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Bayesian Two-Stage Design for Phase II
Clinical Trials with Switching Hypothesis Tests

Haolun Shi∗ and Guosheng Yin†

Abstract. Conventional phase II clinical trials use either a single-arm or a double-
arm scheme to examine the treatment effect of an investigational drug. The hy-
potheses tests under these two schemes are different, as a single-arm study usually
tests the response rate of the new drug against a set of fixed reference rates and
a double-arm randomized trial compares the new drug with the standard treat-
ment or placebo. To bridge the single- and double-arm schemes in one phase II
clinical trial, we propose a Bayesian two-stage design with changing hypothesis
tests. Stage 1 enrolls patients solely to the experimental arm to make a compar-
ison with the reference rates, and stage 2 imposes a double-arm comparison of
the experimental arm with the control arm. The design is calibrated with respect
to error rates from both the frequentist and Bayesian perspectives. Moreover, we
control the “type III error rate”, defined as the probability of prematurely stop-
ping the trial at stage 1 when the trial is supposed to move on to stage 2. We
conduct extensive simulations on the calculations of these error rates to examine
the operational characteristics of our proposed method, and illustrate it with a
non-small cell lung cancer trial.

MSC 2010 subject classifications: Primary 62C10; secondary 62P10.

Keywords: Bayesian error rates, expected sample size, phase II clinical trial,
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1 Introduction

As the proof-of-concept stage of drug development, phase II trials focus on the evaluation
of the new agent’s therapeutic effects, screening out unpromising drugs and carrying
the promising ones forward to confirmative phase III trials. Many statistical methods
have been developed for phase II trial designs. Gehan (1961) suggested a two-stage
design with the provision of stopping the trial early for futility if there is no response
observed in the first stage. Fleming (1982) proposed multiple testing procedures for
phase II clinical trials. Simon et al. (1985) discussed sample sizes for selection designs
with response endpoints in randomized phase II trials. Chang et al. (1987) studied group
sequential methods and suggested minimizing the average expected sample size under
the null and alternative hypotheses in phase II trials. Sylvester (1988) introduced a
Bayesian approach to phase II trial designs on he basis of loss functions. Simon (1989)
proposed an optimal and a minimax two-stage design by controlling the type I and
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type II error rates under the frequentist hypothesis testing framework. To address the
patient accrual problem, Green and Dahlberg (1992) developed phase II designs to
allow for variable attained sample sizes. In the Bayesian paradigm, Thall and Simon
(1994) provided useful framework for continuously assessing the trial outcomes based
on posterior probabilities in single-arm phase II trials. Chen and Ng (1998) proposed a
flexible design by optimizing the expected sample size under an uninteresting response
rate.

Recent years have witnessed vast development in the statistical theories with appli-
cations to phase II clinical trial designs. In particular, Lee and Zelen (2000) introduced
the concept of Bayesian posterior error rates and recommended that the control of error
rates should be conditional on the trial outcomes. Steinberg and Venzon (2002) proposed
an early selection approach to randomized phase II trials. Tan and Machin (2002) pro-
posed two Bayesian two-stage designs for phase II clinical trials where the decisions are
based on the posterior distribution of the true response proportion. As extensions, Mayo
and Gajewski (2004) considered the cases where the prior distribution is informative
and provided methods for sample size calculation; and Sambucini (2008) proposed a
predictive version of the Bayesian two-stage phase II design. Wang et al. (2005) intro-
duced a Bayesian single-arm design by considering both frequentist and Bayesian error
rates. Similar to the continuously monitoring scheme proposed by Thall and Simon
(1994) which adopts decision boundaries on posterior probabilities, Lee and Liu (2008)
studied posterior predictive probability monitoring rules for single-arm phase II trials.
Liu et al. (2010) modified Simon’s two-stage design (Simon, 1989) using beta–binomial
distributions and presented some asymptotic conditions. Sambucini (2010) suggested
a Bayesian predictive strategy in a two-stage phase II trial to adapt the sample size
based on the data in the first stage. In an extension to randomized phase II studies,
Yin et al. (2011) bridged predictive probability monitoring and adaptive randomization,
and provided a detailed comparison with group sequential methods in a two-arm trial.
Dong et al. (2012) proposed a two-stage design with control of both frequentist and
Bayesian error rates. Inoue et al. (2002) developed a seamless phase II/III design where
the discrete outcomes in phase II and the survival times in phase III can be combined
together. Lai et al. (2012) studied cancer trial designs based on modeling the bivariate
endpoints of tumor response and survival, and developed likelihood ratio statistics for
such a model under the group sequential framework. Posch et al. (2005) proposed a de-
sign that seamlessly integrates a selection phase and a confirmation phase into a single
trial.

All the aforementioned designs use either a single-arm or two-arm comparison to
examine the drug’s therapeutic effects. Both single-arm and multi-arm evaluations have
their own merits, hence they are implemented according to the practical situations.
When there is no standard therapy and placebo cannot serve as a control due to ethical
considerations, it is rational to conduct a single-arm trial. Moreover, since there is no
randomization in a single-arm trial, it is easier to establish hypothesis testing under
a one-sample case, and is more convenient to conduct such a study. Nevertheless, in
reality, many seemingly promising drugs eventually fail in phase III trials even though
they have shown potential efficacious effects in phase II trials. Apart from the fact
that the endpoints used in phase II trials are typically different from those of phase III
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trials, one of the main reasons for such failures is that the experimental drug is merely
compared with the standard response rate or historical data in a single-arm setting.
Although single-arm trials are inherently comparative, they are less objective and can
be biased due to many differences between the current and previous studies, such as
patient populations, study criteria, and medical facilities. To overcome these problems,
a randomized two-arm phase II trial is often preferred when a standard treatment is
available.

It is a common situation that patients enrolled in a multi-arm trial tend to be more
willing to take the experimental drug instead of the control, particularly for those with
advanced or refractory diseases, because no standard treatment had worked and the
trial’s experimental drug could be the last hope. The current practice is to conduct a
single-arm phase IIa trial and a randomized phase IIb trial separately without any infor-
mation borrowing across the two studies. For time saving and information sharing, we
propose a Bayesian two-stage single-to-double arm design with a single-arm comparison
of the experimental drug with the standard response rate (no concurrent treatment) in
stage 1 and a two-arm comparison of the experimental drug with the standard of care in
stage 2. Not only does such a design eliminate the gap between the conventional phase
IIa and phase IIb trials, it also help to pool patients together from separate trials for
better decision making.

The rest of this article is organized as follows. In Section 2, we describe the Bayesian
single-to-double arm transition design and derive the frequentist and Bayesian error
rates. Calibration of design parameters and several simulation studies are presented
in Section 3. Section 4 illustrates the proposed design with a lung cancer trial, and
Section 5 concludes with some remarks. The R code of our proposed design is available
upon request.

2 Bayesian Two-Stage Design

2.1 Single-to-Double Arm Transition

We are interested in testing the response rate on binary outcomes of an experimental
treatment versus the standard treatment. The outcome takes a value of 1 when a re-
sponse is observed and 0 otherwise; for example, whether there is tumor shrinkage after
treatment. In stage 1, which is a single-arm trial, we compare the experimental drug
with a standard response rate. The null and alternative hypotheses are formulated as

H0 : θE ≤ θ0 versus H1 : θE ≥ θ1,

where θE is the response rate of the experimental drug, θ0 is the maximum uninteresting
response rate, and θ1 is the minimum response rate of clinical interest. This hypothesis
is commonly adopted in single-arm trial designs, which sets the boundary for a clinically
uninteresting rate; see Simon (1989), Thall and Simon (1995), Mariani and Marubini
(1996), and Yin (2012) for a more detailed exposition of the subject. In the first stage,
n1 patients are enrolled, and suppose there are x1 responses, then x1|θE ∼ Bin(n1, θE),
where Bin(n, θ) denotes the binomial distribution with the success probability θ. Similar
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to the two-stage design proposed by Dong et al. (2012), early stopping for efficacy or
futility is allowed at the end of stage 1 and the probability of early termination (PET)
equals to the sum of the probability for efficacy stopping and that for futility stopping.
Let l1 denote the lower bound for accepting the null hypothesis, and u1 denote the upper
bound for rejecting the null hypothesis, then the decision rules at the end of stage 1 are
described as follows:

(i) If x1 ≤ l1, stop the trial and claim the experimental drug unpromising.

(ii) If x1 ≥ u1, stop the trial and claim the experimental drug promising.

(iii) Otherwise, the trial proceeds to stage 2 where a total number of 2n2 patients are
equally allocated to the experimental and standard arms.

The expected sample size (ESS) of our proposed design is

ESS = n1 + 2n2(1− PET).

In stage 2, which is a two-arm trial, we examine the superiority of the experimental
drug compared with a standard treatment. The testing hypotheses change to

H0 : θE ≤ θS versus H1 : θE > θS ,

where θE is the same response rate of the experimental drug in stage 1, and θS is
that of the standard treatment. It is possible to formulate the hypotheses as H0 :
θE ≤ θS + δ versus H1 : θE > θS + δ, where δ is the minimal clinically meaningful
difference in the response rate. When δ > 0, the design usually requires a larger sample
size as the test becomes more stringent on the experimental response rate. For simplicity,
we set δ = 0. Suppose that in stage 2, x2 responses are observed in the experimental
arm and y2 responses in the standard arm, then x2|θE ∼ Bin(n2, θE) and y2|θS ∼
Bin(n2, θS). If we set the prior distributions as θE ∼ Beta(a, b) and θS ∼ Beta(c, d), the
posterior distributions are

θE |(x1, x2) ∼Beta(a+ x1 + x2, b+ n1 − x1 + n2 − x2),

θS |y2 ∼Beta(c+ y2, d+ n2 − y2).

As a result, the posterior probability (PoP) of θE > θS can be written as

PoP ≡ P (θE > θS |x1, x2, y2) =

∫ 1

0

∫ 1

θS

P (θE |x1, x2)P (θS |y2)dθEdθS

=

∫ 1

0

∫ 1

θS

θa+x1+x2−1
E (1− θE)

b+n1−x1+n2−x2−1
θc+y2−1
S (1− θS)

d+n2−y2−1

B(a+ x1 + x2, b+ n1 − x1 + n2 − x2)B(c+ y2, d+ n2 − y2)
dθEdθS ,

(1)

where B(a, b) = Γ(a)Γ(b)/Γ(a+b) represents the beta function with parameters a and b.
Let cT denote the cutoff probability for decision making, then the decision rules at the
end of stage 2 are given as follows:
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(i) If PoP ≥ cT , we reject the null hypothesis and claim the experimental drug promis-
ing.

(ii) Otherwise, we fail to reject the null and claim the experimental drug unpromising.

In summary, at the end of the first stage, the proposed design uses decision bound-
aries (u1, l1) to determine whether the trial should be continued or stopped for effi-
cacy/futility. At the end of the second stage, to reach a final decision, the trial uses cT
as the cutoff value on a clinically meaningful quantity, PoP, calculated from the trial
outcomes of both stages.

The design parameters of our proposed method, (n1, n2, u1, l1, cT ), are determined
by controlling error rates, in conjunction with the aim of minimizing the ESS of the trial.
The error rates are calculated from both the frequentist and Bayesian perspectives. In
the frequentist framework, we control the commonly used type I and II error rates (Yin,
2012). In addition, to fine-tune the transition between the two hypothesis tests across
two stages, we control the frequentist type III error rate, defined as the probability
of prematurely stopping the trial at stage 1 when the decision is supposed to move
on to stage 2. Under the Bayesian framework, the error rates are derived using two
approaches. One is based on Bayesian marginal probabilities conditional on an assumed
truth, whereas the other is based on Bayesian posterior probabilities conditional on the
action of rejecting or accepting the null hypothesis.

2.2 Frequentist Error Rates

Frequentist type I and II error rates refer to the probability of declaring efficacy given
the null is true and the probability of declaring futility given the alternative is true,
respectively. We declare efficacy when the number of responders reaches the efficacy
stop u1 in stage 1 or when the calculated PoP is larger than cT in stage 2, and declare
futility when the number of responders reaches the futility stop l1 in stage 1 or when
the calculated PoP is smaller than cT in stage 2.

Frequentist stage 1 error rates. Let R and A represent “rejecting the null hypothesis”
and “accepting the null hypothesis”, and let αf

1 and βf
1 denote frequentist type I and

type II error rates at stage 1, respectively. Given x1|θE ∼ Bin(n1, θE) and the lower
and upper bounds l1 and u1, we have

αf
1 = P (R at stage 1|H0) =

n1∑
x1=u1

P (x1|θ0) = 1− FBin(u1 − 1;n1, θ0),

βf
1 = P (A at stage 1|H1) =

l1∑
x1=0

P (x1|θ1) = FBin(l1;n1, θ1),

where FBin denotes the binomial cumulative distribution function (CDF).

Frequentist stage 2 error rates. If x1 lies between l1 and u1, the trial proceeds to
stage 2, where a total number of 2n2 patients are equally allocated to the experimental
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and standard arms. Suppose that we observe x2 responses among n2 patients in the
experimental arm, and y2 responses in the standard arm, then x2|θE ∼ Bin(n2, θE) and
y2|θS ∼ Bin(n2, θS). In consistence with the settings at stage 1, we specify θE = θS = θ0
under the null hypothesis, and θE = θ1 and θS = θ0 under the alternative hypothesis.
The frequentist type I and type II error rates at stage 2 are respectively given by

αf
2 =

u1−1∑
x1=l1+1

n2∑
x2=0

n2∑
y2=0

P (x1|θ0)P (x2|θ0)P (y2|θ0)I(PoP ≥ cT ),

βf
2 =

u1−1∑
x1=l1+1

n2∑
x2=0

n2∑
y2=0

P (x1|θ1)P (x2|θ1)P (y2|θ0)I(PoP < cT ),

where I(·) is the indicator function, and I(PoP ≥ cT ) serves as a “filter” to select all the
possible values of x1, x2 and y2 at stage 2 that lead to rejection of the null hypothesis.
The overall frequentist type I and type II error rates are αf = αf

1+αf
2 and βf = βf

1 +βf
2 ,

respectively.

Frequentist type III error rates. When θE < θ0 or θE > θ1, the trial should be
terminated with a conclusive decision at the end of stage 1, instead of further continuing
into the randomization stage. When θ0 < θE < θ1, we expect the number of responses
in stage 1 to lie between l1 and u1. Due to the uncertainty about the superiority of
the new treatment, we prefer further confirmation through a randomized study. To
accommodate this unconventional phenomenon when combining two stages, we define
the failure to move on to the double-arm stage when θ0 < θE < θ1 as the type III error
(Storer, 1992). As a result, the frequentist type III error rates can be formulated as
γf = P (R ∪A at stage 1|θ0 < θE < θ1), and if we specify θE = θm = (θ0 + θ1)/2, then

γf = γf
R + γf

A, where

γf
R = P (R at stage 1|θE = θm) =

n1∑
x1=u1

P (x1|θm) = 1− FBin(u1 − 1;n1, θm),

γf
A = P (A at stage 1|θE = θm) =

l1∑
x1=0

P (x1|θm) = FBin(l1;n1, θm).

2.3 Bayesian Error Rates

Motivated by the work of Lee and Zelen (2000) and Dong et al. (2012), we define the
Bayesian type I and type II error rates as

αB = P (R|H0) =
P (R ∩ H0)

P (H0)
,

βB = P (A|H1) =
P (A ∩ H1)

P (H1)
,

which correspond to the prior probabilities of rejecting and accepting the null hypothesis
given the null and alternative hypotheses being true, respectively. Lee and Zelen (2000)
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estimated P (H0) and P (H1) from historical data, while we calculate them based on the
prior distributions of parameters at each stage.

Lee and Zelen (2000) pointed out that conventional type I and type II error rates
may be inadequate to quantify trial results in practice. They suggested the Bayesian
posterior false positive and false negative rates by conditioning on trial outcomes,

α∗ = P (H0|R) =
P (R ∩ H0)

P (R)
,

β∗ = P (H1|A) =
P (A ∩ H1)

P (A)
.

Bayesian stage 1 settings. Let αB
1 , β

B
1 , α∗

1 and β∗
1 denote the Bayesian type I and

type II error rates, the Bayesian posterior false positive and false negative rates at
stage 1, respectively; that is,

αB
1 = P (R at stage 1|H0 at stage 1),

βB
1 = P (A at stage 1|H1 at stage 1),

α∗
1 = P (H0 at stage 1|R at stage 1),

β∗
1 = P (H1 at stage 1|A at stage 1).

In the first stage, x1|θE ∼ Bin(θE , n1), and under a beta prior distribution, θE ∼
Beta(a, b), the marginal distribution of x1 is a beta–binomial distribution,

P (x1) =

∫ 1

0

(
n1

x1

)
θE

x1(1− θE)
n1−x1

θa−1
E (1− θE)

b−1

B(a, b)
dθE

=

(
n1

x1

)
B(a+ x1, b+ n1 − x1)

B(a, b)
.

Based on the marginal distribution of x1, we can derive the formulae of αB
1 , β

B
1 , α∗

1 and
β∗
1 , which are given in the Supplementary Material (Shi and Yin, 2015).

Bayesian stage 2 settings. Let αB
2 , β

B
2 , α∗

2 and β∗
2 denote the Bayesian type I and

type II error rates, Bayesian posterior false positive and false negative rates at stage 2,
respectively; that is,

αB
2 = P (R at stage 2|H0 at stage 2),

βB
2 = P (A at stage 2|H1 at stage 2),

α∗
2 = P (H0 at stage 2|R at stage 2),

β∗
2 = P (H1 at stage 2|A at stage 2).

For the experimental arm, the posterior predictive distribution of x2 conditional on x1

is given by

P (x2|x1) =

∫ 1

0

P (x2|θE)P (θE |x1)dθE

=

(
n2

x2

)
B(a+ x1 + x2, b+ n1 − x1 + n2 − x2)

B(a+ x1, b+ n1 − x1)
.
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For the standard arm, the marginal distribution of y2 is also beta–binomial,

P (y2) =

(
n2

y2

)
B(c+ y2, d+ n2 − y2)

B(c, d)
.

Detailed derivation of αB
2 , β

B
2 , α∗

2 and β∗
2 are given in the Supplementary Material.

Calibration of Bayesian error rates. As stage 1 and stage 2 are integrated in one
trial, αB

2 , β
B
2 , α∗

2 and β∗
2 need to be calibrated with respect to the stage 1 condition.

For instance, if we assume that “H0 is true”, then the entire trial must satisfy

P (R at stage 1|H0 at stage 1) + P (A at stage 1|H0 at stage 1)

+ P (R at stage 2|H0 at stage 2) + P (A at stage 2|H0 at stage 2) = 1,

which means that, if H0 is true, the probabilities of rejecting and accepting the null
hypothesis at stage 1 and stage 2 should be summed up to 1. However, stage 2 has
been treated as a separate trial in the derivation of Bayesian error rates. Therefore, the
Bayesian stage 2 type I error rate should be recalibrated by multiplying

P (trial proceeds to stage 2|H0 at stage 1)

= P (l1 + 1 ≤ x1 ≤ u1 − 1 | θE ≤ θ0)

=

u1−1∑
x1=l1+1

{(
n1

x1

)
B(a+ x1, b+ n1 − x1)

B(a, b)
FBeta(θ0; a+ x1, b+ n1 − x1)

}
FBeta(θ0; a, b)

,

where FBeta represents the CDF of a beta distribution. As a result, the calibrated
Bayesian type I error rate at stage 2 is given by

αB
2c = P (l1 + 1 ≤ x1 ≤ u1 − 1 | θE ≤ θ0)α

B
2 .

As shown in the Supplementary Material, the calibrated Bayesian type II error rate,
the Bayesian posterior false positive and false negative rates at stage 2, βB

2c, α
∗
2c and

β∗
2c, can be derived similarly. The overall Bayesian error rates and Bayesian posterior

false rates of the trial are given by{
αB = αB

1 + αB
2c, βB = βB

1 + βB
2c;

α∗ = α∗
1 + α∗

2c, β∗ = β∗
1 + β∗

2c.

2.4 Determination of Design Parameters

In the design stage, we need to specify θ0, θ1, and the type I, II and III error rates α,
β and γ. As defaults, we use a noninformative Beta(θ0, 1− θ0) prior for θE and θS and
set cT = 1− α. To avoid the ambiguity on minimizing the expected sample size under
the null or the alternative hypothesis, we minimize the Bayesian expected sample size,

ESSB = n1 + 2n2(1− PETB),
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subject to the error rate constraints on (αf , βf , γf , αB , βB , α∗, β∗), where PETB denotes
the Bayesian probability of early termination, and is given by

PETB =

n1∑
x1=u1

P (x1) +

l1∑
x1=0

P (x1).

We develop an enumeration algorithm to find the design parameters n1, n2, u1, and
l1, as described below.

(i) Set n1 from 10 to [N/2], the integer part of N/2, where N is the required sample
size in each arm for the standard two-arm randomized design with the type I error
rate α and power 1− β.

(ii) Given n1, find the combinations of (l1, u1) satisfying FBin(l1;n1, θ1) < β.

(iii) Given n1, l1 and u1, find n2 that satisfies the constraints on the type I error rate
and power.

(iv) Enumerate all possible values of the aforementioned (n1, n2, u1, l1) and choose the
set that satisfies the specified constraints on error rates, and finally select the one
that minimizes ESSB .

We can speed up the numerical search by utilizing the approximately monotonic re-
lationship between n2 and power to formulate a bisectional search, and only perform
enumeration in the neighborhood of the solution to the bisectional search to find the
smallest n2.

2.5 Commensurate Prior

To effectively control the type I error rate, typically we assume noninformative prior for
θS . Hobbs et al. (2011, 2012) proposed a class of commensurate prior distributions that
can borrow strength from historical trials depending on the exchangeability between
historical and current data. When there exist historical data containing information on
the efficacy of the standard drug, we may consider using the commensurate prior for θS .
Let θS0 denote the response rate for the control arm in the historical trial. We adopt
the probit link function θS = Φ(η) and θS0 = Φ(η0), where Φ(·) denotes the CDF of
the standard normal distribution, such that the transformed parameters η and η0 have
support on the real line. Let xH denote the number of responders among nH subjects in
the historical trial. Based on the historical data, we formulate the joint commensurate
prior of (η, η0, τ) as

π(η, η0, τ |xH) ∝ Φ(η0)
xH

{
1− Φ(η0)

}nH−xH × φ(η|η0, τ−1)× p(τ),

where φ(·|μ, σ2) denotes a normal density with mean μ and variance σ2 and p(τ) a
gamma density with mean τ̃ and variance τ̃ /c, i.e., τ ∼ Gamma(cτ̃ , c).
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Let xC denote the number of responders among nC subjects in the control arm, and
xE that among nE subjects in the experimental arm of the current trial. Under the
commensurate prior, the joint posterior distribution of (η, η0, τ) is given by

q(η, η0, τ |xC , xH) ∝ Φ(η)xC{1− Φ(η)}nC−xC × π(η, η0, τ |xH).

The marginal posterior distribution of η can be obtained by integrating out η0 and τ ,

q(η|xC , xH) ∝ Φ(η)xC
{
1− Φ(η)

}nC−xC

×
∫ +∞

−∞

{
(η − η0)

2

2
+ c

}−cτ̃−1/2

Φ(η0)
xH

{
1− Φ(η0)

}nH−xH
dη0.

Under a beta prior for the experimental response rate, θE ∼ Beta(a, b), the posterior
probability of θE > θS is given by

PoP ≡ P (θE > θS |xE , xC , xH)

=

∫ +∞

−∞

{
1− FBeta(Φ(η); a+ xE , b+ nE − xE)

}
q(η|xC , xH)dη.

where FBeta denotes the CDF of a beta distribution.

For computational simplicity, we can formulate the commensurate prior by plugging
in the historical mean η̂0 = Φ−1(xH/nH), so that it solely depends on η and τ ,

π(η, τ |xH) ∝ φ
(
η|η̂0, τ−1

)
× p(τ).

Thus, the marginal prior distribution of η has an explicit expression after integrating
out τ ,

π(η|xH) ∝
{
(η − η̂0)

2

2
+ c

}−cτ̃−1/2

(2)

where we constrain cτ̃ ≥ 1/2 to attain a proper prior distribution. It is worth noting
that when cτ̃ = 1/2, (2) reduces to a Cauchy distribution. As a result, the posterior
distribution of η is given by

q(η|xC , xH) ∝ Φ(η)xC
{
1− Φ(η)

}nC−xC

{
(η − η̂0)

2

2
+ c

}−cτ̃−1/2

.

In a single-to-double arm design, we set xC = y2, xE = x1 + x2, nC = n2 and nE =
n1 + n2.

3 Simulation Studies

In the simulation study, we examine three paired values of (θ0, θ1) = (0.2, 0.4), (0.3, 0.5)
and (0.4, 0.6), and we set the type I and type II error rates as α = 0.05 and β = 0.2.
For each pair of (θ0, θ1), we calibrate the optimal design parameters under different
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Table 1: The optimal single-to-double arm design for different values of (θ0, θ1) and γ,
assuming a noninformative prior Beta(θ0, 1− θ0) for θS and θE , with all error rates in
percentage.
θ0 θ1 γ n1 n2 l1 u1 αf βf γf αB βB α∗ β∗ PETB ESSB

0.2 0.4 0.2 15 55 2 8 4.88 19.42 17.68 0.04 2.49 0.06 0.73 0.83 33.5
0.3 13 59 2 7 4.49 19.92 26.49 0.05 2.78 0.10 1.11 0.85 30.5
0.4 17 51 3 8 4.76 19.76 30.65 0.05 1.87 0.13 1.10 0.88 29.1
0.5 15 59 3 7 4.66 19.93 42.80 0.08 2.23 0.23 1.52 0.90 26.5

0.3 0.5 0.2 14 65 3 9 4.97 19.92 18.26 0.06 2.76 0.10 0.74 0.80 39.6
0.3 19 60 5 11 4.78 19.56 25.14 0.06 1.86 0.11 0.90 0.85 36.5
0.4 20 59 6 11 4.97 19.91 37.75 0.08 1.67 0.17 1.31 0.89 32.9
0.5 20 59 6 11 4.97 19.91 37.75 0.08 1.67 0.17 1.31 0.89 32.9

0.4 0.6 0.2 20 63 7 14 4.66 19.96 18.92 0.05 2.25 0.06 0.78 0.82 42.5
0.3 21 61 8 14 4.69 19.72 28.63 0.07 1.80 0.11 1.08 0.86 38.2
0.4 21 61 8 14 4.69 19.72 28.63 0.07 1.80 0.11 1.08 0.86 38.2
0.5 26 52 11 16 4.93 19.69 44.21 0.10 1.22 0.17 1.49 0.91 35.5

Note that (θ0, θ1) are hypothesis testing parameters, γ is the specified type III error
rate, PETB is the Bayesian probability of early termination, and ESSB is the Bayesian
expected sample size.

specifications of the type III error rate γ, ranging from 0.2 to 0.5. We use noninformative
prior distributions for θE , Beta(θ0, 1− θ0), and set cT = 1− α.

Tables 1 and 2 present the simulation results under different design settings assum-
ing noninformative Beta(θ0, 1−θ0) priors and commensurate priors for θS , respectively.
Under each combination of (θ0, θ1), as the constraint on γ becomes more stringent,
the expected sample size of the optimal design becomes larger. A larger probability
of early termination corresponds to a smaller expected sample size. The designs that
assume commensurate priors have smaller Bayesian expected sample sizes than the de-
signs that assume noninformative priors, as the historic information incorporated in the
commensurate prior may contribute to a saving in sample size and provide us more
confidence to terminate the trial early when the number of responses is unfavorable. It
is observed that the Bayesian error rates are much smaller than their frequentist coun-
terparts. This is certainly expected because the Bayesian error rate control is essentially
equivalent to sampling θE and θS from their prior distributions and then average the
type I and type II error rates over the entire parameter space. On the other hand,
frequentist approaches ensure that the suprema of the type I and type II error rates
do not exceed the respective cutoffs in an asymptotic sense. As a numerical example,
consider the case with θS = 0.2; the frequentist procedure aims to control the proba-
bility of rejection when θE = θS below α = 0.05, so that when θE < θS the rejection
probability would be even smaller than α. In fact, as θE becomes smaller than θS , the
type I error rate diminishes rapidly; for example, fixing θS = 0.2, when θE takes the
value of 0.15, 0.1, and 0.05, the corresponding type I error rates are 0.01, 0.001 and
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Table 2: The optimal single-to-double arm design for different values of (θ0, θ1) and γ,
assuming a commensurate prior for θS and a noninformative Beta(θ0, 1 − θ0) prior for
θE , with all error rates in percentage.

θ0 θ1 γ n1 n2 l1 u1 αf βf γf PETB ESSB

0.2 0.4 0.2 11 55 1 6 4.85 19.79 19.12 0.81 32.0
0.3 14 54 2 7 4.97 19.78 25.41 0.85 29.7
0.4 12 61 2 6 4.92 19.99 37.07 0.88 26.9
0.5 19 46 4 8 4.79 19.95 46.42 0.92 26.3

0.3 0.5 0.2 14 66 3 9 4.48 19.70 18.26 0.85 33.7
0.3 12 76 3 8 4.19 19.75 28.26 0.87 32.0
0.4 11 84 3 7 4.76 19.95 39.56 0.89 29.0
0.5 16 74 5 9 4.85 19.83 47.11 0.92 27.2

0.4 0.6 0.2 13 70 4 10 4.79 19.66 17.96 0.86 32.4
0.3 17 66 6 12 4.70 19.83 23.79 0.89 31.0
0.4 17 78 7 12 3.84 19.88 38.63 0.92 29.8
0.5 14 105 6 10 3.93 19.90 48.50 0.93 29.4

The parameters for the prior distribution of τ are assumed as c = τ̃ = 1. For
simplicity, computation of the Bayesian error rates is omitted and we adopt the
plug-in method and center the historical mean at θ0 in the formulation of the
commensurate prior.

0.00001. Figure 1 shows the rejection probability as a function of θE given θS = 0.2 for
a standard two-arm design with α = 0.05.

Figure 2 shows the operating characteristics of the optimal design with (θ0, θ1) =
(0.2, 0.4) and γ = 0.2. When the true θE is below θ0, the probability of rejecting the

stage 1 null hypothesis is αf
1 (solid line). When θE is between θ0 and θ1, the rejection

probability is the type III error rate γf
R (dashed line) and its value is below γ when

θE = (θ0 + θ1)/2. The lower panel of Figure 2 shows that when the true θE is above θ1,

the probability of accepting the stage 1 null hypothesis is βf
1 (solid line). When θE is

between θ0 and θ1, the probability of accepting the null hypothesis is the type III error
rate γf

A (dashed line) and its value is below γ when θE = (θ0 + θ1)/2.

Figure 3 shows the overall probabilities of rejection when θE = θS and the overall
probabilities of acceptance when θE = θS+0.2 by comparing our design to Simon’s two-
stage design and a standard two-arm design. The probability of rejection and that of
acceptance under our proposed design lie in between those of Simon’s two-stage design
and the standard two-arm design. As the true standard response rate exceeds θ0, the
probability of rejection increases immensely beyond α for Simon’s two-stage design and
the single-to-double arm design. This is because the hypothesis tests in Simon’s design
and the single-arm stage of our design compare the experimental response rate with θ0,
instead of θS , which may be different from θ0. As discussed in Viele et al. (2014), this
phenomenon is fundamental and inevitable because compared to the standard two-arm
design, we essentially test a different set of hypotheses during the single-arm stage.
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Figure 1: Rejection probability as a function of θE given θS = 0.2 for a standard two-arm
design with α = 0.05.

Throughout the simulation studies, we assume a noninformative prior for θS , if an
informative commensurate prior is assumed, the operating characteristics of our design
would be similar to those of a two-arm trial that incorporates historical data in the
control arm (Viele et al., 2014).

Figure 4 shows the expected sample size as a function of θE for the three designs
under comparison. It can be seen that the expected sample size of the single-to-double
arm design lies in between that of Simon’s two-stage design and the standard two-arm
design. Since we prefer the trial to proceed into stage 2 when θE is in between θ0 and
θ1, the expected sample size of the single-to-double arm design attains its maximum
within this interval (around 0.3). When θE is very large, a single-to-double arm design
can achieve a smaller expected sample size than Simon’s two-stage design because of a
high probability of early stopping.

Figure 5 shows the power, which is defined as the probability of declaring the ex-
perimental treatment promising in either the single-arm stage or the double-arm stage,
given that the response rate of the experimental treatment is higher than that of the
control by a required margin of 0.2. The sample size of the standard two-arm design
is calculated using the standard formula to achieve power of 0.8 when θS = 0.2 and
θE = 0.4. The design parameters for the single-to-double arm trial are calibrated simi-
larly, so that the two power curves intersect at the point around θE = 0.4 with power
0.8. The power curve of the standard two-arm design has a symmetric shape, whereas
that of the single-to-double arm design exhibits an asymmetric pattern. For the stan-
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Figure 2: Breakdown into type I, II and III error rates in the two stages of the single-
to-double arm design of (a) probability of rejection with θE = θS , and (b) probability
of acceptance with θE = θS + 0.2, where (θ0, θ1) = (0.2, 0.4) and γ = 0.2.
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Figure 3: Comparison among the single-to-double arm design, the standard two-arm
design, and Simon’s two-stage design of (a) probability of rejection with θE = θS , and
(b) probability of acceptance with θE = θS+0.2, where (θ0, θ1) = (0.2, 0.4) and γ = 0.2.
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Figure 4: Expected sample size comparison among the single-to-double arm design, the
standard two-arm design, and Simon’s two-stage design.

Figure 5: Power comparison between the single-to-double arm design and the standard
two-arm design, with θE = θS + 0.2, (θ0, θ1) = (0.2, 0.4) and the target power of 80%.
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dard two-arm design, power is large when θE is close to 0 or 1, while that under the
single-to-double arm design is small when θE is close to 0 and increase as θE becomes
closer to 1. The asymmetric shape of the power curve of the single-to-double arm design
can be explained by the fact that the lower the response rate of the experimental drug,
the less likely it is to pass the threshold l1 in stage 1.

4 Trial Example

Our research is motivated by an open-label two-stage phase II trial of a new regimen
in patients with advanced non-small cell lung cancer. To successfully recruit a sufficient
number of patients in a reasonable period of time, a single-agent trial is intended to be
conducted such that all the eligible patients will receive the new regimen at the first
stage. If none of the early stopping criteria for futility and efficacy are met by the end of
stage 1, subsequent patients will be enrolled into the second stage. At stage 2, eligible
patients are randomized to receive either the new regimen or the single-agent chemother-
apy (docetaxel or pemetrexed). The final analysis is to be performed to examine the
superiority of the new regimen compared with the single-agent chemotherapy.

In order to meet the aforementioned requirements as well as to fully utilize the
advantages of single- and double-arm comparisons, we apply the proposed Bayesian
two-stage single-to-double arm design for such a phase II clinical trial. The single-arm
comparison of the experimental drug with the standard response rate is carried out
in stage 1, and the two-arm comparison of the experimental drug with the standard
of care is conducted in stage 2. Our goal for this phase II trial is two-fold. First, to
fulfill the expectation from the patients of receiving the new drug, we conduct a single-
arm trial at stage 1 with all the patients treated with the experimental drug, which
can be implemented in a straightforward way. Second, owing to the availability of the
standard treatment, we can further use a two-arm comparison to examine the new drug’s
superiority relative to the standard of care for more objective assessment. To enhance
the objectivity, it is indispensable to incorporate a two-arm comparison in the trial.
We aim to control the frequentist type I, II and III error rates at 5%, 20% and 20%,
respectively. We assume a noninformative Beta(0.2, 0.8) prior for θE and θS . Based on
these trial specifications, the sample size for stage 1 is 15, that for stage 2 is 55 per
arm, the lower and upper bounds for the number of responders in stage 1 are 2 and
8, respectively. Our interpretation of the results is that if we only observe 2 or fewer
responders in stage 1, we stop the trial for futility; if we observe 8 or more responders
in stage 1, we terminate the trial for superiority. On the other hand, if we adopt a
commensurate prior for θS with a historical mean centered at 0.2 and set c = τ̃ = 1,
the required sample sizes for the first and second stages are 11 and 55 in each arm, and
the lower and upper bounds for the first stage are 1 and 6, respectively.

For comparison, we explore the possibility of using Simon’s two-stage design for this
trial. Under the hypotheses

H0 : θE ≤ 0.2 versus H1 : θE ≥ 0.4,

the experimental treatment would be considered unpromising if its response rate θE
is below 0.2, and promising if θE is above 0.4. By minimizing the expected sample
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size under the null hypothesis, we obtain the parameters for Simon’s optimal two-stage
design: after enrolling 13 patients in stage 1, if there are 3 or fewer responders, the trial

would be terminated for futility; otherwise, the trial moves on to stage 2 with a total of

30 patients, and if there are 12 or fewer responders among the 43 patients from the two

stages, we declare the treatment unpromising. In addition to Simon’s approach, we also

make a comparison with a standard two-arm design, which requires 64 patients per arm.

Our proposed design requires 125 patients if we assume a noninformative prior for the
standard response rate, and requires 121 patients if we instead assume a commensurate

prior. In both versions of our proposed design, 55 patients are randomized to each

arm during the second stage. Among the three types of designs under our comparison,

Simon’s two-stage design has the smallest sample size. It is most efficient if we can have

an accurate guess of θ0. On the other hand, a standard two-arm design has the largest

sample size as it seeks the most objective comparison between the standard arm and

the experimental arm. As discussed in the simulation study, the expected sample size
and error rates of our design lie in between those of Simon’s two-stage design and the

standard two-arm design, and thus our design serves as a middle-ground between these

two designs.

5 Discussions

We have proposed to combine the single-arm and double-arm hypothesis tests into one

phase II trial for more comprehensive decision making. Through selecting the appro-

priate constraint on the type III error rate, we allow the flexibility to switch from a

straightforward single-arm study to a more objective two-arm study based on the de-

gree of conservativeness toward the type III error. The proposed Bayesian error rate

control extends the work of Dong et al. (2012) to the single-to-double arm setting, and
similarly the values of Bayesian error rates are rather small. Contrary to the frequentist

approach to controlling the type I error rate, which seeks to maintain the supremum of

the rejection probability below α, the Bayesian counterparts represent the probability

of committing a type I error averaged over the prior distributions of θE and θS .

The value of a phase II design should be assessed under the context of the entire

program. Instead of looking at a phase II design in isolation, it is important to consider

its implication to the ultimate success in the phase III trial. A potential direction of
future work is to refine the calibration of our design specifications in connection to the

subsequent phase III trial, especially when the phase III trial is using the same endpoints

as phase II. Moreover, our proposed design uses an equal allocation of subjects to the

experimental and the standard arm in stage 2. One natural extension of our design

is to use an unequal allocation of subjects with an allocation ratio r, which might

result in higher power when the numbers of subjects in the two arms are balanced.

More specifically, in stage 2, if n2 subjects are assigned to the experimental arm and
rn2 subjects to the standard arm, we can then enumerate r in addition to n2 in the

searching algorithm and choose the design with the smallest ESS while maintaining the

frequentist and Bayesian error rates.
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Supplementary Material

Supplementary Material of “Bayesian Two-Stage Design for Phase II Clinical Trials
with Switching Hypothesis Tests” (DOI: 10.1214/15-BA988SUPP; .pdf).
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