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SUMMARY

Under the framework of Bayesian model selection, we propose a nonparametric overdose control (NOC)
design for dose finding in phase I clinical trials. Each dose assignment is guided via a feasibility bound,
which thereby can control the number of patients allocated to excessively toxic dose levels. Several aspects
of the NOC design are explored, including the coherence property in dose assignment, calibration of design
parameters, and selection of the maximum tolerated dose (MTD). We further propose a fractional NOC
(fNOC) design in conjunction with a so-called fractional imputation approach, to account for late-onset
toxicity outcomes. Extensive simulation studies have been conducted to show that both the NOC and
fNOC designs have robust and satisfactory finite-sample performance compared with the existing dose-
finding designs. The proposed methods also possess several desirable properties: treating patients more
safely and also neutralizing the aggressive escalation to overly toxic doses when the toxicity outcomes
are late-onset. The fNOC design is exemplified with a real cancer phase I trial.

Keywords: Bayesian posterior probability; Dose finding; Late-onset toxicity; Maximum tolerated dose; Overdose
control.

1. INTRODUCTION

The American Society of Clinical Oncology (ASCO) recently published an update of the ASCO policy
statement to address the critical roles of phase I clinical trials in cancer research and treatment (Weber
and others, 2015). The update calls for innovative adaptive phase I trial designs, which may pin down the
correct dose quickly, decrease patient risk, expose more patients to therapeutic dose levels, and so on, to
cope with the changing landscape in cancer research. The primary objective of phase I oncology trials is
to identify the maximum tolerated dose (MTD) whose induced dose-limiting toxicity (DLT) probability
is closest to the target toxicity rate. Numerous phase I dose-finding designs have been proposed in the
literature, which can be generally classified as algorithm- and model-based methods (Yin, 2012). The
algorithm-based methods, which do not impose any parametric assumption on the dose–toxicity curve,
are often considered as nonparametric or curve-free (Sverdlov and others, 2014), for example, the 3 + 3
design (Storer, 1989), the accelerated titration design (Simon and others, 1997), the biased coin design
(Durham and others, 1997), the group up-and-down design (Gezmu and Flournoy, 2006), and the class
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of interval designs (Ivanova and others, 2007; Liu and Yuan, 2015). By contrast, model-based methods
explicitly assume some parametric dose–toxicity relationship, such as the continual reassessment method
(CRM) by O’Quigley and others (1990) and the escalation with overdose control (EWOC) method by
Babb and others (1998), which can fully incorporate the observed data across all dose levels and thus are
usually more efficient than the algorithmic counterparts. The CRM tends to assign the dose based on the
mean or the mode of the MTD posterior distribution (Heyd and Carlin, 1999; Leung and Wang, 2002;
Yuan and others, 2007), while EWOC selects the αth quantile, with α specified as the feasibility bound
for the overdosing control (Zacks and others, 1998; Tighiouart and others, 2005; Tighiouart and Rogatko,
2010; Chen and others, 2012). Model-based designs are in general fully parametric and thus vulnerable
to model misspecifications.

In the aforementioned dose-finding methods, toxicity is assumed to be quickly observable after treat-
ment relative to the speed of patient arrival, which, however, is not true for many types of DLTs.
Postel-Vinay and others (2011) reported that 57% of the grade 3 and 4 toxicities among a total of 445
patients involved in 36 trials were late-onset. In a phase I concurrent radiation therapy trial (Desai and
others, 2007), 44 patients with pancreatic cancer were enrolled. Patients were examined at least once
weekly for a maximum of nine weeks, while the enrollment rate was approximately one patient every
two weeks. Consequently, toxicity outcomes for some previously treated patients might not have been yet
available upon the arrival of a new patient. Liu and others (2013) demonstrated that such missing data are
nonignorable due to the fact that at each decision-making time the probability of nonresponse or miss-
ingness is larger for the patients who would not experience toxicity during the assessment period. If each
new patient is required to wait for dose assignment until all the toxicity outcomes of the previously treated
patients are available, it would cause a treatment delay for each newly arrived patient and result in a lengthy
trial. On the other hand, if the dose assignment is made by simply discarding the missing data, it would
lead to biased estimates and deteriorate the trial performance. Cheung and Chappell (2000) proposed the
time-to-event CRM (TITE-CRM) to incorporate information of follow-up times into toxicity evaluation
via a weighting scheme, and similarly Ivanova and others (2007) introduced the TITE cumulative cohort
design (TITE-CCD) method. Bekele and others (2008) proposed to monitor late-onset toxicities using
predicted risks. Yuan and Yin (2011) utilized the expectation–maximization algorithm to estimate the
dose toxicity probabilities based on the incomplete data to direct dose assignment. Mauguen and others
(2011) explored the performance of time-to-event EWOC method (TITE-EWOC). Yin and others (2013)
modeled the underlying time-to-toxicity data through the well-known Kaplan–Meier estimator (Kaplan
and Meier, 1958), and imputed the missing data by their fractional DLT information.

Our research is motivated by a phase I, open-label, first-in-human, dose-finding clinical trial, which
involves an oral smoothened inhibitor sonidegib therapy. The primary objective of the phase I trial was to
determine the MTD of sonidegib in adult patients with advanced solid tumors. A total of thirty patients
in cohorts of size three were enrolled and treated by five dose levels of sonidegib. Adverse events with
grade ≥ 3 in severity were considered as DLTs with the target DLT rate set at 33%. Table 1 summarizes
the accumulated data for the first four cohorts. The enrollment rate was approximately three patients
per month, but it generally took three months to fully assess DLT for each patient. Therefore, there
would be some missing DLT data by the time of dose assignment for a newly enrolled patient, because
some of the previous patients might not have completed the monitoring period for toxicity. The EWOC
method was used under a two-parameter Bayesian logistic regression model with a feasibility bound
α = 0.25.

In the Bayesian model selection paradigm, we propose a nonparametric overdose control (NOC) method
for dose finding. By continuously estimating the posterior model probabilities, the proposed method can
control the posterior probability that each successive dose assignment exceeds the MTD without imposing
any parametric assumption on the dose–toxicity relationship. In addition, we propose a fractional NOC
(fNOC) design, which combines the NOC design with the so-called fractional imputation method (Yin and
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Table 1. Arrival time (in days), dose level, time to toxicity (in days), and imputed fractional toxicity
outcome for the first 12 patients in the sonidegib trial

Cohort Patient Day of Dose Time to Fractional
No. No. arrival level DLT DLT

1 1 4 1 0 0
2 7 1 0 0
3 19 1 0 0

2 4 29 2 0 0
5 31 2 0 0
6 50 2 0 0.000

3 7 58 3 1 (123) 1
8 67 3 0 0.143
9 78 3 0 0.143

4 10 91 3 1 (120) 1
11 100 3 0 0.143
12 118 3 0 0.221

Note: If a patient has experienced the DLT, then his/her “Time to DLT” outcome is 1 with the event time in parentheses, and 0
otherwise. The “Fractional DLT” is evaluated upon the arrival of the 13th patient.

others, 2013), to resolve the late-onset toxicity problem. Both the NOC and fNOC are fully nonparametric,
and have desirable properties as well as competitive operating characteristics.

The remainder of this article is organized as follows. In Section 2, we formulate the NOC design
and present its theoretical properties, and further we extend NOC to fNOC by incorporating late-onset
toxicities. In Section 3, we examine the performance of the new designs based on simulation studies
and make extensive comparisons with existing methods. As an illustration, we apply fNOC to a phase I
dose-finding trial with sonidegib therapy in Section 4, and Section 5 concludes with some remarks. The
supplementary material available at Biostatistics online contains details on computation, simulations, and
the proof of Theorem 2.1.

2. METHODOLOGY

2.1. Nonparametric overdose control

Let pj denote the toxicity probability of dose level j, j = 1, . . . , J , and φ denote the target toxicity rate. The
toxicity probability is assumed to increase monotonically with the dose level, i.e., 0 < p1 < · · · < pJ < 1.
Let di ∈ {1, . . . , J } represent the dose level at which the ith patient is treated, and the toxicity outcome
yi = 1 if the patient has experienced DLT, and yi = 0 otherwise. We cast dose finding in a Bayesian model
selection problem. Specifically, we consider J models,

Mk :

{
|pj − φ| ≤ ε, j = k ,

|pj − φ| > ε, j �= k ,
k = 1, . . . , J ,

where ε ≥ 0 is a prespecified small positive number, indicating that dose level k is the MTD when Mk

is the true model. Under each Mk , we specify a joint uniform prior distribution for p1, . . . , pJ to maintain
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the monotone increasing relationship of the toxicity probabilities,

⎧⎪⎨
⎪⎩

pj|Mk ∼ Unif (φ − ε, φ + ε), j = k ,

pj|pj−1, Mk ∼ Unif (max(φ + ε, pj−1), pJ+1), j > k ,

pj|pj+1, Mk ∼ Unif (p0, min(φ − ε, pj+1)), j < k ,

(2.1)

where p0 and pJ+1 (0 < p0 < pJ+1 < 1) are the lower and upper boundaries of the prior distribution,
respectively. Typically, we take ε = 0.05, while ε = 0 indicates a point mass at φ, and p0 = 0 and
pJ+1 = 0.8 would yield desired operating characteristics for most cases. Let Dn = {(d1, y1), . . . , (dn, yn)}
denote the observed data prior to the arrival of the (n + 1)th patient, then xj = ∑n

i=1 yiI {di = j} and
mj = ∑n

i=1 I {di = j} represent the number of responses and number of patients at dose level j, respectively.
The marginal likelihood under model Mk is

P(Dn | Mk) ∝
∫

f (p1, . . . , pJ | Mk)

J∏
j=1

{
p

xj
j (1 − pj)

mj−xj
}

dp1 · · · dpJ ,

where f (p1, . . . , pJ | Mk) is the joint prior distribution of p1, . . . , pJ under Mk given in (2.1). The posterior
probability that model Mk is true is given by

P(Mk | Dn) = P(Dn | Mk)P(Mk)∑J
j=1 P(Dn | Mj)P(Mj)

,

where P(Mk) is the prior probability of Mk . We specify a discrete uniform distribution for the prior model
probability; that is, P(Mk) = 1/J , k = 1, . . . , J .

Based on the posterior probabilities, the next dose assignment dn+1 = j∗ is determined according to a
prespecified feasibility bound α (0 < α < 1),

j∗ = arg min
j

∣∣ j∑
k=1

P(Mk | Dn) − α
∣∣,

where
∑j

k=1 P(Mk | Dn) is the posterior probability that the MTD is not above dose level j. If we denote
γ as the dose level of the MTD, then the cumulative probability mass function in the discrete probability
space is P(γ ≤ j | Dn) = ∑j

k=1 P(Mk | Dn). Therefore, the optimal dose level j∗ can be equivalently
written as

j∗ = arg min
j

|P(γ ≤ j | Dn) − α|, (2.2)

which characterizes the overdose control rule. Such an allocation scheme selects approximately the dose
level that minimizes the risk with respect to an asymmetric loss function,

L(j, γ ) =
{

α(γ − j), for j ≤ γ , (j is an underdose level),

(1 − α)(j − γ ), for j > γ , (j is an overdose level).

If we choose the feasibility bound α < 0.5, it corresponds to placing a lower penalty on underdosing than
on overdosing, so that the posterior probability of overdosing is small.
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The NOC design imposes no parametric assumption on the dose–toxicity curve, which greatly enhances
its robustness in comparison to EWOC. In addition, NOC is coherent in the sense that it does not de-escalate
the dose if the most recently treated patient has not experienced the DLT, and it does not escalate the dose
if a toxicity outcome has just been observed. Both the CRM and EWOC designs enjoy the coherence
property (Cheung, 2005; Tighiouart and Rogatko, 2010). As shown in the next theorem, our NOC design
also possesses such coherence principle.

THEOREM 2.1 Suppose that the dose level for the nth patient is dn = j. The overdose control rule (2.2)
is coherent in escalation and de-escalation, i.e., for the (n + 1)th patient, P(dn+1 = j − 1 | yn = 0, dn =
j, Dn−1) = 0 and P(dn+1 = j + 1 | yn = 1, dn = j, Dn−1) = 0.

The proof of Theorem 2.1 is given in Section C of the supplementary material available at Biostatistics
online. Despite the coherence property, if the dose sequence follows this overdose control rule throughout
the trial, there is a large probability that patients would be treated somewhere below the MTD with
the accumulated information. For example, we consider six dose levels, and suppose that the posterior
model probabilities are (P(M1 | Dn), . . . , P(M6 | Dn)) = (0.01, 0.02, 0.10, 0.70, 0.10, 0.07). If we set
the feasibility bound α = 0.25, then the next dose level is j∗ = 3. Obviously, such dose assignment
is suboptimal because the accumulated data indicate that dose level j = 4 is the best due to its largest
posterior probability. To ensure that patients can receive the optimal dose level (i.e., the MTD), we impose
a dose-switching rule,

j∗ = {j : P(Mj | Dn) > η}, (2.3)

where 0.5 ≤ η ≤ 1 is a switching cutoff of the posterior model probability. If there is sufficient evidence
to guarantee that dose level j is the MTD by (2.3), we assign the cohort to that dose; otherwise, we treat
the next cohort at the dose level according to the overdose control rule in (2.2).

Each model Mk inherently assumes that only dose level k lies inside the ε-neighbourhood of φ,
k = 1, . . . , J . Nevertheless, there are situations where none of the dose levels has pj ∈ (φ − ε, φ + ε) or
multiple dose levels are inside the interval. The proposed framework can still facilitate to identify the most
six plausible dose level, as a model selection procedure is implemented to select the dose level that has a
large posterior probability of pj ∈ (φ − ε, φ + ε). Furthermore, the proposed method can be generalized
to allow multiple dose levels to satisfy pj ∈ (φ − ε, φ + ε), as shown in Section 3.2.

2.2. Dose-finding algorithm

In addition to the overdose control and dose-switching rules, we impose an additional safety rule to exclude
dose level j and all the higher dose levels from the trial if

P(pj > φ | Dn) =
J∑

k=1

P(pj > φ | Dn, Mk)P(Mk | Dn) ≥ λ,

where λ is a prespecified dose elimination cutoff probability, e.g., λ = 0.85. To simplify the practical
implementation, those excluded dose levels are not reconsidered again for later patients. Although this
safety rule may mistakenly eliminate some appropriate dose levels, we find by simulations the risk of
erroneous elimination is negligible.

In summary, the proposed NOC design proceeds as follows:

(1) Treat the first cohort of patients at the lowest or the physician-specified dose level.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw038/-/DC1
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(2) Suppose the current dose level is j and the trial has treated a total of n patients, we determine the
optimal dose level j∗ according to (2.2) and (2.3),

(i) if there is a dose level that satisfies (2.3), then j∗ = {j : P(Mj | Dn) > η};
(ii) otherwise, the dose level j∗ is selected using the overdose control rule (2.2) with a

feasibility bound α, i.e., j∗ = arg min
j

|P(γ ≤ j | Dn) − α|.
Based on the optimal dose level j∗,

(i) if j > j∗, de-escalate to dose level j − 1;

(ii) if j < j∗ and dose level j + 1 has not been excluded, escalate to dose level j + 1;

(iii) otherwise, the dose stays at the same level j.
(3) The trial can be either stopped after exhaustion of the maximum sample size N , or be terminated

early for safety if the lowest dose level is too toxic as noted by P(p1 > φ | Dn) ≥ λ.

At the end of the trial, the dose level j∗ with the maximum value of the posterior model probability is
recommended as the MTD; that is,

j∗ = arg max
j≤J †

P(Mj | DN ),

where J † is the maximum dose level that has not been excluded. Section A of the supplementary material
available at Biostatistics online provides the computational detail of the NOC design.

Most of the algorithm-based (nonparametric) phase I dose-finding designs select the MTD based on
the isotonically transformed values of the estimated toxicity probabilities. However, there is no universal
guideline on how to specify the weight utilized in the isotonic regression, and also it is often difficult to
select the MTD from the tied estimates. By contrast, the proposed MTD selection procedure is automatic
and straightforward from the dose escalation procedure, and thus avoids the aforementioned problems.

The NOC design has three tuning parameters: the feasibility bound α, the switching cutoff η, and the
elimination cutoff λ, which make the overdose control framework very flexible. Section 3.2 examines the
interplay between α and η in terms of the design performance. With a smaller value of α, more patients
would be allocated to underdoses. The switching cutoff η controls the selection scheme of the optimal
dose level j∗. The smaller the value of η, the more likely the patients are treated at the MTD, but a smaller
value of η tends to lead to more aggressive dose escalation (see Figure S1 in the supplementary material
available at Biostatistics online). As the default, we set α = 0.35, η = 0.5 and λ = 0.85. Moreover, one
can also use varying values of α to take into consideration the accumulated sample size. For example,
a smaller value of α at the earlier stage of a trial would protect more patients from overdosing due to a
lack of dose–response information, while a larger value of α at the later stage tends to keep more patients
treated at the MTD.

2.3. Late-onset toxicity

Operatively, the NOC design requires that the DLT outcome is ascertainable quickly after treatment. To
allow for late-onset toxicity, we consider imputing the missing toxicity outcomes based on the Kaplan–
Meier estimator. Suppose that patients enter a trial sequentially with an interarrival time T , and each
patient is followed for a prespecified evaluation period τ to assess the drug’s toxicity. During [0, τ ], a

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw038/-/DC1
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binary toxicity outcome is measured for each patient i,

yi =
{

1, if DLT has occurred in [0, τ ],
0, if no DLT observed in [0, τ ].

The larger the τ/T ratio, the more missing data would be induced due to the fact that more patients might
have not responded yet upon a new patient’s arrival. Let ti denote the time to toxicity for subject i, and let
ui ≤ τ denote the actual follow-up time. If ui ≥ ti, then the toxicity outcome of the ith patient has been
fully observed, while the patient response is censored if ui < ti. For patients who do not experience DLT
within [0, τ ], we have ui = τ < ti. If the toxicity outcome yi is censored by the decision-making time
ui, we can calculate the conditional probability of experiencing DLT in (ui, τ) given that the DLT has not
occurred by time ui,

P(ti < τ | ti > ui) = P(ui < ti < τ)

P(ti > ui)
,

which can be viewed as the fractional contribution of patient i to the overall toxicity data. Based on the
Kaplan–Meier estimator of the survival function, Ŝ(·), the fractional contribution for a censored toxicity
outcome can be estimated by

ŷi = Ŝ(ui) − Ŝ(τ )

Ŝ(ui)
, (2.4)

which is a fractional number between 0 (no toxicity) and 1 (toxicity). The Bayesian survival function
estimator (Susarla and Van Ryzin, 1976) can also be implemented in (2.4), which, however, requires a
complicated prior specification and the computation is much more intensive. For the imputation purpose,
the conventional Kaplan–Meier estimator is much easier to use, while the performance is similar.

As a result, the fNOC design takes effect by imputing the missing toxicity outcome of the censored
patient by his/her fractional DLT ŷi. For safety, a start-up phase, which completely follows the patients
until the first toxicity outcome is observed, is needed for fNOC at the beginning of the trial to prevent
aggressive escalation to overly toxic dose levels. In regard to the specification of the tuning parameters,
we recommend a conservative configuration by setting η = 0.6, so that the selection scheme (2.2) plays
a dominant role at the early stage of the trial when the data are sparse. Usually, the imputation of the
fractional toxicity outcome accelerates the trial because the newly arrived patients do not need to wait
for the toxicity outcomes of previous patients. On the other hand, more patients tend to be allocated to
overdoses due to the incomplete data. The combination of overdose control and the fractional imputation
would induce a neutralization effect, because the overdose control rule can bring more patients back to
underdoses and thus lead to superior performance with late-onset toxicities.

3. SIMULATION STUDY

3.1. Comparison with existing methods

To assess the performance of the proposed NOC design, we make comparisons of its operating char-
acteristics with four existing dose-finding designs including two model-based and two algorithm-based
methods: the CRM, the EWOC, the cumulative cohort design (CCD), and the Bayesian optimal interval
design (BOIN). We consider a total of J = 6 dose levels with the target toxicity probability φ = 0.3. We
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Fig. 1. Simulation results based on 10 000 randomly generated dose–toxicity scenarios with an average probability
difference around the target of 0.10 and 0.15, respectively. The target toxicity probability is φ = 0.3.

take the maximum sample size to be 36 and the cohort size to be three patients. More detailed configura-
tions for this comparison study are provided in the Section B.1 of the supplementary material available at
Biostatistics online.

To avoid subjectivity in choosing specific toxicity scenarios, we randomly generate 10 000 dose–toxicity
scenarios following the approach of Paoletti and others (2004). In particular, the average probability
difference around the target is controlled to be 0.1 or 0.15, and the MTD is set at one of the six dose
levels with an equal probability. To adequately quantify the operating characteristics of the dose-finding
methods, we consider six performance statistics: the percentage of MTD selection and the percentage
of patients treated at the MTD, for which the larger the better, reflecting the accuracy and efficiency of
a design. The remaining four statistics, including the percentage of trials that select overdoses as the
MTD, the percentage of patients allocated to overdoses, the risk of high toxicity (which is defined as the
percentage of trials that leads to the DLT rate greater than φ), and the percentage of patients experiencing
DLT, are related to the safety aspects of a trial, and therefore a design with smaller values of these four
safety statistics should be considered more ethical and desirable.

Figure 1 shows that the CRM performs the best and NOC the second in terms of the percentages
of MTD selection and patients treated at the MTD. Regarding to the safety aspects, the proposed NOC
design substantially outperforms all the other competing designs. For example, under the NOC design,
the percentage of patients allocated to overly toxic dose levels is approximately half of that based on
BOIN when the average probability difference around the target is 0.1 (top panel). Although the CRM has
the best accuracy in pinning down the MTD, on average it has a greater risk of high toxicity. Among the
10 000 replications, NOC has an approximately four percentage of chance to exclude the true MTD from

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw038/-/DC1
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the trial based on the dose elimination rule. The differences of the six performance statistics among the
five methods diminish to a certain extent when the average probability difference around the target is 0.15
(bottom panel). In this case, not only is the NOC design the safest due to its overdose control scheme, but
it also has the highest MTD selection percentage.

For further investigation, we specify 12 scenarios which involve various numbers and locations of
the MTD and different probability differences around the target. Specifically, only one MTD has pj ∈
(φ − ε, φ + ε) in the first eight scenarios, while the remaining four scenarios contradict the prespecified
J models; that is, none of the dose levels or multiple dose levels satisfy pj ∈ (φ − ε, φ + ε). For each
scenario, we replicate 5000 trials and summarize the simulation results in Table S1 of the supplementary
material available at Biostatistics online. The conclusion remains the same that NOC ranks the best in
terms of safety, while as to the MTD selection and patient allocation percentages, NOC tends to perform
better when the MTD is near the lower dose levels. If one of the last two dose levels is the MTD, the NOC
design is relatively conservative. When the toxicity probability of the dose right below the MTD is close
to the target, both the EWOC and NOC designs would allocate relatively more patients to that dose level,
as shown in scenarios 6 and 7. When the true dose–toxicity profiles contradict the model assumptions,
NOC can still produce desirable operating characteristics. Typically, if none of the dose levels is inside
the ε-neighbourhood of φ, as noted by scenarios 9–10, NOC tends to select the highest dose level that
satisfies pj < φ − ε; if multiple dose levels fall in the ε-neighbourhood, NOC is more likely to select the
lowest one from the admissible dose levels, which is exhibited in scenarios 11–12.

3.2. Sensitivity analysis

We conduct a sensitivity analysis to examine the impact of the feasibility bound α and the switching cutoff
η on the performance of NOC. Specifically, we consider three configurations of α and η: (i) α = 0.35 and
η = 0.8, (ii) α = 0.35 and η = 0.5, and (iii) α = 0.5 and η = 0.5, and summarize the simulation results
in Figure S1 of the supplementary material available at Biostatistics online. There is a general trend that
the percentage of overdosing decreases with a decreasing value of α and an increasing value of η. A larger
value of η would prevent (2.3) from being the dose selection scheme, so that the overdose control rule
(2.2) would dominate the decision making. On average, the activation (switching) rate of rule (2.3) when
η = 0.5 is 34.3%, while that under η = 0.8 reduces to 4.5%, indicating that most of the dose assignment
follows the overdose control rule (2.2). Typically, when the MTD is the lowest or the highest dose, the
switching rate tends to be larger. On the other hand, the larger the value of α, the less penalty is assigned
to overdosing, which leads to a relatively more aggressive dose escalation. Such a sensitivity analysis
provides a practical guidance to choosing the tuning parameters of α and η.

To investigate the interplay between the model specification and the performance of NOC, we consider
an alternative set of J models,

Mk :

{
|pj − φ| ≤ ε, j = k ,

|pj − φ| > |pk − φ|, j �= k ,
k = 1, . . . , J , (3.1)

which allows multiple dose levels in the (φ−ε, φ+ε). Correspondingly, we specify a joint prior distribution
for p1, . . . , pJ under each Mk ,

⎧⎪⎨
⎪⎩

pj|Mk ∼ Unif (φ − ε, φ + ε), j = k ,

pj|pj−1, Mk ∼ Unif (pj−1 + 2(φ − pj−1)I {pj−1 < φ}, pJ+1), j > k ,

pj|pj+1, Mk ∼ Unif (p0, pj+1 − 2(pj+1 − φ)I {pj+1 > φ}), j < k ,

(3.2)

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw038/-/DC1
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which maintains the monotone increasing pattern of the dose–toxicity relationship. We conduct the simu-
lation study with 5000 replications under each scenario in Tables S1 and S2 of the supplementary material
available at Biostatistics online shows that model (3.1) with the prior specification of (3.2) produces similar
operating characteristics of NOC.

3.3. Late-onset toxicity

To investigate the proposed fNOC design, we consider the toxicity assessment period τ = 3 months and the
interarrival time between two consecutive cohorts T = 0.5 months; that is, the accrual rate is six patients
per month, and the τ/T ratio = 6. We extend the scenarios in Table S1 of the supplementary material
available at Biostatistics online by simulating time-to-toxicity outcomes based on Weibull distributions,
and choose the shape and scale parameters such that only 30% of the toxicities would occur in the first
half of the assessment period. We compare the fNOC design with five methods: TITE-CRM (Cheung and
Chappell, 2000), TITE-EWOC (Mauguen and others, 2011), TITE-CCD (Ivanova and others, 2007) and
fBOIN, where fBOIN is the design that combines BOIN and the fractional imputation approach.

Table S3 of the supplementary material available at Biostatistics online presents the simulation results
based on 5000 replications under each scenario. All the five methods have similar trial durations, which
are much less than the 36 months under the complete-data design. In scenarios 1–5, the fNOC design
yields the highest MTD selection percentage. In terms of the number of patients treated at the MTD,
fNOC on average yields a comparable performance with the other methods. For scenarios 9–12 which
involve no or two MTDs, fNOC still performs satisfactorily. When evaluating trial designs with late-onset
toxicities, patient safety is of great importance because ignoring late-onset toxicities would lead to overly
aggressive dose escalation. By comparing Tables S1 and S3 in the supplementary material available at
Biostatistics online, the average increment (with scenario 8 excluded due to no over-toxic doses) in the
number of overdosing for the five methods (TITE-CRM, TITE-EWOC, TITE-CCD, fBOIN, and fNOC)
under the late-onset toxicity are 2.9, 2.5, 7.1, 7.0, and 1.0 patients, respectively. The large increments of the
two algorithm-based methods (TITE-CCD and fBOIN) are attributable to the fact that these two methods
cannot borrow toxicity information from other dose levels for decision making: when the toxicity outcomes
of the lower dose levels become available, it is impossible for the newly collected data to influence the
dose escalation/de-escalation decision. Overall, the performance statistics with respect to the patient safety
based on fNOC are notably better than those using the other methods. For example, fNOC assigns 16
fewer patients to overly toxic dose levels than TITE-EWOC in scenario 1; fNOC treats 10 fewer patients
at overdoses than TITE-CRM; and the risk of high toxicity is about one third of that by TITE-CRM in
scenario 3. Moreover, fNOC has comparable precision of the MTD selection with TITE-CRM, as the
combination of the fractional imputation and the overdose control would induce a neutralization effect.
When the toxicity data are updated, fNOC can borrow information from all the dose levels and quickly
move toward underdoses if the current dose level is overly toxic.

4. TRIAL APPLICATION

For illustration, we apply the proposed fNOC design to the sonidegib trial. Thirty patients in cohorts of
size 3 were enrolled, and the trial started by treating the first cohort of patients at the lowest dose level.
Table 1 shows that the first four cohorts were treated by dose levels 1, 2, 3, and 3, respectively. Under the
fNOC design, we only update the posterior model probabilities upon the arrival of the first patient of each
cohort. Based on the accumulated data in Table 1, two DLTs were observed at dose level 3 when patient
13 arrived on day 130. We estimate the survival function using the Kaplan–Meier estimator, as shown
in Figure 2(a). At this moment, patients 6, 8, 9, 11, and 12 were still under the follow-up of evaluation
without experiencing any DLT, which led to a total of five missing toxicity outcomes. We imputed the
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Fig. 2. Kaplan–Meier estimates of the survival function based on the observed data (a) after the 4th cohort and (b) after
the 10th cohort, in the sonidegib trial.

missing data according to their fractional contribution (2.4), and as shown in Table 1, the corresponding
fractional DLTs were 0.000, 0.143, 0.143, 0.143, and 0.221. The imputed dataset led to the posterior
model probability (P(M1 | Dn), . . . , P(M5 | Dn)) = (0.02, 0.16, 0.55, 0.20, 0.07). Although dose level
3 had the largest posterior probability of being the MTD, our overdose control rule (2.2) determined
the next dose to be dose level 2, and the additional dose-switching rule (2.3) was not activated. On the
other hand, if we had treated the missing data as no DLTs, the posterior model probability would be
(0.01, 0.08, 0.49, 0.29, 0.13), i.e., the first three model probability would be underestimated, and then dose
level 3 would be selected as the next treatment according to the overdose control rule, which coincides
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Table 2. Arrival time (days), dose level, and time to toxicity (days) for the remaining 18 patients in the
sonidegib trial

Cohort Patient Day of Dose Time to Cohort Patient Day of Dose Time to
No. No. arrival level DLT No. No. arrival level DLT

5 13 130 2 0 8 22 205 2 1 (255)
14 131 2 0 23 210 2 1 (223)
15 155 2 0 24 222 2 0

6 16 158 2 0 9 25 239 2 1 (245)
17 167 2 1 (200) 26 248 2 0
18 178 2 0 27 265 2 0

7 19 185 3 0 10 28 280 2 0
20 188 3 1 (233) 29 283 2 1 (343)
21 189 3 1 (199) 30 285 2 0

0%

25%

50%

75%

100%

4 5 6 7 8 9 10
cohort

P
er

ce
nt

ag
e 

(%
)

Dose1

Dose2

Dose3

Dose4

Dose5

Fig. 3. Posterior probabilities of Mj based on the fNOC design in the sonidegib trial, j = 1, . . . , 5. The result of the
last cohort is obtained after all of the toxicity outcomes in the trial are completely observed.

with the decision made by TITE-EWOC. Typically, such dose assignment by treating missing data as no
response would be too aggressive.

The subsequent dose assignment is provided in Table 2, and the posterior model probabilities by the
arrival of the first patient of each new cohort are exhibited in Figure 3. The proposed fNOC design is
able to update the posterior probabilities timely. On day 185 when patient 19 arrived, still two DLTs were
observed, yet the toxicity outcome of patient 17 was censored at that moment. Given that no DLT had been
observed at dose levels 1 and 2, the posterior probability of dose level 3 being the MTD was updated to be
0.60. Therefore, the dose-switching rule (2.3) was activated, and our algorithm recommended escalating to
dose level 3. However, one DLT was observed prior to the arrival of patient 22, the proposed fNOC design
took into account the new information and de-escalated back to dose level 2. For the last two sequences of
enrolment, dose level 2 would remain, as its estimated cumulative posterior model probability is closest
to the feasibility bound of 0.35. During the entire trial, the dose-switching rule (2.3) was not activated,
as none of the posterior model probability was greater than 0.60. At the end of the trial, three dose levels
had been explored with five observed DLTs out of 18 patients at dose level 2 and four DLTs out of nine
patients at dose level 3. The observed toxicity probabilities at the five dose levels are (0, 0.28, 0.44, −, −),
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where “−” represents untried dose levels. Figure 2(b) presents the Kaplan–Meier estimator of the survival
function based on the complete data after the trial is finished. The final posterior model probability is
(0.03, 0.55, 0.36, 0.05, 0.01), and therefore the second dose level would be selected as the MTD with the
estimated toxicity probability of 0.28.

Figure 3 displays the posterior model probabilities throughout the trial. At the early stage of the trial,
there was a small posterior probability of dose level 2 being the MTD since no DLT had been observed at
that level, while the posterior probability of M2 continuously increased by accumulating new information
as the trial proceeded. It took the fNOC design approximately one year to finish the entire trial, while it
would take over 2.5 years if each dose assignment is suspended until all of the toxicity outcomes in the
trial are completely observed.

5. CONCLUDING REMARKS

We have proposed the NOC and fNOC designs to address the dose finding problems in phase I tri-
als. In general, our methods have several prominent characteristics, which deviate from the existing
dose-finding designs. First, NOC is built upon a nonparametric framework of Bayesian model selec-
tion, and each dose assignment is made to control overdosing by incorporating the complete information
across all dose levels. As a result, NOC possesses both the robustness and safety properties. Second,
by assembling NOC with the fractional imputation method under late-onset toxicities, the fNOC design
can pull patients back to safe dose levels in case that late-onset toxicities lead to overly aggressive dose
escalation. Such neutralization makes fNOC very appealing in dealing with delayed toxicity outcomes.
Third, the proposed methods are flexible due to three tuning parameters: the feasibility bound α, the
dose-switching cutoff η, and the dose elimination cutoff λ, and all of them have meaningful interpreta-
tions and can be easily calibrated. In addition to these unique features, simulation studies have shown
that both the NOC and fNOC designs have competitive MTD selection and allocation percentages with
the existing methods, and they can keep fewer patients from being treated at excessively toxic dose
levels.

The proposed NOC method with prior (2.1) assumes that there exists only one dose level with
pj ∈ (φ−ε, φ+ε) among the presepcified J dose levels, while simulations have shown that NOC still works
well when this assumption is violated. On the other hand, model (3.1) with prior (3.2) can accommodate
situations where multiple dose levels are assumed to lie in (φ −ε, φ +ε) under Mk , k = 1, . . . , J . The pro-
posed methods have focused on the single-agent dose-finding trials, while the model selection framework
of NOC can be generalized to drug-combination trials (Yin and Yuan, 2009; Lin and Yin, 2016) and phase
I/II trials with (late-onset) efficacy outcomes (Lee and others, 2016). The R codes for implementation of
the proposed NOC and fNOC designs are available on Github (https://github.com/ruitaolin/NOC).

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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