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SUMMARY. In the estimation of a dose-response curve, parametric models are straightforward and efficient but subject to
model misspecifications; nonparametric methods are robust but less efficient. As a compromise, we propose a semiparametric
approach that combines the advantages of parametric and nonparametric curve estimates. In a mixture form, our estimator
takes a weighted average of the parametric and nonparametric curve estimates, in which a higher weight is assigned to the
estimate with a better model fit. When the parametric model assumption holds, the semiparametric curve estimate converges
to the parametric estimate and thus achieves high efficiency; when the parametric model is misspecified, the semiparametric
estimate converges to the nonparametric estimate and remains consistent. We also consider an adaptive weighting scheme to
allow the weight to vary according to the local fit of the models. We conduct extensive simulation studies to investigate the

performance of the proposed methods and illustrate them with two real examples.
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1. Introduction

Dose-response experiments are routinely conducted in phar-
macology and toxicology to study the relationship between
the dose of an agent and the probability of an induced re-
sponse (e.g., toxicity or efficacy). At a given dose z, we typi-
cally assume that the response Y is a Bernoulli variable with
probability p(z). We are often interested in estimating the
dose-response curve p(z), and in addition, the effective dose
(ED), defined as ED,, = p~!(a) with 0 < « < 1, where p~!(-)
is the inverse function of p(-). In other words, the ED,, is the
dose at which the probability of response is a. Pharmacologic
studies typically focus on the EDg 5 (i.e., & = 0.5), and toxi-
cology studies are often interested in estimating the ED, for
a smaller a.

In general, we can classify the methods for estimating the
dose-response curve into the parametric and the nonparamet-
ric families. Parametric methods assume a parametric model
p(z,0) for the dose-response curve, where 0 is a vector of
unknown parameters. Commonly used parametric models in-
clude probit and logit functions (Bliss, 1934; Berkson, 1944;
McCullagh and Nelder, 1989; Morgan, 1992). It is well known
that if the parametric model is correctly specified, the infer-
ence based on the maximum likelihood estimator (MLE) is ef-
ficient. However, in many cases, it is difficult to correctly spec-
ify the parametric form of the dose-response curve because
the biological mechanism of drug action or toxicity may be
complex and the form of the dose-response curve is unknown
a priori. When the parametric model is misspecified, the cor-
responding curve estimate may be severely biased. Morgan
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(1992) provided a comprehensive review of the parametric es-
timation methods for dose-response curves.

To enhance the robustness of the estimation of the dose—
response curve, many nonparametric methods have been pro-
posed. Schmoyer (1984) derived a constrained MLE under the
assumption that the dose-response curve is sigmoid. Miiller
and Schmitt (1988) proposed a kernel estimator for the dose—
response curve. Kelly and Rice (1990) estimated the dose—
response curve nonparametrically using regression B-splines.
Mukhopadhyay (2000) developed a fully Bayesian nonpara-
metric approach based on the Dirichlet process prior. Dette,
Neumeyer, and Pilz (2005) constructed the composition of
a nonparametric estimate of the quantile response curve and
the classical density estimate. Park and Park (2006) proposed
a kernel method using the local quasi-likelihood approach.
Bornkamp and Ickstadt (2009) considered a Bayesian non-
parametric estimate of continuous monotonic dose-response
curves based on a mixture of shifted and scaled parametric
probability distribution functions. Dette and Scheder (2010)
compared the finite-sample performance of various nonpara-
metric estimators. Nonparametric methods are flexible and
the shape of the dose-response curve is mainly determined
by the data. In general, nonparametric estimates are consis-
tent under widely applicable regularity conditions. However,
compared with parametric models, nonparametric methods
are less efficient; and it is difficult to extrapolate the dose
response curve beyond the range of the observed dose levels.

To retain the advantages of parametric and nonparametric
approaches, we construct a semiparametric estimate of the
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dose-response curve as a weighted average of the two. The
weight is chosen by minimizing the mean integrated squared
error (MISE), such that strength can be adaptively borrowed
across the two methods. The proposed semiparametric esti-
mator has appealing features: when the parametric model is
correctly specified, the semiparametric curve estimate skews
toward the parametric estimate and thus achieves high effi-
ciency; when the parametric assumption is violated, the semi-
parametric estimate assigns more weight to the nonparametric
estimate, and still maintains consistency.

The mixture of a parametric estimate and a nonparamet-
ric estimate has been investigated for continuous response
variables (Einsporn, 1987). Olkin and Spiegelman (1987) de-
veloped a similar approach for density estimation. Kouassi
and Singh (1997) extended the parametric and nonparamet-
ric mixing to estimate the hazard function with censored data.
Mays, Birch, and Starnes (2001) further studied the model-
robust regression method for continuous outcomes based on
mixing the parametric and nonparametric fits. That method
has been applied successfully to various settings including
linear mixed models (Waterman, Birch, and Schabenberger,
2007), the dual model for replicated and nonreplicated re-
sponses (Pickle et al., 2008; Robinson, Birch, and Starnes,
2010), and the multiresponse optimization problem (Wan
and Birch, 2011). Also see Ghouch and Genton (2009) for
recent development in this area. In the context of dose—
response curve estimation with binary outcomes, Nottingham
and Birch (2000) proposed a model-robust quantal regression
method, which combines the parametric and nonparametric
predictions with the use of a mixing parameter. Our work
extends their method in several important aspects, which in-
clude proposing different mechanisms to estimate the mixing
parameter based on the observed data, developing a new class
of local mixing estimators, and establishing asymptotic prop-
erties for the proposed estimators.

The rest of the article is organized as follows. In Section 2,
we propose two classes of semiparametric estimators that
combine the parametric and nonparametric estimates using
a global or a local mixing parameter, and describe the corre-
sponding estimation procedures. We present simulation stud-
ies to examine the performance of the proposed methods in
Section 3, and illustrate our methods with two real examples
in Section 4. We conclude with a brief discussion in Section 5.
Technical details are given in the Web Appendices.

2. Parametric and Nonparametric Mixing

2.1 Global Semiparametric Estimator

Let p(z, 8) denote a parametric estimate of the dose response
curve based on the MLE é, and let p(z) denote a nonparamet-
ric estimate. By mixing the two, we propose a semiparametric
estimator of the dose-response curve,

Pr (xvé) = Wp(:t,é) + (1 - W)ﬁ(l)7 (1)

which is a weighted average of the parametric and nonpara-
metric estimates of p(z), with an unknown weight 7 € [0, 1].
This semiparametric estimator allows both the parametric
and nonparametric estimates to simultaneously contribute to
the estimation of the dose-response curve, and each contribu-
tion is determined by the weight 7. By estimating 7 through a
suitable way, a higher weight is assigned to the estimate that
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fits the data better, therefore the resulting semiparametric es-
timator inherits both efficiency and robustness from the two
methods. The semiparametric estimator in (1) forms a gen-
eral class of estimators because various available parametric
estimates (e.g., probit or logistic models) and nonparamet-
ric estimates (e.g., spline or kernel methods) can be used to
construct p, (z, ).

Let zm and g, denote the minimum and maximum doses
under investigation, respectively. We estimate the weight 7 by
minimizing the MISE,

MISE@#(z,é))—E[ [T oo syl @

T min

In Web Appendix A, we show that

/{MSE(;[)'(:E)) — covb(z)}dx

T =

) (3)
/{MSE(})(Z‘, 6)) + MSE(j(x)) — 2covb(z)} da

where the mean squared errors (MSEs) of p(z,0) and
B(x) are MSE(p(z,0)) = E(p(z,0) — p(2))? and MSE(§()) =
E(p(z) — p(z))?, and covb(z) = cov(p(z, 8), p(x)) + bias(p(z,
))bias(p(x)). For ease of exposition, we refer to (1) as a global
semiparametric estimator because it is estimated by minimiz-
ing the MISE, a global discrepancy measure, and 7 does not
depend on dose z.

Despite the closed form, the calculation of 7 is challenging
because the bias, MSE, and covariance of p(x,é) and p(x)
depend on the unknown dose-response curve p(z). One way
of circumventing this difficulty is to replace the true dose—
response curve with its consistent estimate p*(z), for exam-
ple, using the nonparametric estimator p(z), and then esti-
mate the bias, MSE, and covariance based on the bootstrap
procedure as follows.

1. Generate B bootstrap samples stratified by the dose
z, that is, sample y with replacement at each of the
doses independently. We do not resample the dose x
together with y because the doses are typically fixed by
the design in dose-response studies.

2. For the bth bootstrap sample, calculate the parametric
estimate p®)(z, é) and nonparametric estimate p®)(z),
forb=1,..., B.

3. Estimate the bias and MSE of p(z,8) by

B
. vy L o
bias(p(x,8)) ~ bZ{p“’)(w,e) - (@)}
=1
1 B
e ~ (b) 0\ _ * 2.
MSE(p(x.6)) ~ & bZ{p (2,0) = p ()}
=1
the bias and MSE of p(z) by
B

bias(3(z)) ~ 5 > (5" (@) (),
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and the covariance between p(x,6) and p(z) by

cov(p(z, é)ﬁ@))

B

1 .

~ 5 (.0
b=1

Once we obtain these estimates based on the bootstrap
samples, it is straightforward to take a numerical integration
of these quantities over the range of (Zuy, Zmax) t0 Obtain 7.

By minimizing the MISE, the resulting 7 automatically
adjusts the weights assigned to the parametric and nonpara-
metric estimates to reflect their closeness to the true dose—
response curve. The closer is the estimate to the true curve,
the higher weight is assigned. The global semiparametric es-
timator p; (z, 9) has the following asymptotic property.

= (@) Hp" (2) —p" (@)}

THEOREM 1: Under the regularity conditions given in
Fahrmeir and Kaufmann (1985), when the parametric model
is correctly specified, ™ converges to 1, and thus p; (a:,é) con-
verges in probability to the parametric estimate p(w,é); when
the parametric model is misspecified, @ converges to 0, and thus
D (x,é)converges in probability to the nonparametric estimate
B(z).

The proof of Theorem 1 is briefly outlined in Web Ap-
pendix B. As a consequence, if the parametric assumption
is reasonably satisfied, the semiparametric estimator p; (z, é)
would enjoy high efficiency due to its closeness to the para-
metric estimator p(z,8). On the other hand, if the parametric
assumption does not hold, p; (z, 9) converges to the nonpara-
metric estimator p(z) and maintains a consistent estimator
of p(z). Moreover, as our semiparametric estimator is a mix-
ture of the parametric and nonparametric estimates, it can
estimate the ED, outside the range of the observed doses,
for which nonparametric methods often fail. For such extrap-
olation, we naturally set 7 = 1 and thus solely rely on the
parametric component to predict the ED, .

2.2 Local Semiparametric Estimator

The global semiparametric estimator assigns a constant
weight 7 to the parametric estimate according to the global fit
of the underlying parametric model. However, in some cases,
although the parametric model does not characterize the en-
tire dose-response curve well, it may still provide a good local
fit to certain regions of the curve. Thus, it may be desirable
to assign weights adaptively according to the local fit of the
parametric and nonparametric models. Toward this goal, we
propose a locally weighted semiparametric estimator

P (@,0) = m(2)p(w, 0) + (1 — 7 (2))b(x), (4)

in which the weight 7(z) depends on z in contrast to using a
constant weight in (1).
To estimate the unknown weight m(z), we minimize the

MSE of p, m(x,é) at each given dose z,
MSE(pr () (2,6)) = E[{pr ) (,6)

which leads to

(x) =

- ()},

MSE(p(z)) — covb(x) .
MSE(p(z,8)) + MSE(j(x)) — 2covb(z)

7(z) depends on the bias, MSE, and covari-
and p(x), which can be approximated using

Similar to (3), #
ance of p(z,0)
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the bootstrap procedure. In addition, following similar argu-
ments as those in the proof of Theorem 1, it can be shown that
the local semiparametric estimator possesses the same asymp-
totic property: when the parametric model is correctly spec-
ified, p,;(l.)(x,@) converges in probability to the parametric
estimate p(z, 9), and when the parametric model is misspeci-
fied, ps () (z, é) converges in probability to the nonparametric
estimate p(x).

Once we obtain a semiparametric_estimator of the dose—
response curve, say, the global i (x, 0) the ED, can be esti-

mated by p; (e, 0) As the EDu does not have a closed form,
we can use the numerical grid search to estimate ED,. How-
ever, the estimator E/]\Du might not be uniquely defined when
P (x,é) is not monotone. Following the work of Miiller and
Schmitt (1988), we can average over all the values of z sat-
isfying p» (1,9) = « as the estimate of the ED,. Local esti-
mators of the ED, can be pursued in a similar way based on

pﬁ(q;)(flf7é).

2.3 Isotonic Semiparametric Estimator

In some cases, such as toxicology studies, the dose-response
curve is often assumed to be nondecreasing. Thus, it is desir-
able to incorporate such monotonic constraint into the pro-
posed semiparametric estimators. One possibility is to im-
pose the monotonicity condition on both p(z,é) and p(z).
However, this approach works only for the global semipara-
metric estimator in (1); but fails for the local estimator in (4)
because the monotonicity of p(xﬁ) and p(x) may not nec-
essarily translate into the monotonicity of p,;(l.)(x,@) when
the weight 7(z) depends on x. Therefore, we propose impos-
ing the monotonicity condition directly on the semiparametric
estimators, a strategy applicable to both the global and local
estimators. Specifically, we apply the pool-adjacent-violator
algorithm (PAVA) to p; (z,0) and p; @ (z, 6) at the prespec-
ified fine grid of doses to obtain isotonic estimators of the
dose-response curve (Barlow et al., 1972). The estimate of
the dose-response curve at an arbitrary point between two
adjacent doses is obtained by linear interpolation. The PAVA-
transformed estimator can be further smoothed using the
spline or kernel method (Miiller and Schmitt, 1988; Mammen,
1991). Because the PAVA-transformed estimate may not be
strictly monotonic, several different values of z may lead to
the same response probability a.. In this case, we average over
the values of these 2’s to estimate the ED,, .

3. Simulation Study

We investigated the numerical performance of the proposed
semiparametric estimators of the dose-response curve. We
simulated data from the four true dose-response models:

z—0.5
Probit 1 : — ¢ (=
o p() ( 0.25 ) ’
z—0.5
Probit 2 : ) = ®
robi p(x) ( 0 ) 7
Weibull :  p(x) = 1 —exp ( 0. a2876) 7
Mixture :  p(x) = 0.64946 x & (%)

x—1.0
35054 x @ (2122
0-35054 x (0.13546)’
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Figure 1. Averaged estimates of the dose-response curve using the parametric probit, nonparametric kernel, and the proposed

global and local semiparametric methods.

where the model parameters were chosen so that EDg5; =
0.5; see Figure 1 for the shapes of the four dose-response
curves. We simulated 10 outcomes from Bernoulli distribu-
tions with probability p(z) at each of the 20 equally spaced
doses z = (d — 1)/19, for d = 1, ..., 20. We took the pro-
bit model as the basis for the parametric estimate, and con-
sidered three nonparametric estimates: the smoothing spline,
the kernel estimate of Miiller and Schmitt (1988), and the lo-
cal quasi-likelihood kernel estimate of Park and Park (2006).

These three nonparametric estimates were computed using
the functions of gam, glkerns, and locfit in the R pack-
ages, respectively. We used the generalized cross-validation
to choose the smoothing parameter for the smoothing spline
(Green and Silverman, 1994), and the automatically adapted
global plug-in bandwidth in the kernel methods (Gasser,
Kneip, and Koehler, 1991). By mixing the probit paramet-
ric curve estimate with each of the three aforementioned non-
parametric estimates, we obtained three global and three local
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Table 1
Bias and mean squared error (MSE) of the estimated ED, under the parametric probit model, nonparametric smoothing spline
(SS), kernel (KE), and quasi-likelihood (QL), and the proposed global and local semiparametric methods with 10 subjects at each
of 20 equally spaced doses

Values of a for ED,,

True model Method 0.1 0.2

Bias (x107%)

Probit 1 Probit 0 0
Smoothing spline —12 -8
Global-semi®s) -7 -5
Local-semi®%) -5 -5
Kernel —17 -9
Global-semiKE) —6 —4
Local-semiK®) —4 —4
Quasi-likelihood -35 -37
Global-semi(@¥) —28 —27
Local-semi(QY —27 —-35
Probit 2 Probit —-17 —-11
Smoothing spline 174 29
Global-semi® -5 —6
Local-semi®s) —1 -3
Kernel 183 37
Global-semi&®) -8 -8
Local-semi®®) 1 —1
Quasi-likelihood 175 21
Global-semi(QY 0 -8
Local-semi(QY -2 -8
Weibull Probit —456 —142
Smoothing spline 17 28
Global-semi®® —278 1
Local-semiS%) —163 16
Kernel 22 32
Global-semi®®) —354 -31
Local-semi(®") —206 0
Quasi-likelihood 13 29
Global-semi(@" —349 —17
Local-semi (@) —321 -8
Mixture Probit —62 11
Smoothing spline —26 —13
Global-semi®®) —29 -9
Local-semi®®) -33 —4
Kernel —18 -7
Global-semiKF) —26 -1
Local-semi¥®) —34 0
Quasi-likelihood —63 —38
Global-semi(@) —63 —34
Local-semi(QY —61 —20

-23
—17

0.3 0.4 0.5 0.1 02 03 04 05
MSE (x10-%)

0 0 0 2 1 1 1 1
—6 —4 ~1 3 2 2 2 2
—4 —2 ~1 2 2 1 1 1
—4 —2 ~1 2 2 1 1 1
—6 —4 ~1 4 3 2 2 2
—4 —2 0 2 2 1 1 1
-3 —2 ~1 2 2 1 1 1

~10 ~1 3 3 2 1 1

-8 ~1 2 2 2 1 1

~18 -7 ~1 2 3 2 1 1
—7 —4 -1 17 9 5 3 2
-3 ~1 —2 32 5 7 6 6
-7 —2 —2 19 8 6 4 4
-5 —2 —2 20 8 6 4 4

0 ~1 ~1 35 6 8 7 7
-8 —2 —2 19 8 6 4 3
—4 —2 ~1 20 9 6 4 4

—14 —4 —2 32 4 5 5 4
~13 —4 —2 20 8 5 4 4
—14 —4 —2 20 8 5 4 4
33 116 103 269 a7 13 20 17
29 21 38 1 2 5 13 31
32 40 49 190 9 5 12 25
33 42 53 130 4 5 13 26
44 53 61 1 3 11 23 35
36 67 67 224 19 7 15 23
40 65 63 140 10 7 16 25
50 50 39 1 3 5 9 21
49 58 52 229 20 6 10 21
46 58 55 218 17 6 11 21
58 94 116 6 1 4 10 15
~1 12 29 2 1 1 2 4

8 25 44 2 1 1 2 5

9 22 41 2 1 1 2 5

0 11 31 2 1 2 2 6

16 32 53 2 1 2 3 6
15 27 46 3 1 2 3 6
-9 18 43 5 2 1 2 4
-3 24 50 5 2 1 2 5
~1 24 49 5 2 1 2 5

semiparametric estimators. For ease of exposition, we use
Global-semi®¥ | Global-semi®®), and Global-semi®" to de-
note the global semiparametric estimators with smoothing
spline, kernel, and quasi-likelihood estimates as the non-
parametric mixing components, respectively; and similarly
Local-semi®®, Local-semi®®) | and Local-semi(@) for the cor-
responding local semiparametric estimators. We took 500
bootstrap samples to compute the global weight 7 and the lo-
cal weight m(z), and conducted 1000 simulations under each
of the dose-response models. For each replicated data set,
we estimated the ED, for o = (0.1, 0.2, 0.3, 0.4, 0.5). Be-
cause the ED, may not be estimable using the nonpara-

metric method when it is located outside of the observed
dose range, we also recorded the percentage of the nones-
timable ED, when using the nonparametric methods. In the
simulation, we did not impose the monotonicity assumption
on the estimates. The computer code for implementing the
proposed methodology is available on the author’s website
http://odin.mdacc.tmc.edu/~yyuan/.

Table 1 shows the bias and MSE of the estimated ED,
using the parametric, three nonparametric, three global semi-
parametric, and three local semiparametric methods. For the
nonparametric method, the bias and MSE were obtained
for those ED, within the observed dose range only, while
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Table 2
Percentage of the nonestimable ED, wusing the nonparametric methods
Smoothing spline Kernel Quasi-likelihood
«@ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
20 dose levels with 10 subjects per dose
Probit 1 0.7 0 0 0 0 1.2 0 0 0 0 0 0 0 0 0
Probit 2 70.3 21.7 1.5 0 0 65.4 20.4 1.0 0 0 70.6 21.2 1.7 0 0
Weibull 23.9 0.7 0 0 0.2 30.8 3.8 0 0 0.2 55.6 6.5 0.1 0 0.7
Mixture 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 dose levels with 10 subjects per dose
Probit 1 0.2 0 0 0 0 1.7 0 0 0 0 0.2 0 0 0 0
Probit 2 25.7 4.2 0.1 0 0.2 61.6 21.9 3.1 0 0.4 25.7 4.2 0.1 0 0.2
Weibull 0 0 0 0.1 2.0 47.9 11.6 0.7 0.8 7.7 0 0 0 0.1 24
Mixture 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0.2
5 dose levels with 20 subjects per dose
Probit 1 0.1 0 0 0 0 0.1 0 0 0 0 0.1 0 0 0 0
Probit 2 53.7 7.0 0 0 0 68.3 18.3 0.8 0 0 54.1 7.0 0 0 0
Weibull 0 0 0 0 0 41.5 4.9 0 0.1 5.0 0 0 0 0 2.3
Mixture 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2 presents the percentage of the ED, lying outside
of the observed dose range. The proposed semiparametric
estimators for the ED,, inherited the desirable features from
both parametric and nonparametric methods, which was gen-
erally comparable to the better one between the paramet-
ric and the nonparametric estimators, regardless of the type
of the nonparametric method used or whether the paramet-
ric model assumption held or not. In particular, when the
parametric model was correctly specified as in probit models
1 and 2, the parametric estimates performed the best with
the smallest MSEs, while the nonparametric estimates exhib-
ited substantial biases and relatively large MSEs. The MSEs
of the proposed semiparametric estimators were uniformly
smaller than those of the corresponding nonparametric esti-
mators, and were comparable to those of the parametric esti-
mators. For instance, under probit model 1, when the smooth-
ing spline or the kernel estimate was used as the nonparamet-
ric component, the MSEs of semiparametric estimates were
half of those of nonparametric estimates for the EDg 3, EDg 4,
and EDg 5, and were the same as those of parametric esti-
mates. Under probit model 2, the semiparametric estimates
also outperformed the corresponding nonparametric estimates
with smaller MSEs, especially for the EDg 4 and EDg 5. In ad-
dition, the proposed semiparametric methods could estimate
the ED, in all of the scenarios, while the percentage of the
nonestimable ED,, using nonparametric methods ranged from
65.4% to 70.6% for a = 0.1, and 20.4% to 21.7% for a = 0.2
under the true model of probit 2, as shown in Table 2.
When the true dose-response curve followed a Weibull or
a mixture model, the nonparametric estimate of the ED, re-
mained consistent as expected. However, the parametric pro-
bit model resulted in substantial biases and MSEs due to
model misspecification. The proposed global and local semi-
parametric estimators were slightly inferior to the correspond-
ing nonparametric estimator, but substantially outperformed
the parametric estimator. Under the Weibull model, the semi-
parametric estimates of the ED ; had much larger MSEs than
the corresponding nonparametric estimate because in approx-

imately 23.9%, 30.8%, and 55.6% of the simulations, the ED ;
could not be estimated using the smoothing spline, kernel, or
quasi-likelihood approach. In these cases, the semiparamet-
ric methods completely relied on the misspecified parametric
model to predict the EDg; by taking 7 = 1 or 7(z) = 1, which
thus led to relatively large biases and MSEs. When the non-
parametric estimates were available, such as for the EDy s,
EDg 4, and EDy 5, the semiparametric approaches performed
similarly to the nonparametric methods. Figure 1 illustrates a
graphical comparison of the averaged estimates of the dose—
response curve, from which we can see that the parametric
model works well if it is correctly specified, but deviates from
the true curve if the model is misspecified; and nonparametric
estimators typically match the true curve closely; and the pro-
posed semiparametric estimators lie in between. Under pro-
bit models, all of the curve estimates are indistinguishable,
but under the Weibull and mixture models, semiparametric
and nonparametric methods can capture some local curva-
tures that parametric models would miss.

To investigate the case with sparse doses, we carried out a
simulation study with five unequally spaced doses (i.e., z =
0, 0.1, 0.25, 0.5, and 1). At each dose, 10 or 20 subjects were
treated (see Tables 3 and 4, respectively). We observe a similar
pattern of the estimation results as those with 20 doses. Semi-
parametric estimators offer an adaptive compromise between
parametric and nonparametric estimators: when the paramet-
ric models were correctly specified as probit models, the semi-
parametric estimates outperformed the corresponding non-
parametric estimates; and when the parametric models were
misspecified as a Weibull or a mixture model, the semipara-
metric estimates yielded smaller MSEs than the parametric
counterparts.

To gain a deeper insight to the behaviors of the semipara-
metric estimators, Figure 2 shows the weights m and 7(z)
of Global-semi®®) and Local-semi®®® under the four dose-
response models with 20 dose levels. When the parametric
probit models were correctly specified as in Figure 2a and
b, the weights used in the global and local semiparametric
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Table 3
Bias and mean squared error (MSE) of the estimated ED, under the parametric probit model, nonparametric smoothing spline
(SS), kernel (KE), and quasi-likelihood (QL), and the proposed global and local semiparametric methods with 10 subjects at each
of five unevenly spaced doses

Values of a for ED,,

True model Method 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Bias (x107%) MSE (x107%)
Probit 1 Probit 21 10 3 —4 -10 10 5 4 4 5
Smoothing spline —14 —11 -1 9 19 11 10 9 12 15
Global-semi®) 11 0 1 6 11 8 6 7 8 10
Local-semi®% 19 6 2 6 11 9 6 7 9 11
Kernel -30 —27 3 32 49 5 7 9 10 10
Global-semi®®) -30 —24 4 29 43 5 7 8 9 10
Local-semi®E) —16 —24 1 27 43 5 7 8 9 9
Quasi-likelihood —13 —17 -8 3 13 8 8 8 9 10
Global-semi(QY 7 -7 -7 2 8 7 6 7 8 9
Local-semi(QY 14 0 —4 1 7 8 5 6 8 9
Probit 2 Probit —4 -2 1 2 4 170 56 17 13 33
Smoothing spline 214 55 3 —6 —16 56 20 25 33 36
Global-semi® 15 22 13 13 13 58 27 20 21 25
Local-semi®s) 37 31 18 14 10 61 27 20 20 25
Kernel 207 54 19 31 35 46 11 17 20 19
Global-semi®®) 18 9 6 26 28 174 53 17 18 36
Local-semi®®) 10 6 6 20 24 172 55 16 17 36
Quasi-likelihood 226 51 —11 —24 —25 59 13 17 25 28
Global-semi(QY 20 22 6 1 2 58 24 17 18 21
Local-semi(QY 28 25 9 3 6 61 25 17 18 21
Weibull Probit —269 11 161 223 190 288 70 53 83 110
Smoothing spline 57 86 110 141 68 12 28 50 89 84
Global-semi®) —74 72 115 144 120 98 21 41 63 91
Local-semi%) 41 72 117 133 103 8 20 45 61 81
Kernel 41 64 101 142 95 6 13 33 64 48
Global-semi®®) —201 29 107 150 150 187 30 34 70 107
Local-semi&F) —193 30 107 146 142 183 28 34 65 106
Quasi-likelihood 52 79 93 105 32 7 18 33 60 58
Global-semi(@QY 5 72 102 121 104 33 16 33 53 100
Local-semi (@) 40 67 102 128 117 4 14 33 57 102
Mixture Probit -3 55 92 118 132 8 8 14 21 27
Smoothing spline —6 5 15 33 46 5 5 7 12 19
Global-semi®®) 1 17 36 52 62 5 5 7 11 17
Local-semi®®) 4 21 33 47 59 5 5 7 12 18
Kernel —59 -21 26 64 91 6 6 9 13 18
Global-semiKF) —57 —16 30 67 93 6 6 9 14 19
Local-semi®E) -39 —4 34 67 93 6 6 9 13 19
Quasi-likelihood —12 -3 10 29 47 5 4 6 10 18
Global-semi(@") -5 5 22 40 56 4 4 6 10 17
Local-semi (@Y 0 14 26 44 58 5 4 7 11 17

approaches were quite close: both assigned weights around
0.7 to the parametric estimate. When the parametric models
were misspecified as in Figure 2c and d, the weights used in
global and local semiparametric estimators were very differ-
ent. Using the global semiparametric approach, the weight is
a constant. For the Weibull model, the parametric and non-
parametric estimates are balanced with a weight of 0.5, while
for the mixture model, a higher weight of 0.63 was assigned
to the nonparametric estimate. Using the local semiparamet-
ric approach, the weight varies according to the local fit of
the parametric and nonparametric models. For example, un-
der the mixture model in Figure 2d, around the region where
the parametric estimate was close to the true dose-response

curve, such as at doses 0.29 and 0.75, a higher weight was
assigned to the parametric estimate due to its high efficiency,
whereas in the region where the parametric estimate severely
deviated from the true dose-response curve, such as at doses
0.51 and 0.92, the weight assigned to the parametric estimate
sharply decreased.

4. Applications

For illustration, we applied the proposed methods to two
real data examples. In these applications, we imposed a pro-
bit model as the parametric component and used the kernel
estimate of Miiller and Schmitt (1988) for the nonparametric
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Table 4
Bias and mean squared error (MSE) of the estimated ED, under the parametric probit model, nonparametric smoothing spline
(SS), kernel (KE), and quasi-likelihood (QL), and the proposed global and local semiparametric methods with 20 subjects at each
of five unevenly spaced doses

Values of « for ED,,

True model Method 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Bias (x107%) MSE (x1073%)
Probit 1 Probit 7 4 2 0 -2 3 2 2 2 2
Smoothing spline —4 -1 0 8 18 7 5 5 6 8
Global-semi®9) 5 0 -1 5 11 4 3 3 4 5
Local-semi®® 11 6 2 4 9 5 3 3 4 6
Kernel =31 —29 1 34 56 2 4 5 7 8
Global-semiXE) —29 —26 1 30 50 2 3 5 6 7
Local-semiK®) —24 —27 -1 28 45 2 3 4 6 7
Quasi-likelihood -5 -7 —6 5 15 6 4 4 5 6
Global-semi(@W 5 -3 -5 5 12 4 3 3 4 5
Local-semi(@Y 10 2 —4 1 8 5 2 3 4 5
Probit 2 Probit —12 -7 -3 0 3 21 10 6 5 6
Smoothing spline 191 27 -3 11 16 41 10 16 18 20
Global-semi®® 3 5 3 9 14 25 11 10 11 13
Local-semi®%) 14 12 3 10 14 28 13 10 12 14
Kernel 181 27 4 33 43 34 5 10 13 12
Global-semiK®) 7 -3 0 25 35 25 9 9 11 11
Local-semi&E) -2 -5 -1 21 31 23 9 9 11 11
Quasi-likelihood 198 32 —6 1 7 44 8 13 14 15
Global-semi (@Y 7 8 0 4 9 25 11 9 11 11
Local-semi (@Y 10 6 0 5 10 27 11 9 10 11
Weibull Probit —233 24 157 204 158 87 14 33 52 42
Smoothing spline 30 39 48 74 49 3 7 19 45 59
Global-semi®® —15 38 80 119 88 16 5 22 42 46
Local-semi®® 26 38 73 106 73 2 5 20 40 45
Kernel 19 42 68 100 79 1 4 12 37 39
Global-semi®®) —152 36 79 113 104 70 6 14 39 46
Local-semiXF) —134 34 80 114 101 62 6 15 36 46
Quasi-likelihood 34 46 47 60 34 2 5 13 32 46
Global-semi (@ 21 45 72 97 69 1 5 16 34 43
Local-semi(@Y) 29 42 75 104 75 1 5 17 35 45
Mixture Probit —14 48 88 116 132 3 5 10 17 22
Smoothing spline®¥ 2 1 7 16 20 3 2 3 4 8
Global-semi®%) 2 12 24 36 42 2 2 3 6 9
Local-semi®® 0 15 21 32 39 2 2 3 6 9
Kernel —63 -30 15 54 83 5 3 4 8 12
Global-semiKF) —61 —27 18 57 85 5 3 4 8 12
Local-semi®®) —48 —12 22 57 84 5 3 4 8 12
Quasi-likelihood -1 -5 1 13 23 3 2 2 4 8
Global-semi(@¥) -1 1 11 25 36 2 2 3 5 9
Local-semi(@") -2 8 14 29 40 2 2 3 6 9
part. By adaptively mixing these two, we obtained the pro- estimate the EDg 5, the dose at which 50% of the cells were

posed global and local semiparametric estimators.

4.1 Labeling Index and Remission Study

Lee (1974) reported a study with 27 cancer patients to de-
termine the dose-response relationship between the labeling
index (LI) and remission. The “dose” variable LI varied be-
tween 8 and 28, representing the percentage of cells that were
labeled, which measured the proliferative activity of cells af-
ter a patient received an injection of tritiated thymidine. The
binary response indicated whether a patient had achieved re-
mission or not. Of particular interest in that study was to

labeled.

To obtain isotonic smooth curve estimates, we applied the
PAVA-transformation to the nonparametric and semipara-
metric estimates and then smoothed the transformed esti-
mates using smoothing spline. Figure 3a shows the estimates
of the dose-response curve. The curve estimates using the two
semiparametric methods are very close to the nonparametric
estimate and demonstrate some local features that are not
captured by the parametric model. For example, the semi-
parametric estimates indicate that the probability of remis-
sion is close to 0 when LI is between 8 and 14, which is
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Figure 2. Weights 7 and 7 (z) in the global and local semiparametric estimators under four dose-response models. The true
dose-response curve, parametric estimator, and nonparametric estimator are also shown for reference.

more consistent with the observed data (no remission was
observed in this range of LI). The similarity between the
semiparametric and the nonparametric estimates can be
explained by large weights assigned to the nonparametric
estimate as shown in Figure 3b. Specifically, for the global
semiparametric estimator, the weight assigned to the non-
parametric component was 0.91. For the local semiparamet-
ric estimator, the weight varied according to the agreement
between the parametric and nonparametric estimates. In the

areas where the parametric and nonparametric estimates were
close to each other, such as around LI = 23 and 38, the ma-
jority of the weight was assigned to the parametric estimate
due to its high efficiency. In the regions where the paramet-
ric and nonparametric estimates were very different, such as
for LI lying in the ranges of (16, 20) and (25, 35), the non-
parametric estimate received most of the weight because of
its flexibility and consistency. The estimate of the ED 5 un-
der the parametric probit model was 26.38 and that using the
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Figure 3. The labeling index and remission study: panel (a) shows the isotonically transformed estimates of the dose-response
curve using the parametric, nonparametric, and the proposed global and local semiparametric methods, with the observed
rates of remission given as dots; and panel (b) displays weights 7 and 7(z) in the global and local semiparametric estimates,
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nonparametric kernel method was 17.28. Our global and local
semiparametric estimators of the EDg 5 were 17.49 and 17.28,
respectively, quite close to the nonparametric estimate. As a
comparison, Agresti (2002) applied a logistic regression model
to the same data and obtained an estimate of 26.05 for the
EDg 5. Therefore, the parametric probit or logit model may
result in substantial bias for this data set.

4.2 Phase Il Dose Finding Study

Bretz, Pinheiro, and Branson (2005) presented a parallel-
group clinical trial with a total of 100 patients equally ran-
domized to either placebo or one of four active doses (coded
as 0.05, 0.2, 0.6, and 1, respectively). We coded a patient as
a responder (Y = 1) if his/her value of the (continuous) effi-
cacy measure was larger than 0.8; otherwise as a nonresponder
(Y=0).

Figure 4a shows the estimated dose-response curves using
the parametric, nonparametric, and global and local semi-
parametric methods. The estimated probability of response
increases rapidly from 0 to 0.2, and thereafter increases grad-
ually with the dose. For doses below 0.5, we observe some
differences between the parametric and nonparametric curve
estimates, while the two curves are almost identical for doses
above 0.6. Overall, the two semiparametric estimates lie be-
tween the parametric and nonparametric curves, and both of
them are slightly closer to the parametric estimate due to
relatively more weights assigned to the parametric model, as
shown in Figure 4b. For the global semiparametric estimator,
the weight assigned to the parametric part is 0.63; and for
the local semiparametric estimator, when the parametric and
nonparametric estimates are close to each other (e.g., around
the doses of 0.07 and 0.6), the weight for the parametric esti-
mate is almost 1.

5. Conclusions

We have proposed global and local semiparametric estimates
of a dose-response curve in the form of a weighted average
of a parametric and a nonparametric estimate. The weight is
adaptively chosen according to the model fit: a higher weight
is given to the model that fits the data better. When the para-
metric assumption holds, the semiparametric estimate skews
toward the parametric estimate, and thus achieves high ef-
ficiency; when the parametric model deviates far from the
true curve, the semiparametric estimate comes close to the
nonparametric estimate and remains consistent. In the local
semiparametric method, the weight is further allowed to vary
according to the local fit of the models.

As a compromise between the global and local semipara-
metric estimators for the dose-response curve, the moving
average semiparametric estimator takes the form of

pﬂ(m.mz)(xv é) = W(xl:xZ)p(xv é) + (1 - ﬂ(ml»xQ))ﬁ(x)

with a moving window (z1, ) satisfying i < 21 < 2 < Zpax -
The corresponding weight can be obtained by minimizing the
MISE over (z, ),

w2
MISE(py 1,y (2,0)) = E { / rtern (@.0) = pla)} 2
1

For continuous outcomes, Mays et al. (2001) proposed an-
other novel way to construct semiparametric estimates by
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mixing a parametric fit to the data with a nonparametric fit
to the residuals from the parametric model. Their approach
has the advantage that the resulting curve estimate may not
always lie between the parametric and the nonparametric es-
timates. It would be interesting to extend their method to
binary outcomes, which, however, becomes much more chal-
lenging because the residuals of a parametric fit (e.g., a probit
or logit model) are neither normal nor binary. In addition,
the minimizer of the MISE will not have a similar form as (3)
and thus the asymptotic properties also need further investi-
gation.

6. Supplementary Materials

Web Appendices A and B referenced in Section 2.1 are avail-
able under the Paper Information link at the Biometrics web-
site http://www.biometrics.tibs.org.
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