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Statistics in Clinical Cancer Research

Worth Adapting? Revisiting the Usefulness of
Outcome-Adaptive Randomization

J. Jack Lee1, Nan Chen1, and Guosheng Yin1,2

Abstract
Outcome-adaptive randomization allocates more patients to the better treatments as the information

accumulates in the trial. Is it worth it to apply outcome-adaptive randomization in clinical trials? Different

views permeate the medical and statistical communities. We provide additional insights to the question by

conducting extensive simulation studies. Trials are designed to maintain the type I error rate, achieve a

specified power, andprovide better treatment to patients. Generally speaking, equal randomization requires

a smaller sample size and yields a smaller number of nonresponders than adaptive randomization by

controlling type I and type II errors. Conversely, adaptive randomization produces a higher overall response

rate than equal randomizationwith orwithout expanding the trial to the samemaximumsample size.When

there are substantial treatment differences, adaptive randomization can yield a higher overall response rate

as well as a lower average sample size and a smaller number of nonresponders. Similar results are found for

the survival endpoint. The differences between adaptive randomization and equal randomization quickly

diminishwith early stoppingof a trial due to efficacyor futility. In summary, equal randomizationmaintains

balanced allocation throughout the trial and reaches the specified statistical power with a smaller number

of patients in the trial. If the trial’s results are positive, equal randomizationmay lead to early approval of the

treatment. Adaptive randomization focuses on treating patients best in the trial. Adaptive randomization

may be preferred when the difference in efficacy between treatments is large or when the number of

patients available is limited. Clin Cancer Res; 18(17); 4498–507. �2012 AACR.

Introduction
The origin of randomization in experimental design can

be dated back to its application in a psychophysics exper-
iment published in 1885 (1–4). However, randomization
was notwidely recognizedor accepteduntil Fisher applied it
to agricultural research starting in the 1920s (5, 6). One of
the first applications of randomization to clinical trials was
the streptomycin trial published in 1948 (7). Since then,
randomized trials have gradually evolved to become the
gold standard for comparing the relative performance of
treatments.

Randomization eliminates the bias in clinical trials that
arises from the subjective assignment of treatments to

individual patients. Properly implemented, randomization
can reduce the confounding effect of both known and
unknown prognostic factors, as well as the inherent het-
erogeneity of an experiment. Moreover, randomization
provides a solid statistical foundation for valid inference
in estimation and hypothesis testing (8–10).

To provide a fair ground for comparing the effect across
different treatments, commonly used randomizationmeth-
ods apply blocking, stratification, or covariate-adjusted
methods such as minimization to achieve balance in the
baseline characteristics (10–12). Equal randomization is
the most widely used procedure. Under the equipoise
principle, which states that all treatments are likely to be
equally effective, subjects are randomized equally across
treatments. On the other hand, response- or outcome-
adaptive randomization dynamically assigns patients to
treatments with a probability based on the currently
observed outcomes. The general goal is to assign more
patients to better treatments. This concept can be traced
back to the work of Thompson (13) with an early imple-
mentation in the form of the randomized play-the-winner
design, which assigns more patients to the current winner
with a higher probability (14, 15). Many similar designs
have been proposed in the literature (16, 17).

Outcome-adaptive randomization is conceptually ap-
pealing. At the beginning of a study, not much is known
about the difference in the treatment effect; hence, equal
randomization is reasonable because of clinical equipoise.
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However, as the trial moves along and more information
about the treatment difference accumulates, it makes sense
to assign more patients to the better performing arms by
aligning the randomization probability with treatment
efficacy. When sufficient evidence is obtained, the trial can
be stopped. With outcome-adaptive randomization,
patients enrolled in the trial can benefit from having a
higher chance of being assigned to the better treatment, if
any. In contrast, traditional clinical trials with equal ran-
domizationhave amain goal of providing information for a
definitive comparison between treatments. Patients partic-
ipating in trials contribute to the scientific knowledge to
benefit the public in general. Such trials typically are
designed to maximize the statistical power. When the var-
iances of the treatment effect measures are equal between
treatments and the total sample size is fixed, equal random-
ization is the optimal design. Conversely, adaptive random-
ization can be applied to increase the overall success for
patients enrolled in the trial while controlling type I and
type II errors as well. Excellent discussions on the inherent
competition between adaptive randomization and equal
randomization on designing clinical trials can be found in
the literature (10, 18, 19).
Two recent publications have reinvigorated the debate

about the use of outcome-adaptive randomization versus
fixed randomization methods in clinical trials (20, 21).
Korn and Freidlin describe adaptive randomization as
"inferior to 1:1 randomization in terms of acquiring infor-
mation for the general clinical community and offers mod-
est-to-no benefits to the patients on the trial" (20). They
recommend the use of equal randomization or 2:1 fixed
randomization when assigning more patients to the pre-
sumably better arm would increase the study’s accrual rate.
While acknowledging the added complexity of adaptive
randomization, Berry contends that the benefits are limited
but real in 2-arm trials, that these benefits can be more
evident in trials with more than 2 arms, and that adaptive
randomization can shorten the time of cancer drug devel-
opment and better identify responding patient popula-
tions (21). Additional letters to the editor provide further
support for equal randomization over adaptive randomi-
zation (22, 23). Three recently published books provide a
comprehensive presentation of the use of randomization
in clinical trials (10), a rigorous theoretical assessment of
outcome-adaptive randomization from the frequentist
point of view (17), and theoretical and practical overviews
on a wide range of Bayesian adaptive methods applied to
clinical trials (24). To gain a deeper understanding of the
performance of the adaptive randomization and fixed ran-
domization trial designs, we compare their operating char-
acteristics through extensive simulation studies.

Methods
We base all inference in the simulated trials on the

posterior probability under the Bayesian framework and
control the frequentist type I and type II error rates. We
consider both binary and survival endpoints. When the

endpoint is binary, patients either respond or do not
respond to the treatment. In 2-arm studies, we denote p1
as the response rate of the control arm and p2 as that of the
experimental arm. We conclude that the experimental arm
is better than the control arm if the posterior probability
Prðp2 > p1jDÞ > �T, where D denotes the observed data
and qT is the cutoff value. The sample size and cutoff value
are chosen to control the type I error rate at 10% under the
null hypothesis of p1 ¼ p2 ¼ 0.2 and achieve 90% power
under the alternative hypothesis of p1 ¼ 0.2 and p2 ¼ 0.4.
We fix p1 ¼ 0.2 and vary p2 from 0.05 up to 0.95. We take
Beta(1,1) as the prior distribution for the response rates of
both arms.

For adaptive randomization, we take the probability for
randomizing patients to arm 2 (the experimental arm) as

Prðp2 > p1jDÞc=fPrðp2 > p1jDÞcþPrðp1 > p2jDÞcg; ðAÞ

where c is the tuning parameter controlling the degree of
imbalance (25). A value of c ¼ 0 corresponds to equal
randomization; c ¼ ¥ corresponds to the deterministic
"play-the-winner" assignment (14). Thall and Wathen
(25) recommend using a value between 0 and 1 for c, for
example, c ¼ n=ð2NÞ, where n is the current number of
patients in the trial and N is the total sample size. In this
case, c¼ 0 at the beginning of the trial and c¼ 0.5 at the end
of the trial, such that the variability in the randomization
rate is reduced in the early stage of the trial and the statistical
power is preserved. To produce a larger contrast when
comparing the performance of adaptive randomization
versus equal randomization, we also investigate a case

with c ¼ ðn=NÞ0:1. Consequently, the value of c is 0 at the
beginning of the trial but quickly increases to 1: c ¼ 0.87,
0.93, and 0.97 correspond to 25%, 50%, and 75% of the
patients in the trial, respectively. The adaptive randomiza-
tion procedure is applied from the beginning of each trial.
To prevent extreme patient allocation, we also restrict the
randomization probabilities to values between 0.1 and 0.9.

We compare the performance of different designs by
examining their operating characteristics, including the
number of nonresponders, the averaged sample size, and
the overall response rate. To achieve a fair comparisonof the
overall response rate, we expand the sample size such that
the total sample size is the same across all designs. In this
case, a larger overall response rate corresponds to a smaller
number of nonresponders. For the expansion cohort, if the
null hypothesis is rejected, all the remaining patients are
assigned to the better arm. Otherwise, they would be
assigned to the control arm.

In a 3-arm randomized trial, we compare 2 experimental
treatments (arms 2 and 3) and 1 control treatment (arm 1).
Under this setup, we would reject the null hypothesis if at
least one experimental treatment is superior to the control
as indicated by Prðpk > p1jDÞ > �T, where k ¼ 2 or 3. The
sample size and cutoff value uT are chosen to control the
10% type I error rate under the null hypothesis of p1¼ p2¼
p3 ¼ 0.2 and achieve 90% power under the alternative
hypothesis of p1 ¼ 0.2 and p2 ¼ p3 ¼ 0.4. Similar to the
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2-arm trials, we take Beta (1,1) to be the prior distribution
for the response rates of all arms.

In the Bayesian adaptive randomization, we compare the
response rate of each treatment with the average response
rate of the 3 arms, that is, we compute Prðpk > �pjDÞ where
�p ¼ ðp1 þ p2 þ p3Þ=3. Toobtain the posterior distributionof
�p, we sample pk for each arm k and compute the average of
the 3 armsusing 2,000posterior samples. The probability of
assigning a patient to arm k is

fPrðpk > �pjDÞgc
P3

i¼1

fPrðpi > �pjDÞgc
ðBÞ

which reduces to equation A for a 2-arm trial.
Furthermore, we study the performance of each trial by

incorporating early stopping for futility and efficacy. Evi-
dence of efficacy is defined as for any treatment arm, if
Prðpk > p1jDÞ > �H, the trial is stopped and the null
hypothesis is rejected. Evidence of futility is defined as
Prðpk > p1jDÞ< �L for all k, at which point the trial is
stopped and the null hypothesis is accepted. For each
configuration, we carried out 500,000 simulations.

We also consider survival endpoints, for which we
assume that the failure time follows an exponential distri-
bution, Expð�t=mÞ, withmeanm. We take a conjugate prior

of an inverse-gamma distribution with parameters (0.01,
0.01), and thus the posterior distribution of m also follows
an inverse-gamma distribution.

We apply an adaptive randomization scheme that is
similar to that used in the case of a binary endpoint. The
probability of randomizing a patient to arm 2 is

Prðm2 > m1jDÞc=fPrðm2 > m1jDÞc þ Prðm1 > m2jDÞcg. We
specify a threshold for the ratio of the mean survival times
between 2 arms, t (t is set at 1.2), and a threshold value, uT.
After the trial is completed (trial duration ¼ 5 years), if
Prðm1=m2 > tjDÞ > �T or Prðm2=m1 > tjDÞ > �T, we reject

the null hypothesis. The accrual rate is 60 patients per year,
and the cutoff value of uT is calibrated to control the 10%
type I error rate when m1 ¼ m2 ¼ 1 and achieve 80% power
when m1 ¼ 1 and m2 ¼ 1:5. We carry out 10,000 simula-
tions for the survival endpoints. All simulation results are
given in the tables with the design parameters listed in the
table footnotes.

Results
Table 1 shows the operating characteristics in a 2-arm trial

with binary endpoints for the 1:1 and 1:2 fixed randomi-
zation designs and for the AR1 with c ¼ n=ð2NÞ and AR2

with c ¼ ðn=NÞ0:1, respectively. The sample size required to
achieve 90% power and the 10% type I error rate is the
smallest for equal randomization (N¼ 134) and the largest
for adaptive randomization 2 (N ¼ 184). In terms of the
number of nonresponders for the given sample size, equal
randomization has the least when p2¼ 0.05 or 0.2, but AR1
does the best for p2 � 0.4. AR2 yields the highest overall
response rate for all p2 with or without expanding to the
same sample size compared with the other 3 designs. The
increase in the overall response rate for AR2 is more evident
when the difference between p1 and p2 increases. The
relative gains in the overall response rates for AR2 over
equal randomization are 18%, 12%, 20%, and 24% for p2¼
0.05, 0.4, 0.6, and 0.8, respectively.

The 1:2 fixed randomization yields poor results when the
experimental arm is worse than the control arm. In all
settings, including the setting in which the experimental
treatment is better than the control, AR1 performs better
than the 1:2 fixed randomization. One desirable feature of
adaptive randomization is that the randomization ratio is
determined by the observed data instead of being prefixed.
When p2¼ 0.05, 0.2, 0.4, and 0.6, the rates of randomizing
patients to arm 2 are 32.5%, 50%, 67.5%, 76.2% for AR1
and 19.3%, 50%, 80.6%, 85.9% for AR2, respectively

Table 1. Performance of fixed ratio (1:1 and 1:2) and adaptive randomization trial designs without early
stopping

Fixed ratio (1:1 randomization)
Fixed ratio (1:2
randomization) AR1 c ¼ n=ð2NÞ AR c ¼ ðn=NÞ0:1

True response
rate N ¼ 134 Expd to

N ¼ 140
Expd to
N ¼ 184

N ¼ 153 Expd to
N ¼ 184

N ¼ 140 Expd to
N ¼ 184

N ¼ 184

Cntl (p1) Exp (p2)
Nonresp,

n
Overall
resp %

Overall
resp %

Overall
resp %

Nonresp,
n

Overall
resp %

Overall
resp %

Nonresp,
n

Overall
resp %

Overall
resp %

Nonresp,
n

Overall
resp %

0.2 0.05 117.2 12.5 12.8 14.5 137.7 10.0 11.7 118.8 15.1 16.3 152.5 17.1
0.2 0.2 107.2 20.0 20.0 20.0 122.4 20.0 20.0 112.0 20.0 20.0 147.2 20.0
0.2 0.4 93.8 30.0 30.3 32.2 102.1 33.3 34.1 93.1 33.5 34.6 117.5 36.1
0.2 0.6 80.4 40.0 40.9 45.4 81.5 46.7 48.9 69.3 50.5 52.7 84.0 54.4
0.2 0.8 67.0 50.0 51.3 58.2 61.2 60.0 63.3 44.8 68.0 70.9 51.1 72.2
0.2 0.95 57.0 57.5 59.1 67.7 45.9 70.0 74.2 26.1 81.4 84.6 26.5 85.6

NOTE:Cutoff values for declaring significant results are chosen as uT¼ 0.892 for 1:2 randomization, uT¼ 0.9 for 1:1 randomization, uT¼
0.9 for AR1, and uT ¼ 0.905 for AR2 to yield 10% type I error rate at p1 ¼ p2 ¼ 0.2 and 90% power at p1 ¼ 0.2, p2 ¼ 0.4 (shaded cells).
Abbreviations: Cntl, control arm; Exp, experimental arm; Expd, expanded; nonresp, nonresponse; resp, response.
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(Supplementary Table S1). The results illustrate a "learn-
ing" feature of adaptive randomization: the larger the
response rate for the experimental arm compared with
that for the control, the greater the number of patients
assigned to the experimental arm.
Figure 1 shows the allocation rate on arm 2 (denoted as

r2), which changes over time for both equal randomization
and AR2 when p1¼ 0.2 and p2¼ 0.4. In particular, we show
individual trial results for 10 randomly selected trials (gray
for adaptive randomization and light blue for equal ran-
domization), as well as the averages (maroon for adaptive
randomization and dark blue for equal randomization)
over the entire 500,000 simulations. Without early stop-
ping, Fig. 1A shows that r2 remains at 50% for n¼ 0 to 134,
then increases to 100% in 9 trials (as the null hypothesis is
rejected) and decreases to 0% for one trial (as the null
hypothesis is not rejected) under equal randomization.
Under adaptive randomization, the zigzag pattern of the
allocation rate over time illustrates the adaptive, learning
nature of thedesign.We see an initial delaywhilewaiting for
the response outcomes for the first 8 patients, then r2
increases from 50% to 90% as the trial progresses. Because
of the stochastic nature of adaptive randomization, r2 could
dip below 50%, particularly in the early stage of the trial.
However, the trend corrects itself when data accumulate.
The average rate of allocation to arm 2 reaches about 80%
for n ¼ 50 and 85% for n ¼ 100.
Table 2 shows the results when early stopping rules for

futility and efficacy are imposed for comparing the treat-
ment effect. The maximum sample size under equal ran-
domization, AR1, and AR2 are 190, 208, and 274, respec-
tively. The early efficacy and futility stopping rates are
similar between equal randomization and adaptive ran-
domization designs (Supplementary Table S2). Because of
early stopping, the actual sample sizes are typically smaller
than those originally planned.When p1¼ 0.2 and p2¼ 0.05,
0.2, 0.4, and 0.6, the average sample sizes for the AR2design
(N ¼ 134.7, 237.5, 110.0, and 39.2 in these 4 respective
settings) are considerably larger than those for the equal
randomization design (N¼ 85.5, 162.8, 84.0, and 35.5). In
contrast, the average sample size for the AR1 design is
similar than that of the equal randomization design. The
corresponding rates of randomization to arm 2 are (43%,
50%, 57.1%, 52.8%) and (22.9%, 50%, 74.5%, 70.5%) for
AR1 and AR2, respectively (Supplementary Table S2).
For the number of nonresponders, equal randomization

produces the smallest for p2 ¼ 0.05, 0.2, and 0.4 but AR2
does the best for p2 � 0.6. The overall response rate for the
AR2 design is higher than that of the AR1 design, which is
higher than the equal randomization design in all settings.
The differences among the designs, however, are smaller in
settings with early stopping than in those without early
stopping. When there is a large difference in the response
rates between treatments, the trialmaybe stoppedvery early,
evenbefore the advantages of using adaptive randomization
could be seen. In this case, the role of adaptive randomiza-
tion is substantially mitigated by early stopping. When the
sample size is expanded to 274, the relative gains in the

overall response rate for adaptive randomization over equal
randomization are reduced to less than 5% in all settings.
Note that in anextremesettingof p1¼0.2and p2¼0.95,AR2
has a smaller average sample size and a smaller number of
nonresponders than equal randomization. Figure 1B is

© 2012 American Association for Cancer Research
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Figure 1. Randomization probability to the experimental treatment versus
the number of patients accrued for 2-arm trials with binary endpoints. The
results of adaptive randomization (AR) and equal randomization (ER) are

compared. ForAR, theAR2designwith the tuningparameter c ¼ ðn=NÞ0:1
was applied. Performances of 10 randomly selected trials are shown in
gray lines for AR and in solid blue lines for ER. The averages of 500,000
trials are also shown in the maroon line for AR and in the blue dashed
line for ER. Response rates are p1 ¼ 0.2 and p2 ¼ 0.4. A, without early
stopping. The sample size of the AR2 design sample size is 184 and that
of the ER design is 134, which is expanded to 184 after the trial is
completed. B, with early stopping. Themaximum sample size for the AR2
design is 274 and for the ER design is 190. If a trial is stopped early (or
completed for ER), additional patients are added to reach a total of 274
patients. Additional patients are allocated to the better treatment if the
null hypothesis is rejected or to the control arm if the null hypothesis is not
rejected. prob., probability.
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similar to Fig. 1A but includes early stopping rules. With
early stopping, the average r2 for the adaptive randomiza-
tion design is consistently higher than that of the equal
randomization design across the entire accrual period.

Wealso compare the results of equal randomization, AR1,
and AR2 in a 3-arm clinical trial that incorporates early
stopping rules for both futility and efficacy (Table 3). The
equal randomization design requires the enrollment of up
to 231 patients, the AR1 and AR2 designs require a maxi-

mumsample sizeofup to255and321patients, respectively.
As before, we set p1 ¼ 0.2 in all configurations. When the
experimental treatments areworse than the control (the first
row), the futility early stopping probabilities are 0.91, 0.95,
and 0.99 for equal randomization, AR1, and AR2, respec-
tively. When at least one experimental arm is better than the
control, the efficacy early stopping rule kicks in. The efficacy
stopping rates are 0.76, 0.82, and 0.91 for equal random-
ization, AR1, and AR2 when p1¼ p2¼ 0.2 and p3¼ 0.4. The

Table 2. Performance of equal and adaptive randomization designs with both futility and efficacy early
stopping

Equal randomization AR1 c ¼ n=ð2NÞ AR2 c ¼ ðn=NÞ0:1True
response

rate Nmax ¼ 190 Expd to
N ¼ 208

Expd to
N ¼ 274

Nmax ¼ 208 Expd to
N ¼ 208

Expd to
N ¼ 274

Nmax ¼ 274 Expd to
N ¼ 274

Cntl
(p1)

Exp
(p2)

Nonresp,
n

Avg
sample
size

Overall
resp %

Overall
resp %

Overall
resp %

Nonresp,
n

Avg
sample
size

Overall
resp %

Overall
resp %

Overall
resp %

Nonresp,
n

Avg
sample
size

Overall
resp %

Overall
resp %

0.2 0.05 74.8 85.5 12.5 16.9 17.7 77.3 89.4 14.3 17.2 17.9 112.5 134.7 17.3 18.3
0.2 0.2 130.5 162.8 20.0 20.0 20.0 142.2 177.7 20.3 20.0 20.0 190.0 237.5 20.4 20.0
0.2 0.4 59.4 84.0 30.0 35.6 36.2 59.9 87.4 31.6 36.3 36.7 71.5 110.0 34.9 37.8
0.2 0.6 21.4 35.5 40.0 56.5 57.4 21.0 35.6 41.3 56.7 57.5 20.3 39.2 47.4 58.3
0.2 0.8 11.3 22.5 50.0 76.7 77.5 11.1 22.5 50.7 76.8 77.6 9.2 22.7 58.7 78.3
0.2 0.95 7.7 18.2 57.5 91.7 92.5 7.6 18.2 57.8 91.8 92.6 5.8 17.8 66.8 93.2

NOTE: Cutoff value for futility stopping is uL¼ 0.02. Cutoff value for efficacy stopping and final decision is uH¼ uT¼ 0.983 for AR1, uH¼
uT¼0.98 for AR2, and0.9835 for ER to yield 10%type I error rate atp1¼p2¼p3¼0.2 and90%power atp1¼0.2,p2¼p3¼0.4 (Shaded
cells).
Abbreviations: Avg, average;Cntl, control arm; Exp, experimental arm; Expd, expanded;Nmax,maximumsample size; Resp, response.

Table 3. Equal randomization design for three treatment arms, with both futility and efficacy early stopping

Equal randomization AR1 c ¼ n=ð2NÞ AR2 c ¼ ðn=NÞ0:1

True response
rate Nmax ¼ 231 Expd to

N ¼ 255
Expd to
N ¼ 321

Nmax ¼ 255 Expd to
N ¼ 255

Expd to
N ¼ 321

Nmax ¼ 321 Expd to
N ¼ 321

Cntl
(p1)

Exp 1
(p2)

Exp 2
(p3)

Nonresp,
n

Avg
sample
size

Overall
resp %

Overall
resp %

Overall
resp %

Nonresp,
n

Avg
sample
size

Overall
resp %

Overall
resp %

Overall
resp %

Nonresp,
n

Avg
sample
size

Overall
resp %

Overall
resp %

0.2 0.05 0.05 93.8 104.3 10.8 15.9 16.7 91.4 103.1 11.1 16.1 16.9 91.8 104.2 12.7 17.4
0.2 0.2 0.2 161.2 201.4 20.2 20.0 20.0 176.7 221.0 20.2 20.0 20.0 221.5 276.9 20.2 20.0
0.2 0.4 0.4 69.6 104.5 33.7 37.0 37.2 72.5 110.1 34.3 37.4 37.5 84.3 131.9 36.3 38.3
0.2 0.6 0.6 23.6 44.3 46.8 57.7 58.2 23.6 44.7 47.3 57.8 58.2 23.9 49.3 51.2 58.7
0.2 0.8 0.8 11.5 28.7 59.8 77.8 78.2 11.4 28.8 60.1 77.8 78.2 10.0 29.5 65.7 78.7
0.2 0.3 0.5 53.2 82.8 33.8 43.4 44.3 54.9 83.3 34.3 43.7 44.6 53.6 85.2 37.3 45.7
0.2 0.4 0.6 32.9 54.8 40.3 53.6 54.4 32.8 55.2 40.7 53.8 54.5 31.8 57.2 44.3 55.5
0.2 0.4 0.8 18.0 33.8 46.7 74.2 75.1 17.9 33.7 47.0 74.3 75.1 15.5 32.6 52.3 76.1
0.2 0.1 0.6 40.1 57.4 30.5 53.1 54.5 38.2 55.5 31.3 53.6 54.9 31.2 50.0 37.3 56.4
0.2 0.2 0.4 96.3 131.4 27.1 32.2 32.8 97.1 134.2 27.7 33.0 33.6 97.0 138.6 30.2 35.3
0.2 0.2 0.6 38.2 57.3 33.8 53.7 54.9 37.1 56.2 34.3 54.0 55.1 31.7 52.1 39.2 56.4
0.2 0.2 0.8 20.4 34.0 40.2 74.5 75.6 20.1 33.8 40.6 74.6 75.7 16.5 31.4 47.3 76.7

NOTE:Cutoff value for futility stopping is uL¼0.06.Cutoff value for efficacystoppingandfinaldecision is uH¼ uT¼0.9904 forER, uH¼ uT

¼ 0.9904 for AR1, uH¼ uT¼ 0.988 for AR2 to yield 10% type I error rate at p1¼ p2¼ p3¼ 0.2 and 90%power at p1¼ 0.2, p2¼ p3¼ 0.4
(shaded cells).
Abbreviations: Avg, average; Cntl, control arm; Exp, experimental arm; Expd, expanded; Nmax, maximum sample size; Nonresp,
nonresponse. Resp, response.
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early stoppingprobabilities are comparable for the 3designs
in all other scenarios (Supplementary Table S3).
A desirable design should have the smallest average

sample size and the smallest number of nonresponders.
These 2 features generally go together. Among the 3 designs,
equal randomization is the best in 6 of the 11 scenarios
in Table 3. The exceptions are (i) when both experimental
arms are worse p2¼ p3¼ 0.5, AR1 is the best and (ii) when a
large difference is seen across treatments (in 4 scenarios:
p2¼0.4; p3¼0.8; p2¼0.1; p3¼0.6; p2¼0.2; p3¼0.6; and p2
¼ 0.2; p3 ¼ 0.8), AR2 is the best. Similar to the 2-sample
scenarios, in all the alternative cases, the overall response
rate under AR2 is always higher than those under AR1 and
equal randomization, with or without expansion to the
maximumsample size.When the sample size is expanded to
321, the relative gains in the overall response rate for AR2
over equal randomization are reduced to less than 5% in all
settings with early stopping.
In Table 4, we present the simulation results with the

survival endpoint. The truemedian survival time of patients
assigned to the control arm is fixed at 0.69 year. For the
experimental arm, it varies from 0.35 to 2.08 years corre-
sponding to anHRof 0.5 to 3. To achieve the same10% type
I error rate and 80% power, equal randomization requires
up to 170 patients, whereas the AR1 and AR2 schemes
require up to 180 and 218 patients, respectively. We com-
pare the performance of the 3 designs using the average
sample size and averagemedian survival timeof thepatients
in the trial. The average sample size is the smallest for equal
randomization, followed by AR1, and AR2 is the largest.
Conversely, in a comparison of the median survival time,
AR 2 outperforms AR1 followed by equal randomization,
withorwithout expanding toN¼ 218. ForHRs of 0.5 and3,
the gains for AR2 in the median survival time are 15% and

20%, respectively, over equal randomization without
expanding the sample size.When the sample size is expand-
ed to 218 for equal randomization, the advantage of AR2
remains but the relative gain in the median survival time is
reduced by 7% or less. Similar as before, for adaptive
randomization, more patients are randomized to the better
arm in all cases. For HRs of 0.5, 1.5, and 3, the percentage of
patients being randomized to the better treatment arm are
75%, 70%, and 72%, respectively. Both the efficacy and
futility stopping rates are higher in AR2 than in those in
equal randomization (Supplementary Table S4).

Discussion
Despite its critical role in designing experiments and

clinical trials, the principle of randomization was not well
received initially. It was not until decades after its early use
that the need for and the value of randomization became
widely accepted in clinical trials. The modern debate is not
focused on whether to use randomization but rather on
how to do it andwhich type of randomization scheme is the
most appropriate. One must examine the performance of
equal randomization and adaptive randomization in their
totality and determine their relative strengths and
weaknesses.

Our extensive simulation studies show that for a binary
endpoint, equal randomization typically results in a smaller
sample size and a smaller number of nonresponders than
adaptive randomization to control the type I and type II
errors. Equal randomization has a smaller average sample
size than adaptive randomization when there is no differ-
ence in the response rates. Adaptive randomization consis-
tently achieves a higher overall response rate by allocating
more patients tomore effective treatments during the course

Table 4. Performance of equal and adaptive randomization designs for survival analysis with both futility
and efficacy early stopping

Equal randomization AR1 c ¼ n=ð2=NÞ AR2 c ¼ ðn=NÞ0:1
True median
survival rime

Parameters
of exponen-

tial
distribution Nmax ¼ 170 Expd to

N ¼ 218
Nmax ¼ 180 Expd to

N ¼ 218
Nmax ¼ 218 Expd to

N ¼ 218

Cntl Exp
Cntl
(m1)

Exp
(m2)

Avg
sample
size

Median
survival
time

Median
survival
time

Avg
sample
size

Median
survival
time

Median
survival
time

Avg
sample
size

Median
survival
time

Median
survival
time

0.69 0.35 1.00 0.50 106.0 0.54 0.61 108.1 0.56 0.63 127.2 0.62 0.65
0.69 0.52 1.00 0.75 157.7 0.62 0.64 165.4 0.63 0.64 195.0 0.64 0.65
0.69 0.69 1.00 1.00 163.3 0.70 0.70 169.8 0.70 0.70 193.3 0.70 0.70
0.69 0.87 1.00 1.25 162.0 0.79 0.79 169.2 0.80 0.79 198.4 0.81 0.81
0.69 1.04 1.00 1.50 152.7 0.88 0.91 160.3 0.91 0.93 189.6 0.95 0.96
0.69 1.21 1.00 1.75 138.4 0.98 1.06 143.4 1.02 1.08 166.7 1.09 1.11
0.69 1.39 1.00 2.00 123.2 1.07 1.20 127.0 1.13 1.23 142.9 1.22 1.28
0.69 2.08 1.00 3.00 90.6 1.45 1.81 91.4 1.54 1.85 97.7 1.74 1.93

NOTE: The cutoff values for declaring significant results are uT ¼ 0.721, 0.721, and 0.742 for ER, AR1, and AR2, respectively. Early
stopping cutoff values for claiming efficacy stopping and futility stopping are 0.99 and 0.2, respectively, to yield 10% type I error rate at
m1 ¼ m2 ¼ 1.00 and 80% power at m1 ¼ 1.00, m2 ¼ 1.50 (shaded cells).
Abbreviations: Avg, average; Cntl, control arm; Exp, experimental arm; Expd, expanded; Nmax, maximum sample size.
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of the trial. By expanding the sample size to the same
number across all designs, adaptive randomization yields
a higher overall response rate (a lower number of nonre-
sponders as well) than equal randomization. In particular,
when the experimental treatment is unexpectedly worse
than the control, or when the experimental treatment is
overwhelmingly better than the control, adaptive random-
ization may reach a smaller average sample size, a smaller
number of nonresponders, and a higher overall response
rate than equal randomization at the same time. Similar
conclusions hold in 3-arm trials. Note that the extremely
large efficacy differences are infrequently observed in clin-
ical trials. However, such large differences could happen in
certain settings with matching treatments and biomarkers
for targeted therapies.

In practice, because we do not know the relative efficacy
between treatment arms (Were we to know, we would not
need to conduct the trial!), it is sensible to allow the
randomization ratio to depend on the observed data rather
than having it preset throughout the trial. Adaptive ran-
domization is an adaptive learning process. It does not need
to speculate a priori as to which treatment arm is better:
during the course of a trial; adaptive randomization adapts
the randomization probabilities automatically and contin-
uously based on the observed data.

There are pros and cons to all designs. Equal randomi-
zation designs emphasize maximizing the statistical power
and are favored from a global, population-based view. On
the other hand, adaptive randomization designs put more
emphasis on individual benefit by assigning more patients
to the putative better treatments during the trial based on
the available data. The imbalance in patient allocation
between treatments causes a loss of statistical power and
requires an increased sample size to achieve the same target
power. The allocation ratio can be changed by varying the
tuning parameter to be more or less imbalanced. Equal
randomization designs have the advantage of reaching a
conclusion earlier. Hence, if the trial is positive, the result
can be announced sooner or the drug can be approved
earlier to benefit future patients in the population. Equal
randomization designs also have a smaller sample size
under the null hypothesis. The potential benefit can be large
if the population size is bigger than the trial size. On the
other hand, in rare diseases (such as certain pediatric can-
cers), there is only a limited population. After the trial result
is known, future patients arrive at the same rate as before and
will receive the better treatment. This setting can be mim-
icked by expanding the trials of the equal randomization
design to the same sample size as the adaptive randomiza-
tion design. With the expanded sample size, the adaptive
randomization design always yields higher overall success
than the equal randomization design. The benefit of adap-
tive randomization is more prominent when one treatment
is substantially better than the others. Adaptive randomiza-
tion focuses onhow tobest treat patients in the trial,whereas
equal randomization emphasizes making the right decision
early in comparing the treatment effect.Hence,when there is
a treatment difference, equal randomization is preferred if

the population size is much bigger than the trial size and
adaptive randomization is preferred otherwise. When there
is no treatment difference, equal randomization is preferred
over adaptive randomization because the required sample
size to reach a conclusion is smaller. More detailed com-
parison of the relative merit of equal randomization and
adaptive randomization with respect to the population size
and trial size is given in the Appendix. Our results also show
that the difference between equal randomization and adap-
tive randomization designs quickly diminishes when early
stopping rules for efficacy and futility are implemented.

Adaptive randomization takes the "learn as we go"
approach to adjusting the randomization ratio based on
the observed data. Adaptive randomization assigns more
patients to better treatments and, as a result, these treat-
ments can be better studied with larger sample sizes. Yet,
statistical power may suffer from imbalanced samples. AR1
is commonly used in practice whereas AR2 serves as an
example to illustrate more extreme imbalance. How much
imbalance one would like to reach depends on the specific
objectives. The "optimal" randomization ratio can be
derived based on the design settings and the choice of
optimization criteria or the utility function. For example,
we may maximize the efficacy in the patient horizon (i.e.,
the total patient population available in the whole society)
or minimize the loss function using Bayesian decision
theoretic approaches (26,27). In fact, by allowing the ran-
domization ratio to vary, equal randomization can be
considered as a special case of adaptive randomization. The
best randomization ratio, which can be equal or unequal,
depends on the design parameters and the optimization
criteria.

From the trial conduct point of view, trials using
outcome-adaptive randomization require more effort in
planning and implementation. A robust infrastructure
should be set up to ensure that adaptive randomization
can be carried out properly throughout the trial. The
outcome-adaptive randomization is more applicable to
trials with short-term endpoints. To ensure that adaptive
randomization works as it is supposed to, the primary
endpoint needs to be recorded accurately and timely. For
example, an integrated Web-based database system for
patient registration, eligibility checking, randomization,
and follow-up can be developed to facilitate the conduct
of the adaptive randomization trials. A scheduling mod-
ule and an e-mail notification module can be included to
ensure that the primary endpoints are collected and
reported in a timely manner. To enhance the accuracy
of the endpoint determination, clear criteria should be
established and consistently followed. Endpoint review
should be conducted blinded to the treatment assign-
ment. One caveat is that adaptive randomization is more
prone to the danger of population drift. When the patient
characteristics change over time, adaptive randomization
is more likely to result in a biased estimate of the treat-
ment difference than equal randomization (28). One
solution is to lay out well-defined eligibility criteria such
that a homogeneous population of patients can be
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enrolled throughout the trial. Another approach is to set a
minimal portion of the patients to be assigned to the
control arm to ensure a fair comparison. Block outcome-
adaptive randomization can be considered to reduce the
bias caused by the population drift (29, 30). Covariate-
adjusted regression methods may also be applied to
reduce the bias. Another limitation is that the current
discussions only focus on the efficacy outcome of the
treatment. In the real trial setting, treatment toxicities
should be monitored concurrently. The decision of treat-
ment allocation should consider both efficacy and toxic-
ity outcomes.
In summary, outcome-adaptive randomization is an

active research area in both medicine and statistics (31–
35). It has been implemented successfully in 2 recent trials,
namely, BATTLE and I-SPY2 (36, 37). Instead of always
applying equal randomization in clinical trials, we advocate
challenging the status quoby considering adaptive random-
ization. The final verdict of the relative advantages and
disadvantages for various designs should ultimately be
based upon results from real trials and the benefit of the
entire population.

Appendix: Comparison of Equal and Adaptive
Randomization by theNumber ofNonresponders
and the Equivalence Ratio of the Population Size
versus Trial Size
To provide further comparison between equal random-

ization and adaptive randomization, we plot the additional
number of nonresponders versus the number of patients
accrued for 2-arm trials with binary endpoints. The com-
putations are based on the average of 500,000 trials. The
number of additional nonresponders is defined as the
excess number of nonresponders for the respective designs
compared with the case that all patients had received the
better treatment.
Supplementary Figure S1A shows the additional num-

ber of nonresponders over time for the equal randomi-
zation and AR2 designs compared with the reference case
that all patients had received the better treatment. The
blue solid line shows that the equal randomization design
stopped at N ¼ 134 with 13.4 more nonresponders than
the theoretically best case where all patients are assigned
to arm 2. The blue dashed line shows the additional
number of nonresponders in the expansion cohort after
equal randomization, whereas the black line represents
the straight equal randomization throughout. The red
line indicates the "excess" number of nonresponders for
AR2 compared with the theoretically best-case scenario.
By 184 patients, the "excess" numbers of nonresponders
for straight equal randomization, equal randomization þ
expansion, and AR2 are 18.4, 14.4, and 7.1, respectively.
Throughout the trial, AR2 is better than equal random-
ization by yielding a smaller number of nonresponders
when a total of 184 patients are treated.
Similarly, Supplementary Fig. S1B plots the "excess"

number of nonresponders over the best-case scenario when

the designs implement early stopping rules. The horizontal
location of the green dots indicates the average sample size,
whereas the blue and the red dots show themaximal sample
size for equal randomization and AR2, respectively. When
expanding to 274 patients, the "excess" number of non-
responders is 5.9 for the AR2 design which is smaller than
10.5 of the equal randomization design.

The construct of the expansion cohort shown above
resembles the rare disease setting, in which the total disease
population is small and all patients participate in the trial.
At the conclusion of the trial, the information learned from
the trial is applied to treat future patients with the best
treatment. Future patients arrive at the same rate as the
enrollment rate in the trial. In addition, we consider the
cases with different population sizes with respect to the trial
size. The performance of equal randomization and adaptive
randomization is compared by computing the number of
nonresponders in the entire patient populationwith similar
conditions and could be affected by the similar treat-
ments—both current patients enrolled in the trial and
future patients in the population outside the trial. Taking
the example of comparing 2 treatments with the response
rates p1 ¼ 0.2 and p2 ¼ 0.4 with early stopping, to achieve
90% power with a 10% type I error rate, the equal random-
ization design needs an average of 84 patients with 59.4
nonresponders. In contrast, the AR2design (with the tuning

parameter c ¼ ðn=NÞ0:1 requires 110 patients with 71.5
nonresponders. One major difference between equal ran-
domization and AR2 is that equal randomization reaches
the conclusion earlier by 110� 84¼ 26patients. Supposing
that there are xnumber of patients available outside the trial
between the timeof the endof equal randomization and the
end of adaptive randomization, we compute the expected
number of nonresponders as follows.

1 Using the equal randomization design, the trial ends at
84 patients. All subsequent x patients are treated with
the better treatment with a probability of 0.9. The total
expected number of nonresponders including patients
treated during and after the trial is 59.4þ (0.9� 0.6þ
0.1 þ 0.8) x .

2 Using the AR2 design, the trial ends at 110 patients,
which is 26 patients more than using the equal ran-
domization design. During this period of time, all x
number of patients available outside the trial are
treated on the control arm. The total expected number
of nonresponders including patients treated inside and
outside the trial is 71:5þ 0:8 ðx� 26Þ.

We can solve x ¼ 48:3 by equating the above 2 equa-
tions. Taking the ratio of 48.3 and 26, we get 1.86. The
ratio can be considered as the "equivalence ratio" of equal
randomization and adaptive randomization in terms of
yielding the same number of nonresponders. The result
suggests that if the outside trial patients are available to be
treated at the rate of 1.86 or higher than the rate of
patients enrolled in the trial, equal randomization is
better. Otherwise, AR2 is better. Similar calculations can

Usefulness of Outcome-Adaptive Randomization Revisited

www.aacrjournals.org Clin Cancer Res; 18(17) September 1, 2012 4505

on September 2, 2013. © 2012 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst July 2, 2012; DOI: 10.1158/1078-0432.CCR-11-2555 

http://clincancerres.aacrjournals.org/


be applied to other settings. For example, the equivalence
ratios for the settings in Table 1 with 2 arms without early
stopping are also about 1.8 to 1.9. The equivalence ratios
for Table 2 with 2 arms and early stopping are 2.7 for p1 ¼
0.2 and p2 ¼ 0.6 and 18.8 for p1 ¼ 0.2 and p2 ¼ 0.8. For
the 3-arm trials shown in Table 3, the equivalence ratios
are between 1.5 and 4.6 except for the 4 cases mentioned
in the text with larger differences between the experimen-
tal arms and the control arm. In those cases, AR2 yields a
smaller sample size and has a smaller number of non-
responders. Generally speaking, equal randomization is
preferred when the patient population outside the trial is
large (e.g., more than twice the trial size) because the trial
result can be reported earlier to benefit the entire popu-
lation. On the other hand, adaptive randomization is
preferred if there are not many patients available outside
the trial, such as in the rare disease setting and when
effective treatments are available. Adaptive randomiza-
tion has the benefit of minimizing the number of non-
responders in the trial by assigning more patients to better
treatments in the entire course of the trial.

Assume that the sample size and the number of non-
responders for the equal randomization design are (n1,
m1) and those for the adaptive randomization design are
(n1, m1), respectively. Also assume that the power for the
test is w, it can be shown that the solution of x for the 2-
arm trial is ð1� p1Þðn2 � n1Þ � ðm2 �m1Þ½ �= wðp2 � p1Þ½ �.
The equivalence ratio is x=ðn2 � n1Þ, which depends on
the true response rates, differences of the trial sample size,
and the number of nonresponders between the 2 arms, as
well as statistical power. The equivalence ratios can be

calculated for different adaptive randomization methods
with different tuning parameters that determine the
degree of imbalance. For example, the equivalence ratio
changes to 3.63 if we compare AR1 and equal random-
ization when p1 ¼ 0.2 and p2 ¼ 0.4 with early stopping.
Note that the above calculation is focused only on com-
paring the mean number of nonresponders. The variation
of the number of nonresponders tends to be larger in
adaptive randomization than in equal randomization.
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