomial outcome drawn
from M( y|ν, pπ ). The R slices are then transformed into the
standard incompletemultinomial parameterization for the i th
joint likelihood

(
a(i), b(i),Δ(i)

)
= g

(
y(is ), π(is ), ν(is ); s = 1, . . . , R

)
,

where the complete exponent vector a(i) is increased by cα(i)

with c = 1 andα(i) ∼ M(·|∑R
s=1 ν(is ), p). Here, c regulates

the proportion of the complete-data part in the likelihood; for
example, in Example 2, c rescales the counts of Sample 1.
The transformation algorithm g splits y into a and b by sepa-
rating the columns of the binary matrix π , which uses binary
vectors to represent the sets Si , between columns that have
only a single 1 (whose y-counts go to a) and have multiple
1s (whose y-counts go to b). The multiple-1 columns of π

make Δ.

4.3.2 Intrinsic sample size of a single incomplete
multinomial likelihood

For the i th likelihood, the intrinsic sample size is con-
trolled by m, for the level of total exponents in multinomial
sampling, and R, for the number of multinomial samples
contained in a single incomplete multinomial likelihood. In
a sense, a single sample from the incomplete multinomial
distribution encapsulates an intrinsic sample size of the order
O(m × R). Implementing the scheme (17) explained in the
previous section, we choose a true vector of parameters,

p = 1

5050
(1, 2, . . . , 100)

and simulate an incomplete multinomial likelihood for every
pair (m, R) from the grid {1, 10, 100, 1000} × {2, 4, 8, 16},
and compute its MLE, p̂, using the weaver algorithm. The
comparison of p̂ vs. p is reported in Fig. 5 using PP–
plots. The convergence of p̂ → p improves as m and/or
R increases, as shown in the PP–plots array.
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Fig. 5 Simulating counts on a random partition: PP–plots of p̂ vs. p for each pair of m and R

To evaluate the variance of the MLE, we obtain an empir-
ical distribution of the MLE based on 600 simulations, with
one of the pair (m, R) fixed at the stressed level of 2 and the
other taking values from 2 to a large value (210 for m and
20 for R). Without loss of generality, we report results only
for the smallest and the largest parameters p̂1 and p̂100 by
making a box plot for every pair of (m, R) simulated. The
box plots in Fig. 6 show steady reduction of the variances as
either m or R increases. Note that there are two anomalies
for the sample median of p̂1 occurring at (m, R) = (2, 2)
and (4, 2), where the medians drop to zero. This is imme-
diately understood as a large number of the 600 simulated
likelihoods have realized zero count on the first cell with
true probability p1 = 1/5050 due to the small intrinsic sam-
ple size. In other words, the signal is very weak for the first
cell and the intrinsic sample size is too small to capture any
trace of it. Despite this, the means of p̂1 and p̂100 over the
600 simulated values still estimate the respective parameters
with small biases.

4.4 Estimation of weak signals

In this simulation, we first study theweak signal performance
using the following true PMF,

p = (p1, . . . , p100) = 1

9901
(1, 100, . . . , 100),

where all elements of p are the same, except for p1, here
set to be one-100th of the rest. We use the weak signal (ws)
likelihood Lws( p) constructed to have theMLEexactly equal
to the true p,

Lws ( p) = p1 p1002 · · · p100100

×(p1 + p2)
101(p3 + p4)

200 · · · (p99 + p100)
200

×p1(p2 + p3)
200 · · · (p96 + p97)

200

(p98 + p99 + p100)
300.
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Fig. 6 Simulating counts on a random partition: empirical distributions of p̂1 and p̂100 based on 600 simulations for every combinations of R and
m with one of the pair set at the small value of 2 while the other increases from 2 to a large value

Figure 7 plots the iterations of a Bayesian weaver solving
p̂1 = 0.0001009998990001, achieving correct 16 places
after the decimal point.

The above shows under an artificial noiseless condition, a
single weak signal of 1/100 intensity can be recovered almost
arbitrarily well. Next, we simulate under a more realistic and
stressed condition with sampling noise and multiple much
weaker signals. The unnormalized true PMF has length 60
and consists of three segments of equal sizes and drastically
increasing magnitudes:

– 20 draws from U (0, 1),

– 20 draws from U (100, 1000), and
– 20 draws from U (10000, 100000).

Thus, the largest element of the PMF can be more than 1
million times the smallest. Having multiple very weak sig-
nals in the true PMF means the solution is very close to a
20-dimensional hyper-plane boundary of the 60-dimensional
simplex; and locally to that hyper-plane, the solution is close
to a lower dimensional boundary. The purpose is to show
the algorithms developed in this paper is capable of find-
ing the solution when it falls in that region. The generation
of the likelihood functions uses the same random partition
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Fig. 7 Estimating a weak signal p1 using the Bayesian weaver. The MLE solution is accurate to the 16th place after decimal

algorithm of Sect. 4.3.1. To add even more burden, we used
c = 0.001 to reduce the complete-data part, where c is
described in Sect. 4.3.1 near the description of g.We generate
three likelihoods under increasing (m, R)=(100, 8), (1000,
32), and (10000, 128). Figure 8 plots the estimated p̂ vs.
the true p generating the likelihood. As (m, R) increase, the
estimation of the very weak signals (first column in Fig. 8)
improves.

5 Discussion

5.1 Comparison with the EM and MM algorithms

TheEMalgorithm (Dempster et al. 1977;Wu1983;McLach-
lan and Krishnan 2008) is an elegant technique to compute
the MLE for a broad class of likelihood functions. Its imple-
mentation depends on a creative success in augmenting the
likelihood function of the observed data into a likelihood
function of the complete data under the constraint that the
expectation of the latter equals to the former, functionwise.
An implicit goal is that the maximization of the complete-
data likelihood should be much simplified as a result of its
construction. The maximization is called the M-step; the

mean function constraint is called the E-step; the construc-
tion of the complete-data likelihood is called the imputation
step. A common procedure for constructing a complete-data
likelihood is to first identify a sufficient statistic, T , in the
observed-data likelihood, then make T a (measurable) func-
tion of the latent variables, and finally replace it by that
function of the latent variables. The complete-data likeli-
hood constructed by this procedure automatically satisfies the
mean function constraint. The MM algorithm (Lange et al.
2000;Hunter andLange 2004;Lange 2013) is based on a sim-
ilar idea but a more general construction. Like EM, instead
of directly dealing with the objective function, the MM algo-
rithm constructs a maximization-friendly surrogate function
and imposes the so-called minorization conditions that the
surrogate should be dominated by the objective function and
that the two functions have a single touch point which is the
current iteration of the parameter.

The Bradley–Terry and Plackett–Luce type models, both
adopting the form of the incomplete multinomial likeli-
hood, have been historically difficult to compute because (i)
the parameter vector is typically high dimensional, causing
many generic convex optimization methods to perform inef-
ficiently; (ii) a naive construction of the EM algorithm by
simply splitting out the probability sub-sums fails to work
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Fig. 8 Estimating weak and very weak signals by three likelihoods
(top to bottom) generated from increasing (m, R). Horizontal axis: the
true PMF for data generation; vertical axis: MLE of the PMF solved
from the generated likelihoods. The PMF is of length 60, equally split

to 20 very weak (left column), 20 weak (middle column), and 20 strong
(right column) signals. The strongest signal is more than 1million times
the weakest. Some of the very weak signals are outside the frame of the
top-left panel

because the sub-sums all appear in the denominator of the
two likelihoods. This is fatal to such construction as each
iteration tends to decrease the complete-data likelihood and
move away from the solution.

The NASCAR2002 car racing data set is a benchmark
for computational methods developed for the Bradley–Terry
type model. The data set can be captured by a 1543-term
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Table 3 Comparison of computing time for the MLE of a Plackett–
Luce likelihood on the car racing data in the top panel; and comparison
of the elapsed time for the serial and parallel weavers applied to three
large incomplete multinomial likelihood functions with d = 1000 and
q = 1000, 10, 000, 100, 000 in the bottom panel. The likelihood func-
tions are generated by the random partition algorithm described in
Sect. 4.3
Time elapsed
for 100 calls

EM/MM Serial weaver
0.359 sec 0.189 sec

d ≡1000,
q

Serial weaver Parallel weaver

1000 0.184 sec 0.070 sec
10000 3.424 sec 0.463 sec
100000 38.047 sec 4.061 sec

Plackett–Luce likelihood

LPL( p) = p83
p83 + p18 + p20 + · · · × p18

p18 + p20 + · · ·
× p20

p20 + · · ·
× · · · · · ·
× p53

p53 + p38 + p14
× p38

p38 + p14
× p14

p14
,

which is the product of the last column in Table 1. Hunter
(2004) developed anMMalgorithm to compute itsMLE. The
MM algorithm uses a simple but effective minorizing surro-
gate based on the convexity of the minus logarithm function.
Caron and Doucet (2012) used the minimum order statistic
of two exponential variables as the latent variable variable
[c.f. Gordon (1983)] to construct an EM algorithm, which,
by coincidence, has the same final form as the above MM
algorithm.

Compared with EM and MM, which are algorithm tem-
plates, the weaver algorithm is stated in the final form, has
relatively simple code, and is easy for a parallel implemen-
tation. We report in Table 3 that the serial weaver imple-
mentation finishes faster, according to the MATLAB profiler
(MathWorks 2017), on the benchmark NASCAR2002 data
set than the MM/EM algorithm.

In “Appendix D,” we list the full PMF solution, along
with a log-odds column for direct comparison with Hunter
(2004)’s Table 2. Table 4 in “Appendix D” also reports a
complete 87-driver ranking using the gained points (recorded
in the raw data per driver per race) modeled by a Bradley–
Terry likelihood,

LBT( p) = p18087 p17019 · · · p3486
(p87 + p19 + · · · + p86)180+170+···+34 ×

· · · × p18051 p18042 · · · p3415
(p51 + p42 + · · · + p15)180+180+···+34 ,

which has 123 terms. The two models’ ranking results are
generally similar.

Parallelization is critical for the weaver algorithm to per-
form in high dimensions with long p and large Δ. We report
in Table 3 a speed comparison between a serial weaver
implemented in C (Kernighan and Ritchie 1988) and a par-
allel weaver implemented in CUDA C (NVIDIA 2017). The
elapsed times are measured for both implementations run-
ning on the same three large likelihood functions generated
by the random partition algorithm of Sect. 4.3. The PMFs
all have length d = 1000. The vector b’s length ranges from
1000 to 100000.

Some additional references on relevant optimization
methods are Heiser (1995), Tanner (1996), Lange and Zhou
(2014), Nelder and Mead (1965), and Lagarias et al. (1998).

5.2 Eigenstructure and some algebraic considerations

In the multinomial model, the parameter–data–estimator
relationship exhibits what might be called an eigenstructure:

θ̂ (x) = λx,

where θ̂ is the estimator, x is the data, and λ is a nonzero
scalar. Such estimator characteristic brings a great computa-
tional benefit. In the incomplete multinomial model, many
such eigenstructures with different λs are integrated into a
single likelihood. Here, we have basically taken an inequal-
ity approach to unlocking the same computational benefit
for the incomplete multinomial model and, through it, for all
its sub-class models. Figure 9 illustrates the picture of such
thought.

The variable cell pattern can influence the SEs of the point
estimates through the observed information matrix formula
derived in Sect. 2.2, where it shows the SEs of the point esti-
mates depend on the Δ matrix. For the point estimates, the
complexity of the variable cell pattern has limited influence
on the effectiveness of the estimating equations from our
experience. This is probably because only very basic arith-
metic operations are required in the estimating equations (3).
In particular, they do not involve matrix inversion. The most
complex operation in equations (3) is the matrix-vector mul-
tiplication.

The solution of the MLE equations (3) is not computa-
tionally limited to Algorithms 1 and 2. Given the simplicity
of the equations, symbolic computation is also accessible,
which has the advantage of arbitrary precision. The speed
lost in symbolic manipulation can be regained from paral-
lelization. Parallelizability is a main gift from equations (3).
Some references on algebraic methods are Diaconis (1988),
Pistone et al. (2000) and the text book Cox et al. (2007).

One can define an equivalence relation on the class of
all concave incomplete multinomial likelihood functions via
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Fig. 9 Picture of the eigenstructure. Each piece represents a compo-
nent in the likelihood. The volume and base area of each piece equals
the (variable) cell count and the (variable) cell probability. Terms with
negative exponents are drawn as dashed lines. The estimation process
amounts to varying the base areas until all pieces can be assembled
seamlessly into the big cylinder of volume 70 with a base area of 1

equality of the MLE. Within each equivalent class, the vari-
ability comes only from the partition process. Across the
equivalent classes, variability lies in the multinomial sam-
pling. The equivalence class is closed under multiplication,
namely the product likelihood of two MLE-sharing and con-
cave likelihoods has the same MLE and is still concave. In
forming the product likelihood by natural experiments, each
component is observed without being required to satisfy the
MLE-sharing property, but they do usually satisfy concavity,
even with conditional observations. This ensures the product
likelihood to be concave.
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Appendix A: Proof of Lemma 1

Proof (Work with xi/ai and connect to the weighted AM–
GM inequality, with its equality condition).Rewrite the target

inequality as

n∏

i=1

aai
i

n∏

i=1

(
xi

ai

)ai

�

n∏

i=1
aai

i

(
n∑

i=1
ai

) n∑

i=1
ai

a

n∑

i=1
ai

i

(
n∑

i=1

xi

ai

) n∑

i=1
ai

,

By substituting yi for xi/ai and taking the

(
n∑

i=1
ai

)

-th root

on both sides, we have

n∏

i=1

y

ai
n∑

i=1
ai

i �
n∑

i=1

ai
n∑

i=1
ai

yi .

After a further substitution of wi = ai/
∑n

i=1 ai , we arrive
at

n∏

i=1

ywi
i �

n∑

l=1

wi yi ,

which is the weighted AM-GM inequality. It is crucial that
we now check and confirm that all equalities can hold jointly
if and only if xi/ai = τ for all i , given the existence of such
a uniform constant τ which must be positive. ��

Appendix B: Examples and Corollaries of Lemma 1

Example 5 (x1 + x2)5 � 55

3322
x31 x22 . This inequality holds

because

x31 x22 = x1
3

x1
3

x1
3

x2
2

x2
2
3322

� 3322
(
3 x1

3 + 2 x2
2

3 + 2

)3+2

= 3322
(

x1 + x2
5

)5

,

where the equality is attained if and only if (x1, x2) is colinear
with (3, 2).

Example 6 (x1 + x2)7 x33 x54 � 335577

1515
(x1 + x2 + x3 + x4)15.

This inequality holds because

(x1 + x2)
7 x33 x54 � 773355

(
7 x1+x2

7 + 3 x3
3 + 5 x4

5

7 + 3 + 5

)7+3+5

,

where the equality is attained if and only if (x1 + x2, x3, x4)
is colinear with (7, 3, 5). More importantly, together with
the inequality in the previous example, the two equalities are
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jointly attained if and only if (x1, x2, x3, x4) is colinear with
(21, 14, 15, 25).

Corollary 1 If we require
∑n

i=1 xi = ∑n
i=1 ai = 1 in

Lemma 1, then

n∏

i=1

xai
i �

n∏

i=1

aai
i ,

n∑

i=1

ai ln xi �
n∑

i=1

ai ln ai , (18)

and the equalities are attained if and only if xi = ai for
i = 1, . . . , n.

Corollary 2 Let x ∈ (0,+∞)n be a vector of n positive
reals. Let δ ∈ {0, 1}n be a vector of n bits. Let β ∈ [0,+∞)n

be a nonzero vector of n nonnegative reals such that β j = 0
if δ j = 0. Let b = ∑n

i=1 βi > 0. Define 00 = 1. Then

(
δᵀx

)b � bb

n∏

i=1
β

βi
i

n∏

i=1

xβi
i ,

where the equality is attained if and only if there exists a
positive k such that xi/βi = k for each of the i’s having
δi = 1.

Example 7 Letn =5, δ=(1, 0, 1, 0, 1)ᵀ,β =(3, 0, 4, 0, 6)ᵀ,
b = 3+ 0+ 4+ 0+ 6 = 13. Then ∀x ∈ (0,+∞)n , we have

(1x1 + 0x2 + 1x3 + 0x4 + 1x5)
13

� 1313

3300440066
x31 x02 x43 x04 x65 ,

which attains the equality if and only if x1 : x3 : x5 = 3 : 4 :
6.

Corollary 3 If we rescale each xi by an independent positive
constant ci , then we have the a seemingly more general but
rather equivalent formulation of Lemma 1,

n∏

i=1

xai
i �

n∏

i=1
aai

i

n∏

i=1
cai

i

(
n∑

i=1
ai

) n∑

i=1
ai

(
n∑

i=1

ci xi

) n∑

i=1
ai

,

which attains the equality if and only if there exists some
positive constant k such that ci xi/ai = k for all i .

Example 8 Let n = 3, a = (1, 2, 3), c = (4, 5, 6), then we
have

(4x1) (5x2)
2(6x3)

3

�
(
4x1 + 5x2

2 + 5x2
2 + 6x3

3 + 6x3
3 + 6x3

3

6

)6

.

Therefore,

x1x22 x33 � 1

415263
112233

66
(4x1 + 5x2 + 6x3)

6,

which attains equality if and only if 4x1 = 5x2/2 = 6x3/3
or x1 : x2 : x3 = 5 : 8 : 10.

Corollary 4 Generalizing Corollary 3 to a linear transform
U on vector x,

n∏

i=1

(
uᵀ

i x
)ai ≤

{
n∏

i=1

(
ai

θi

)ai
}
⎛

⎜
⎜
⎝

θᵀUx
n∑

i=1
ai

⎞

⎟
⎟
⎠

n∑

i=1
ai

,

which attains the equality if and only if

⎡

⎢
⎢
⎣

θ1
a1

0
. . .

0 θn
an

⎤

⎥
⎥
⎦Ux = k1n,

where k is a constant and can be solved explicitly under an
extra constraint such as an affine constraint on x.

Example 9 Let x1 = 2y1 + y2 and x2 = y1 + 2y2 in the first
case of Example 5, we have

(2y1 + y2)
3(y1 + 2y2)

2 ≤ 2238

55
(y1 + y2)

5,

which attains equality if and only if y1 = 4y2. By requiring
the constraint y1 + y2 = 1 on the solution, it follows

[
y1
y2

]

=
[
0.8
0.2

]

,

and the uniquemaximumof (2y1 + y2)3(y1 + 2y2)2 attained
is 2238/55 = 8.398.

We recursively apply the inequality to the objective, as this
inequality transforms the maximization problem into a set of
equality attainment conditions, which becomes a system of
simple equations.
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Appendix C: Proof of the ascent property and the
linear rate of convergence of the weaver algorithm
when s is sufficiently large

We instead maximize the log-likelihood with a Lagrange
multiplier term to incorporate the equality constraint,

�( p) = aᵀ ln p + bᵀ lnΔᵀ p − s
(
1ᵀ p − 1

)
,

where the Lagrange multiplier is the known constant

s = 1ᵀa + 1ᵀb,

not adding an extra unknown.
The derivative of �( p)with respect to pi at iteration k is given
by

∂�( p)

∂p(k)
i

= ai

p(k)
i

+
q∑

j=1

Δi j b j
∑d

h=1 Δh j p(k)
h

− s.

Combining the weaver steps 1 and 2, p(k)
i is updated accord-

ing to

p(k+1)
i = ai

s −
q∑

j=1

Δi j b j
∑d

h=1 Δh j p(k)
h

.

We seek to establish the positivity of the quantity

(
p(k+1)

i − p(k)
i

) ∂�( p)

∂p(k)
i

=
⎧
⎨

⎩

ai

p(k)
i

+
q∑

j=1

Δi j b j
∑d

h=1 Δhj p(k)
h

− s

⎫
⎬

⎭

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ai

s −
q∑

j=1

Δi j b j
∑d

h=1 Δh j p(k)
h

− p(k)
i

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
(

ai − p(k)
i v(k)

)2

p(k)
i v(k)

,

where

v(k) ≡ s −
q∑

j=1

Δi j b j
∑d

h=1 Δh j p(k)
h

.

It is now clear the condition for the last quantity to be positive
is v(k) > 0. Then, under this condition, every step of the
iteration increases �( p). Since �( p) is clearly bounded from
above, the iteration converges.

Next, we show the rate of convergence is linear.We denote
the i th component of the solution as p(∗)

i and use the simpler

symbol g to denote the derivative function g (pi ) ≡ ∂�( p)
∂pi

,

hence g
(

p(∗)
i

)
= 0. We assume �( p) is locally concave

at p(∗) and assume g to be Lipschitz continuous, viz. there
exists a positive constant L such that, for all pairs of (p, q)

in the domain, |g (p) − g (q)| ≤ L |p − q|. Then, we have

p(k+1)
i − p(∗)

i = ai

ai

p(k)
i

− g
(

p(k)
i

) − p(∗)
i

= ai p(k)
i

ai − p(k)
i g

(
p(k)

i

) − p(∗)
i

=
ai

(
p(k)

i − p(∗)
i

)
+ p(∗)

i p(k)
i g

(
p(k)

i

)

ai − p(k)
i g

(
p(k)

i

) ,

and further,

∣
∣
∣
∣
∣

p(k+1)
i − p(∗)

i

p(k)
i − p(∗)

i

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣
∣

ai + p(∗)
i p(k)

i

g
(

p(k)
i

)

p(k)
i −p(∗)

i

ai − p(k)
i g

(
p(k)

i

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ai − p(k)
i

g
(

p(k)
i

)

1−p(k)
i

/
p(∗)

i

ai − p(k)
i g

(
p(k)

i

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

If p(k)
i < p(∗)

i , then g
(

p(k)
i

)
> 0 and 1 − p(k)

i

/
p(∗)

i > 0.

Therefore,

g
(

p(k)
i

)

1 − p(k)
i

/
p(∗)

i

> g
(

p(k)
i

)
.

If p(k)
i > p(∗)

i , then g
(

p(k)
i

)
< 0. Therefore,

g
(

p(k)
i

)

p(k)
i −p(∗)

i

< 0

and

ai + p(∗)
i p(k)

i

g
(

p(k)
i

)

p(k)
i − p(∗)

i

< ai < ai − p(k)
i g

(
p(k)

i

)
.

In both cases, the numerator is smaller than the denominator,

hence

∣
∣
∣
∣

p(k+1)
i −p(∗)

i

p(k)
i −p(∗)

i

∣
∣
∣
∣ < 1 and the rate of convergence is linear.

Appendix D: Ranking results of the car racing data

See Table 4.
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Table 4 NASCAR2002 car racing data: complete ranking results using the Placket–Luce and Bradley–Terry models

Driver name PL rank PL PMF est. i PL βi = Log(P̂i /P̂1) BT rank BT PMF est.

P.J. Jones 1 0.186404564 58 4.15 1 0.023463204

Scott Pruett 2 0.109555541 68 3.62 2 0.021996754

Mike Bliss 3 0.027419058 54 2.23 13 0.017077210

Mark Martin 4 0.023488563 51 2.08 4 0.018477977

Rusty Wallace 5 0.023046199 66 2.06 10 0.017748481

Jimmie Johnson 6 0.020492992 37 1.94 7 0.017849368

Tony Stewart 7 0.018402700 82 1.83 3 0.018625428

Jeff Gordon 8 0.016795380 32 1.74 6 0.017876530

Sterling Marlin 9 0.016694860 72 1.73 8 0.017840921

Ricky Rudd 10 0.016142733 61 1.70 14 0.016774526

Jeff Burton 11 0.015354723 31 1.65 16 0.016526187

Kurt Busch 12 0.015311248 48 1.65 5 0.018008461

Matt Kenseth 13 0.014842682 52 1.62 11 0.017197478

Dale Jarrett 14 0.014637976 13 1.60 12 0.017131513

Robert Pressley 15 0.014616780 63 1.60 28 0.013494644

Tom Hubert 16 0.014178605 80 1.57 29 0.013344697

Dale Earnhardt, Jr. 17 0.013790301 12 1.54 15 0.016568870

Bill Elliott 18 0.013451800 2 1.52 17 0.016134277

Ryan Newman 19 0.013283018 67 1.51 9 0.017822206

Dave Blanev 20 0.012682449 14 1.46 23 0.014240692

Ricky Craven 21 0.012603025 60 1.45 20 0.015086597

Ron Fellows 22 0.012601384 64 1.45 38 0.012385872

Michael Waltrip 23 0.012331733 53 1.43 19 0.015462985

Jeff Green 24 0.011798589 33 1.39 22 0.014372622

Robby Gordon 25 0.011530124 62 1.36 25 0.014093240

Bobby Labonte 26 0.011485129 4 1.36 21 0.014783933

Ted Musgrave 27 0.011249832 76 1.34 36 0.012713267

Kyle Petty 28 0.010888701 49 1.31 27 0.013584921

Terry Labonte 29 0.010183684 77 1.24 31 0.013258976

Jamie McMurray 30 0.009939150 27 1.22 18 0.015764967

Johnny Benson, Jr. 31 0.009861159 42 1.21 24 0.014132291

Jimmy Spencer 32 0.009689244 38 1.19 32 0.013077287

Kevin Harvick 33 0.009446842 45 1.17 26 0.013980069

Kenny Wallace 34 0.009260041 44 1.15 37 0.012464773

Jeremy Mayfield 35 0.009205626 34 1.14 34 0.012839904

Bobby Hamilton 36 0.009034232 3 1.12 35 0.012768050

Greg Biffle 37 0.008382600 21 1.05 44 0.011395510

Elliott Sadler 38 0.008232034 18 1.03 30 0.013262857

Jim Inglebright 39 0.008050031 36 1.01 58 0.009430152

Lance Hooper 40 0.008010967 50 1.00 56 0.009833190

John Andretti 41 0.007624819 41 0.95 39 0.012265620

Steve Park 42 0.007284639 74 0.91 41 0.011757295

Mike Skinner 43 0.007252152 55 0.90 49 0.011198539

Ken Schrader 44 0.007217817 43 0.90 43 0.011462399

Jerry Nadeau 45 0.006968941 35 0.86 48 0.011220590

Hut Stricklin 46 0.006952570 25 0.86 46 0.011292480

Hank Parker, Jr. 47 0.006781568 22 0.83 59 0.009034514
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Table 4 continued

Driver name PL rank PL PMF est. i PL βi = Log(P̂i /P̂1) BT rank BT PMF est.

Chad Little 48 0.006500003 10 0.79 63 0.008861344

Buckshot Jones 49 0.006473392 7 0.79 50 0.011110529

Boris Said 50 0.006320236 5 0.76 40 0.011778176

Jack Sprague 51 0.006228830 26 0.75 64 0.008820770

Jason Leffler 52 0.006223202 28 0.75 61 0.008897284

Brett Bodine 53 0.006214035 6 0.75 55 0.009944951

Steve Grissom 54 0.006137621 73 0.73 51 0.010710452

Casey Atwood 55 0.006082382 9 0.73 52 0.010466079

Ward Burton 56 0.005885004 83 0.69 33 0.013045560

Todd Bodine 57 0.005796735 79 0.68 42 0.011606318

Rick Mast 58 0.005692005 59 0.66 60 0.008900801

Joe Nemechek 59 0.005677445 39 0.66 45 0.011363619

Tim Sauter 60 0.005489072 78 0.62 66 0.007899625

Hermie Sadler 61 0.005314426 23 0.59 57 0.009594072

Stacy Compton 62 0.005277739 71 0.58 54 0.010126959

Ron Hornaday, Jr. 63 0.005239631 65 0.58 65 0.008134088

Geoffrey Bodine 64 0.005156242 20 0.56 47 0.011260146

Mike Wallace 65 0.004944446 56 0.52 53 0.010336122

Derrike Cope 66 0.003883784 16 0.28 69 0.007161137

Dave Marcis 67 0.003022438 15 0.03 82 0.005147442

Austin Cameron 68 0.002945440 1 0.00 80 0.005207696

Shawna Robinson 69 0.002940897 70 0.00 68 0.007197775

Scott Wimmer 70 0.002777679 69 −0.06 62 0.008889281

Joe Varde 71 0.002547493 40 −0.15 78 0.005425866

Frank Kimmel 72 0.002206856 19 −0.29 70 0.006730990

Tony Raines 73 0.002191885 81 −0.30 67 0.007565824

Dick Trickle 74 0.002157488 17 −0.31 81 0.005150774

Carl Long 75 0.002139651 8 −0.32 87 0.003205604

Kirk Shelmerdine 76 0.002131900 47 −0.32 79 0.005332018

Christian Fittipaldi 77 0.001893864 11 −0.44 77 0.005491400

Morgan Shepherd 78 0.001877493 57 −0.45 74 0.005615740

Kevin Lepage 79 0.001853367 46 −0.46 71 0.006090557

Jay Sauter 80 0.001724303 30 −0.54 73 0.005933925

Jason Small 81 0.001722761 29 −0.54 76 0.005510013

Stuart Kirby 82 0.001496052 75 −0.68 72 0.005989078

Hideo Fukuyama 83 0.001375393 24 −0.76 75 0.005590129

Andy Hillenburg #N/A #N/A #N/A #N/A 84 0.004695920

Gary Bradberry #N/A #N/A #N/A #N/A 85 0.004683511

Jason Hedlesky #N/A #N/A #N/A #N/A 83 0.004735487

Randy Renfrow #N/A #N/A #N/A #N/A 86 0.004670611
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