
On the Usefulness of Outcome-
Adaptive Randomization

TO THE EDITOR: In a recent article published in Journal of Clinical
Oncology, Korn and Freidlin1 compared outcome-adaptive random-
ization with designs using 1:1 and 2:1 fixed-ratio randomization (2:1
means that the probability of randomization to the experimental arm
is 2/3 and to the standard arm is 1/3). The authors found no benefit in
using outcome-adaptive randomization compared with fixed-ratio
randomization and recommended the latter. This finding is impor-
tant and interesting because clinical trial designs would be greatly
simplified by adopting the straightforward fixed-ratio randomization
approach rather than the logistically more involved outcome-adaptive
randomization method. The results of Korn and Freidlin rely heavily
on simulation studies that focus on a specific outcome-adaptive ran-
domization method2 and a limited number of simulation settings.
Consequently, one may question the generality of their conclusions.
From a theoretic point of view, we provide additional justification and
insights into comparisons between outcome-adaptive and fixed-ra-
tio randomization.

Assuming a similar setup as that used by Korn and Freidlin,1 we
considered a comparison between a standard treatment and an exper-
imental treatment with an immediately ascertainable binary end
point. We tested the difference in the response rates between the two
treatments on the basis of the one-sided normal approximation test
with a type I error rate of � � .1 and a type II error rate of � � .1, and

we evaluated the performance of the adaptive and fixed randomiza-
tion designs on the basis of the expected number of nonresponders
(denoted as nAR and nFR for adaptive and fixed randomization, respec-
tively) and the probability that a patient would be a responder.

It is known that the optimal outcome-adaptive design that min-
imizes the expected number of nonresponders should target the allo-
cation ratio of �pe : �ps between the experimental arm and the
standard arm,3 where pe and ps are the response rates of the experi-
mental and standard treatments, respectively. On the basis of this
result, we obtained the minimal expected number of nonresponders
for outcome-adaptive randomization designs using the follow-
ing equation:

min�nAR� �
�z1 � � � z��

2��peqe � �psqs�
2

�pe � ps�
2 , pe � ps (1)

where qs � 1 � ps, qe � 1 � pe, and z1�� and z� are the (1 � �)th and
�th quantiles of the standard normal distribution. Note that if ps � pe,
the optimal outcome-adaptive design becomes equal randomization.
It then follows that, compared with the K:1 fixed-ratio randomization
wherein patients are randomly assigned to the experimental arm with
a K/(1 � K) probability, and to the standard arm with a 1/(1 � K)
probability, the maximum percentage of reduction in the expected
number of nonresponders for outcome-adaptive randomization de-
signs is determined by the following equation.

max�nFR � nAR

nFR
� � 1 �

K��peqe � �psqs�
2

�peqe � Kpsqs��Kqe � qs�
. (2)
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Fig 1. The maximum percentage of reduction in the number of nonresponders for outcome-adaptive randomization with respect to that for (A) 1:1 fixed-ratio
randomization and (B) 2:1 fixed-ratio randomization. With respect to the curves from left to right, the response rates of the standard treatment are 0.1, 0.2, …, 0.8,
respectively, and the gray, yellow, and blue segments of each curve indicate that the response rate of the experimental treatment is 0% to 50%, 50% to 100%, and
100% to 200% higher than that of the standard treatment, respectively.
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Unlike simulation studies in which the results may depend on the
specific methods under consideration and the values of the simulation
parameters, the above upper bound is general and holds for all adap-
tive randomization designs. That is, it is the best that any outcome-
adaptive randomization can achieve. Interestingly, this bound does
not depend on the prespecified type I and type II error rates. Figure 1A
shows the maximum percentage of reduction in the expected number
of nonresponders using outcome-adaptive randomization with re-
spect to 1:1 fixed-ratio randomization under various treatment re-
sponse rates. For clarity of presentation and also for practical
relevance, given a specific response rate of the standard treatment, we
depict the results only for the case in which the improvement of the
response rate by the experimental treatment (compared with the stan-
dard treatment) is less than 200%.

We can see that the maximum possible gain (ie, reduction in the
expected number of nonresponders) using adaptive randomization
increases with the response rate of the experimental treatment. How-
ever, in general, such a reduction in the number of nonresponders is
rather limited. When the response rate of the experimental treatment
is higher than that of the standard treatment by up to 50% (the gray
segments of the curves in Fig 1A), the maximum gain using adaptive
randomization is typically less than 1%, and even when the response
rate of the experimental treatment doubles that of the standard treat-
ment (the yellow segments of the curves in Fig 1A), such a gain is often
less than 3%. Figure 1A also suggests that the adaptive randomization
method2 considered by Korn and Freidlin1 is not optimal; therefore,
their comparisons may slightly favor the fixed-ratio randomization
approach. For instance, the adaptive randomization method consid-
ered by Korn and Freidlin is inferior to the 1:1 fixed-ratio randomiza-

tion with a larger number of nonresponders (93.5 or 92.9 v 92.4) when
the response rates of the standard and experimental treatments are 0.2
and 0.4 (Table 2 in the article by Korn and Freidlin). In contrast, our
results show that a well-calibrated optimal adaptive randomization
can outperform equal randomization with a smaller number of non-
responders, although such an improvement is typically small (approx-
imately 3%).

When comparing outcome-adaptive randomization with a 2:1
fixed-ratio randomization, we find the results (Fig 1B) to be remark-
ably different from those obtained with the 1:1 fixed-ratio randomiza-
tion. The gain from using outcome-adaptive randomization in terms
of reducing the number of nonresponders actually decreases when the
response rate of the experimental arm increases (within the range of
the response rate that is of interest). This is because when the response
rate of the experimental arm increases, the optimal allocation ratio
approaches 2:1; therefore, the relative gain of the optimal outcome-
adaptive randomization (as compared with the 2:1 fixed ratio ran-
domization) decreases. When the difference in the response rate
between the two treatments is small, the gain of the optimal outcome-
adaptive randomization can be as large as 10% or more. This finding
suggests that in terms of the number of nonresponders, the 2:1 fixed-
ratio randomization may not be the best choice under small or mod-
erate effect sizes.

Another criterion used by Korn and Freidlin1 to evaluate the
performance of randomization designs is the probability that a patient
will be a responder (denoted as �AR and �FR for adaptive randomiza-
tion and fixed randomization, respectively). To quantify the largest
improvement that adaptive randomization can achieve (with respect
to a K:1 fixed-ratio randomization design), we obtained the upper
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Fig 2. The maximum increment of the probability that a patient will be a responder for adaptive randomization with respect to that for (A) 1:1 fixed-ratio randomization
and (B) 2:1 fixed-ratio randomization. With respect to the curves from left to right, the response rates of the standard treatment are 0.1, 0.2, …, 0.8, respectively, and
the gray, yellow, and blue segments of each curve indicate that the response rate of the experimental treatment is 0% to 50%, 50% to 100%, and100% to 200% higher
than that of the standard treatment, respectively.
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bound of �AR � �FR on the basis of a numerical search. To focus on
the comparison of the probability that a patient will be a responder, we
used a controlled setting in which the adaptive and fixed-ratio ran-
domization designs have the same expected number of nonre-
sponders (in addition to the same type I and type II error rates). Under
these conditions, the sample size for adaptive randomization designs
must be between nFR/(1 � ps), when all patients are assigned to the
standard treatment, and nFR/(1�pe) , when all patients are assigned to
the experimental treatment, for given values of ps � pe and K. We
enumerated all possible sample sizes between this range and all possi-
ble allocations given each of the sample sizes. We then identified the
optimal adaptive design that yields the highest increment of the prob-
ability that a patient will be a responder, that is, maximum (�AR �
�FR), which also has a power of at least 1� � � .9 with a type I error
rate of � � .1. Figure 2A shows that, compared with the 1:1 fixed-ratio
randomization, although the maximum increment using adaptive
randomization can be above 10%, it is mostly below 5% in the com-
mon cases in which the response rate of the experimental treatment is
0% to 100% higher than that of the standard treatment (depicted as
the gray and yellow segments in the curves).

Because the sample size is discrete (ie, integers), the curves in
Figure 2A are not smooth. The lack of smoothness becomes quite
obvious toward the end of the curves because at that point in the curve,
the required sample size is small (as the difference in the response rates
between two treatments becomes large), which makes the discreteness
of the sample size more influential. When compared with 2:1 fixed-
ratio randomization, the maximum increments of the probability that
a patient will be a responder become even smaller and are often less
than 2% (see Fig 2B).

In summary, we have obtained the maximum gains that adaptive
randomization designs can achieve with respect to fixed-ratio ran-
domization designs. Our theoretic results are generally consistent with
the numerical findings of Korn and Freidlin,1 which suggests that
outcome-adaptive randomization might not have substantial advan-
tages over fixed-ratio randomization when the response rate of the
experimental treatment is not substantially higher than that of the
standard treatment. Because our results do not depend on simulation
comparisons with any specific adaptive randomization methods, they
generalize and validate the findings of Korn and Freidlin in an impor-
tant way.
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