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Summary. We propose a randomized phase Il clinical trial design based on Bayesian adap-
tive randomization and predictive probability monitoring. Adaptive randomization assigns more
patients to a more efficacious treatment arm by comparing the posterior probabilities of efficacy
between different arms. We continuously monitor the trial using the predictive probability. The
trial is terminated early when it is shown that one treatment is overwhelmingly superior to others
or that all the treatments are equivalent. We develop two methods to compute the predictive
probability by considering the uncertainty of the sample size of the future data. We illustrate the
proposed Bayesian adaptive randomization and predictive probability design using a phase I
lung cancer clinical trial, and we conduct extensive simulation studies to examine the operat-
ing characteristics of the design. By coupling adaptive randomization and predictive probability
approaches, the trial can treat more patients with a more efficacious treatment and allow for
early stopping whenever sufficient information is obtained to conclude treatment superiority or
equivalence. The design proposed also controls both the type | and the type Il errors and offers
an alternative Bayesian approach to the frequentist group sequential design.

Keywords: Adaptive randomization; Bayesian inference; Clinical trial ethics; Group sequential
method; Posterior predictive distribution; Randomized trial; Type | error; Type Il error

1. Introduction

In a conventional phase II trial, an experimental therapy is examined for any antidisease activity
in a single-arm setting first. If the new drug shows promising efficacy, it can be evaluated fur-
ther in a randomized phase II trial or brought forward into a phase I1I study for confirmatory
testing. The end point in an early phase II clinical trial is typically a short-term measure of
the treatment efficacy. For example, if a patient receiving treatment achieves complete or par-
tial response within a predefined period of evaluation, the clinical response status Y, a binary
outcome, is defined as 1; otherwise it takes the value 0.

Typically, single-arm phase II trials are conducted with a comparison with a historical or a
standard response rate. Two-stage or multistage designs are often implemented to increase the
efficiency of the trial by allowing for early termination of the trial if the treatment is deemed
inefficacious or efficacious after partial data have been observed. Gehan (1961), Simon (1989),
Fleming (1982) and Chang et al. (1987) proposed phase II designs based on the multiple-testing
procedure and group sequential theory. In the Bayesian framework, Thall and Simon (1994)
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provided some practical guidelines on how to implement a phase II trial. The trial is monitored
continuously so that the Bayesian posterior probability is updated after observing every new
outcome. Decisions are made adaptively throughout the conduct of the trial until the maximum
sample size has been reached. At any time during the conduct of the trial, on the basis of the
cumulated data, one can stop the trial and claim that the experimental drug is promising, or not
promising or continue the trial because of a lack of convincing evidence to inform a decision.
Lee and Liu (2008) developed a continuous Bayesian monitoring scheme based on the predictive
probability (PP) for single-arm phase II trials. The PP is obtained by calculating the probability
of rejecting the null hypothesis should the trial be conducted to the maximum planned sample
size given the interim observed data and assuming that the current trend continues. In the PP
framework, one can evaluate the chance that the trial will show a conclusive result at the end of
the study, given the current information. Then, the decision to continue or to stop the trial can
be made according to the strength of the PP. Comparing with the inference making based on
the posterior probability, the PP approach resembles more closely the clinical decision-making
process by projecting into the future on the basis of the interim data. Moreover, the PP approach
has a higher early stopping probability under the null hypothesis, and the rejection region has
a smoother transition compared with the posterior probability approach.

Often, a successful single-arm phase II trial does not necessarily translate to a success of
definitive efficacy testing in a phase III trial. One main reason for this is the inherent nature of a
single-arm phase I1 trial, in which the efficacy of a new treatment is compared with historical data
or with the standard response rate. Such a comparison is less objective and can often be biased
owing to substantial differences in patient populations, study conduct, end point evaluation
and medical facilities between the current study and the historical data. Therefore, randomized
phase II trials have been proposed to bridge the gap between a successful single-arm phase Il trial
and a full scale phase III evaluation. As in phase III trials, randomized phase II trials compare
the experimental drug with a standard drug in a randomized setting but with a less stringent
definition of efficacy and a larger type I error rate. The use of a randomized phase II trial design
has become more popular in drug development because it allows for greater objectivity in the
assessment of the efficacy of a new treatment. However, such a phase II study should not be
considered a poor man’s phase III trial and used as a substitute for a more rigorous evaluation
of efficacy (Lee and Feng, 2005; Ratain and Sargent, 2009).

In clinical trials, patients are often randomized to different treatments to balance patients’
characteristics and to eliminate selection bias and potential confounding factors. This is usually
achieved through fixed randomization, which assigns patients to each treatment with a pre-
specified probability of randomization. However, it may not be ethically desirable to use a fixed
probability of randomization such as equal randomization (ER) throughout the trial. This is
because interim results based on cumulating data in an on-going trial may indicate that one
treatment is likely to be superior to the other; therefore, the clinician’s preference would be to
provide the superior treatment to more patients. To address the ethical consideration, outcome-
based or response adaptive randomization (AR) has been proposed. Response AR assigns a new
patient to a more efficacious arm with a higher probability based on the cumulated response
data. This enhances the individual ethics design in which more patients participating in the
trial are assigned to the superior treatment as the trial proceeds (Flehinger et al., 1972; Louis,
1975, 1977; Berry and Eick, 1995; Karrison et al., 2003; Hu and Rosenberger, 2006; Thall and
Wathen, 2007; Zhang and Rosenberger, 2007; Cheng and Berry, 2007; Lee et al., 2010).

One such trial which was recently considered at the University of Texas M. D. Anderson
Cancer Center is a neoadjuvant lung cancer trial. Neoadjuvant chemotherapy or new targeted
agents are given to lung cancer patients before surgery with the intent of shrinking the tumour
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such that better disease control and a smaller surgical field can be achieved. Eligible patients
are to be randomized to carboplatin plus paclitaxel (the standard chemotherapy) or an AKT
inhibitor plus an MEK inhibitor (new targeted agents). Patients will be treated for 4 weeks
before surgery. The primary end point of the trial is the 4-week clinical response status. We
contemplated several design options including an ER design without early stopping, a group
sequential design with ER using the Hwang—Shih—DeCani a-spending function (Hwang et al.,
1990) and futility stopping (DeMets and Ware, 1982), and a Bayesian AR design with PP
monitoring.

Motivated by this lung cancer trial, we propose a randomized phase II design with Bayesian
adaptive randomization and predictive probability (BARPP) monitoring. Owing to AR, the
future sample size in each arm becomes unknown; however, such information is essential for
computing the PP. We develop two approaches to approximate the PP, which is used for adaptive
decision making in the trial conduct. We characterize the design to achieve the usual frequentist
properties, such as controlling the type I and type II errors. At any given time, if there is a
high probability that one treatment is better than the other, we would stop the trial and declare
superiority; if there is a high probability that the treatments are similar in terms of efficacy, we
would stop the trial and declare equivalence; otherwise, we would continue the trial. Through
the use of AR, more patients are treated with the better treatment. Our method combines the
advantages of Bayesian AR with PP to develop a flexible and ethical trial design.

The rest of this paper is organized as follows. In Section 2, we introduce the notation and
propose the randomized phase 11 design using the BARPP monitoring. In Section 3, we dem-
onstrate how to calibrate the design parameters and present simulation studies to examine the
design properties under different practical scenarios. We give concluding remarks in Section 4.

The programs that were used to analyse the data can be obtained from

http://www.blackwellpublishing.com/rss

2. Bayesian trial design
2.1. Predictive probability
Suppose that we compare K treatments in a K-arm randomized phase II trial. Let p; be the
response rate of treatment k, and assign py a prior distribution of beta(ag, G¢), fork=1,..., K.
If, among n; subjects treated in arm k, we observe x; responses, then

Xy ~binomial(ng, p),
and the posterior distribution of py is

Pl (X = x) ~betal(oy + xi, B +ng — xi).

If the maximum sample size in arm k is N, then the number of responses in the future Ny — ny
patients, Yy, follows a beta—binomial distribution:

Y| (Xi = xx) ~ beta—binomial (Ny — ng, o + Xk, Bk +ng — xi).

When Y = yg, the posterior distribution of the response rate given the current and future data
is

Picl (X =xi, Yie = yr) ~beta(ok + xi + i, Bc + Nk — X — yi).
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For ease of exposition, we consider two treatments to illustrate the design, i.e. K =2. We
specify a clinically meaningful treatment difference 6, and a threshold probability 6. If

P(lp2—p1l > 01 X1=x1, Xo=x2, Y1 =y1,Yo=y2) 20,

we claim non-equivalence of the two treatments, i.e. one treatment is superior to the other.
However, Y| and Y» are the future data, which have still not been observed at the current deci-
sion-making stage. We can average out the randomness in Y; and Y, by computing the PP as
follows:

PP=Ey, y,[I{P(lp2— p11>6|X1=x1,X2=x2,Y1,Y2) > 0r1}]

Ni—ny Ny—n»
= > Y PYi=yilXi=x)PYr=y|X2=1x2)
y1=0 =0
x I{P(|py — p11 > 6|X1=x1,X2=x2,Y1=y1,Y2=y2) > 071} (1)

where I{-} is the indicator function. PP denotes the PP to claim superiority at the end of the
trial.

Following the work of Lee and Liu (2008), we need to specify the lower and upper cut-off
probabilities for adaptive decision making in the trial conduct. The decision rules based on the
PP are as follows.

(a) Equivalence stopping: if PP < 01, then we stop the trial and accept the null hypothesis to
claim treatment equivalence.

(b) Superiority stopping: if PP > 0y, then we stop the trial and reject the null hypothesis to
claim a superior treatment arm.

We can maintain the frequentist type I and type II error rates by calibrating the design param-
eters (N, 6, 01,01, 0y), where N is the maximum sample size of the trial, N = Ny + N».

A trial design based on the PP allows for continuous monitoring. If the two treatments have
similar efficacy effects, or if one treatment is overwhelmingly better than the other, the trial
can be stopped early when sufficient evidence has accumulated. This would result in a smaller
expected sample size, and hence a more efficient trial. At the end of the trial, we either declare
that one treatment is better than the other, or the equivalence of two treatments.

2.2. Response adaptive randomization

Response AR enhances the individual ethics in clinical trials by assigning more patients to the
putatively better treatments on the basis of the interim data. For the stability of parameter
estimation and randomization at the beginning of the trial, there is typically a prelude of ER
before AR takes effect. First, ER is applied to a fixed number of subjects and, subsequently,
the remaining subjects are adaptively randomized to a superior arm with a higher probability.
Following the work of Thall and Wathen (2007), we denote the randomization probability as

T= P(p2 > p1|X1=x1, X2 =x2)"
P(p2> p1lX1=x1, X2 =x2)"+{1 = P(p2> p11X1 =x1, X2 =x2) }"

2

We assign the next cohort of patients to arm 2 with probability 7, and to arm 1 with probability
1 — . We use the tuning parameter 7 to control the AR rate; if 7 =0, then 7 =0.5, leading to
ER. A larger value of 7 would lead to a higher imbalance in allocation of patients between the
two arms and vice versa. Such Bayesian AR takes into consideration both the estimated efficacy
rates and their variability. In contrast, using only the point estimates, 7 = p,/(p; + p,), as the
assigning probability to arm 2 does not account for the variability.
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The PP in equation (1) can be easily calculated if the total sample sizes in arms 1 and 2, N
and N, are known and fixed. However, N| and N; can only be known a priori in the fixed
randomization procedure. In the case of response AR, the probability of assignment for each
incoming subject changes throughout the trial. Therefore, N; and N, in equation (1) are not
fixed any more, which poses a new challenge in computing the PP.

In what follows, we propose two different ways to compute the PP. The first method is more
rigorous but more computationally intensive, and the second applies an approximation but is
relatively fast. In our numerical studies, we have found that these two approaches produce very
similar results and thus lead to very close design operating characteristics.

2.2.1.  Method 1 of computing the predictive probability

Once AR is in effect, the total numbers of subjects in arm 1 and arm 2, Ny and N», become
random, whereas the number of remaining subjects in the trial, m, is fixed, if the trial is not
allowed for early termination. Let Z be the number of subjects who would be assigned to arm
2; then Z ~ binomial(m, ), i.e.

PZ(Z|X1=X1,X2=X2)=(’?)Wz(l—ﬂ)mZ. 3)

To obtain the PP, we first average over Y| and Y, conditioning on Z =z, and then average over
Z according to the binomial distribution in equation (3). Following this route,

m m—z Z

PP=3% > > Pz(zlX1=x1,X2=x2)
z=0y;=0y,=0

x PY1=y|X1=x1,Z=2)PYr=y|X2=x2,Z=72)
x I{P(|p2 — p11 > 6| X1=x1,Y1=y1,Xo=x2,Y2=y2) > 0r},

which can be quite computationally intensive owing to the additional summation that mar-
ginalizes over Z. This method enumerates all the possibilities of the future sample sizes; we
refer to it as method 1.

2.2.2.  Method 2 of computing the predictive probability

The first method involves three embedded summations and is computationally expensive. The
second approach is to approximate N; — ny by the expected number of subjects assigned to
arm k for k=1,2, i.e. Ny —ny=m(l —7) and Ny —ny =mm. This is a direct approxima-
tion based on the currently observed data which does not impose any further computational
difficulties.

Although the total sample size of the trial is fixed, the remaining sample size m is not fixed
if the trial is allowed for early termination. Early termination of a trial is an extra feature of a
study design. As will be seen in Section 3, the design parameters are calibrated in a two-stage
sequential procedure: we first choose § and 61 without early stopping and then select the early
stopping parameters 6y and 6y . The design parameters are calibrated in such a sequential order
to avoid the intertwining effects of early stopping.

2.3.  Multiple-treatment arms

When we consider multiple treatments with K > 2 in a randomized trial, we assume that there is
one standard treatment and K — 1 experimental treatments. Let p; denote the response rate of
the standard arm and ppax denote the treatment with the highest efficacy among (p», ..., pg).
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Then, the PP of selecting the best arm at the end of the trial is

Ni1—nq Nx—ng
PP= > ... > PMi=ynlX1=x1)... PVk=yx|Xg=xk)
y1=0 yk=0
X I{P(|pmax — p11>6|X1=x1,Y1=y1;...; Xk =xk, Yk =yk) > 01}, “4)
where (X1, ..., Xg) are the currently observed data and (Y1,..., Yx) are the future data in the

K arms.

The Bayesian AR procedure needs to accommodate comparisons between these K arms.
There are many ways to construct the randomization probabilities. For example, we first obtain
the average of the posterior samples of the response rates,

_ 1 EK:
== 2. Pk
Ko
and then compute the posterior probability of

Me=P(pe>plX1=x1,...,Xg=xg).

We would assign the next cohort of patients to arm k with probability m = A}/ v K AT, This

RSP : - : =17
leads to a multinomial distribution with the remaining number of subjects m = Ny +... + Nx —
n|—... —ng. We can also replace p with pi, or define 7 as the probability that arm k has the

largest response rate among all treatments.
Let Z; be the number of subjects that would be assigned to arm k; then (Z,...,Zg) ~
multinomial(m;my,...,7k), i.e.

m!
Pz, .. zx@1,...,2k| X} =)C1,...,XK=XK)=ﬁ7r?...7T%K,
21+ ..2K-
with Z,lezk =m and E,lewk =1. To obtain the PP, we first average over (Y1,.. ., Yx) condition-
ingon (Zy=z1,...,Zg =zk), and then average over all the Z;s according to the multinomial
distribution:
m m 21 ZK m! - %
PP=> ... > > ... Ty

721=0 2k =0 y;=0 yk=0 Zl!. .. ZK
x PYv=y1X1=x1,Z1=2z1)... PXk =yk| Xk =xk, ZKk =2¢)
X I{P(|pmax — p11> 6| X1=x1,Y1=y1;...; Xk =xk, Yk =yk) > 071},

subject to Zf: 12k =m. The computation increases multiplicatively with respect to the number of
treatment arms. However, we can easily generalize method 2 of computing the PP by using the
multinomial distribution and the expected number of subjects assigned to arm k, Ny — ny =mmy.

3. Simulation studies

3.1. Parameter calibration
In practice, we need to calibrate the five design parameters (N, 6, 6, 0L, ) on the basis of the
desired type I error rate and power in the trial. We first specify N, and then take a two-stage
procedure to calibrate the main design parameters (6, 1), and the early termination parameters
(0L, 6y) for equivalence or superiority.

In the first stage, we set . =0 and 6y =1, so that the trial would not be terminated early, to
determine the threshold values of § and 1. We performed a series of simulation studies with
different values of § and 61 and compared the corresponding type I error rates and powers.



Phase Il Trial Design 225

Recall the neoadjuvant lung cancer trial that was mentioned in Section 1; in this phase II trial,
we chose N to control both the type I error rate (10% or less) and the power (at least 80%). One
of the two treatments (say, arm 1) under investigation was the standard chemotherapy with a
known efficacy rate: p; =0.2. We assumed that the new treatment would double the response
rate, i.e. pp =0.4.

The total sample size was set as N =160, although the actual sample size could be much less
owing to early termination of the trial. The first 40 patients (n] =n, =20) were equally random-
ized to the two arms and thereafter patients were adaptively randomized on the basis of the
posterior probabilities of comparing the response rates of the two treatments after observing
every single outcome. The tuning parameter 7 was taken as 0.5 (Thall and Wathen, 2007) and
the randomization rates were restricted between 0.1 and 0.9 to prevent having very unbalanced
randomization rates. To allow the likelihood to dominate the posterior distribution, we took a
relatively non-informative prior distribution of beta(2, 2) for both p; and p,. We varied 6 from
0.02 up to 0.09, and Ot from 0.70 up to 0.90. We carried out 10000 simulated clinical trials. For
each of the paired values of (6, 67), we obtained the type I error rate and power as listed in Table 1.

Considering the null cases in the left-hand panel of Table 1, all entries of the type I error rates
below the boundary line of the staircase curve are 10% or less, for which the paired values of
(6, 07) satisfy our requirement. Simultaneously, under the alternative cases, we need to find the
paired values of (8, 1) that lead to a power of 80% or higher. These correspond to the power
values above the staircase curve in the right-hand panel of Table 1. The overlapping tinted area
meets both the type I error and the power constraints. With a clinically meaningful range of
equivalence of 6 =0.05, we chose 61 =0.85 for further study. It is worth noting that a higher
power value corresponds to a higher type I error rate. The null cases cover p; = p,=p for p
between 0.2 and 0.4, and we chose p=0.4 to report as it corresponds to the case with the largest
type I error rate.

In the second stage, fixing § =0.05 and 61 =0.85, we followed a similar procedure to calibrate
(6L,0y), which determine the early termination of a trial due to equivalence or superiority
respectively. Although the design allows monitoring after every outcome becomes available,
from the computational and practical point of view, we opted to monitor the trial for early
termination with a cohort size of 10. We explored method 1 by enumerating all the possibilities

Table 1. Type | error rates and power values under the null hypothesis of p; = p, =0.4 and alternative
hypothesis of p; =0.2 and p, = 0.4 by varying the design parameters § and 6

6 Null cases—results for the following 0t: Alternative cases—results for the following Ot:
0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90

0.02 1.000 1.000 0.797 0.427 0.230 1.000 1.000  0.991  0.967 0.919

0.03 0.844 0.517 0.362 0.228 0.124 0991 0978 0955 00918 0.859

0.04 0429 0317 0.224 0.142
0.05 0291 0.218 0.157 | 0.097  0.053
0.06 0.214 0.158 _0.112 | 0.073 0.038
0.07 0.157 _0.119 | 0.080 0.056  0.028
0.08 0.111 | 0.086 0.060 0.034 0.016
0.09 [10.093° 0.064 0.043 0.026 0.013

0967 0949 0.920 _0.864 0.788
0945 0912 0.875 | 0.822 0.735
0917  0.878 0.833 0.669
0.878 0.835 ] 0.785 0.716 0.617
0.845 | 0.797 0.741  0.667 0.564
0.800| 0.753 0.680  0.612 0.501

+The step curves indicate the 10% type I error and 80% power boundaries. The tinted areas are the overlapping
parameters that satisfy the design constraints. The values chosen are in italics.
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Table2. Type | errorrates and power values by varying the design parameters 6; and 6, using method 1 and
method 2 (fixing 6 =0.05 and 61 = 0.85)+

Ou Null cases—results for the following 0y : Alternative cases—results for the following 0y :
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

Method 1

095 0.126 0.116 0.112 0.106 | 0.095 0.839 0.823 0.792  0.783  0.747
096 0.120 0.120 0.105 0.107 | 0.096 0.828 0.815 0.799 0.772  0.739
0.97 0.115 0.106 | 0.097 0.092 0.092 0.827 0.813 0.791  0.765 0.734
098 0.107 0.105 | 0.092 0.091 0.082 0.827 0.814 0.791 0.764  0.734
0.99 0.105 | 0.099 0.095 0.080 0.079 0.820 0.803 0.796  0.766  0.723
1.00 0.101 | 0.097 0.088 0.083 0.074 0.822 0.806 0.789  0.755 0.733
Method 2

095 0.125 0.116 0.113 0.104 | 0.099 0.840 0.822 0.793  0.782  0.747
096 0.121 0.115 0.106 0.102 | 0.088 0.829 0.816 0.799 0.772  0.734
0.97 0.112 0.110 | 0.099 0.096 0.082 0.829 0.813 0.789  0.765  0.735
098 0.112 0.101 | 0.096 0.092 0.085 0.826 0.815 0.796  0.765  0.731
099 0.102 [ 0.096 0.087 0.076 0.071 0.819 0.802 0.796  0.767  0.722
1.00  0.101 | 0.093 @ 0.088 0.080 0.070 0.820 0.806 0.790  0.760  0.731

1The step curves indicate the 10% type I error and 80% power boundaries. The tinted areas are the overlapping
parameters that satisfy the design requirements, and the chosen values are in italics.

of the future sample sizes and method 2 by using the expected future sample sizes to compute
the PPs. In Table 2, we can see that the type I error rates and powers obtained from methods 1
and 2 are very close, which implies that using the expected number of future subjects in method
2 gives a very good approximation to the results from all possible future sample sizes. Our goal
is still to maintain a type I error rate of 10% or lower and to achieve a power of 80% or higher
when the trial is allowed to terminate early. There are multiple pairs of (61, 6y) that satisfy our
design requirements, as indicated by the values in the tinted areas of Table 2, from which we
selected f;, =0.05 and 6y =0.99.

3.2. Selected scenarios

To examine the performance of the proposed design with the BARPP, we carried out a series of
simulation studies under various scenarios. We varied the true response rate p; from 0.1 to 0.4
and, for each fixed value of p;, we set p, at a value from 0.01 to 0.8. In all the simulations, we
fixed the design parameters as N =160, 6 =0.05, 61 =0.85, 0, =0.05 and 6y =0.99 on the basis
of the two-stage parameter calibration procedure that was described in the previous section. We
replicated 10000 clinical trials for each configuration.

Fig. 1 illustrates the decision and sample size distributions with various values of p; and p;.
The colour and the co-ordinates of each point indicate the final decision and the number of
patients assigned to each arm respectively. For a better view, the points are slightly jittered
to break the ties and only 1000 trials are presented. When p; = p», the green points (shown
in circles with a decision of p| = p») take a dominant role, indicating that the two treatments
are equivalent; the red points (shown in plus symbols with a decision of p; < p;) and the blue
points (shown in crosses with a decision of p; > p;) take roughly symmetric positions at the
two corners. The small numbers of red and blue points depict that the stochastic nature of the
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Fig. 1. Sample size and decision distributions for various values of p; and p», with the BARPP designs (the
value of p, varies from 0.01 to 0.7 whereas the value of p; is fixed at (a) 0.2 and (b) 0.4; for each p¢- and
po-combination, 1000 trials were simulated; each point on the plot corresponds to one trial; the x-co-ordinate
and y-co-ordinate of each point indicate the number of patients in arm 1 and arm 2 respectively; the colour
of each point indicates the decision made at the end of each trial): X, py > ps; O, p1 =po; +, P4 < P2
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Fig. 2. Rejection rates of Hy and power values by using the BARPP ( ) and GS (------- ) methods at
various values of p,, while the response rate of arm 1 is fixed at (a) p; =0.1, (b) p; =0.2, (c) p; =0.3 and
(d) py=0.4

responses may result in an imbalance of sample allocation between the two arms, and also lead
to incorrect final conclusions. When the difference between p| and p; is large (e.g. p; =0.2 and
p2>=0.7, or p;=0.4 and p> =0.01), AR assigns most of the patients to the superior arm and
almost all the simulated trials were terminated early. When the difference between p; and p» is
small (e.g. p; =0.2 and p» =0.3, or p; =0.4 and p; =0.3), the treatments were claimed to be
either equivalent or different and many trials used a large number of patients.

We illustrate the percentages of rejecting the null hypothesis under various scenarios in Fig. 2.
The value of p is fixed and the value of p, varies from 0.01 to 0.8. The curves that were obtained
from methods 1 and 2 are indistinguishable; hence, only one curve for the BARPP design is
shown. The minimum percentage of rejecting the null case is always located at p; = p, for each
scenario, which corresponds to the type I error rate. Our method yielded a minimum rejection
rate of 0.014, 0.049, 0.082 and 0.097 at the null cases with p; =0.1,0.2,0.3,0.4 respectively. The
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Fig. 3. Mean sample size on arm 1 (--------- ) and arm 2 ( ), and the mean total sample size of the

BARPP (

at (a) py =0.1, (b) p; =0.2, (c) py =0.3and (d) p; =0.4

) methods at various values of p,, while the response rate of arm 1 is fixed

power curves typically have a “V’ shape because the power increases as p, moves away from p;
to either the left-hand or the right-hand side.

To compare our design with the frequentist approach, in Fig. 2 we also present the corres-
ponding power values calculated from the group sequential (GS) design by using the R package
gsDesign (http://gsdesign.r-forge.r-project.org/). Given a significance level
of 0.1 and a power of 80% under the alternative case with p; =0.2 and p; = 0.4, the upper
and lower boundary values at each group sequential test were calculated with the Hwang—
Shih—-DeCani spending function (Hwang et al., 1990), for which the upper design parameter
A= —4yielded the O’Brien—Fleming type of boundary (O’Brien and Fleming, 1979) for efficacy
stopping and the lower design parameter A = —2 was taken for futility stopping. Both futility
(or equivalence) and efficacy stopping were considered in the GS design to make it comparable
with the BARPP method. The number of patients in each group under the GS design was also
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set as 10 with five patients in each arm. Equal randomization is applied throughout with the
maximum number of patients at 140. No early termination was allowed for the first 40 patients
and thereafter the GS boundaries were applied. On the basis of 10000 simulations, the GS
method also produced a V-shaped power curve similar to that using the BARPP. In scenar-
ios with p; =0.3 or p; =0.4, the curves of the BARPP and GS designs are almost identical.
However, for scenarios with p; =0.1 or p; =0.2, the power values by using the GS design are
higher than those by using the BARPP design. This is because the BARPP design takes a more
conservative approach to controlling type I errors across different null response rates and thus
the BARPP has lower type I error rates.

Fig. 3 illustrates the numbers of patients who were allocated to arm 1 and arm 2, and the
total sample sizes under various scenarios. It can be seen that more patients were randomized
to a more efficacious treatment arm by using the BARPP method. When p; = p», patients were
essentially equally randomized to the two arms by using AR. When the difference between the
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two response rates was substantially large, early stopping took place very quickly in the AR
stage, which led to small sample sizes in both arms. When p; increases while fixing p; at a
certain value, the number of patients who were assigned to arm 2 increases and, as a result, the
overall percentage of patient responses increases. The total sample size of the BARPP method is
slightly larger than that of the GS design, which is mainly caused by AR in the BARPP method.
Owing to the provision allowing for early stopping, both the BARPP and the GS design are
more efficient and more ethical than the fixed sample size design. Allowing for early stopping
is an important design consideration for randomized phase II trials (Lee and Feng, 2005).

Fig. 4 shows a comparison of the percentages of patient responses between the BARPP and
the GS methods. It can be seen that the overall response rate of the BARPP method is higher
than that of the GS method when the values of p; and p, are different. When p; = p», the per-
centages of response are the same between the two methods because patients are also equally
randomized using the BARPP method. When the value of | p; — p»| lies around 0.3, we observe
the biggest difference in the overall response rate between the two methods. For p; =0.1 and
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p> =0.3, the overall response rates of the BARPP and the GS methods were 0.233 and 0.203
respectively, and, for p; =0.2 and p, =0.4, the corresponding response rates were 0.33 and
0.301. Despite the substantial difference in sample size between the two arms (for example, the
averaged sample sizes of treatments 1 and 2 are 43 and 79 respectively, for the latter case; Fig.
1), AR achieves only a modest 10% gain in the overall response rate compared with ER.

When the difference between p; and p; is larger than 0.3, early termination occurs very
quickly after ER of the first 40 patients, and thus the number of patients who were assigned in
the AR stage becomes very small. This would in turn lead to a small difference in the percentage
of response between the BARPP and the GS methods. For example, in Fig. 3(a), when p; =0.1
and pr =0.7 or pp =0.8, i.e. treatment 2 is overwhelmingly superior to treatment 1, the trial is
stopped soon after the initial ER stage to claim superiority of treatment 2, and the total sample
size is very small (41.1 and 40.1 for the cases of p, =0.7 and p, = 0.8 respectively). Comparing
Figs 2 and 3, it is interesting that the power still increases even when the sample size decreases.
Because of trial early termination based on the PP, the sample size can be substantially reduced
if a decision can be made in the middle of the trial.

As suggested by the Associate Editor, we can measure the number of lost responses due to
treating patients with the worse treatment, i.e. the number of patients who were assigned to the
worse treatment arm multiplied by |p» — pi|. In Fig. 5, we can see that the lost responses in the
BARPP design are lower than that in the GS design, mainly because of AR. Moreover, we also
explored the BARPP design without equivalence stopping and the findings are quite similar,
except that the trials may run until reaching the maximum sample size when p; and p; are close
to each other. The added feature of AR in the BARPP design assigns more patients to the better
treatment arm, leading to more imbalance between the two arms. The imbalance in allocation
of patients may result in a loss of statistical power. Hence, the sample size that is required for
the BARPP is typically larger than that for the GS design. In addition, we also observed more
variability in the sample size of the BARPP design. Overall, the BARPP design performed very
well in terms of frequentist properties, such as maintaining the type I error rate and achieving
the power desired.

4. Discussion

To make the best use of resources and to select promising candidate treatments for a phase I11
trial carefully, there is an increasing need for randomized phase II trial designs. Using PPs to
guide the phase II trial design is appealing to clinical investigators. It is desirable to terminate a
trial if the cumulative evidence is sufficiently strong to draw a definitive conclusion in the middle
of the trial conduct. Adding AR further enhances the individual ethics of the clinical trial by
allocating more patients to more effective treatments, and it results in an increase in the overall
trial response. Designs that evaluate short-term responses, such as binary outcomes, are ideal
for the application of Bayesian AR, which can be implemented in an almost realtime fashion.
We have proposed two different approaches to solving the issue of random future sample sizes
in computing the PP, both of which lead to essentially identical trial operating characteristics.
However, the computation time for method 2 is only about 4% of that required for method 1.
Several design parameters can be calibrated to meet the goals for various designs. For example,
we chose to randomize equally 25% of the patients at the beginning of the trial to learn about
the treatment efficacy before randomizing patients adaptively. We also constrained the ran-
domization probability to be within [0.1, 0.9]. In addition, we chose the randomization tuning
parameter 7 =0.5 to avoid extreme imbalance in randomizing patients. All those choices limited
the utility of AR, which could be applied more aggressively. Furthermore, we only performed
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simulation studies based on two-arm trials. As was reported recently, only limited advantages
of AR are observed in two-arm trials (Korn and Freidlin, 2011), and the advantages of AR can
be more pronounced in multiarm trials (Berry, 2011). The trade-off between ER and AR is that
ER is favoured for group ethics in terms of achieving higher statistical power whereas AR is
favoured for individual ethics such that patients can be treated better during the trial. In addi-
tion, there is a price to be paid for AR: as a result of imbalance of the sample size between the two
groups, the average sample size of AR is larger than that of the GS design with ER. Although
the BARPP method could lead to a larger trial, the treatment effect of the better arm can be
estimated more precisely as a result of more patients being treated in the better arm. Treating
more patients with more efficacious treatments can also lead to other tangential benefits (or
harms) that are not captured by the response rate alone. With more patients treated in the more
efficacious arm, more tissue specimens can be acquired to facilitate the analysis of biomarkers.
However, AR designs also require additional infrastructure for implementing the trials.

The size of the cohort for evaluating the stopping rules can also be changed depending on
how frequently the trial is monitored. The ability to choose the prior distribution is a unique
strength of Bayesian methods. Additional information about the efficacy of treatment external
to the trial, if available, can be naturally incorporated in the prior distribution. We chose a rela-
tively non-informative prior to put more emphasis on the observed data for decision making. As
is true in every design, the design parameters should be chosen to reflect the available informa-
tion that is relevant to the trial. Apart from AR, our design has similar operating characteristics
to those of the frequentist GS design. Our goal is not to ‘beat’ the frequentist design based on
the frequentist operating characteristics, but to propose a comparable Bayesian solution to the
problem. In the meantime, extensive simulation studies have been conducted to evaluate the
operating characteristics such as the percentage of correct decisions, the maximum sample size,
the proportion of patients who are randomized to the more effective treatments and the overall
response rate, to ensure that desirable properties can be achieved. From a practical point of
view, the response AR is more applicable to trials with short-term end points. Its applicability
also depends on the relative time of the duration of accrual and the time required to measure the
response. Sufficient learning from the observed patients is required for the success of response
AR, regardless of the Bayesian or frequentist designs. Well-defined eligibility criteria should
be implemented to ensure a comparable population of patients throughout the trial. If a drift
in patients’ characteristics occurs, it could lead to biased information on the treatment effect.
However, a randomized study is still preferred to a non-randomized study. The bias should be
prevented in the first place by enrolling patients with homogeneous characteristics. Covariate-
adjusted analysis can be performed to attenuate the bias if it occurs. In addition, selection bias
and reporting bias need to be examined carefully (Bauer ef al., 2010). It is also known that
response AR can result in an overestimated treatment effect (Hu and Rosenberger, 2006). Up to
15% bias is observed in our randomization studies (the data are not shown). Hence, the observed
effect size from an AR trial should be somewhat discounted when planning for future trials.

In summary, we proposed a Bayesian design as an extension to the frequentist design by
coupling the Bayesian AR with PP approaches. We can attain the following advantages.

(a) After the initial ER phase, via AR more patients are preferentially allocated to the more
effective treatment on the basis of the interim data.

(b) The trial is monitored frequently to examine the strength of the cumulative information
for interim decision making:
(1) if one treatment is superior to the other, stop the trial and declare superiority;
(i) if the two treatments have similar efficacy, stop the trial and declare equivalence;
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(iii) otherwise, continue the trial until the maximum sample size has been reached.

Under the Bayesian framework, the inference is consistent with the likelihood principle. The
decision making is based on the prior and the strength of the observed data. Because the infer-
ence is not constrained in a fixed study design, it is more flexible in terms of the frequency
and time for the interim analysis. Valid inference still can be drawn even when the study condi-
tion deviates from what was originally planned. However, some disadvantages of the proposed
design are noted as well.

(a) The design is calibrated to control both type I and type II errors, which requires extensive
computation in the planning stage.

(b) In terms of the overall response rate, the gain of using AR is only moderate compared
with ER, particulary when the early stopping rule is implemented.

(c) A relatively larger sample size is required to achieve the power desired, because the alloca-
tion of patients becomes unbalanced by using AR. As a result, the variance of the sample
size is larger than that of the ER design.

Regardless of the frequentist or Bayesian, ER or AR, group sequential or PP approaches,
the goal of designing efficient and ethical trials to draw accurate inference is the same. There
is no single best design universally. Our paper expands some of the previous work (Grossman
et al., 1994; Rosner and Berry, 1995; Emerson et al., 2007) and offers an appealing alternative
for designing randomized phase II trials.
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