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Summary. Treating patients with a combination of agents is becoming commonplace in cancer
clinical trials, with biochemical synergism often the primary focus. In a typical drug combination
trial, the toxicity profile of each individual drug has already been thoroughly studied in single-
agent trials, which naturally offers rich prior information. We propose a Bayesian adaptive design
for dose finding that is based on a copula-type model to account for the synergistic effect of
two or more drugs in combination. To search for the maximum tolerated dose combination, we
continuously update the posterior estimates for the toxicity probabilities of the combined doses.
By reordering the dose toxicities in the two-dimensional probability space, we adaptively assign
each new cohort of patients to the most appropriate dose. Dose escalation, de-escalation or
staying at the same doses is determined by comparing the posterior estimates of the proba-
bilities of toxicity of combined doses and the prespecified toxicity target. We conduct extensive
simulation studies to examine the operating characteristics of the design and illustrate the pro-
posed method under various practical scenarios.

Keywords: Adaptive design; Bayesian inference; Combining drugs; Continual reassessment
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1. Introduction

In conventional phase I clinical trials, the primary objective is often to find the maximum tol-
erated dose (MTD) of the drug under study, i.e. the dose with a probability of toxicity that is
closest to the physician’s prespecified target. In such an early phase of a drug study, relatively
little is known about the appropriate dose level; hence, a sequence of doses is screened to find
the target dose that is associated with the maximum level of tolerable toxicity. Towards this
goal, various statistical methods have been proposed for phase I clinical trial designs (see Storer
(1989), O’Quigley et al. (1990, 2002), Korn et al. (1994), Meller (1995), Goodman et al. (1995),
O’Quigley and Shen (1996) and Mukhopadhyay (2000), among others). The commonly used
continual reassessment method (CRM) assumes a parametric link function, such as a hyperbolic
tangent or a power function, between the true dose toxicity probabilities and the prespecified
toxicity probabilities (O’Quigley ez al., 1990). The toxicity probability curve can be efficiently
adjusted by updating the posterior estimate of a single unknown parameter (O’Quigley and
Shen, 1996). Other methods include dose escalation with overdose control (Babb ez al., 1998),
the curve-free dose finding procedure based on the product beta prior (Gasparini and FEisele,
2000) which can be exactly characterized by an equivalent CRM design, the decision theo-
retic approaches (Whitehead and Brunier, 1995; Leung and Wang, 2002) and the random-walk
rule and the biased coin design under isotonic regression (Durham et al., 1997; Stylianou and
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Flournoy, 2002). Comprehensive reviews for phase I trial designs were given in Edler (2001)
and Rosenberger and Haines (2002). More up-to-date and extensive discussions on statistical
approaches for dose finding can be found in Chevret (2006).

However, all the aforementioned methods are developed for single-agent dose finding trials.
Given the enormous advances in medicine and large numbers of new drugs to be tested, interest
in finding combinations of drugs for patient treatment has grown. The goal of combination
therapy is to achieve better patient response, particularly for cancer patients who are refractory
to conventional therapies. In oncology, for example, combining agents can induce a synergistic
treatment effect, allowing the clinician to target tumour cells with differing drug susceptibil-
ities, and to achieve a higher intensity of dose with non-overlapping toxicities. Our research
is motivated by many recent and more emerging dose finding drug combination clinical trials
at the M. D. Anderson Cancer Center. One example is to find the MTD combination of a
small molecule receptor (orally administered with four dose levels) and a mammalian target of
rapamycin inhibitor (an intravenous drug with four dose levels) resulting in 16 combinations.
The combined drugs are expected to induce a synergistic treatment effect by targeting different
pathways.

The trend of drug combination trials poses a great challenge to finding the MTD combination
with two or more drugs, particularly with small sample sizes in phase I studies. In a single-agent
trial, we typically assume a monotonically increasing order of toxicity with respect to the dose.
For any given dose, there are at most two adjacent doses and the order of toxicity is known. In
contrast, for a two-drug combination dose space, there are up to eight adjacent doses, including
diagonal and off-diagonal doses, as shown in Fig. 1. More importantly, complex drug—drug
interactive effects often lead to unknown patterns of toxicity. Thus, the monotonic order of
toxicity with respect to the dose level is lost, and it becomes unclear which dose combination
should be assigned under a decision of dose escalation or de-escalation. Moreover, when two or
more drugs are combined, the dimension of the dose space expands in a multiplicative fashion.
This rapid increase in the dose dimension naturally requires a larger sample size, which can
easily double or triple that of a single-agent trial.
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Fig. 1. Dose escalation and de-escalation diagram with 5 x 4 combinations, while the dose change along
the diagonal (- . - - ») is not allowed
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A straightforward way to extend the traditional single-agent dose finding methods to drug
combination trials is to conduct a series of one-dimensional dose finding trials: fixing one drug
at each specified dose level and varying the other. This essentially transforms the two-dimen-
sional dose finding space to a one-dimensional space. Korn and Simon (1993) introduced a
graphical tolerable dose diagram to provide guidance in targeting specific MTD combinations.
Kramar et al. (1999) proposed monotonically ordering a selected subset of drug combinations
which reduced the dose finding to a one-dimensional space. Lokich (2001) presented a clinical
trial that combined topotecan at four dose levels with irinotecan at two levels in the treatment
of patients with advanced malignancy. Kuzuya et al. (2001) proposed combining paclitaxel and
carboplatin to treat ovarian cancer, by alternately fixing one agent at a certain dose level and
varying the other. Thall et al. (2003) proposed a six-parameter model to define the probability
of toxicity with respect to the doses of gemcitabine and cyclophosphamide. The combined dose
is first escalated along the diagonal line; then a toxicity equivalence contour is constructed for
further investigation of proper dose combinations. Conaway et al. (2004) examined the sim-
ple and partial orders for drug combinations based on the pool adjacent violators algorithm.
Wang and Ivanova (2005) proposed a two-dimensional dose finding design that was based on
the logistic-type regression with standardized doses of the two drugs as the covariates. In this
design, the interaction term can be included to capture the drug—drug interactive effects, which,
however, might not be estimated reliably owing to a small variation in the covariate. Huang et
al. (2007) extended the traditional ‘3 + 3’ design by classifying the two-dimensional dose space
into zones. Yin and Yuan (2008) proposed a latent 2 x 2 table approach to dose finding for drug
combinations.

Trial designs involving drug combinations can be extended to a broader spectrum, for exam-
ple, to search jointly for the optimal dose level and dose schedule for a single agent. As seen
frequently in clinical trials, a single agent with a set of dose levels may be administered at several
different dose schedules in a treatment cycle. To improve the treatment effect, the drug can be
given at a more intense or frequent schedule instead of a regular schedule. More recently, Braun
et al. (2007) proposed a Bayesian adaptive design that simultaneously optimizes both dose and
schedule based on time-to-toxicity outcomes. Motivated by a phase I trial in allogeneic bone
marrow transplantation at the M. D. Anderson Cancer Center, their design reflects the actual
clinical practice and thus has potential of broad applications. Therefore, the drug combination
can be formulated in a more general framework, that of a trial with several different drugs, each
at a prespecified set of dose levels, or a study of a single agent at a set of dose levels, adding
a change to different dose schedules. The terminology of ‘dose level’ or ‘dose schedule’ may
be used exchangeably for our general purpose of describing statistical designs, as both would
increase the probability of toxicity monotonically. Other work related to drug combination
studies includes Plackett and Hewlett (1967), Ashford (1981), Abdelbasit and Plackett (1982),
Simon and Korn (1990) and Korn and Simon (1992).

Before several drugs are combined, the toxicity profile of each individual drug needs to be
thoroughly investigated. Hence, physicians usually have good prior knowledge of the proba-
bilities of toxicity when each drug is administered alone. We propose to utilize this rich prior
information and to develop a Bayesian adaptive dose finding procedure for combined agents.
We model the rates of toxicity of the combined drugs via a copula-type regression. In particular,
we first prespecify the underlying probabilities of toxicity for each drug on the basis of their
individual toxicity information. To accommodate the uncertainty of this prespecification, we
incorporate a power parameter to the probabilities of toxicity for each drug as in the CRM.
We then link these probabilities of toxicity in a copula-type model to derive the joint toxic-
ity probability of the combined drugs. Our method reduces to the CRM if only one drug is
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tested. Patients are sequentially accrued in cohorts. Decisions on dose escalation, de-escalation
or staying at the same dose are adaptively made as the data are coherently updated in the trial.

The rest of the paper is organized as follows. In Section 2, we propose the joint toxicity proba-
bility model for the binary outcomes through a copula-type regression. Moreover, we derive the
likelihood function and the posterior distribution for the unknown parameters. We formulate
the decision rules and the dose finding algorithm in Section 3. We conduct extensive simulation
studies to examine the operating characteristics of the new design in Section 4, and we conclude
with a brief discussion in Section 5.

The programs that were used to simulate the design can be obtained from

http://www.blackwellpublishing.com/rss.

The executable file can be downloaded from http://odin.mdacc.tmc.edu/~gyin/
software.htm.

2. Probability model

2.1. Copula-type regression

For ease of exposition, we illustrate our design by using a drug combination trial with two agents,
say A and B, though our approach can be easily generalized to the case of combining multiple
agents. Let p; be the prespecified probability of toxicity corresponding to A}, the jth dose for
drug A, p1 < p><...<py, and g be that of By, the kth dose for drug B, ¢1 <¢> <...<gk.
Typically, the maximum dose for each drug in the combination (i.e. A; and Bg) is the individual
MTD that has already been determined in the single-agent trials. The remaining lower doses are
some fractions of the MTD, specified by physicians. The probability of toxicity is monotonically
increasing with the dose level when each drug is administered alone. However, the ordering of
the probabilities of toxicity of the combined drugs and dose levels is less obvious. For example,
it is not clear how to order the probabilities of toxicity 7k, m;_1 41 and 741 x—1, where 7 j is
the joint toxicity probability associated with the combined drug pair (A}, By).

In a drug combination study, the probability of toxicity corresponding to the MTD of each
agent is known, i.e. p;y and gk are known. Through further consultation with physicians, we
can easily specify (p1,..., pyj_1) fordrug A, and (q1,...,qx—_1) for drug B. To enhance the flex-
ibility and to accommodate physicians’ uncertainty, we take Py and qf as the true probabilities
of toxicity for drug A and drug B respectively, where o > 0 and 5 > 0 are unknown parameters
with prior means centred at 1. When two or more drugs are combined as a treatment, it would
be unrealistic to assume that each drug acts independently on the patient, as the drug—drug
interactive effects may have a strong influence on the joint toxicity profile. Therefore, it is crit-
ical to choose an appropriate model to link the joint toxicity probability 7 with the p;s and
qks. A reasonable model for drug combinations needs to satisfy the following conditions: for
j=1,...,Jandk=1,.

(a) 1fp“_0 anqu_O then 7r]k_0
(b) 1fp =0, thenwjk_qf, and, 1qu_0 thenwjk_p/,and
(©) 1feltherp =lorg, =1,thenmy=1.

These conditions are very intuitive for the joint model of drug combinations. The first condition
requires that, if the probabilities of toxicity of both drugs are 0 (i.e. no drugs), the joint toxicity
probability should also be 0. The second condition states that, if the probability of toxicity of
one drug is 0 (i.e. a single-agent case), the joint toxicity probability should reduce to that of the
other drug. Finally, the third condition asserts that, if the toxicity probability of either drug is
1, the joint toxicity probability should be 1 as well.
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Although each drug has its own toxicity profile, the individual toxicity outcome cannot be
observed in the trial. We typically can only observe a single toxicity binary outcome for the drug
combination. For example, the outcome of a patient treated at (A ;, By) provides 1nformat10n
on the joint toxicity probability 7 that can be linked to the probabilities of toxicity ( Py qk)
through a copula-type regression model. There has been considerable interest in modelhng
the bivariate probability function through copula models (for example, see Clayton (1978),
Hougaard (1986), Genest and Rivest (1993) and Nelsen (1999), among others). Copula models
have an attractive structure by expressing the joint probability distribution through the marginal
distributions and a dependence parameter. Suppose that C, is a distribution function on [0, 117
given an association parameter . The Archimedean copula family characterizes an important
class of dependence functions, which has the representation

Cy v =0 (Y7 ) +u7 W)}, O<u,v<l,

where 1), is the copula generator, ¢ lis its inverse function, 0 < 1y <1,1,(0) =1 and first and
second derivatives Wv <0and w;/ > 0. It encompasses many well-known bivariate parametric
distributions, such as the Clayton, Gumbel-Hougaard and Frank copula models (see Nelsen
(1999)).

Motivated by the Clayton copula we propose a copula-type regression model to link the
joint toxicity probability 7 j with ( p qk) in the form of

T =1-{1=pH '+ (1—g) 7 - 13717, (1)

where >0 characterizes the drug-drug interactive effect. lim, {(1 - P~ 7} =00 and
limg, 1 {(1 - qk) 7} =o00, and thus 7 =1 as p; or g goes to 1. Moreover if only one
drug is tested, say p; >0 and ¢, =0(k=1,...,K), model (1) reduces to the CRM, with

j=p5(j=1,....,J). Our approach can be regarded as a multivariate generalization of the
CRM which enables internal learning from other dose level combinations. As a result, this
model satisfies the three model conditions. In Fig. 2, we illustrate the joint toxicity probability
surface based on model (1) with « =3 =2 and y=1.5 in the two-dimensional probability space.
Depending on the three parameters («, 3, 7v), the toxicity probability surface may have various
shapes. If the target toxicity probability is 40%, as shown by the horizontal plane in Fig. 2, there
is an intersection curve representing the MTD contour for the two drugs. Therefore, depending
on the physician-specified doses, there could be more than one MTD combination in the discrete
dose space. We focus on selecting one MTD combination, whereas, if multiple MTDs are found,
physicians can determine the one for further investigation on the basis of disease and subject-
matters. Other copula models can be used as well, depending on mathematical convenience and
computational simplicity. For example, on the basis of the Gumbel-Hougaard copula, we can
model the joint toxicity probability by

ik =1—exp(~[{~log(1 — p)}/7 +{~log(1 —g)}/1T"),

which clearly also satisfies the three model conditions.

2.2. Likelihood and prior specification

We can construct the likelihood function on the basis of the binomial distribution with the
probabilities 7 . Suppose that, at the current stage of the trial, among »n j patients treated at
the paired dose level (j, k), x j patients have experienced toxicity. The likelihood is then given by

lik(cv, 3, y|data) H H 7T]k "A—r i)
j=lk=1
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Fig. 2. Toxicity probability surface and MTD contour for the two-drug combination

For ease of computation, we take the prior distributions of the model parameters to be
independent, i.e. f(a, 8,7v)= f(a) f(B) f(7). Since the drugs in the combination have already
been studied in single-agent trials, physicians often have some prior information of the probabil-
ities of toxicity for each individual drug. We assign intermediate informative prior distributions
to o and (3 by centring the prior mean at 1 with a relatively small variance, e.g. gamma(2, 2), a
gamma distribution with mean 1 and variance 0.5. Essentially, these priors centre ( p‘;, q;) at the
probabilities of toxicity when each drug is administered alone. The drug—drug interactive effect
is mainly determined by ~, for which much less information can be elicited from physicians.
Hence, we take a non-informative prior for -, a gamma distribution with a large variance, so
that the data will dominate the posterior estimation of ~. The joint posterior distribution is
given by

fla, B,v|data) o< lik(a, 3, v|data) f(a) f(B) f(7),

from which the full conditional distributions of the model parameters can be easily obtained.
After the outcomes of each cohort of patients have been observed, we use the Gibbs sampling
algorithm to sample from the posterior distributions of the unknown parameters. Thus, we can
easily obtain the posterior estimates for 7 jx, on which the next stage of the trial design will be
based.

2.3. Multiple drugs in combination
In practice, drug combination trials often involve a pair of drugs, each with several prespeci-
fied doses. However, clinicians may find it beneficial to combine more than two drugs to treat
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a patient. When the dimension of the drug combination space is higher than 2, dose finding
becomes a much more complicated process, for which most of the currently available methods
might not work well. Our method, however, can be easily generalized to such a high dimensional
dose combination problem. For example, if three drugs are combined in a trial, we denote p;
to be the physician-specified probability of toxicity for the jth dose of drug A, j=1,...,J, gk
to be that for the kth dose of drug B, k=1,..., K, and s; to be that for the /th dose of drug
C,I=1,...,L,1ie. the triplet (p;, qx, s;) represents the prespecified probabilities of toxicity that
are assomated with the combined drug doses (A, By, C;). By incorporating a power param-
eter for each prior probability of toxicity, the true probabilities of toxicity are (p% % qf ,57),
where «, § and ¢ have gamma distributions with prior means centred at 1. The dose com-
bination searching space grows multiplicatively into a three-dimensional cube of dimension
JxKxL.

In this three-dimensional toxicity probability space, we can still quantify the joint toxicity
probabilities through a copula-type model. Under the Clayton copula, we define

T =1—{(1=pH T+ —g) 7+ (=57 =2}~/
and, under the Gumbel-Hougaard copula, we have
ik =1 —exp(—[{—log(1 — pH I/ + {~log(1 — g}V + {~log(1 — s}/,
where «, 8 and ¢ are the unknown parameters for each individual drug and -y is the association
parameter for synergism. The corresponding likelihood based on the binomial distribution is
given by

J K L
lik(e, 8, ¢, yldata) o< [T T1 H ﬂfl‘l(l — 1 jrg) R T
j=lk=11I=
where, among nj; patients treated at (Aj, By, C), xy patients have experienced toxicity.
The rest of the prior specifications and posterior derivations can be carried forward similarly.

3. Dose finding algorithm

Let ¢ be the physician-specified targeting toxicity limit, and c. and ¢q be the fixed probability
cut-offs for dose escalation and de-escalation respectively. ce and ¢q can be calibrated through
simulation studies such that the trial has desirable operating characteristics, and ce +c¢q > 1.
Patients are treated in cohorts, for example, with a cohort size of 3. To be conservative, we
restrict dose escalation or de-escalation to one dose level of change only, while also not allowing
amove along the diagonal direction (corresponding to simultaneous escalation or de-escalation
of both agents), as shown in Fig. 1. For a trial involving two drugs, the dose finding algorithm
works as follows.

(a) Patients in the first cohort are treated at the lowest dose combination (A, By).
(b) If, at the current dose combination (j, k),

Pr(mp <) > ce,

the dose is escalated to an adjacent dose combination with the probability of toxicity
higher than the current value and closest to ¢. If the current dose combinationis (A, Bg),
the doses stay at the same levels.

(c) If, at the current dose combination (j, k),

Pr(mjx > ¢) > cy,
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the dose is de-escalated to an adjacent dose combination with the probability of toxicity
lower than the current value and closest to ¢. If the current dose combination is (A1, By),
the trial is terminated.

(d) Otherwise, the next cohort of patients continues to be treated at the current dose com-
bination (doses staying at the same levels).

(e) Once the maximum sample size has been reached, the dose combination that has the
probability of toxicity that is closest to ¢ is selected as the MTD combination.

Asiscommon to model-based clinical trial designs, the dose finding algorithm is difficult to apply
at the beginning of the trial, because very limited information except for the prior knowledge
is available. Thus, the posterior estimates of the probabilities of toxicity for dose combinations
may not be reliable. To circumvent this difficulty, we use the following start-up rule: we first
treat patients along the vertical dose escalation in the order of {(A1, B1), (A1, B2),... } until
the first toxicity is observed; we then continue to treat patients by escalating doses in the hor-
izontal direction {(Aj3, B1), (A3, B), ... } until the first toxicity occurs. As long as one toxicity
is observed in both the vertical and the horizontal directions, e.g., if one patient experiences
toxicity at (Ay, Bx) and (A, By) for some values of j and k, the Bayesian dose finding algorithm
will be in effect seamless for the rest of the trial.

4. Simulation study

We investigated the operating characteristics of our two-dimensional Bayesian copula dose find-
ing method through simulation studies under 12 different toxicity scenarios, as listed in Table 1.
In our simulation, the target probability of toxicity was ¢ =40%, and the sample size of each
trial was 60, with a cohort size of 3. We set c. =0.8 and ¢4 =0.45 to direct dose escalation and
de-escalation. The dose assignment decision was made after observing the outcomes of every
cohort of patients. In the Clayton copula, we took gamma(2, 2) as the prior distribution for o
and g, and gamma(0.1, 0.1) for «. In the Markov chain Monte Carlo procedure, we recorded
2000 posterior samples of the model parameters after 100 burn-in iterations. We simulated 2000
trials under each scenario. The first six scenarios represent drug combinations with five dose
levels of drug A and four dose levels of drug B, but with different numbers and different loca-
tions of the MTD combinations. The toxicity rates of the MTDs for drug A and drug B were
0.4 and 0.3 respectively, when administered alone. For drug A, we specified the prior marginal
toxicity probabilities p; as (0.08, 0.16, 0.24, 0.32, 0.4); and, for drug B, we specified g, as (0.075,
0.15, 0.225, 0.3). In scenarios 7-10, we examined a different dose configuration with a 4 x 4
grid. The prior toxicity probabilities were (0.07, 0.15, 0.22, 0.3) for drug A, and (0.12, 0.18,
0.24, 0.3) for drug B. As a part of the sensitivity analysis, scenarios 11 and 12 were designed
to examine the robustness of the Bayesian copula design to model misspecifications. Under
these two scenarios the probabilities of toxicity were generated according to the Frank and
Gumbel copulas (Nelsen, 1999). We compared the performance of our method with the CRM
and non-parametric optimal design (O’Quigley ez al., 1990, 2002). We applied the CRM in a
series of one-dimensional dose finding trials by fixing drug B at each given dose and searching
over the doses of drug A (referred to as the restricted CRM). The total 60 patients were equally
allocated to the four independent trials, 15 patients for each trial. We adopted a stopping rule: if
Pr{toxicity rate at (A1, By) > ¢} > 0.9, the trial is terminated for safety (Goodman ez al., 1995;
Moiller, 1995). The non-parametric optimal design offers a theoretical bound as a benchmark
for numerical comparisons.

In Table 2, we report the selection probabilities of dose combinations based on the restricted
CRM, the non-parametric optimal design and the Bayesian copula method proposed. Scenar-
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Table 1. 12 toxicity scenarios for the two-drug combinations with the target toxicity probability 0.4

Dose level Toxicity probabilities for the following levels of drug A:
of drug B
1 2 3 4 5 1 2 3 4 5
Scenario 1 Scenario 2
4 0.54 0.67 0.75 0.81 0.86 0.49 0.58 0.68 0.75 0.81
3 0.48 0.59 0.68 0.75 0.81 0.40 0.49 0.59 0.68 0.75
2 0.40 0.45 0.59 0.67 0.74 0.27 0.40 0.45 0.59 0.67
1 0.24 0.40 0.47 0.56 0.64 0.18 0.29 0.40 0.47 0.56
Scenario 3 Scenario 4
4 0.31 0.40 0.50 0.61 0.75 0.40 0.52 0.72 0.75 0.84
3 0.23 0.34 0.40 0.53 0.67 0.29 0.40 0.51 0.60 0.68
2 0.16 0.25 0.34 0.40 0.52 0.20 0.31 0.40 0.50 0.59
1 0.09 0.16 0.18 0.22 0.40 0.12 0.21 0.30 0.40 0.47
Scenario 5 Scenario 6
4 0.11 0.16 0.23 0.31 0.40 0.79 0.85 0.89 0.92 0.94
3 0.06 0.11 0.17 0.24 0.32 0.74 0.81 0.86 0.89 0.92
2 0.03 0.07 0.11 0.17 0.24 0.67 0.76 0.81 0.86 0.89
1 0.01 0.03 0.07 0.11 0.18 0.57 0.67 0.74 0.79 0.84
Scenario 7 Scenario 8
4 0.28 0.30 0.32 0.40 0.52 0.69 0.70 0.75
3 0.22 0.24 0.27 0.39 0.30 0.62 0.68 0.71
2 0.20 0.22 0.26 0.28 0.20 0.40 0.50 0.66
1 0.14 0.20 0.21 0.24 0.15 0.30 0.40 0.55
Scenario 9 Scenario 10
4 0.50 0.66 0.67 0.73 0.50 0.52 0.57 0.63
3 0.40 0.54 0.62 0.68 0.28 0.40 0.55 0.59
2 0.21 0.40 0.50 0.60 0.26 0.30 0.40 0.50
1 0.15 0.25 0.40 0.56 0.20 0.23 0.24 0.40
Scenario 11 Scenario 12
4 0.46 0.53 0.58 0.61 0.64 0.46 0.53 0.60 0.65 0.70
3 0.45 0.50 0.55 0.58 0.61 0.39 0.47 0.54 0.60 0.66
2 0.40 0.44 0.50 0.53 0.56 0.31 0.40 0.47 0.54 0.61
1 0.20 0.40 0.47 0.48 0.50 0.23 0.32 0.40 0.47 0.54

TThe MTD combinations are in italics.

ios 1, 2 and 3 describe situations in which there are two, three and four MTD combinations
respectively. Under the first three scenarios, our method selected the MTD combinations with
higher probabilities than the restricted CRM which tended to select over-MTD combinations
in scenarios 1 and 2, and under-MTD combinations in scenario 3. Under the restricted CRM
design, the trials corresponding to each dose level of drug B were completely independent of
each other and no information or strength was borrowed across them. In contrast, the Bayesian
copula dose finding method continuously updated the posterior estimates of probabilities of
toxicity for all dose combinations on the basis of the available data and efficiently searched for
the target across the whole drug combination space. Even in the cases where the set of doses
of drug A contained the MTD for each fixed dose level of drug B, as illustrated by scenarios 3
and 4, our method performed slightly better than the restricted CRM, and comparably with the
non-parametric optimal design. When the MTD is in the upper right-hand corner of the grid
as in scenario 5, the Bayesian copula design proposed significantly outperformed the restricted
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Table 2. Selection probabilities of the restricted CRM, non-parametric optimal design and Bayesian copula
design under the first 10 scenarios

Scenario Results for the Results for the non-parametric Results for the Bayesian
restricted CRM optimal design copula design
1 155 20 00 0.0 0.0 32 00 00 00 0.0 09 01 0.0 0.0 0.0
155 48 05 0.0 0.0 69 01 00 0.0 00 102 1.7 01 0.0 0.0
11.8 88 23 03 0.0 291 172 01 0.0 0.0 249 116 1.7 0.1 0.0
50 123 60 15 03 6.0 290 76 0.7 0.0 31 19.1 62 03 0.0
2 153 45 03 0.0 0.0 38 05 00 0.0 0.0 50 15 0.0 0.0 0.0
128 83 20 03 0.0 16.0 41 02 00 0.0 176 116 14 0.1 0.0
58 11.8 60 13 03 29 163 17.1 0.1 0.0 73 192 93 1.7 0.1
1.5 90 98 35 13 0.1 11.2 7168 87 2.1 0.1 51 11.2 50 0.3
3 70 11.3 53 1.0 0.0 84 123 158 0.5 0.0 38 11.7 85 13 0.1
33 105 78 28 08 03 92 11.7 25 0.0 0.7 59 127 80 12
0.8 6.8 10.0 50 2.5 00 15 92 121 37 00 07 35 120 103
00 18 50 73 110 00 00 00 0.1 127 00 0.0 03 35 158
4 133 90 08 0.0 0.0 126 22 00 0.0 0.0 102 87 09 0.0 0.0
6.0 123 55 1.0 03 36 131 21 03 0.0 53 16.7 59 0.5 0.0
20 100 88 35 1.0 0.0 11.0 129 49 05 04 47 141 83 1.0
03 43 95 70 40 00 02 50 126 19.0 0.1 02 58 115 53
5 03 30 73 73 78 00 00 01 81 772 00 0.0 04 32 876
00 08 43 7.0 13.0 00 00 00 04 135 00 00 00 04 75
00 03 15 48 188 00 00 00 0.0 0.5 00 0.0 00 00 0.7
00 00 03 1.8 23.0 00 00 00 0.0 0.0 00 0.0 00 00 0.1
6 28 00 00 0.0 0.0 00 00 0.0 0.0 0.0 00 0.0 00 00 0.0
48 00 00 00 00 00 00 0.0 0.0 0.0 00 0.0 00 00 0.0
88 03 0.0 0.0 0.0 01 00 00 0.0 0.0 00 0.0 00 00 0.0
140 18 03 0.0 O 999 0.1 00 0.0 0.0 0.1 0.0 0.0 00 0.0
7 43 83 70 353 09 4.6 13.7 447 04 43 7.0 459
20 65 80 85 00 03 0.6 337 02 1.8 3.0 240
1.3 60 7.5 103 00 00 0.7 0.6 00 03 1.1 90
05 38 63 145 00 00 0.0 0.1 00 01 02 18
8 160 25 03 0.0 42 00 0.0 0.0 11.8 02 0.0 0.0
128 108 0.8 0.0 87 02 00 0.0 109 122 03 0.0
33 133 68 15 0.1 30.1 15,5 0.0 14 262 92 04
1.0 9.0 100 5.0 00 8.6 307 1.8 00 70 150 34
9 165 30 03 0.0 94 00 0.0 0.0 51 07 0.1 0.0
135 83 13 03 219 24 00 00 15.7 10. 1.0 0.1
35 133 65 18 02 239 99 02 1.9 241 107 0.5
0.8 7.5 11.0 58 00 75 239 0.7 00 59 177 42
10 140 50 1.0 03 92 33 04 00 69 59 09 0.1
58 133 48 1.0 2.7 209 0.8 0.3 49 169 67 24
35 98 80 35 09 13.0 204 87 0.7 6.8 143 10.1
1.5 58 80 98 00 02 03 190 0.1 1.5 45 133

CRM. Scenario 6 examines the situation that all drug combinations are over toxic. Our method
successfully early terminated 99.9% of the simulated trials without any selection. This scenario
again demonstrates the enormous advantage of jointly modelling the probabilities of toxicity
across the two-dimensional space. Note that the non-parametric optimal design does not have
a stopping rule. Scenarios 7-10 investigate the performance of our method under a smaller
drug combination space with four dose levels for each drug. The main differences between the
scenarios are the numbers of MTD combinations and their locations in the 4 x 4 grid. When
two MTD combinations lie together in the upper right-hand corner as in scenario 7, both can
be selected with a high percentage. Scenarios 8 and 10 are more difficult situations, in which
the MTD contour is not complete, as the MTD is skipped in the first column (fixing drug A
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at dose level 1) owing to the discreteness of the dose space. Yet, our method still selected the
MTD combinations with high percentages. In scenario 9, three MTD combinations exist, and
our method correctly selected them almost up to 60%. The overall performance of the Bayesian
copula design is satisfactory and is better than the restricted CRM. In many cases, the per-
formance of the Bayesian copula design is also comparable with the non-parametric optimal
design.

Table 3 displays the average number of patients treated at each dose combination across 2000
simulations. Our method generally performed better than the restricted CRM in the sense that
a higher percentage of patients were treated at the MTD or the dose combinations nearby.
This advantage is especially prominent in scenarios 1, 5, 7 and 8, where the set of prespecified
doses of drug A may not contain the MTD for a fixed level of drug B. For example, in scenario

Table 3. Number of patients treated at each dose combination for the restricted CRM and Bayesian copula
design under the first 10 scenarios

Scenario Results for the restricted CRM Results for the Bayesian copula design
1 10.5 2.4 0.2 0.0 0.0 0.8 0.1 0.0 0.0 0.0
10.1 34 0.4 0.0 0.0 4.7 1.0 0.1 0.0 0.0
85 4.7 1.2 0.1 0.0 14.2 5.2 1.0 0.1 0.0
5.7 6.3 2.5 0.4 0.1 14.5 9.2 2.9 0.6 0.1
2 10.1 3.2 0.4 0.0 0.0 2.7 0.8 0.1 0.0 0.0
8.6 4.7 1.1 0.1 0.0 8.4 3.6 0.6 0.1 0.0
6.2 6.0 2.3 0.4 0.1 9.4 7.9 3.5 0.7 0.1
4.3 5.7 3.7 1.1 0.2 8.5 6.0 5.7 2.5 0.7
3 6.6 58 2.2 0.3 0.0 3.7 3.9 2.8 0.9 0.3
5.2 5.9 3.1 0.7 0.1 3.7 3.1 4.1 2.3 1.3
4.0 5.3 4.1 14 0.3 3.7 1.3 2.3 4.1 4.0
3.2 3.9 4.1 2.6 12 6.2 2.8 2.8 3.7 6.0
4 8.7 4.9 0.8 0.0 0.0 4.9 2.8 0.6 0.1 0.0
6.2 6.2 2.2 0.3 0.0 5.9 5.7 2.5 0.3 0.2
4.7 5.8 3.5 0.9 0.2 4.7 3.9 5.0 2.4 0.8
3.5 4.7 4.4 1.9 0.5 6.6 33 4.8 5.1 3.1
5 34 4.1 4.2 2.4 0.9 2.8 0.6 0.7 22 22.7
3.1 3.6 4.0 2.8 1.5 2.8 0.0 0.1 0.3 5.2
3.0 3.2 3.6 3.1 2.1 3.0 0.0 0.0 0.0 3.1
3.0 3.0 3.2 3.2 2.6 6.0 2.9 3.0 32 4.3
6 7.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8.5 0.6 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
9.4 1.2 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0
10.3 2.1 0.2 0.0 0.0 12.3 0.4 0.0 0.0 0.0
7 5.7 5.2 3.0 1.0 1.8 2.7 3.1 12.1
4.6 5.1 3.6 17 2.8 2.3 2.4 7.5
4.3 5.0 3.8 2.0 3.8 1.5 1.4 4.9
3.6 4.6 4.0 2.8 7.0 33 2.8 34
8 10.6 2.4 0.2 0.0 3.6 0.6 0.1 0.0
8.1 5.9 0.8 0.0 9.8 4.5 0.5 0.1
5.1 6.6 2.8 0.5 6.9 8.7 3.5 0.7
3.9 5.9 3.9 1.3 7.5 7.3 59 2.4
9 10.6 2.7 0.3 0.0 22 0.6 0.2 0.0
8.9 4.7 0.8 0.1 8.4 4.2 0.6 0.2
5.3 6.5 2.7 0.5 7.6 8.9 39 0.9
3.8 5.4 4.3 1.5 7.5 6.6 7.2 2.9
10 9.8 3.2 0.5 0.1 2.6 1.8 0.6 0.4
6.2 6.2 2.2 0.3 5.1 6.5 2.2 1.3
5.5 5.5 3.1 0.9 5.3 4.7 4.9 3.6
44 49 3.8 1.9 8.3 4.3 3.9 54
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Table 4. Total number of observed toxicities for the restricted
CRM and Bayesian copula design under the first 10 scenarios

Scenario Results for the Results for the Bayesian
restricted CRM copula design
1 26.2 20.3
2 23.5 21.8
3 17.3 20.4
4 20.5 21.3
5 8.4 14.5
6 27.8 8.2
7 14.8 17.5
8 24.0 22.2
9 23.7 22.3
10 20.9 20.7

1, the restricted CRM treated the majority of patients at dose combinations above the MTD,
whereas in scenario 5 most of the patients were treated at doses below the MTD. In addition to
the benefit of treating more patients at desirable doses, our method is safer than the restricted
CRM in terms of the average number of patients experiencing toxicity in six of the 10 cases, as
shown in Table 4. In scenario 5, on average, six more patients experienced toxicity under our
design than under the restricted CRM, as most of the patients were treated at the under-MTD
combinations in the restricted CRM design. Under scenario 6, in which all doses were overly
toxic, the restricted CRM had to be implemented independently for each of the four rows as it

Table 5. Sensitivity analysis of the Bayesian copula design, including model misspecifi-
cations and alternative prior specifications

Results for selection probability Results for numbers of patients treated
Scenario 11 ( Frank copula)
1.9 0.5 0.0 0.0 0.0 1.1 0.3 0.1 0.0 0.0
8.7 3.0 0.7 0.2 0.1 5.1 14 0.3 0.1 0.0
24.1 12.6 3.7 0.5 0.3 14.0 5.2 1.2 0.2 0.1
2.5 20.4 6.9 1.1 0.4 13.6 9.9 3.7 1.1 0.3
Scenario 12 ( Gumbel copula)
5.6 1.7 0.2 0.0 0.0 2.3 0.9 0.1 0.0 0.0
14.2 9.5 1.6 0.2 0.0 7.3 3.1 0.7 0.1 0.0
9.3 18.8 8.5 1.4 0.1 10.9 6.8 2.8 0.6 0.1
0.7 6.7 8.6 3.5 0.3 9.8 6.1 4.6 1.9 0.6
Scenario 3 with prior o, 3~ gamma(l, 1)
3.4 11.2 9.5 1.2 0.2 3.3 4.1 2.7 0.9 0.4
1.1 7.6 12.7 7.6 1.8 3.9 4.0 4.2 2.2 1.5
0.0 0.7 4.2 12.7 9.8 4.1 1.3 2.5 4.0 3.7
0.0 0.1 0.2 3.6 12.2 6.4 2.9 2.7 3.3 4.9
Scenario 3 with prior «, 5~ gamma(0.5, 0.5)
3.6 11.4 10.7 2.0 0.1 3.3 4.0 3.2 1.1 0.4
1.0 7.5 12.4 7.6 1.9 3.6 39 4.6 24 1.3
0.0 0.8 6.2 11.6 8.5 4.2 1.6 3.2 3.9 3.2
0.0 0.0 0.5 2.9 10.8 6.3 2.9 2.7 2.9 4.2
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could not borrow information across the rows. As a result, the restricted CRM allocated at least
a few patients to the first column and more patients experienced toxicity than in our design,
which stopped the trial earlier. As to other scenarios, the method proposed performed compa-
rably with the restricted CRM. Across the 10 scenarios, on average 207.1 patients experienced
toxicity by using the restricted CRM as opposed to 189.2 patients by using our method.

We conducted two types of sensitivity analysis, which are summarized in Table 5. To examine
the robustness of our method to model misspecifications, the probabilities of toxicity in sce-
narios 11 and 12 were simulated from the Frank and Gumbel copula models (comparing with
scenarios 1 and 2) respectively. Under these two scenarios, our method performed very well with
high selection percentages of the MTD combinations. Moreover, to evaluate the effect of the
prior specifications, we investigated the performance of our design under two more diffusive
prior distributions for o and 5 under scenario 3. The Bayesian copula design appeared not to
be sensitive to the prior specification and yielded very similar results on the basis of different
hyperparameters.

5. Concluding remarks

To accommodate the enormous need for designing clinical trials with drug combinations, we
have developed a copula-type model to link the joint toxicity probability with the probabilities
of toxicity of each drug. The method proposed can fully evaluate the joint toxicity profiles of
the combined drugs, as well as preserve their single-agent properties. The drug—drug interactive
effects are naturally modelled through a copula-type model, which reduces to the CRM design
if only one drug is considered. The attractive feature of this design is that it efficiently reorders
the probabilities of toxicity of the dose combinations on the basis of the accrued data, so that
the next cohort of patients to be treated will receive the most appropriate dose. The toxicity
surface for the combined drugs can be adequately captured and reshaped by the three unknown
parameters. In a typical drug combination trial, the doses of each drug are often bounded by the
corresponding single-agent MTDs for which the toxicity probabilities are known from previous
studies. Therefore, the prior specification for the probabilities of toxicity of each drug are much
more accurate than the usual CRM for single-agent cases. The start-up rule was introduced for
safety and did not affect the performance of the trial. We also implemented the design proposed
by using the Gumbel copula in the simulation study, and we obtained similar results to those in
the Clayton copula. The Bayesian Markov chain Monte Carlo algorithm can coherently update
the posterior estimates for the model parameters as more patients enter the trial and more out-
comes are observed. It achieves the goal of designing a Bayesian dose finding clinical trial by
borrowing strength from all the available data.
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