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Summary. We study quantile regression (QR) for longitudinal measurements with nonignorable intermittent missing data and
dropout. Compared to conventional mean regression, quantile regression can characterize the entire conditional distribution
of the outcome variable, and is more robust to outliers and misspecification of the error distribution. We account for the
within-subject correlation by introducing a �2 penalty in the usual QR check function to shrink the subject-specific intercepts
and slopes toward the common population values. The informative missing data are assumed to be related to the longitudinal
outcome process through the shared latent random effects. We assess the performance of the proposed method using simulation
studies, and illustrate it with data from a pediatric AIDS clinical trial.
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1. Introduction
Longitudinal studies often suffer from attrition, which may
lead to biased estimates of the model parameters if the miss-
ing data are nonignorable or informative. Modeling longitudi-
nal data with nonignorable missing data has drawn substan-
tial attention (Wu and Carroll, 1988; Wu and Bailey, 1989;
Little, 1993; Diggle and Kenward, 1994; among others). Re-
cent reviews on nonignorable dropout in longitudinal data are
given in Little (1995, 2008); Verbeke and Molenberghs (2000);
Hogan, Roy, and Korkontzelou (2004); and Molenberghs and
Kenward (2007). The majority of these methods focuses on
mean regression. In contrast, very limited research has been
conducted on quantile regression (QR) for longitudinal stud-
ies with nonignorable missing data. In this article, we pro-
pose a shared-parameter QR model to deal with nonignorable
missing data, in which the quantile regression model for the
longitudinal process is linked to the missing data model via
sharing common random effects.

QR models have become increasingly popular since the
seminal work of Koenker and Bassett (1978). In contrast to
the mean regression model, QR belongs to a robust model
family, which can give an overall assessment of the covariate
effects at different quantiles of the outcome (Koenker, 2005).
In particular, we can model the lower or higher quantiles of
the outcome to provide a natural assessment of covariate ef-
fects specific for those regression quantiles. Unlike conven-
tional models, which address solely the conditional mean or
the central effects of the covariates, QR models quantify the
entire conditional distribution of the outcome variable. In ad-
dition, QR does not impose any distributional assumption on
the error, except requiring that the error has a zero condi-
tional quantile.

By inversely weighting the estimating equation with the
probability of dropout, Lipsitz et al. (1997) studied QR for

longitudinal data with ignorable dropouts. Noting that the
classical random-effects model can be reformulated as a pe-
nalized least-square estimation, Koenker (2004) developed a
�1-regularization QR method to shrink individual effects to-
ward a common value. Geraci and Bottai (2007) proposed
a random-effects QR model for longitudinal data based on
the asymmetric Laplace distribution (ALD; Yu and Moyeed,
2001), in which the within-subject correlation was modeled by
random intercepts. Other applications of quantile regression
in correlated data include the work of Cole and Green (1992),
Jung (1996), and Heagerty and Pepe (1999), among others.

Our motivating example is a double-blinded randomized
pediatric AIDS trial (AIDS Clinical Trials Group 128, Brady
et al., 1996), designed to compare the efficacy of a lower
dosage (90 mg/m2/dose) of zidovudine with a higher dosage
(180 mg/m2/dose) to treat HIV-infected children (3 months
to 12 years of age) with mild to moderate symptoms. A total
of 424 subjects were enrolled with 216 subjects randomized
to a low-dose group and 208 to a high-dose group. The CD4
cell count was collected for the participants at the study en-
try and every 12 weeks up to 200 weeks. For HIV-infected
patients, the CD4 cell count is often used for monitoring the
progression of HIV infection, and a slower decline of the CD4
cell count represents a better treatment effect. It was of scien-
tific interest to study the longitudinal trajectories of the CD4
cell counts in the two dosage groups. As these two dosages of
zidovudine may have different efficacy effects on patients with
different CD4 cell counts, the QR method can be naturally
used to examine the treatment effects at various quantiles of
the conditional distribution of the CD4 cell counts over time.

A prominent feature of the pediatric AIDS study that com-
plicated the analysis was that there was a substantial amount
of intermittent missing data and a large number of dropouts.
Only 52% of the subjects completed 3 years of follow-up for
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Figure 1. Individual median regression slopes for the square root of the CD4 cell count versus dropout times.

the low-dose and 45% for the high-dose group. In addition,
approximately 50% of the subjects experienced one or more
intermittent missing CD4 cell counts. In AIDS studies, miss-
ing data are often associated with the level or underlying rate
of the change in the CD4 cell counts, e.g., sicker patients often
experience a steeper decline of the CD4 cell counts and conse-
quently are more likely to drop out from the study (Hogan and
Laird, 1997). These types of missing data are typically nonig-
norable (Wu and Carroll, 1988; De Gruttola and Tu, 1994; and
Hogan and Laird, 1997). In a preliminary analysis, we applied
the median regression model separately for each subject and
plotted the estimated individual slopes against the dropout
time. As shown in Figure 1, subjects with lower slopes tended
to drop out earlier, especially in the low-dose arm, indicating
that missing data might be informative. To deal with the non-
ignorable missing data, we propose a shared-parameter QR
model, in which individual-level QR parameters are shrunk
toward a population value by penalizing the standard check
function of QR. Observing the link between the usual check
function and the asymmetric Laplace distribution, we trans-
form the penalized check function to a random-effects model
in the likelihood framework. We assume that the missing data
process is associated with the longitudinal outcome process
via the shared latent subject-specific random effects. In the
Bayesian paradigm, the estimation and inference based on the
proposed model can be easily implemented using the Markov
chain Monte Carlo (MCMC) procedure.

In Section 2, we present the shared-parameter random-
effects QR model for longitudinal data with nonignorable
intermittent missing data and dropout. We also outline the
Bayesian MCMC estimation procedure. In Section 3, we carry
out simulation studies to examine the performance of the pro-
posed model, and in Section 4, we illustrate our method using
the pediatric AIDS data. We conclude with a brief discussion
in Section 5.

2. Methods
2.1 Quantile Regression
Let yi denote the outcome of interest, and let xi denote the
corresponding covariate vector of subject i, for i = 1 , . . . , n.
The τ th QR model takes the form of

Qyi
(τ |xi ) = xT

i β,

where Qyi
(τ |xi ) is the inverse cumulative distribution func-

tion of yi given xi evaluated at τ , and 0 < τ < 1. The regres-
sion coefficient vector β is estimated by minimizing

n∑
i=1

ρτ

(
yi − xT

i β
)

, (1)

where ρτ (u) = u{τ − I(u < 0)} .
The check function (1) is closely related to the ALD; see

Koenker and Machado (1999), Yu and Moyeed (2001), and
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Yu and Stander (2007). The density function of an ALD with
a scale parameter of 1 is

f (y |μ, τ ) = τ (1 − τ ) exp {−ρτ (y − μ)} , (2)

where τ determines the quantile level, and μ is the location
parameter. Minimizing equation (1) is equivalent to maximiz-
ing the likelihood function of yi by assuming yi from an ALD
with μ = xT

i β.
The relationship between the check function and ALD can

be used to reformulate the QR method in the likelihood frame-
work. By utilizing this property, Koenker and Machado (1999)
proposed a likelihood-based goodness-of-fit test for quan-
tile regression. Yu and Moyeed (2001) developed Bayesian
quantile regression, and Yu and Stander (2007) studied the
Bayesian estimation procedure for the Tobit QR model with
censored data. More recently, Geraci and Bottai (2007) pro-
posed a random-intercept QR model for longitudinal data.

2.2 Modeling Longitudinal Data
Considering a longitudinal study in which n subjects are re-
peatedly measured at J prespecified time points, let yij de-
note the outcome for the ith subject measured at the jth time
point, for i = 1 , . . . , n, j = 1 , . . . , J . Due to intermittent
missing data or dropout, only a portion of the outcome mea-
surements can be observed, and we use Ji ,obs to denote the
set of time points at which yij is observed. For the τ th re-
gression quantile, we propose the following �2-penalized check
function,

n∑
i=1

∑
j∈Ji , obs

ρτ

(
yij − xT

ij β − zT
ij bi

)
+

1
2

n∑
i=1

bT
i Λ−1bi , (3)

where xij and zij are vectors of covariates that may share
common components, bi is a vector of unknown subject-
specific effects, and Λ is a symmetric nonsingular matrix.
By introducing the penalty term

∑n

i=1 bT
i Λ−1bi /2 in (3), we

shrink the individual effects bi toward 0, and thereby bor-
row strength across subjects. The amount of shrinkage is con-
trolled by the tuning parameter Λ.

The penalized check function (3) can be cast into the like-
lihood framework of a random-effects model as follows:

yij | bi ∼ ALD
(
τ, xT

ij β + zT
ij bi

)
bi ∼ N (0,Λ).

(4)

Reformulation of the �2 penalty
∑n

i=1 bT
i Λ−1bi /2 as random

effects is analogous to representing a cubic smoothing spline
as a linear mixed model, in which the roughness penalty is
expressed as normal random effects (Ruppert, Wand, and
Carroll, 2003; and Welham, 2008).

It is worth noting that the random-effects model (4) is
merely a working model, in which the ALD and normal dis-
tribution assumptions imposed on yij and bi are essentially
artificial. These distributional assumptions are used solely
to ensure that, conditional on the tuning parameter Λ, the
likelihood of model (4) matches the penalized check func-
tion in (3) so that minimizing the penalized check function
can be achieved by maximizing the likelihood of the random-
effects model. Such reformulation allows us to work with the
usual likelihood function. Furthermore, the tuning parameter
Λ can be directly determined, which is analogous to using the
random-effects model representation of the smoothing spline

to automatically determine the smoothing parameter through
the restricted maximum likelihood or the Bayesian method.
The tuning parameter Λ is often treated as nuisance, which
controls the shrinkage of individual effects toward the popu-
lation effects.

The working model (4) provides a generalization of the
random-intercept model proposed by Geraci and Bottai
(2007), as we allow for subject-specific curves via both ran-
dom intercepts and slopes. Moreover, instead of using the
expectation–maximization algorithm and bootstrap methods
to estimate the parameters and associated variances, we pro-
ceed with our estimation using the Bayesian MCMC method,
which automatically yields the posterior variance estimates
based on the posterior samples of the model parameters.

2.3 Modeling Nonignorable Missing Data
To account for the nonignorable missing data, we model the
intermittent missing data and dropout processes, and connect
them with the longitudinal outcome process. To this end, we
define the indicator for the missing data status

sij =

⎧⎪⎨
⎪⎩
O if measurement j of subject i is observed,
I if measurement j of subject i is

intermittent missing,
D if subject i drops out at measurement j.

We assume that the outcome measurement at j = 1 is ob-
served for all subjects, and dropout is an absorbing state, i.e.,
once a subject drops out, we will not observe measurements
of this subject any more. We also require Pr(sij = D | si(j−1) =
I) = 0 because the intermittent missingness, by definition,
cannot be immediately followed by a dropout.

We link the missing data process with the longitudinal out-
come process by assuming that they share the same random
effects bi . Particularly, we model the missing data process
using the transition probabilities as follows:

π
(O)
ij = Pr(sij = O | si(j−1) �= D, bi )

=
1

1 +
∑

k∈(I,D)

exp
(
wT

ij α
(k ) + bT

i γ (k )
)

π
(I)
ij = Pr(sij = I | si(j−1) �= D, bi )

=
exp

(
wT

ij α
(I) + bT

i γ (I)
)

1 +
∑

k∈(I,D)

exp
(
wT

ij α
(k ) + bT

i γ (k )
)

π
(D)
ij = Pr(sij = D | si(j−1) = O, bi )

=
exp

(
wT

ij α
(D) + bT

i γ (D)
)

1 +
∑

k∈(I,D)

exp
(
wT

ij α
(k ) + bT

i γ (k )
)

where wij is a vector of covariates, α(k ) is its associated re-
gression parameter, and γ (k ) governs the relationship between
the random effects bi and the missing data process. The log-
arithm of the conditional likelihood for the missing data pro-
cess of subject i is

J∑
j=2

logf (sij | bi ) =
J∑

j=2

{
I(sij = O)logπ

(O)
ij + I(sij = I)logπ

(I)
ij

+ I(sij = D)logπ
(D)
ij

}
,
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where after subject i drops out, the rest of sij ’s are
undefined.

By sharing the random effects bi with the longitudinal out-
come process, the missing data model accounts for a nonig-
norable missing data mechanism (Little, 1995). Our model
belongs to a class of shared-parameter models that have been
extensively studied in the context of mean regression for lon-
gitudinal data with nonignorable dropout. For examples, see
the work of Wu and Carroll (1988); De Gruttola and Tu
(1994); Follman and Wu (1995); Ten Have et al. (1998); and
Rizopoulos, Verbeke, and Molenberghs (2008); among others.
The justification for the shared-parameter models is that the
association between the longitudinal outcome process and the
missing data process is fully captured by the latent subject-
specific trajectories. In other words, conditional on the latent
trajectories, the missing data process is independent of the
outcome process.

2.4 Posterior Estimation
Let (y, s) denote the observed data; the likelihood of the ob-
served data is given by

L(y, s |β,Λ, α(k ), γ (k ))

=
n∏

i=1

∫ ∏
j∈Ji , obs

f (yij | bi )
J∏

j=2

f (sij | bi )f (bi ) dbi , k = I,D.

In the Bayesian paradigm, let p(β,Λ, α(k ), γ (k )) denote the
prior distribution of the unknown parameters; the joint pos-
terior distribution of these parameters is given by

p(β,Λ, α(k ), γ (k ) |y, s) ∝ L(y, s |β,Λ, α(k ),

γ (k ))p(β,Λ, α(k ), γ (k )).

We assign noninformative prior distributions to the unknown
parameters as follows,

β, α(k ), γ (k ) ∝ 1, k = I,D

Λ−1 ∼ WI(q, cI)

where WI(q, c I) denotes a Wishart distribution with q degrees
of freedom, and a scale matrix c I with c a small constant and
I the identity matrix.

We use the Gibbs sampler to obtain posterior distributions
of the unknown parameters. The full conditional distributions
of the model parameters, except for Λ, do not have closed
forms. The adaptive rejection Metropolis sampling algorithm
(Gilks, Best, and Tan, 1995) is used to sample from these dis-
tributions. We monitor the convergence of the Gibbs sampler
using graphical inspection of the trace plots and the method
of Gelman and Rubin (1992). The computer programs are
written in C++ and available upon request.

3. Simulation Study
We conducted simulation studies to assess the performance
of the proposed model. We mimicked the setting of the pedi-
atric AIDS clinical trial by taking the sample size n = 200,
and assuming that each subject had 14 scheduled longitudinal
measurements. We simulated data from the model

yij | b0i , b1i = β0 + β1xij + b0i + b1i xij + εij

π
(O)
ij =

1

1 +
∑

k∈(I,D)

exp
(
γ

(k )
0 + γ

(k )
1 b1i

)

π
(I)
ij =

exp
(
γ

(I)
0 + γ

(I)
1 b1i

)
1 +

∑
k∈(I,D)

exp
(
γ

(k )
0 + γ

(k )
1 b1i

)

π
(D)
ij =

exp
(
γ

(D)
0 + γ

(D)
1 b1i

)
1 +

∑
k∈(I,D)

exp
(
γ

(k )
0 + γ

(k )
1 b1i

)

(5)

where xij was the standardized measurement time, xij = (j −
7.5)/4.18 for j = 1 , . . . , 14. In this model, we assumed that
the missing data process was associated with the outcome
process via the random slope b1i .

We simulated the error εij from three different distribu-
tions: the standard normal distribution N (0, 1), a t(3) distri-
bution with three degrees of freedom, and a χ2

(3) distribution
with three degrees of freedom. We generated the random in-
tercept b0i ∼N (0, 4), and the random slope b1i from four dif-
ferent distributions: N (0, 2), a t(3) distribution with a scale
parameter of

√
2, a unimodal skewed mixture distribution

0.7N (1.3, 1.62) + 0.3N (−3.033, 1.62), and a bimodal mixture
distribution 0.45N (−2, 1.52) + 0.55 N (1.636, 1.52). In model
(5), the parameter γ

(k )
1 determines the missing mechanism:

if γ
(k )
1 = 0, the missing data are missing at random (MAR);

and if γ
(k )
1 �= 0, the missing data are nonignorable. We con-

sidered (γ(I)
0 , γ

(I)
1 , γ

(D)
0 , γ

(D)
1 ) = (−2.4, 0,−2.8, 0), and (−6, 1,

−8.9, 1.5) to simulate the cases of MAR and nonignorable
missing data, respectively. The values of γ

(I)
0 and γ

(D)
0 were

chosen such that, on average, 50% of the subjects experi-
enced one or more incidences of intermittent missing data or
dropout. We set β 0 = 2, β 1 = 4, and simulated 500 replicated
datasets under each configuration.

We compared our shared-parameter QR with the random-
effects QR in (4) without adjusting for the missing data. As a
benchmark, we also fitted the random-effects QR to the com-
plete data before deletion. In Table 1, we present the simula-
tion results for β 1, including the bias, the averaged standard
error, and the coverage probability of the 95% credible in-
terval (CI), when the missing data are nonignorable. Across
various error and random-effects distributions, the random-
effects QR yields biased estimates of β 1 and poor coverage
probabilities. The bias ranges from −0.46 to −0.97, and most
of the coverage probabilities are lower than 5%. In contrast,
the shared-parameter QR took the missing data into account
so that the estimation bias is effectively corrected and the
coverage probabilities are reasonably accurate. As expected,
the estimates based on the shared-parameter QR are less effi-
cient than those under the ideal before-deletion QR, but the
efficiency loss is quite small. For example, when the error fol-
lows a t(3) distribution and the random effects are normal,
the standard error of β̂1 is 0.11 under the before-deletion QR
and 0.13 under our shared-parameter QR. When the missing
data are MAR (results are not shown), both the estimates
based on the random-effects QR and the shared-parameter
QR have negligible biases and reasonable coverage probabil-
ities, but the shared-parameter QR is slightly less efficient
due to its complex model structure. The results for β 0 are
similar except that the bias of β̂0 under the random-effects QR
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Table 1
Estimates of β 1 under different error and random effects distributions, including the bias, averaged standard error (SE), and

coverage probability (CP) of the 95% CI, in the simulation study

τ = 0.25 τ = 0.5

εij b1i QR model Bias SE CP(%) Bias SE CP(%)

N (0, 1) N (0, 2) Before deletion 0.00 0.10 95.4 0.00 0.10 95.2
Random effects −0.47 0.11 0.8 −0.53 0.10 0.0
Shared parameter 0.01 0.12 96.8 −0.04 0.12 94.0

t(3) Before deletion −0.01 0.17 93.8 −0.01 0.17 93.4
Random effects −0.70 0.15 0.4 −0.56 0.15 4.6
Shared parameter −0.06 0.16 94.2 −0.01 0.17 95.4

Skewed Before deletion −0.01 0.16 94.8 −0.01 0.16 94.6
Random effects −0.86 0.16 0.2 −0.66 0.16 2.4
Shared parameter 0.03 0.18 94.2 0.11 0.19 90.0

Bimodal Before deletion 0.00 0.18 95.4 0.00 0.18 95.4
Random effects −0.97 0.18 0.0 −0.72 0.19 2.0
Shared parameter 0.03 0.21 95.0 0.12 0.21 92.4

t(3) N (0, 2) Before deletion 0.00 0.11 94.6 0.00 0.10 94.8
Random effects −0.46 0.11 0.3 −0.53 0.11 0.2
Shared parameter 0.02 0.13 95.0 −0.04 0.12 95.8

t(3) Before deletion 0.00 0.17 95.0 0.00 0.17 94.6
Random effects −0.70 0.15 0.6 −0.56 0.15 2.4
Shared parameter −0.05 0.16 95.6 0.00 0.17 96.2

Skewed Before deletion −0.01 0.16 94.4 0.00 0.16 94.2
Random effects −0.87 0.16 0.2 −0.67 0.17 0.8
Shared parameter 0.04 0.18 93.4 0.12 0.19 90.0

Bimodal Before deletion 0.00 0.18 95.0 0.01 0.18 94.8
Random effects −0.97 0.19 0.0 −0.73 0.19 2.2
Shared parameter 0.06 0.21 95.0 0.14 0.21 90.2

χ2
(3) N (0, 2) Before deletion 0.00 0.11 93.4 0.00 0.11 94.0

Random effects −0.54 0.11 0.0 −0.55 0.12 0.4
Shared parameter −0.03 0.13 94.2 −0.05 0.13 93.2

t(3) Before deletion −0.01 0.17 96.8 −0.01 0.17 97.2
Random effects −0.51 0.18 16.0 −0.58 0.17 8.0
Shared parameter 0.08 0.19 95.6 0.01 0.18 96.6

Skewed Before deletion 0.00 0.18 94.0 −0.01 0.17 96.2
Random effects −0.64 0.21 16.2 −0.74 0.19 3.0
Shared parameter 0.04 0.22 94.0 −0.05 0.19 96.0

Bimodal Before deletion −0.01 0.17 96.2 −0.01 0.17 94.8
Random effects −0.74 0.19 3.0 −0.82 0.19 1.4
Shared parameter −0.05 0.19 96.0 −0.12 0.19 90.0

is substantially smaller than that of β̂1 because the dropout
process only depends on the random slope b1i . In other words,
the observed data are a biased sample of the complete data
with respect to β 1, but not β 0.

The simulation study shows that the estimates of the re-
gression parameters based on the shared-parameter QR were
robust to both the error and random-effects distributions. It is
of interest to examine how the estimates of random effects are
adjusted when their true distribution is not normal. Figure 2
depicts the posterior distribution of random slopes b1i under
various true distributions for τ = 0.25 and 0.5. When the true
distribution of b1i is not normal, the posterior estimates of b1i

could be adaptively adjusted to the truth, providing a pos-
sible explanation for the robustness of estimating β 1 under
various distributions for the random effects. The variance of
b1i , say λ1, is the tuning parameter, and often treated as a nui-
sance parameter. We observe that the estimates of λ1 based
on the shared-parameter QR are generally much less biased

than those based on the random-effects QR; see Table A1
in the Web Appendix.

4. Application
4.1 Data Analysis
We illustrate the proposed method with the pediatric AIDS
data. Let tij be the jth measurement time for the ith sub-
ject, yij be the square root of the CD4 cell count measured
at tij , and xi be a binary treatment indicator with xi = 0
denoting the high-dose arm. At the τ th regression quantile,
we considered

Qyi j
(τ |xi , tij , b0i , b1i )

= β0 + β1xi + β2tij + β3xi tij + b0i + b1i tij ,

where the β’s characterized the population-level trajectory,
b0i ∼N (0, λ0) and b1i ∼N (0, λ1). The missing data model
was given by
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Figure 2. Posterior distributions of random effects b1i under different true distributions for b1i .

π
(O)
ij =

1

1 +
∑

k∈(I,D)

exp
(
γ

(k )
0 + γ

(k )
1 b0i + γ

(k )
2 b1i + γ

(k )
3 xi + γ

(k )
4 xib0i + γ

(k )
5 xib1i

)

π
(I)
ij =

exp
(
γ

(I)
0 + γ

(I)
1 b0i + γ

(I)
2 b1i + γ

(I)
3 xi + γ

(I)
4 xib0i + γ

(I)
5 xib1i

)

1 +
∑

k∈(I,D)

exp
(
γ

(k )
0 + γ

(k )
1 b0i + γ

(k )
2 b1i + γ

(k )
3 xi + γ

(k )
4 xib0i + γ

(k )
5 xib1i

)

π
(D)
ij =

exp
(
γ

(D)
0 + γ

(D)
1 b0i + γ

(D)
2 b1i + γ

(D)
3 xi + γ

(D)
4 xib0i + γ

(D)
5 xib1i

)

1 +
∑

k∈(I,D)

exp
(
γ

(k )
0 + γ

(k )
1 b0i + γ

(k )
2 b1i + γ

(k )
3 xi + γ

(k )
4 xib0i + γ

(k )
5 xib1i

) .

In the MCMC procedure, we recorded 10,000 draws after
1000 burn-in iterations. To assess the convergence of Markov
chains, we calculated the Gelman–Rubin convergence statis-
tic, the shrinkage factor, for the slopes based on three inde-
pendent Markov chains with overly dispersed starting values.
After 1000 burn-in iterations, the values of the shrinkage fac-
tors became very close to 1, suggesting the convergence of
these chains.

Table 2 shows the estimates of the model parameters for
regression quantiles of τ = 0.25, 0.5, and 0.75, under the
shared-parameter QR model and random-effects QR model,
respectively. In both models, the estimates of β 1 are not sig-
nificantly different from 0 at all three quantiles, indicating
that the baseline CD4 count was well balanced between the
two treatment arms by randomization.
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Table 2
Estimates and 95% CIs of the model parameters for the pediatric AIDS data

τ = 0.25 τ = 0.5 τ = 0.75

QR model Est. 95% CI Est. 95% CI Est. 95% CI

Random β 0 21.40 (20.40, 22.41) 23.62 (22.56, 24.68) 25.97 (24.86, 27.08)
effects β 1 0.14 (−1.84, 2.11) 0.19 (−1.94, 2.31) 0.24 (−2.01, 2.47)

β 2 −3.19 (−3.54,−2.86) −3.54 (−3.89,−3.20) −3.82 (−4.19,−3.46)
β 3 0.78 (0.11, 1.45) 0.82 (0.13, 1.51) 0.83 (0.127, 1.55)
λ0 104.49 (90.94, 120.45) 117.98 (102.61, 135.76) 129.61 (112.56, 149.17)
λ1 9.49 (7.83, 11.38) 10.67 (8.86, 12.75) 11.09 (9.14, 13.36)

Shared β 0 21.09 (20.07, 22.08) 23.33 (22.24, 24.39) 25.58 (24.45, 26.70)
parameter β 1 0.17 (−1.86, 2.14) 0.21 (−1.92, 2.28) 0.27 (−1.98, 2.47)

β 2 −3.40 (−3.76,−3.06) −3.75 (−4.11,−3.40) −4.09 (−4.47,−3.72)
β 3 0.77 (0.06, 1.44) 0.81 (0.08, 1.52) 0.84 (0.11, 1.57)
λ0 105.87 (92.09, 121.59) 119.77 (104.40, 137.65) 132.02 (114.93, 151.51)
λ1 9.55 (7.92, 11.41) 10.95 (9.10, 13.12) 11.69 (9.68, 14.04)

γ
(I)
0 −3.06 (−3.57,−2.59) −3.00 (−3.49,−2.52) −3.05 (−3.54,−2.59)

γ
(I)
1 −0.03 (−0.08, 0.02) −0.01 (−0.06, 0.04) −0.03 (−0.07, 0.02)

γ
(I)
2 0.02 (0.00, 0.03) 0.01 (0.00, 0.03) 0.01 (0.00, 0.03)

γ
(I)
3 0.12 (−0.51, 0.79) 0.06 (−0.57, 0.70) 0.12 (−0.52, 0.77)

γ
(I)
4 −0.03 (−0.11, 0.05) −0.02 (−0.10, 0.05) 0.01 (−0.07, 0.08)

γ
(I)
5 0.00 (−0.02, 0.02) 0.00 (−0.02, 0.02) 0.00 (−0.02, 0.03)

γ
(D)
0 −2.05 (−2.53,−1.59) −2.05 (−2.53,−1.58) −2.07 (−2.59,−1.56)

γ
(D)
1 −0.09 (−0.14,−0.03) −0.09 (−0.14,−0.04) −0.11 (−0.16,−0.05)

γ
(D)
2 −0.07 (−0.09,−0.04) −0.06 (−0.08,−0.04) −0.06 (−0.08,−0.04)

γ
(D)
3 −0.15 (−0.83, 0.54) −0.25 (−0.99, 0.46) −0.20 (−0.94, 0.56)

γ
(D)
4 −0.06 (−0.15, 0.04) −0.07 (−0.16, 0.02) −0.06 (−0.15, 0.03)

γ
(D)
5 0.00 (−0.03, 0.03) 0.00 (−0.03, 0.03) 0.00 (−0.03, 0.03)

The estimates of β 2 under the shared-parameter QR are
smaller than those under the random-effects QR across all
the three quantiles, as the shared-parameter QR takes into ac-
count the fact that early dropouts were associated with lower
slopes (see Figure 1). For example, at the median, β̂2, i.e., the
estimate of the slope corresponding to time in the high-dose
arm, is −3.54 under the random-effects QR, and −3.75 under
the shared-parameter QR. The random-effects QR did not
adjust for the missing data, and thus led to an overestimated
β 2. Under the shared-parameter QR, both the high-dose and
low-dose regimens were more effective for sicker patients with
lower CD4 counts, reflected by the slower decline of the CD4
count for these patients as β̂2 = −3.40 versus −4.09 for τ =
0.25 and 0.75, respectively.

The estimate of β 3, corresponding to the difference in the
slopes of time between the low-dose arm and high-dose arm,
is similar between the two models. Across the three regression
quantiles, the slope of time in the low-dose arm is significantly
higher than that in the high-dose arm as β̂3 > 0, suggesting
that the low dose of zidovudine was superior to the high dose
because the decline in the CD4 cell count was less steep in the
low-dose arm. However, the superiority of the low-dose arm
is slightly less for lower quantiles, as β̂3 = 0.77 versus 0.84 for
τ = 0.25 and 0.75, respectively. QR allows us to examine the
treatment effects at different quantiles of the CD4 count. In
contrast, mean regression only models the average or central
effects, and thus cannot detect such quantile differences. For
comparison, we also implemented a shared-parameter mean

regression model, which gave the estimates of β 1, β 2, and β 3

as 0.36, −3.77, and 0.94, with standard errors of 1.23, 0.50,
and 0.41, respectively.

4.2 Sensitivity Analysis
In the shared-parameter QR model, (γ(I)

1 , γ
(I)
2 , γ

(I)
4 , γ

(I)
5 ) de-

termine the intermittent missing data mechanism. For exam-
ple, if γ

(I)
1 = γ

(I)
2 = γ

(I)
4 = γ

(I)
5 = 0, the intermittent missing

data are ignorable because the missing data process is in-
dependent of the outcome process; otherwise the intermittent
missing data are nonignorable. Similarly, (γ(D)

1 , γ
(D)
2 , γ

(D)
4 , γ

(D)
5 )

govern the missing mechanism associated with dropout. In
Table 2, the 95% CIs of γ

(I)
1 , γ

(I)
2 , γ

(I)
4 , and γ

(I)
5 all contain 0,

suggesting that the intermittent missing data might be MAR
in both treatment arms. However, the dropout process seems
to be nonignorable, as the 95% CIs of γ

(D)
1 and γ

(D)
2 do not

contain 0.
Unfortunately, the observed data often contain limited in-

formation to determine the missing data mechanism reliably.
In the Bayesian paradigm, we conducted a sensitivity anal-
ysis by assigning a series of independent informative normal
priors to each γ with a mean ranging from −10 to 10, but
the same variance of 0.2. Figure 3 displays the estimates of
β 2 and β 3 under these informative priors, indicating that our
results were not particularly sensitive to the values of the γ’s.

A key assumption of the shared-parameter model is the
conditional independence between the outcome process and
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Figure 3. Sensitivity analysis by assigning a series of informative normal priors with different means to the γ’s in the missing
data model.

the missing data process given the random effects. To
examine this assumption, Pulkstenis, Ten Have, and
Landis (1998) proposed a sensitivity analysis that assesses the
changes in the parameter estimates and standard errors when
the observed outcome prior to the dropout is also included as
a covariate in the dropout model. However, our case is more
complicated, because we must consider both the intermittent
missing data and dropout. At the jth measurement time, we
use the last observed CD4 cell count before time j as the co-
variate if the intermittent missingness or dropout occurs; oth-
erwise, the observed CD4 cell count at time j is used as the
covariate. We denote the regression coefficients correspond-
ing to this new covariate and its interaction with xi by α

(I)
1

and α
(I)
2 for intermittent missingness, and α

(D)
1 and α

(D)
2 for

dropout.
The parameter estimates with this additional augmented

covariate are summarized in Table 3. In order to evaluate the
validity of the missing data mechanism assumed in the shared-
parameter QR, we compare the estimates of the γ(k )’s (k =
I,D) in Table 3 with their counterparts in Table 2. One of the
most notable differences is that the estimate of γ

(I)
2 substan-

tially increases, i.e., the dependency between the intermittent
missing data and the random slopes is strengthened, when ac-
counting for the dependency of data missingness on the last
observed CD4 cell count. This provides empirical evidence of
violation of the conditional independence assumption. How-
ever, the estimates for the parameters of interest, particularly
the β’s, are similar between Table 3 and Table 2, indicat-
ing robustness of our model to the conditional independence
assumption.

5. Conclusion
We have studied QR for longitudinal data with nonignorable
intermittent missing data and dropout. We used the �2 regu-
larization to shrink the subject-specific regression lines toward
the population line, thereby accounting for the within-subject
correlations. We assumed that the missing data process is re-
lated to the longitudinal outcome process through sharing
the common underlying random effects. By utilizing the re-
lationship between the QR check function and the ALD, we
cast the QR problem into the usual likelihood framework. We
implemented a Bayesian MCMC approach, which naturally
provides the posterior estimates of the model parameters and
variances. Moreover, it automatically updates the tuning pa-
rameter for shrinkage in the Gibbs sampler. The simulation
studies have demonstrated that our method can effectively re-
move the estimation bias caused by nonignorable intermittent
missing data and dropout.

Our approach does not pose any distributional assumption
on the outcome variable, and is thus more robust than con-
ventional mean regression. However, we do make a model as-
sumption on the dropout process. Because the nonignorable
missing data mechanism cannot be directly verified based on
the observed data (Molenberghs et al., 2008), some form of
sensitivity analysis, such as the one described in Section 4,
should be carried out.

6. Supplementary Materials
The Web Appendix referenced in Section 3 is available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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Table 3
Sensitivity analysis of the pediatric AIDS data by augmenting the covariate with the last observed CD4 cell count in the model

τ = 0.25 τ = 0.5 τ = 0.75

Est. 95% CI Est. 95% CI Est. 95% CI

β 0 21.05 (20.04, 22.06) 23.28 (22.20, 24.35) 25.54 (24.42, 26.67)
β 1 0.20 (−1.81,−2.18) 0.25 (−1.89, 2.33) 0.29 (−1.94, 2.50)
β 2 −3.43 (−3.78,−3.09) −3.78 (−4.14,−3.42) −4.12 (−4.50,−3.74)
β 3 0.79 (0.09, 1.48) 0.83 (0.12, 1.55) 0.85 (0.09, 1.60)
λ0 106.4 (92.6, 122.0) 120.2 (104.6, 137.8) 132.4 (115.3, 152.2)
λ1 9.69 (8.06, 11.53) 11.10 (9.25, 13.25) 11.81 (9.79, 14.11)

γ
(I)
0 −2.99 (−3.49,−2.52) −2.30 (−3.50,−2.50) −3.06 (−3.59,−2.58)

γ
(I)
1 −0.03 (−0.08, 0.03) −0.02 (−0.07, 0.03) −0.02 (−0.07, 0.03)

γ
(I)
2 0.05 (0.03, 0.07) 0.05 (0.03, 0.07) 0.05 (0.03, 0.07)

γ
(I)
3 0.10 (−0.57, 0.78) 0.09 (−0.57, 0.73) 0.15 (−0.52, 0.84)

γ
(I)
4 −0.03 (−0.12, 0.05) −0.02 (−0.10, 0.06) 0.00 (−0.08, 0.08)

γ
(I)
5 0.00 (−0.03, 0.03) 0.00 (−0.03, 0.03) 0.00 (−0.02, 0.03)

γ
(D)
0 −1.98 (−2.45,−1.53) −2.01 (−2.49,−1.53) −2.05 (−2.55,−1.55)

γ
(D)
1 −0.09 (−0.15,−0.04) −0.10 (−0.15,−0.04) −0.11 (−0.16,−0.06)

γ
(D)
2 −0.05 (−0.07,−0.02) −0.04 (−0.07,−0.02) −0.04 (−0.07,−0.02)

γ
(D)
3 −0.18 (−0.87, 0.52) −0.25 (−0.95, 0.43) −0.20 (−0.97, 0.53)

γ
(D)
4 −0.06 (−0.17, 0.04) −0.08 (−0.17, 0.02) −0.07 (−0.16, 0.02)

γ
(D)
5 0.00 (−0.03, 0.04) 0.00 (−0.04, 0.04) 0.00 (−0.03, 0.04)

α
(I)
1 −0.04 (−0.05,−0.03) −0.04 (−0.05,−0.03) −0.04 (−0.05,−0.03)

α
(I)
2 0.00 (−0.02, 0.02) 0.00 (−0.02, 0.02) 0.00 (−0.02, 0.02)

α
(D)
1 −0.02 (−0.04, 0.00) −0.03 (−0.04,−0.01) −0.02 (−0.04, 0.00)

α
(D)
2 0.00 (−0.03, 0.02) 0.00 (−0.03, 0.02) −0.01 (−0.03, 0.02)
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