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Smoothed and Corrected Score Approach
to Censored Quantile Regression With Measurement

Errors
Yuanshan WU, Yanyuan MA, and Guosheng YIN

Censored quantile regression is an important alternative to the Cox proportional hazards model in survival analysis. In contrast to the usual
central covariate effects, quantile regression can effectively characterize the covariate effects at different quantiles of the survival time. When
covariates are measured with errors, it is known that naively treating mismeasured covariates as error-free would result in estimation bias.
Under censored quantile regression, we propose smoothed and corrected estimating equations to obtain consistent estimators. We establish
consistency and asymptotic normality for the proposed estimators of quantile regression coefficients. Compared with the naive estimator,
the proposed method can eliminate the estimation bias under various measurement error distributions and model error distributions. We
conduct simulation studies to examine the finite-sample properties of the new method and apply it to a lung cancer study. Supplementary
materials for this article are available online.

KEY WORDS: Censored data; Check function; Corrected estimating equation; Kernel smoothing; Measurement error; Regression quantile;
Semiparametric method; Survival analysis.

1. INTRODUCTION

Mean-based regression models have been extensively stud-
ied for randomly censored survival data. For example, the Cox
(1972) proportional hazards model characterizes the hazard as a
function of different covariates; and the accelerated failure time
(AFT) model directly formulates linear regression between the
logarithm of the failure time and covariates. However, neither
the Cox nor the AFT model can differentiate the covariate ef-
fect at higher or lower quantiles of survival times, as they only
provide the mean effect. In particular, the AFT model concerns
only the mean regression, for which the estimation procedure
is typically based on the least squares or rank methods (Pren-
tice 1978; Buckley and James 1979; Ritov 1990; Tsiatis 1990;
Wei, Ying, and Lin 1990; Lai and Ying 1991; and Jin et al.
2003). On the other hand, quantile regression provides a ro-
bust alternative to mean-based regression models. Under this
framework, we can model the median or any other quantile of
the outcome or survival time (Koenker and Bassett 1978; and
Koenker 2005). Regression parameters are often estimated by
minimizing a check function, and the corresponding variance
estimates are typically obtained by resampling methods, such
as bootstrap. When censoring times are assumed to be fixed
and known, quantile regression has been extensively studied,
particularly in the field of econometrics; for example, see Pow-
ell (1984), Buchinsky and Hahn (1998), Fitzenberger (1997),
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and Khan and Powell (2001). In survival analysis with ran-
dom censoring, censored quantile regression (CQR) has been
proposed and is gaining much popularity (Ying, Jung, and Wei
1995; Lindgren 1997; Yang 1999; Koenker and Geling 2001;
Bang and Tsiatis 2002; Chernozhukov and Hong 2002; Portnoy
2003; Peng and Huang 2008; and Wang and Wang 2009).

In practice, covariates are often subject to measurement er-
rors. The most common measurement error structure is W =
Z + U, where W is the observed surrogate, Z is the true but un-
observed covariate, and U is the random measurement error. For
a comprehensive coverage of various measurement error mod-
els and inference procedures with mean-based regression, see
Carroll et al. (2006). In the context of quantile regression with
measurement errors, Brown (1982) examined median regres-
sion and described the difficulty involved in parameter estima-
tion. He and Liang (2000) proposed root-n consistent estimators
for linear and partially linear quantile regression models. Their
method assumes that the random error in the response and the
measurement errors in the covariates follow a spherical sym-
metric distribution. Wei and Carroll (2009) proposed a novel
approach to quantile regression with measurement errors by
using the derivative property of the quantile function when the
same quantile regression structure is assumed for all the quantile
levels. Recently, Wang, Stefanski, and Zhu (2012) developed a
corrected-loss function for the smoothed check function, a sub-
stantial advance in this area. However, there is limited research
on quantile regression with covariate measurement errors under
censoring. Ma and Yin (2011) studied covariate measurement
errors in CQR models based on the inverse probability weighting
scheme, but their method also requires the spherically symmet-
ric distribution. In this article, we study the issue of covariate
measurement errors in quantile regression with randomly cen-
sored data. We propose a smoothed and corrected martingale-
based estimating equation, consider grid-based estimates for the
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quantile regression coefficients, and establish the asymptotic
properties of the proposed estimator by employing empirical
process theory. Our proposed method allows an abundant class
of distributions for the error in the response; for example, it
could be light- or heavy-tailed, symmetric or asymmetric, or
homoscedastic or heteroscedastic.

The rest of the article is organized as follows. In Section 2,
we describe the CQR model with measurement errors, develop
a corrected estimating equation based on a kernel smoothing
approximation, and establish the asymptotic properties of the
resultant estimator. Section 3 contains simulation studies for
the evaluation of the finite sample performance of the pro-
posed method. A dataset concerning lung cancer is analyzed in
Section 4 and some concluding remarks are provided in Section
5. The assumptions that we imposed in the article were listed and
discussed in the Appendix and the detailed proofs of theorems
are deferred to the online supplementary material.

2. CQR MODEL WITH MEASUREMENT ERRORS

2.1 Model Specification

Let T denote the transformed failure time under a known
monotone transformation, for example, the logarithm function.
Let C denote the censoring time under the same transforma-
tion. Let Z be a p-vector of covariates, X = T ∧ C be the
observed time, and � = I (T ≤ C) be the censoring indicator,
where a ∧ b is the minimum of a and b, and I (·) is the indicator
function. Assume that T and C are conditionally independent
given covariate Z.

For τ ∈ (0, 1), the conditional τ th quantile function of sur-
vival time T given covariate Z is defined as QT (τ |Z) =
inf{t : P (T ≤ t |Z) ≥ τ }. The quantile regression model asso-
ciated with covariate Z has the form

QT (τ |Z) = ZTβ(τ ), (2.1)

where β(τ ) is an unknown p-vector of regression coefficients,
representing the effect of Z on the τ th quantile of the trans-
formed survival time.

In reality, covariate Z may be measured with errors, so that
we do not directly observe Z but its surrogate W. We assume
the classical error structure

W = Z + U,

where U is a p-variate random vector with mean 0 and covari-
ance matrix �. The case that some covariates are error-free is
accommodated in our model by setting the relevant terms in � to
be zero. We further make the typical surrogacy assumption that
(T ,C) and W are conditionally independent given covariate Z.
For ease of exposition, we assume � to be known provisionally,
since � can easily be estimated with replicated observations or
validation data.

2.2 Approximately Corrected Estimating Equation

We first introduce notation: FT (t |Z) = P (T ≤ t |Z),
�T (t |Z) = − log{1 − P (T ≤ t |Z)}, N (t) = �I (X ≤ t) and
M(t) = N (t) − �T (t ∧ X|Z). Following the argument in Flem-
ing and Harrington (1991), it is easy to show that evaluated at
β0(τ ), the true value of β(τ ), M(t) is a martingale process as-
sociated with the counting process N (t). Furthermore, because

E{M(t)|Z} = 0 at β0(τ ) for any t, we have

E
{
Z

(
N{ZTβ0(τ )} − �T [{ZTβ0(τ )} ∧ X|Z]

)} = 0 (2.2)

for τ ∈ (0, 1). Under model (2.1), after some algebraic manip-
ulations, we obtain that

�T [{ZTβ0(τ )} ∧ X|Z] =
∫ τ

0
I {X ≥ ZTβ0(u)}dH (u), (2.3)

where H (u) = − log(1 − u) for 0 ≤ u < 1.
Based on (2.2) and (2.3), when all Zi’s are observed, Peng

and Huang (2008) proposed an estimating equation for β(τ ),
n∑

i=1

Zi

[
Ni{ZT

i β(τ )} −
∫ τ

0
I {Xi ≥ ZT

i β(u)}dH (u)

]
= 0.

(2.4)
However, when the covariates Zi’s are measured with errors,
naively treating mismeasured covariates to be error-free would
cause estimation bias and thus lead to incorrect inference. In
(2.4), because covariate Zi lies inside the indicator function,
which is discontinuous, it is difficult to build up a consistent
estimator when the surrogates Wi’s, instead of Zi’s, are ob-
served. To overcome the challenge caused by discontinuity and
measurement errors, we propose an approximately corrected es-
timating equation for (2.4) and further establish the asymptotic
properties of the resultant estimators for regression quantile co-
efficients.

We denote the observed data O = (X,�, W) and let U =
(X,�, Z). In view of the estimating equation (2.4), if we can
find a function g∗{O,β(τ )} such that for τ ∈ (0, 1),

E[g∗{O,β(τ )}|U] = ZI {X > ZTβ(τ )},
we can then follow the corrected score argument (Stefanski
1989; Nakamura 1990) to construct an unbiased estimating
equation as

n∑
i=1

[
�iWi − �ig

∗{Oi ,β(τ )} −
∫ τ

0
g∗{Oi ,β(u)}dH (u)

]
= 0.

However, the cusp in the indicator function makes it difficult
to find such a function. On the other hand, Horowitz (1992,
1998) proposed the smoothed maximum score estimator for the
binary response model and the smoothed least absolute deviation
for median regression. Motivated by the smoothing scheme,
we circumvent the discontinuity stemming from the indicator
function and consider a smoothing function that approaches
the indicator function as n → ∞. More specifically, assume
that a smooth function K(·) satisfies limx→−∞ K(x) = 0 and
limx→∞ K(x) = 1. If we consider a positive scale parameter
hn that converges to zero as sample size n → ∞, K(x/hn)
may provide an adequate approximation to I (x > 0) as n → ∞,
where hn behaves like the bandwidth in the kernel smoothing.

If we can find a function G{O,β(τ ); hn} such that

E[G{O,β(τ ); hn}|U] = {X − ZTβ(τ )}K
{

X − ZTβ(τ )

hn

}
≈ {X − ZTβ(τ )}I {X > ZTβ(τ )},(2.5)

we may set

g{O,β(τ ); hn} = −∂G{O,β(τ ); hn}
∂β(τ )

,
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and conclude that E[g{O,β(τ ); hn}|U] is close to ZI {X >

ZTβ(τ )}. As a result, we can construct an approximately cor-
rected estimating equation

n∑
i=1

[
�iḡ{Oi ,β(τ ); hn} −

∫ τ

0
g{Oi ,β(u); hn}dH (u)

]
= 0,

(2.6)

where ḡ{Oi ,β(τ ); hn} = Wi − g{Oi ,β(τ ); hn}. Since it is chal-
lenging to obtain the functional solution to the integral Equa-
tion (2.6), we follow Peng and Huang (2008) to develop a
grid-based estimation procedure for β0(·). Assume that τU

is a deterministic constant in (0, 1) subject to certain iden-
tifiability constraints, for example, Assumption A4-(iii) in
the Appendix. Due to the inherent nonidentifiability of the re-
gression quantiles beyond the level τU , we confine estimation
of β0(τ ) for τ ∈ (0, τU ]. We denote a partition over the in-
terval [0, τU ] by Sqn

= {0 ≡ τ0 < τ1 < · · · < τqn
≡ τU }, where

the number of grid points qn depends on n. We consider an
estimator of β0(τ ) that is a right-continuous piecewise con-
stant function and jumps only at grid points in Sqn

. Noting that
ZTβ0(τ0) = −∞, we intuitively set g{O, β̂(τ0); hn} = W. For
a given hn, employing the Newton–Raphson algorithm, the es-
timates β̂(τj ), j = 1, . . . , qn, can be obtained sequentially by
solving

n∑
i=1

[
�iḡ{Oi ,β(τ ); hn} −

j−1∑
k=0

g{Oi , β̂(τk); hn}{H (τk+1)

−H (τk)}
]

= 0. (2.7)

2.3 Laplace and Normal Measurement Errors

Apparently, it is crucial to find the function G such that (2.5)
holds. For illustration, we construct G when the measurement
errors follow a multivariate Laplace and a multivariate normal
distribution, respectively. Wang, Stefanski, and Zhu (2012) also
considered these two types of measurement errors, as Laplace
distributions are more heavy-tailed than normal distributions,
and both are widely used in practice.

Assume that U is a p-variate Laplace distributed random
vector with mean 0 and covariance matrix �, denoted by
U ∼ Lp(0, �), whose characteristic function is given by ϕ(t) =
1/(1 + 0.5tT�t) for t ∈ Rp (Kotz, Kozubowski, and Podgorski
2001). Thus,

ε(τ )|U ∼ L1
{
X − ZTβ(τ ),β(τ )T�β(τ )

)},
where ε(τ ) = X − WTβ(τ ). Following the work of Hong and
Tamer (2003) and Wang, Stefanski, and Zhu (2012), we have

GL{O,β(τ ); hn} = ε(τ )K

{
ε(τ )

hn

}
− β(τ )T�β(τ )

2

[
2

hn

K (1)

{
ε(τ )

hn

}
+ ε(τ )

h2
n

K (2)

{
ε(τ )

hn

}]
,

where K (j )(x) = djK(x)/dxj for j = 1, 2, 3, 4. It is easy to
show that GL{O,β(τ ); hn} satisfies (2.5). Therefore,

gL{O,β(τ ); hn} =
[
K

{
ε(τ )

hn

}
+ ε(τ )

hn

K (1)

{
ε(τ )

hn

}]
W

+
[

2

hn

K (1)

{
ε(τ )

hn

}
+ ε(τ )

h2
n

K (2)

{
ε(τ )

hn

}]
�β(τ )

−
[

3

h2
n

K (2)

{
ε(τ )

hn

}
+ ε(τ )

h3
n

K (3)

{
ε(τ )

hn

}]
β(τ )T�β(τ )

2
W.

After plugging gL{O,β(τ ); hn} in (2.7), we can solve for
β(τ ).

We consider a more common case that U is a p-variate normal
random vector with mean 0 and covariance matrix �, that is,
U ∼ Np(0, �). Note that

ε(τ )|U ∼ N
{
X − ZTβ(τ ),β(τ )T�β(τ )

}
.

Motivated by Stefanski (1989) and Wang, Stefanski, and Zhu
(2012), we take the objective function GN {O,β(τ ); hn} to be

GN {O,β(τ ); hn}=
∞∑

j=0

{−β(τ )T�β(τ )}j
2j j !

[
ε(τ )K

{
ε(τ )

hn

}](2j )

,

provided that K(·) is sufficiently smooth, where
{xK(x/hn)}(0) = xK(x/hn) and{

xK

(
x

hn

)}(j )

= j

h
j−1
n

K (j−1)

(
x

hn

)
+ x

h
j
n

K (j )

(
x

hn

)
,

j = 1, 2, . . . .

Consequently, gN {O,β(τ ); hn} can be obtained by taking the
derivative of GN {O,β(τ ); hn}. Although we can construct the
approximately corrected estimating equation as (2.6) and theo-
retically define an estimator based on the resultant grid-based
solution for β0(·), it is infeasible to solve the equation because
GN involves an infinite series. Following the recommendation
of Stefanski (1989), we keep the first two summands in GN as
an approximation, which is found to be adequate in our simu-
lation studies. More interestingly, using the first two summands
leads to exactly the same form of the approximately corrected
estimating equation as that in the Laplace measurement error
model.

2.4 Asymptotic Properties

Denote an = max1≤j≤qn
|τj − τj−1|, the maximum distance

between two adjacent points belonging to Sqn
. The asymptotic

properties of the estimator β̂(τ ), which solves (2.7), are sum-
marized in the following two theorems.

Theorem 1. Under Assumptions A1–A4 in the Appendix, if
an = o(1), then supτ∈[ν,τU ] ‖β̂(τ ) − β0(τ )‖ → 0 in probability
for any ν ∈ (0, τU ] as n → ∞.

Theorem 2. Under Assumptions A1–A5 in the Appendix,
if an = o(n−1/2), then n1/2{β̂(τ ) − β0(τ )} converges weakly to
a mean zero Gaussian random field over τ ∈ [ν, τU ] for any
ν ∈ (0, τU ] as n → ∞.
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Table 1. Simulation results for the log-transformed censored quantile regression with three different distributions of covariate measurement
errors and heteroscedastic model errors for ε ∼ N (0, 1)

β0(·) β1(·)
τ True Est SE/ESE CP(%) True Est SE/ESE CP(%)

U ∼ L1(0, 0.52)
0.2 −1.342 −1.245 0.934 91.8 0.832 0.811 1.028 93.4
0.3 −1.024 −0.976 0.953 94.0 0.895 0.881 1.014 92.8
0.4 −0.753 −0.740 1.022 95.6 0.949 0.944 1.021 94.2
0.5 −0.500 −0.509 1.030 95.8 1.000 1.006 1.028 93.2
0.6 −0.247 −0.269 0.996 95.6 1.051 1.080 0.974 93.4
0.7 0.024 −0.001 1.040 95.0 1.105 1.117 1.038 93.2

U ∼ N (0, 0.52)
0.2 −1.342 −1.265 0.967 92.8 0.832 0.830 0.993 94.0
0.3 −1.024 −0.975 0.943 92.0 0.895 0.885 0.932 93.6
0.4 −0.753 −0.715 0.928 93.8 0.949 0.936 0.925 93.8
0.5 −0.500 −0.465 0.879 93.0 1.000 0.993 0.935 94.2
0.6 −0.247 −0.222 0.886 94.2 1.051 1.053 0.972 93.6
0.7 0.024 0.044 0.913 94.6 1.105 1.099 0.942 92.8

U ∼ Unif(−√
3/2,

√
3/2)

0.2 −1.342 −1.260 0.987 92.6 0.832 0.817 0.891 94.8
0.3 −1.024 −0.971 0.969 93.6 0.895 0.878 0.894 94.8
0.4 −0.753 −0.720 0.951 93.8 0.949 0.934 0.962 92.8
0.5 −0.500 −0.476 0.942 94.2 1.000 0.990 0.986 92.6
0.6 −0.247 −0.222 0.969 93.8 1.051 1.050 1.042 93.6
0.7 0.024 0.060 1.004 94.2 1.105 1.102 1.052 92.6

NOTE: SE/ESE is the ratio of the sampling standard error and the estimated (bootstrap) standard error, and CP is the coverage probability.

Both the consistency and weak convergence of the proposed
estimator only hold for quantile levels bounded away from zero
due to the data sparsity when τ is close to zero. A much finer
partition with a step size of order o(n−1/2) is required to establish
the weak convergence property. The proofs of both theorems rely

heavily on empirical process theory, which are provided in the
supplementary material.

It is crucial to select the smoothing parameter hn. With-
out loss of generality, assume that Z includes the intercept as
its first element. Noting that E[g{O,β(τ ); hn}|U] is close to

Table 2. Simulation results for the log-transformed censored quantile regression with three different distributions of covariate measurement
errors and heteroscedastic model errors for ε from an extreme value distribution

β0(·) β1(·)
τ True Est SE/ESE CP(%) True Est SE/ESE CP(%)

U ∼ L1(0, 0.52)
0.2 −2.000 −1.822 1.030 85.4 0.700 0.679 0.929 93.4
0.3 −1.531 −1.452 1.000 90.8 0.794 0.770 0.934 93.4
0.4 −1.172 −1.161 0.965 92.4 0.866 0.870 0.994 93.2
0.5 −0.867 −0.918 0.993 92.2 0.927 0.954 1.030 92.4
0.6 −0.587 −0.666 1.008 91.2 0.983 1.033 0.994 90.2
0.7 −0.314 −0.384 0.996 91.8 1.037 1.100 0.981 92.4

U ∼ N (0, 0.52)
0.2 −2.000 −1.823 1.008 85.6 0.700 0.680 1.042 94.0
0.3 −1.531 −1.453 1.026 91.0 0.794 0.778 1.050 94.4
0.4 −1.172 −1.154 0.957 93.8 0.866 0.863 1.018 94.6
0.5 −0.867 −0.895 0.950 94.2 0.927 0.946 0.957 94.6
0.6 −0.587 −0.635 0.923 93.2 0.983 1.018 1.013 93.0
0.7 −0.314 −0.349 0.876 95.2 1.037 1.066 0.974 94.8

U ∼ Unif(−√
3/2,

√
3/2)

0.2 −2.000 −1.771 1.008 85.4 0.700 0.657 0.933 94.4
0.3 −1.531 −1.418 1.023 90.4 0.794 0.749 0.911 94.8
0.4 −1.172 −1.119 1.018 91.6 0.866 0.847 0.959 93.8
0.5 −0.867 −0.854 1.073 93.2 0.927 0.926 1.031 92.8
0.6 −0.587 −0.601 1.061 92.2 0.983 1.012 1.051 91.8
0.7 −0.314 −0.314 1.080 91.8 1.037 1.073 1.032 91.8
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Table 3. Simulation results for the log-transformed censored quantile regression with three different distributions of covariate measurement
errors and heteroscedastic model errors for ε ∼ t2

β0(·) β1(·)
τ True Est SE/ESE CP(%) True Est SE/ESE CP(%)

U ∼ L1(0, 0.52)
0.2 −1.561 −1.453 0.974 90.6 0.788 0.788 0.923 96.6
0.3 −1.117 −1.101 0.973 95.8 0.877 0.881 0.960 95.8
0.4 −0.789 −0.797 0.978 96.0 0.942 0.947 0.916 96.4
0.5 −0.500 −0.512 0.960 96.0 1.000 1.020 0.898 95.2
0.6 −0.211 −0.223 0.955 94.2 1.058 1.085 0.872 93.8
0.7 0.117 0.116 0.991 95.0 1.123 1.122 0.920 93.8

U ∼ N (0, 0.52)
0.2 −1.561 −1.452 0.975 92.0 0.788 0.810 0.908 95.0
0.3 −1.117 −1.082 0.973 95.0 0.877 0.885 0.935 94.6
0.4 −0.789 −0.763 1.026 95.2 0.942 0.947 0.981 95.8
0.5 −0.500 −0.477 1.041 95.0 1.000 1.006 1.025 94.6
0.6 −0.211 −0.193 1.036 95.0 1.058 1.073 1.030 94.8
0.7 0.117 0.161 0.967 94.8 1.123 1.114 0.967 93.6

U ∼ Unif(−√
3/2,

√
3/2)

0.2 −1.561 −1.490 0.937 90.6 0.788 0.810 0.920 94.2
0.3 −1.117 −1.109 1.050 93.2 0.877 0.889 0.918 93.2
0.4 −0.789 −0.789 1.026 93.0 0.942 0.943 0.962 93.8
0.5 −0.500 −0.478 0.985 93.4 1.000 1.001 0.981 93.0
0.6 −0.211 −0.179 1.004 93.4 1.058 1.059 1.018 92.6
0.7 0.117 0.156 0.946 92.0 1.123 1.131 1.033 91.4

ZI {X > ZTβ(τ )} and using only the intercept term, we can get
the smoothed and corrected function

M(O,β(τ ); hn) = �ḡ1{O,β(τ ); hn}
−

∫ τ

0
g1{O,β(u); hn}dH (u)

for the martingale M{ZTβ(τ )}, where ḡ1 and g1 are the first
elements of ḡ and g, respectively. In practice, we recommend
a d-fold cross-validation method to choose hn. We randomly
divide the data into d nonoverlapping and approximately equal-
sized subgroups. For the jth subgroup Dj , we fit the proposed
procedure using the data excluding Dj , denoted by D(−j ), and
calculate the loss function

Lj (hn) = 1

|Dj |
∑
k∈Dj

∫ τU

0
|R(hn, Wo

k, β̂ (−j )(τ ))|dτ,

where |Dj | denotes the cardinality of the set Dj ,

R(hn, wo,β(τ )) = 1

|D(−j )|
∑

i∈D(−j )

I (Wo
i ≤ wo)M(Oi ,β(τ ); hn),

Wo
i denotes the error-free elements of Zi , and Wo

i ≤ wo means
every entry of Wo

i is not larger than the counterpart of wo.

The loss function is based on a cumulative sum of martingale
residuals, with further correction on measurement errors. Here,
β̂ (−j )(τ ) for τ ∈ [0, τU ] is obtained using the proposed proce-
dure on the data D(−j ). Finally, we select the bandwidth by
minimizing the total loss L(hn) = ∑d

j=1 Lj (hn).

3. SIMULATION STUDIES

We conducted extensive simulation studies to assess the per-
formance of the proposed method with finite samples. We

generated survival time T̃ from the log-transformed linear model
with heteroscedastic errors,

log T̃ = −0.5 + Z + (1 + 0.2Z)ε,

where the model error ε was from the standard normal dis-
tribution, and Z was generated from the uniform distribu-
tion, Unif(0,

√
12). The corresponding CQR model (2.1) given

Z = (1, Z)T takes the form of

QT (τ |Z) = β0(τ ) + β1(τ )Z,

where T = log T̃ , β0(τ ) = −0.5 + Qε(τ ), β1(τ ) = 1 +
0.2Qε(τ ), and Qε(τ ) is the τ th quantile of ε. We further assumed
that Z was measured with errors in the form of W = Z + U ,
where U is the measurement error and W is the surrogate of Z.
We generated the measurement errors from three different dis-
tributions, respectively; that is, Laplace: U ∼ L1(0, 0.52), nor-
mal: U ∼ N (0, 0.52), and uniform: U ∼ Unif(−√

3/2,
√

3/2).
These choices of measurement error distributions correspond to
a signal-to-noise ratio of 0.8. The censoring time C, dependent
on Z, was generated from Unif(c1, c2) if Z <

√
12/2 and from

Unif(c1 + 1, c2) otherwise. For each scenario, c1 and c2 were
chosen to yield a censoring rate of around 20%. Note that al-
though the proposed method is developed to handle the Laplace
or normal measurement errors, we also considered uniform mea-
surement errors to examine the robustness of our approach. We
chose the bandwidth hn = 1, while sensitivity analysis with dif-
ferent values of hn is given at the end of this section. We set
the smoothing function K(·) as the standard normal distribu-
tion function, and adopted an equally spaced grid over interval
[0.1, 0.78] with a step 0.02. The naive estimator was obtained
by directly regressing on W = (1,W )T. Our proposed estimator,
which solves the estimating Equation (2.7) coupled with treating
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Figure 1. Biases of the estimated quantile regression intercept using the proposed method (solid lines) and the naive method (dashed lines)
under three different model error distributions: normal, extreme value, and t2, and three different measurement error distributions: Laplace,
normal, and uniform, respectively.

the measurement error as Laplace, was obtained through the
Newton–Raphson algorithm by taking the naive estimator as
the initial value. We set sample size n = 200, and simulated 500
replicated datasets under each configuration. Following the con-
vention in quantile regression, we used bootstrap with 200 boot-
strap samples to obtain the variances of the parameter estimates.

In Table 1, the column labeled “Est” is the median of the
estimates, “SE” is the rescaled (i.e., multiplied by �−1(0.75),
where �(·) is the standard normal cumulative distribution func-
tion) median absolute deviation of the estimates, which is a
robust estimate for the standard error (van der Vaart 1998, Ex-
ample 21.11), “ESE” is the average of the bootstrap rescaled
median absolute deviation, “CP” is the coverage probability

of 95% confidence intervals. With sample size n = 200, the
proposed estimation method performs reasonably well under
the standard normal distribution for the model error ε, coupled
with three different distributions for the measurement error U.
The biases are essentially negligible except for those of the
lower quantile levels near 0.2 due to sparse event information
observed at the initial follow-up time. The estimated standard
errors using the bootstrap method agree well with the sam-
pling standard errors, and the coverage probabilities of 95%
confidence intervals are around the nominal level. We specif-
ically point out that the performance is similar in all three
measurement error cases, even though strictly speaking, our
implementation here is only valid for Laplace measurement
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Figure 2. Biases of the estimated quantile regression slope using the proposed method (solid lines) and the naive method (dashed lines) under
three different model error distributions: normal, extreme value, and t2, and three different measurement error distributions: Laplace, normal,
and uniform, respectively.

errors and serves as an approximation for normal measurement
errors.

We also explored different distributions for the model error
ε; for example, an extreme value distribution with the cumula-
tive distribution function Fε(x) = 1 − exp(−ex) and Student’s
t distribution with two degrees of freedom, while keeping the
rest of the data generation scheme the same as before. The
corresponding simulation results are respectively presented in
Tables 2 and 3, from which we can draw similar conclusions.
When the sample size is small, some nonconvergent cases might
be encountered using the Newton–Raphson algorithm. Often,
the nonconvergent issue would disappear with a larger sample
size. An alternative solution is to minimize the L2-norm of the

estimating function that would bring the estimating equation
value as close to zero as possible. More detailed discussions on
numerical issues are given in the supplementary material.

To evaluate the overall performance of the proposed method
as well as its comparison with the naive method, we present
the biases of the estimated quantile intercept and slope coef-
ficients across τ ∈ [0.2, 0.78] under different model error and
covariate measurement error distributions in Figures 1 and 2,
respectively. It can be seen that the proposed method can effec-
tively correct the biases caused by measurement errors, whereas
the naive method indeed produces serious biases, especially for
the quantile slope coefficients, which are typically of more in-
terest in practice. Moreover, Figures 3 and 4 exhibit the mean
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Figure 3. Mean squared errors of the estimated quantile regression intercept using the proposed method (solid lines) and the naive method
(dashed lines) under three different model error distributions: normal, extreme value, and t2, and three different measurement error distributions:
Laplace, normal, and uniform, respectively.

squared errors (MSEs) of the estimated quantile intercept and
slope coefficients, respectively. The MSEs under the proposed
method are much smaller than those under the naive method,
which further demonstrates that the proposed method is a viable
approach to CQR with measurement errors.

When � is unknown, it may be estimated from replicated
data, for which case Table 4 shows that the proposed method
also performs well. Obviously, when the censoring rate be-
comes heavier, the range of estimable quantile levels shrinks.
It is evident from Table 5 that the performance of the pro-
posed method is satisfactory even with a censoring rate of
50%. Furthermore, when the symmetric Laplace measurement
error is misspecified as an asymmetric distribution, for example,

U ∼ Exp(1/λ) − λ with λ = 0.5, the conclusions remains the
same.

We investigated the sensitivity of the proposed method to
the smoothing parameter hn when the data were generated
from the log-transformed CQR model with heteroscedastic
model errors for ε ∼ N (0, 1) and covariate measurement er-
rors U ∼ N (0, 0.52). As shown in Figure 5, the biases and
MSEs vary slightly with different values of hn, demonstrat-
ing the estimation stability and, more strikingly, both of them
are always much smaller than those from the naive method. We
also explored the situation where multiple covariates are sub-
ject to measurement errors while others are measured precisely.
For normal measurement errors, we conducted simulations to
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Figure 4. Mean squared errors of the estimated quantile regression slope using the proposed method (solid lines) and the naive method
(dashed lines) under three different model error distributions: normal, extreme value, and t2, and three different measurement error distributions:
Laplace, normal, and uniform, respectively.

compare our infinite series correction function with the inte-
gral correction function proposed by Wang, Stefanski, and Zhu
(2012). In addition, we examined the simulation and extrap-
olation (SIMEX) method in He, Yi, and Xiong (2007) under
the AFT model, and the simulation results in the supplemental
material demonstrate the comparability of our proposed method
with other alternatives.

4. APPLICATION

As an illustration, we applied the proposed estimation and
inference procedure for CQR with measurement errors to a lung
cancer study. This dataset contains 280 lung cancer patients,

whose survival times were recorded with a censoring rate of
64.3%. One of the main objectives of this study was to assess
the association of patient survival with certain biomarker expres-
sion in the tumor cell cytoplasm. The reading of the biomarker
expression was performed by pathologists and could be sub-
jective. As a result, the readings of the biomarker expression
for each patient were considered imprecise measurements. To
reduce the possible subjectivity of the evaluation, for some pa-
tients, two readings of the biomarker expression were provided
by two different pathologists (replicates). However, neither of
the two measurements of biomarker expression can be consid-
ered precise. Our main interest lies in investigating the potential
of the biomarker as a new prognostic marker and therapeutic
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Table 4. Simulation results for the log-transformed censored quantile
regression with the heteroscedastic model error for ε ∼ N (0, 1) and

covariate measurement error U ∼ N (0, 0.52), where the standard
error of the measurement error is estimated based on five replications

β0(·) β1(·)
SE/ SE/

τ True Est ESE CP(%) True Est ESE CP(%)

0.2 −1.342 −1.271 1.025 93.4 0.832 0.822 1.000 94.2
0.3 −1.024 −0.989 1.026 94.8 0.895 0.892 0.993 95.2
0.4 −0.753 −0.747 0.973 95.0 0.949 0.952 1.007 95.8
0.5 −0.500 −0.509 0.987 94.2 1.000 1.013 0.993 95.8
0.6 −0.247 −0.272 0.965 94.6 1.051 1.072 0.938 94.8
0.7 0.024 0.015 0.963 93.6 1.105 1.117 0.955 93.6

target for lung cancer. Other confounding covariates of interest
include tumor histology (there were 61% of patients with adeno-
carcinoma coded as 1, and 39% squamous cell carcinoma coded
as 0), age (ranging from 34 to 90 years with mean 66 years),
and sex (52% female coded as 1, 48% male coded as 0). In our
analysis, we standardized the patients’ ages by subtracting their
mean and dividing their standard deviation. Half of the patients
in the dataset had duplicated readings of the biomarker expres-
sion and the averaged value of the two expression readings was
considered as the surrogate variable in our analysis. Based on
the duplicates, we were able to calculate the variance of the
measurement error.

We selected the smoothing parameter hn through the 10-fold
cross-validation procedure proposed in Section 2 and obtained
the optimal hn = 1.88. Figure 6 displays the proposed quantile
regression estimates of covariate effects and the corresponding
95% pointwise confidence intervals for τ ∈ [0.1, 0.5] on the
basis of 200 bootstrap samples. As the censoring rate is high,
we can only estimate regression quantiles up to τU = 0.5. We
observe that in general patients with a tumor histology of ade-
nocarcinoma had a significantly better survival rate than those
with squamous cell carcinoma, and younger patients could be
expected to live longer at a lower risk of death. We did not find
any significant covariate effects for patients’ sex on their sur-
vival for all of the considered regression quantiles. There was
no significant effect of the biomarker expression detected on the
survival for the regression quantiles that we considered. How-
ever, there was a trend that a lower level of biomarker expression
tended to be associated with a longer survival time, which nev-

Table 5. Simulation results for the log-transformed censored quantile
regression under a censoring rate of 50%, with the heteroscedastic

model error for ε ∼ N (0, 1) and covariate measurement error
U ∼ N (0, 0.52)

β0(·) β1(·)
SE/ SE/

τ True Est ESE CP(%) True Est ESE CP(%)

0.2 −1.342 −1.349 1.044 94.4 0.832 0.849 0.994 93.8
0.3 −1.024 −1.072 0.992 92.6 0.895 0.943 1.000 93.0
0.4 −0.753 −0.788 1.004 92.8 0.949 0.998 0.975 94.2
0.5 −0.500 −0.483 0.963 93.2 1.000 0.988 0.890 92.6

Table 6. Simulation results for the log-transformed censored quantile
regression with the heteroscedastic model error for ε ∼ N (0, 1) and
asymmetric covariate measurement error U ∼ Exp(1/λ) − λ, where

λ = 0.5

β0(·) β1(·)
SE/ SE/

τ True Est ESE CP(%) True Est ESE CP(%)

0.2 −1.342 −1.197 0.962 88.2 0.832 0.793 1.021 92.8
0.3 −1.024 −0.946 0.938 92.6 0.895 0.872 0.979 95.4
0.4 −0.753 −0.719 1.013 94.0 0.949 0.953 0.972 94.6
0.5 −0.500 −0.508 1.000 94.8 1.000 1.038 0.926 93.2
0.6 −0.247 −0.304 0.969 93.4 1.051 1.124 0.961 91.4
0.7 0.024 −0.083 0.987 91.4 1.105 1.208 1.019 88.6

ertheless requires a confirmative study. The naive estimates of
covariate effects, ignoring the measurement errors, show large
volatilities.

Li and Ryan (2004) proposed a first-order bias correction
method for the Cox proportional hazards model with covariate
measurement errors. For comparison, we also analyzed the lung
cancer data using the method of Li and Ryan (2004) as well as
the SIMEX method of He, Yi, and Xiong (2007). The corre-
sponding results are summarized in Table 7, from which we can
see that patients with a tumor histology of adenocarcinoma or
younger patients could be expected to experience significantly
longer survivals whereas patients’ sex and biomarker expression
were not significantly associated with their survival times. These
results in general agree with those drawn by the smoothed and
corrected method for CQR. Nevertheless, the Cox model in Li
and Ryan (2004) or the AFT model in He, Yi, and Xiong (2007)
cannot provide the dynamic covariate effects as the quantile
level varies.

For model checking, we consider the cumulative residuals
over the precisely measured covariates,

T (wo, τ ) = n−1/2
n∑

i=1

I (Wo
i ≤ wo)M(Oi , β̂(τ ); hn),

Table 7. Analysis results of the lung cancer data using the first-order
bias correction method for the Cox proportional hazards model (Li
and Ryan 2004) and the simulation-extrapolation method for the
accelerated failure time (AFT) model (He, Yi, and Xiong 2007)

Model Error Covariate Est ESE p-value

Cox — Histology −0.503 0.219 0.022
Age 0.433 0.118 < 0.001
Sex −0.081 0.209 0.699

Biomarker 0.043 0.183 0.813
AFT Normal Intercept 1.275 0.614 0.038

Histology 0.680 0.325 0.036
Age −0.500 0.159 0.002
Sex 0.210 0.303 0.487

Biomarker 0.178 0.300 0.552
Extreme Intercept 2.108 0.501 < 0.001

Histology 0.569 0.262 0.030
Age −0.490 0.131 < 0.001
Sex 0.100 0.238 0.673

Biomarker −0.070 0.246 0.776
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Figure 5. Comparison of biases and mean squared errors (MSEs) of the estimated quantile regression intercept (left panel) and slope (right
panel) for the proposed method with different hn and the naive method under the normal measurement error and normal model error.

where Wo = (Histology, Age, Sex)T represent the error-free
covariates excluding the biomarker expression. The null dis-
tribution of T (wo, τ ) can be approximated by the zero-mean
process

T ∗(wo, τ ) = n−1/2
n∑

i=1

I (Wo
i ≤ wo)M(Oi , β̂(τ ); hn)Gi,

where (G1, . . . ,Gn) were generated independently from
the standard normal distribution while fixing the data
{(Xi,�i, Wi), i = 1, . . . , n} at their observed values. The
supremum statistic supwo,τ |T (wo, τ )| can be used to test
the overall fit of the CQR model. We generated a large
number of, say 1000, realizations from supwo,τ |T ∗(wo, τ )|

and obtained its 95th percentile as 1.827. The observed value
of supwo,τ |T (wo, τ )| is 0.394, which indicates that the global
linear CQR model fits the lung cancer data well.

5. REMARKS

We have proposed a corrected estimating equation approach
to CQR models for survival data when covariates are measured
with errors. Using a smooth function to approximate the indica-
tor function, the resultant estimating function is smoothed, and
thus conventional iterative root-finding procedures, such as the
Newton–Raphson algorithm, can be applied (Wang, Stefanski,
and Zhu 2012). We have established the asymptotic consis-
tency and weak convergence of the proposed estimator through
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Figure 6. Estimated covariate effects and the corresponding 95% pointwise confidence intervals under the proposed measurement error
quantile regression (solid lines) and the naive method (dashed lines) for the lung cancer data.

modern empirical process techniques. Numerical results show
that the proposed method is promising in terms of correcting
the bias arising from covariate measurement errors, whereas the
naive method typically produces biased estimates.

For variance estimation, we also explored directly using the
sandwich-type variance estimator based on the smoothed esti-
mating Equation (2.6), but the resulting coverage probability is
found to be generally over the nominal level. A more interest-
ing resampling method, known as the Markov chain marginal
bootstrap, can be tailored for variance estimation in quantile
regression (Kocherginsky, He, and Mu 2005). When the covari-
ates are of high dimension, particularly for those mismeasured
ones, estimation could be difficult, whereas some regularization
methods may potentially be incorporated into the estimation
procedure to alleviate the instability caused by high dimension-
ality.

Identifiability is an inherent and subtle issue in CQR. Regres-
sion quantiles with τ close to 1 may not be identifiable due to
the lack of event information in the upper tail. Theoretically, τU

should satisfy the identifiability Assumption A4-(iii) in the Ap-
pendix. In practical implementation, we first set τU to be close
to one minus the censoring rate, and then select the final τU in
an adaptive manner as follows. If all the regression quantiles

over [ν, τU ] can be estimated, we increase τU by some small
step size, for example, 0.05 or 0.1; otherwise, we decrease τU

slightly. Through this trial-and-error process, we can push τU to
the largest value at which the model parameters can be identi-
fied. Similarly, ν could also be chosen in such an adaptive way.

The proposed method requires the global linearity assump-
tion as in Portnoy (2003), Peng and Huang (2008), and Wei and
Carroll (2009); that is, to estimate the τ th conditional regression
quantile, it is necessary to assume that the conditional function-
als at all the lower quantiles are also in the linear form. When
the linearity assumption holds only at one specific quantile level
τ of interest, research along the work of Wang and Wang (2009)
is warranted.

APPENDIX: ASSUMPTIONS

Let ‖ · ‖ denote the L2-norm of the corresponding vector or matrix
after vectorization. Define r0 = inf{j ≥ 1:

∫ ∞
−∞ xjK (1)(x)dx �= 0}.

Let SC(t |z) = P (C > t |z), FX,�=1(t |z) = P (X ≤ t,� = 1|z) and
FX(t |z) = P (X ≤ t |z), and then FX,�=1(t |z) = ∫ t

−∞ SC(u|z)dFT (u|z)
and FX(t |z) = 1 − {1 − FT (t |z)}SC(t |z). Further denote
μ0(b) = E{ZN (ZTb)}, μ(b; hn) = E{�ḡ(O, b; hn)}, μ̃0(b) =
E{ZI (X ≥ ZTb)}, and μ̃(b; hn) = E{g(O, b; hn)}.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ri
es

] 
at

 0
1:

26
 2

0 
Fe

br
ua

ry
 2

01
6 



1682 Journal of the American Statistical Association, December 2015

For d > 0, define B(d) = {b ∈ Rp: infτ∈(0,τU ] ‖μ0(b) −
μ0{β0(τ )}‖ ≤ d}. Assume that there exists d0 > 0 such that B(d0) con-
tains {β0(τ ): τ ∈ (0, τU ]}. Denote fX,�=1(t |z) and fX(t |z) as the density
functions corresponding to FX,�=1(t |z) and FX(t |z), respectively. Let
B0(b) = E{ZZTfX,�=1(ZTb|Z)} and J0(b) = −E{ZZTfX(ZTb|Z)}.
Finally, denote ġ{O,β(τ ); hn} = ∂g{O,β(τ ); hn}/∂β(τ ).

Assumption A1. The smoothing function K(·) satisfies:

(i) K (j )(·) is uniformly bounded for j = 0, . . . , 4 in the Laplace
measurement error model and for j ≥ 0 in the normal mea-
surement error model.

(ii) r0 ≥ 2 and for each integer j (0 ≤ j ≤ r0),∫ ∞
−∞ |xjK (1)(x)|dx < ∞.

(iii) For each integer j (0 ≤ j ≤ r0), any η > 0, and any sequence
hn converging to 0, limn→∞ hj−r0

n

∫
|hnx|>η

|xjK (1)(x)|dx = 0
and limn→∞ h−1

n

∫
|hnx|>η

|K (2)(x)|dx = 0.

Assumption A2. For each integer j such that 1 ≤ j ≤ r0, F (j )
T (t |z) is

a continuous function of z and uniformly bounded over t and z, where
F

(j )
T (t |z) is the jth derivative of FT (t |z) with respect to t. So is S

(j )
C (t |z).

Assumption A3. Each component of μ0{β(τ )}, μ{β(τ ); hn},
μ̃0{β(τ )}, and μ̃{β(τ ); hn} as a function of τ is Lipschitz
continuous.

Assumption A4. Boundedness conditions are imposed:

(i) Both E(‖Z‖2) and E(‖U‖2) are bounded, and E(ZZT) is pos-
itive definite.

(ii) fX,�=1(ZTb|Z) is bounded away from zero for all b in B(d0).
(iii) infτ∈[ν,τU ] eigmin[B0{β0(τ )}] > 0 for any 0 < ν ≤ τU , where

eigmin(·) denotes the minimum eigenvalue of a matrix.
(iv) The norm of J0(b)B0(b)−1 is uniformly bounded for all b in

B(d0).

Assumption A5. We assume that

(i) supτ∈[ν,τU ] ‖E[ġ{O,β0(τ ); hn}]2‖ is bounded as n → ∞ for any
ν ∈ (0, τU ].

(ii) E[ġ{O,β(τ ); hn}]2 is component-wise continuous in sup-norm
as a functional of β(τ ).

Assumption A1 holds if K(·) is the standard normal cumulative dis-
tribution function. Apparently, FX,�=1(t |z) and FX(t |z) satisfy a similar
boundedness condition as Assumption A2, which is a standard assump-
tion in survival analysis. Assumptions A3 and A4 are commonly used
in CQR models (Peng and Huang 2009). Assumption A5 essentially
imposes a higher convergence rate of the smoothing parameter hn

compared with Assumption A1-(iii). If we take K(·) to be the standard
normal cumulative distribution function, Assumption A5 holds for both
the Laplace and the normal measurement errors. This is because the
exponential part can be factored out for any order of derivatives with
respect to K(·) and the component-wise continuity follows directly.

SUPPLEMENTARY MATERIALS

Supplementary materials contain theoretical proofs and addi-
tional numerical results.

[Received December 2013. Revised August 2014.]
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