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The continual reassessment method (CRM) is a popular dose-finding design for phase I clinical trials. This method requires that practitioners
prespecify the toxicity probability at each dose. Such prespecification can be arbitrary, and different specifications of toxicity probabilities
may lead to very different design properties. To overcome the arbitrariness and further enhance the robustness of the design, we propose
using multiple parallel CRM models, each with a different set of prespecified toxicity probabilities. In the Bayesian paradigm, we assign
a discrete probability mass to each CRM model as the prior model probability. The posterior probabilities of toxicity can be estimated by
the Bayesian model averaging (BMA) approach. Dose escalation or deescalation is determined by comparing the target toxicity rate and
the BMA estimates of the dose toxicity probabilities. We examine the properties of the BMA-CRM approach through extensive simula-
tion studies, and also compare this new method and its variants with the original CRM. The results demonstrate that our BMA-CRM is
competitive and robust, and eliminates the arbitrariness of the prespecification of toxicity probabilities.
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1. INTRODUCTION

The primary goal of a phase I clinical trial is to identify the
maximum tolerated dose (MTD) of a new drug. The MTD is
typically defined as the dose with the toxicity probability clos-
est to the target toxicity rate. A phase I clinical trial is critically
important, because it determines the MTD that will be further
investigated in the subsequent phase II or III trials. Misidentifi-
cation of the MTD could result in an inconclusive trial, thereby
wasting enormous resources, or a trial in which a substantial
number of patients are treated at excessively toxic doses. In ad-
dition, inappropriate selection of a dose with low toxicity and
negligible efficacy as the MTD might cause researchers to over-
look a promising drug.

Many statistical methods have been developed for phase 1
dose-finding studies. The standard 3 + 3 design is an algo-
rithm-based procedure that typically defines the MTD as the
highest dose with a toxicity probability < 33% (Storer 1989).
In practice, many clinical trials are carried out using the stan-
dard 3 4 3 design, which is easy to understand and imple-
ment. But the operating characteristics of this design are not
satisfactory, and the estimates of the toxicity probabilities are
not reliable. Moreover, the 3 4 3 design is “memoryless” with
no convergence property and is suitable only for targeting
a toxicity probability <33% (O’Quigley and Chevret 1991;
O’Quigley and Shen 1996). A well-known alternative to the
conventional 3 + 3 design is the continual reassessment method
(CRM) of O’Quigley, Pepe, and Fisher (1990). The CRM is
a model-based dose-finding approach that uses a single un-
known parameter to link the true toxicity probabilities with
the prespecified toxicity probabilities. During the trial, the un-
known parameter is continuously updated using the accrued
information to identify the dose with a given target toxicity
level. In related work, Whitehead and Brunier (1995) intro-
duced a decision-theoretic approach based on Bayesian deci-
sion theory; Durham, Flournoy, and Rosenberger (1997) de-
scribed a family of random-walk rules that is a nonparametric

Guosheng Yin is Associate Professor (E-mail: gsyin @mdanderson.org) and
Ying Yuan is Assistant Professor, Department of Biostatistics, M. D. Anderson
Cancer Center, University of Texas, Houston, TX 77230. The authors thank the
editor, the associate editor, and two anonymous referees for their insightful and
constructive comments that substantially improved the article.

method with a completely workable distribution theory; Babb,
Rogatko, and Zacks (1998) proposed a dose escalation method
with overdose control that directly controls the probability of
overdosing; Gasparini and Eisele (2000) developed a curve-free
method that can be reformulated in the CRM framework under
a particular prior distribution (O’Quigley 2002); and Stylianou
and Flournoy (2002) proposed the biased-coin design with an
isotonic regression estimator. Comprehensive coverage of dose-
finding methods and up-to-date developments has been pro-
vided by Chevret (2006) and Ting (2006).

Of the aforementioned dose-finding methods, here we focus
on the CRM, which has been widely used in phase I clini-
cal trials. Many revisions to the CRM aimed at improving its
properties have been proposed. Faries (1994) introduced sev-
eral conservative modifications of the CRM. Goodman, Zahu-
rak, and Piantadosi (1995) developed practical improvements to
the CRM. They suggested assigning more than one subject at a
time to each dose level and limiting each dose escalation by a
single dose level. Mgller (1995) extended the CRM using a pre-
liminary up-and-down design to reach the neighborhood of the
target dose during a successive escalation. Piantadosi, Fisher,
and Grossman (1998) proposed a practical implementation of
a modified CRM. They used a simple dose—toxicity model to
guide data interpolation and grouped three patients into a co-
hort to minimize calculations and stabilize estimates. Heyd and
Carlin (1999) further refined the CRM by allowing the trial to
stop earlier when the width of the posterior 95% probability in-
terval for the MTD becomes sufficiently narrow. Ishizuka and
Ohashi (2001) proposed monitoring a posterior density function
of toxicity to reduce the number of patients treated at doses ex-
ceeding the MTD. Leung and Wang (2002) extended the CRM
using decision theory to optimize the number of patients allo-
cated to the highest dose with toxicity not exceeding the toler-
able level. Braun (2002) extended the CRM to model bivariate
competing outcomes. Yuan, Chappell, and Bailey (2007) de-
veloped a quasi-likelihood approach to accommodate multiple
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toxicity grades. For a comprehensive introduction and informa-
tion on the practical use of the CRM in phase I clinical trials,
see the tutorial by Garrett-Mayer (2006).

But despite the immense success of the CRM and its mod-
ified versions, a major issue associated with it is the required
prespecification of toxicity probabilities for the doses to be con-
sidered in the trial. Because the toxicity profile of a new drug
often is unknown, this prespecification can be arbitrary and very
subjective. The set of values of the mean probability of toxic-
ity at each dose to be considered in the trial is known as the
“skeleton” of the CRM. The use of different skeletons may lead
to quite different design properties. Shen and O’Quigley (1996)
showed that in large samples, the CRM is robust to the mis-
specification of the skeleton, and the recommended dose level
in general converges to the target level. But a typical phase I
trial has a very small sample size, often as low as 20-40 pa-
tients. The CRM’s asymptotic behavior is not very relevant,
and its performance may be compromised if the elicited toxi-
city probabilities in the skeleton do not fit the assumed dose—
toxicity model. As we see in our simulation studies (described
in Sec. 3), the selection probability of the target dose can be
40% lower under one skeleton than that under another skele-
ton. Unfortunately, in practical situations, practitioners have no
information to determine whether or not a specific skeleton is
reasonable, because the underlying true toxicity probabilities
are unknown. In clinical practice, we also have found that the
requirement to specify a skeleton is one of the major obstacles
to physicians’ acceptance and application of the CRM. The lack
of previous knowledge of a new drug often leads to uncertainty
regarding the specification of the skeleton. Because physicians
may have several different guesses about a drug’s toxicity pro-
file a priori, they may be reluctant to choose one as the best
skeleton to use to carry out the CRM design.

To overcome the arbitrariness in this prespecification of tox-
icity probabilities, we propose conducting the CRM design us-
ing multiple skeletons in parallel. Each skeleton represents a
prior guess of the toxicity profile of the drug, which may be
close to or far from the true toxicity profile. We view the CRM
under different sets of prespecified toxicity probabilities as sep-
arate models. We take a Bayesian model averaging (BMA) ap-
proach to obtain the posterior estimates for the true toxicity
probabilities by weighing the estimates from each model with
the corresponding posterior model probability. The decision for
dose escalation or deescalation is then made by comparing the
BMA estimates of the toxicity probabilities and the target toxi-
city level. In other words, instead of using a single CRM for the
trial, we carry out a set of parallel CRMs and rely on a BMA es-
timator for decision making. During the trial, the BMA method
automatically and adaptively assigns a larger weight to a model
with a better fit. Thus the BMA procedure ensures that the es-
timates of the toxicity probabilities are always close to the best
estimates given a set of models. In the proposed procedure, we
no longer consider the prior guesses of the toxicity probabili-
ties as fixed; instead, we associate them with model uncertain-
ties. After a new cohort of patients enters the trial, in light of
the most recent observations, we update our knowledge on the
estimated probabilities of toxicity using the BMA approach. As
a result, we are able to find the dose with the desired toxicity
level in a more reliable way and to treat the patients in the trial
at more appropriate doses.
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The remainder of the article is organized as follows. In Sec-
tion 2 we briefly review the original CRM and BMA method-
ologies and propose the Bayesian model averaging continual
reassessment method (BMA-CRM) and its alternative versions.
In Section 3 we present simulation studies to compare the oper-
ating characteristics of the new methods with those of the orig-
inal CRM. In Section 4 we conduct extensive sensitivity analy-
sis to further investigate the properties of the BMA-CRM. In
Section 5 we illustrate the proposed designs with two phase |
clinical trials, and we conclude with a brief discussion in Sec-
tion 6.

2. METHODS
2.1 Continual Reassessment Method

We assume that the dose-limiting toxicity (DLT) is recorded
as a binary outcome and that the true dose toxicity monoton-
ically increases with respect to the dose level. The CRM as-
sumes a prior dose—toxicity curve, then continuously updates
this curve given the observed cumulating toxicity outcomes
from patients in the trial. Based on the updated dose-toxicity
curve, a new cohort of patients is assigned to the dose with an
estimated toxicity probability closest to the prespecified target.
Let (d1, ..., dy) denote a set of J prespecified doses for the drug
under investigation, and let (p1, ..., py) be the prespecified tox-
icity probabilities (skeleton) at those doses, p; < --- < py. Let
¢ be the target toxicity rate specified by physicians. The first
cohort of patients receives the lowest dose, d;. For the CRM,
we assume a working dose—toxicity model, such as

pr(toxicity at dj) = 7j(a) = p;:xp(oz) )
forj=1,...,J, where « is an unknown parameter and the p;’s

can be viewed as “imputed” values for the toxicity probabilities.
Suppose that among n; patients treated at dose level j, y; pa-
tients have experienced DLT. Let D denote the observed data,
D ={(nj,y),j=1,...,J}. Based on the binomial distribution
for the toxicity outcome, the likelihood function is given by

J
L(D|a) = H{p]?Xp(a)},w{l _pj?Xp(a) }nj—y./.
j=1
We estimate the toxicity probabilities using the corresponding
posterior means of 7j(a). Using the Bayes theorem, we can
compute the posterior means of the dose toxicity probabilities
given D by

ﬁ‘_/ exp(e) L(Dl|a)f () o
=P TLDef () da

where f(«) is a prior distribution for the parameter «. We take
a normal prior distribution N(0, o-2) for a,

1 ( o? )
exp| —— |-
J2no P\ 202
After updating the posterior estimates of the toxicity probabili-
ties at all of the doses considered, the recommended dose level
for the next cohort of patients is the one that has a toxicity prob-

ability closest to the target ¢». Thus a new cohort of patients is
assigned to dose level j*, such that

fla)=

j* = argmin |7; — @|.
je(,ond)
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The trial continues until the total sample size is exhausted, after
which the dose with a posterior toxicity probability closest to ¢
is selected as the MTD.

2.2 Bayesian Model Averaging Continual
Reassessment Method

A major issue associated with the CRM is that prespeci-
fication of the toxicity probabilities (py,...,py) is arbitrary.
Because of the lack of toxicity information on a new drug,
physicians may have quite different opinions on the toxicity
probabilities. If the p;’s deviate far from the true dose—toxicity
curve (i.e., the true toxicity probabilities cannot be recovered
even after being adjusted by «), this may lead to poor operat-
ing characteristics and a high probability of selecting the wrong
dose as the MTD. To avoid subjectivity in specifying the skele-
ton, we propose prespecifying multiple skeletons, each repre-
senting a set of prior estimates of the toxicity probabilities. We
view each skeleton as corresponding to a CRM model of the
form (1) with a different set of p;’s. During the trial, conditional
on the observed data, these different models usually yield dif-
ferent estimates of the toxicity probabilities (71, ..., 7). Some
of these estimates may be close to the true values, whereas oth-
ers may not, depending on how well the models fit the cumulat-
ing data. To accommodate the uncertainty in the specification of
these skeletons, we take a BMA approach to average 7; across
the CRM models to obtain the BMA estimate of the toxicity
probability for dose level j. BMA is known to provide a better
predictive performance than any single model (Raftery, Madi-
gan, and Hoeting 1997; Hoeting et al. 1999). In other words, we
incorporate the uncertainty in the prespecification of the toxic-
ity probabilities into the estimation procedure, such that the po-
tential estimation bias caused by a misspecification of the p;’s
can be averaged out.

Let (M, ..., Mg) be the models corresponding to each set of
prior guesses of the toxicity probabilities {(p11,...,p1J),---,
k1, --->pks)}- Model M (k=1,...,K) in the CRM is given
by

mon) = pi}"’(“"), j=1,...,J,

which is based on the kth skeleton (pg1, ..., pxs). Let pr(My)
be the prior probability that model M, is the true model; that is,
the probability that the kth skeleton (py1, ..., pxs) matches the
true dose—toxicity curve. If there is no preference a priori for
any single model in the CRM case, then we can assign equal
weights to the different skeletons by simply setting pr(My) =
1/K. When there is prior information on the importance of each
set of the prespecified toxicity probabilities, we can incorporate
such information into pr(My). For example, if a certain set of
the prespecification is more likely to be true, then we can assign
it a higher prior model probability. At a certain stage of the
trial, based on the observed data D = {(n;, y;),j =1, ..., J}, the
likelihood function under model M, is

J
L(Dlay, My) = H{pzjfp(ak)}yj{l _p;cp(ak) }"j_}'j.
J=1
The posterior model probability for My is given by
L(D|M;) pr(My)

pr(Mi|D) = :
TS Lo proy)
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where L(D|Mjy) is the marginal likelihood of model My,

LODIMy) = / L(Dlax, MOS (ol My) o,

oy is the power parameter in the CRM associated with model
My, and f(ax|M) is the prior distribution of o under model
M.

The posterior model probability can be naturally linked to the
Bayes factor. The Bayes factor, Bjg, for a model M against an-
other model My given data D is defined as the ratio of posterior
to prior odds,

_ pr(DIM))
pr(D|Mo)’
which is the ratio of the marginal likelihoods, i.e., pr(D|My) =

L(D|My). We can construct such Bayes factors for each of
the models (Mi,...,Mk) against model My, denoted by

10

(B10, - - - » Bko). Then the posterior model probability of M} is
nkBko
priMi|D) = —g——
Zi:] niBio

where n; = pr(My) / pr(Mp) is the prior odds for My against M,
k=1,....K.

The BMA estimate for the toxicity probability at each dose
level is given by

K
Aj=Y AgprMD).  j=1.....J. ()
k=1

where 77 is the posterior mean of the toxicity probability of
dose level j under model My, that is,

A exp(o) L(D|ot, Mp)f (ax | My)
j'[kj = p . o
K [ L(D|ak, Mp)f (o | My) dorg

By assigning 7y, a weight of pr(My|D), the BMA method au-
tomatically identifies and favors the best-fitting model; thus 7;
is always close to the best estimate. Therefore, the decision of
dose escalation or deescalation in the trial is based on 7; as op-
posed to 7;.

The original CRM is based on only one set of prespecified
toxicity probabilities, (p1,...,pys). But in our approach, we
consider multiple sets of the prespecified toxicity probabilities.
We not only estimate oy for each set of py;’s, but also update the
posterior model probabilities for all sets of py;’s during the trial.
BMA provides a coherent mechanism to account for the model
uncertainty associated with each skeleton. Madigan and Raftery
(1994) noted that by averaging over all of the considered mod-
els, we can provide a better average predictive ability than can
be attained using any single model based on a logarithm scoring
rule.

2.3 Dose-Finding Algorithm

Let ¢ be the physician-specified toxicity target. Patients are
treated in cohorts, for example, with a cohort size of three. To
be conservative, we restrict dose escalation or deescalation by
one dose level of change at a time. The dose-finding algorithm
in our BMA-CRM method is as follows:

1. Patients in the first cohort are treated at the lowest dose,
dy, or the physician-specified dose.
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2. At the current dose level j*"'", we obtain the BMA es-
timates for the toxicity probabilities, 7; = 1,...,J),
based on the cumulated data. We then find dose level j*
that has a toxicity probability closest to ¢, that is,

j* = argmin |7; — ¢|.
jel,.d)

If j' > j* then we deescalate the dose level to jU" — 1,
and if j"'" < j*, then we escalate the dose level to j"" + 1;
otherwise, the dose stays at the same level as j*""" for the
next cohort of patients.

3. Once the maximum sample size is reached, we choose the
dose with toxicity probability closest to ¢ as the MTD.

In addition, we add a stopping rule in our algorithm: If
pr(toxicity rate at di > ¢) > 0.9, then the trial is terminated
for safety. In the BMA-CRM, we require early termination of a
trial if the lowest dose is too toxic, as noted by

K
> prim (@) > ¢|My. D} pr(MilD) > 90%.
k=1
The BMA method automatically assigns a higher weight to
a better-fitting model. When averaging across all of the models
considered, it would effectively downweight the impact of the
poorly fitting models. However, if the fit of a model were far
worse than that of the best-fitting model, then excluding that
model from the model-averaging set would be reasonable. This
procedure can be carried out using Occam’s window criterion.
More specifically, model M will be included in the model-
averaging set only if it satisfies

pr(My|D)
maxie(1,..., k) pr(M;|D)

We can calibrate § to obtain desirable operating characteris-
tics for simulated trials, such as yielding a high MTD selection
percentage. In a clinical trial, patients are sequentially accrued
and assigned to a dose in a cohort; thus as the trial proceeds,
the BMA estimates of the dose toxicity probabilities using Oc-
cam’s window may have a different set of models from which
the model averaging is taken. A further refinement based on Oc-
cam’s razor can exclude more complex models that are not as
well supported by the data as the simpler models. In our case,
all of the CRM models have the same structure or complexity
but different sets of underlying prespecifications of the toxic-
ity probabilities; thus Occam’s window serves as an adequate
criterion for the purpose of BMA-CRM dose finding.

In contrast to model averaging, model selection takes a differ-
ent perspective in regression models. Among a set of competing
models, we can simply select the best-fitting model according
to a suitable model selection criterion. In the CRM case, we
consider that each skeleton corresponds to a CRM model. As
more data are collected in the trial, we can select the most ap-
propriate skeleton each time that a decision on dose assignment
is made. Thus the skeleton in the CRM is not fixed, but can be
updated and adaptively chosen from a set of skeletons. A nat-
ural candidate for the model selection criterion is based on the
posterior model probability, as described previously. After ob-
serving the outcomes of each cohort of patients, we select the
skeleton or the CRM that yields the highest posterior model
probability with probability 1.
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3. SIMULATION STUDIES

We investigated the operating characteristics of the proposed
BMA-CRM design through simulation studies under nine dif-
ferent toxicity scenarios. We considered eight dose levels and
assumed that toxicity increased monotonically with respect to
the dose. We prepared four sets of initial guesses of the toxicity
probabilities:

(P1, P2, P3, P4, D5, D6, P71, P8)

(0.02, 0.06, 0.08,0.12, 0.20, 0.30, 0.40, 0.50),
skeleton 1

(0.01,0.05,0.09,0.14, 0.18, 0.22, 0.26, 0.30),
skeleton 2

(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80),
skeleton 3

(0.20, 0.30, 0.40, 0.50, 0.60, 0.65, 0.70, 0.75),
skeleton 4.

The first skeleton is for the case in which toxicity increases
slowly at the low doses but increases quickly at the high doses.
The second skeleton is more concentrated at the low toxicity
levels; the highest dose has a toxicity probability of 0.3. The
toxicity probabilities in the third skeleton are spread evenly
over a range of 0.1-0.8. The fourth skeleton starts at a rela-
tively high toxicity probability of 0.2 and increases quickly at
the low doses, before leveling off at the high doses. Thus these
four sets of skeletons represent four different prior opinions on
the true dose—toxicity curve. We focus on different features in
the four skeletons that are expected to capture the true dose—
toxicity curve more effectively when combined together using
the BMA. We refer to the individual CRMs using each of these
four skeletons as CRM 1, CRM 2, CRM 3, and CRM 4.

In Table 1, under each scenario we list the true toxicity proba-
bilities in the first row, the dose selection probability and the av-
erage number of patients treated at each dose separately for the
CRM using each of the four skeletons in rows 2-9, the results
obtained using the proposed BMA-CRM and the BMA-CRM
based on Occam’s window with § = 0.6 (denoted by BMAO-
CRM) in rows 10-13, and the results obtained by the CRM
using the Bayesian model selection procedure (referred to as
BMS-CRM) in the last two rows. We also report the percentage
of inconclusive trials (denoted by “none”), the average number
of patients experiencing toxicity, and the total number of pa-
tients in the trial. For each single CRM (1-4), we used the mod-
ified version (Goodman, Zahurak, and Piantadosi 1995; Mgller
1995; Chevret 2006), with a stopping rule: If pr(toxicity rate at
di > ¢) was >0.9, then the trial was terminated for safety. The
target toxic probability was ¢ = 30%. We took the prior distri-
bution of « as a normal distribution with mean 0 and standard
deviation o = 2. With no preference for any specific skeleton,
we assigned the prior model probability of 1/4 to each CRM
model, that is, pr(My) = 1/4 for k=1, ..., 4. We took the co-
hort size 3 and treated the first cohort of patients at the lowest
dose level. The maximum sample size was 30, and for each sce-
nario we carried out 10,000 simulated trials.

In scenario 1, the seventh dose was the MTD, and the four in-
dividual CRMs using different skeletons selected the MTD with
very different probabilities. In particular, CRM 2 (correspond-
ing to the design using skeleton 2) had the lowest selection per-
centage of 30.8% for the MTD, but selected the eighth dose
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Table 1. Simulation study comparing the CRM, BMA-CRM, BMA-CRM with Occam’s window (BMAO-CRM), and BMS-CRM
with a toxicity target ¢ = 30%

Recommendation percentage at dose level Average Average
Design 1 2 3 4 5 6 7 8 None toxicity # patients
Scenario 1 2 3 4 6 8 10 30 50
CRM 1 0 0 0 0.1 1.4 16.0 52.6 29.9 0 4.7 30
# patients 32 3.0 3.0 3.1 3.6 4.7 5.7 3.6
CRM 2 0 0 0 0.1 1.0 11.2 30.8 56.9 0 5.6 30
# patients 32 3.0 3.1 3.1 3.2 3.5 4.3 6.6
CRM 3 0 0 0 0.8 4.6 22.1 59.3 13.1 0 3.9 30
# patients 32 3.0 32 35 4.1 5.2 6.4 1.4
CRM 4 0 0 0 0.6 3.6 18.0 44.8 33.0 0 4.7 30
# patients 32 3.0 3.1 35 3.8 4.2 5.2 3.8
BMA-CRM 0 0 0 0.2 1.5 16.2 51.5 30.6 0 4.7 30
# patients 32 3.0 3.1 32 3.5 4.4 6.3 3.2
BMAO-CRM 0 0 0 0.2 1.3 15.4 54.5 28.6 0 4.7 30
# patients 32 3.0 3.1 32 34 4.5 6.1 34
BMS-CRM 0 0 0 0.1 1.5 19.2 50.5 28.6 0 4.8 30
# patients 32 3.0 3.1 32 3.6 4.5 54 4.0
Scenario 2 2 6 8 12 20 30 40 50
CRM 1 0 0 0 2.9 23.9 43.6 22.7 6.9 0 5.9 30
# patients 32 3.1 32 3.6 6.3 6.6 3.0 0.8
CRM 2 0 0 0.3 4.3 17.1 28.4 25.5 24.4 0 6.5 30
# patients 32 3.1 34 3.8 4.6 4.8 3.8 32
CRM 3 0 0 0.6 6.3 32.6 40.8 18.1 1.6 0 52 30
# patients 32 3.1 3.6 4.8 6.9 5.7 2.4 0.2
CRM 4 0 0 0.4 7.5 27.8 35.3 20.7 8.2 0 55 30
# patients 32 3.1 3.6 4.9 6.4 4.8 2.9 1.0
BMA-CRM 0 0 0.3 4.3 23.9 41.6 22.7 7.3 0 5.7 30
# patients 32 3.1 34 4.3 5.9 5.8 33 0.8
BMAO-CRM 0 0 0.2 4.3 23.2 40.0 243 7.9 0 5.7 30
# patients 32 3.1 34 4.4 5.8 6.2 3.0 0.9
BMS-CRM 0 0 0.2 3.8 26.1 38.4 21.2 10.3 0 5.8 30
# patients 32 3.1 34 4.1 6.3 54 3.1 1.3
Scenario 3 6 15 30 55 60 65 68 70
CRM 1 0.9 27.8 48.5 21.0 1.5 0.2 0 0 0 9.1 30
# patients 43 7.4 9.7 6.5 1.9 0.2 0 0
CRM 2 0.2 22.6 60.8 15.1 1.0 0.2 0 0 0 8.8 30
# patients 39 7.5 11.7 5.1 1.5 0.3 0 0
CRM 3 0.3 19.6 65.1 14.4 0.6 0 0 0 0 8.4 30
# patients 4.1 7.2 13.0 5.0 0.6 0 0 0
CRM 4 0.4 19.3 65.6 14.2 0.5 0 0 0 0 8.5 30
# patients 4.1 7.2 12.7 5.2 0.7 0.1 0 0
BMA-CRM 0.3 20.6 62.0 16.1 0.9 0 0 0 0 8.6 30
# patients 4.1 7.2 12.2 5.6 0.8 0.1 0 0
BMAO-CRM 0.3 19.9 63.0 15.9 0.8 0 0 0 0 8.6 30
# patients 4.1 7.2 12.3 54 0.8 0.1 0 0
BMS-CRM 0.2 20.0 64.9 13.7 1.0 0.1 0 0 0 8.6 30
# patients 4.1 7.2 12.4 52 1.0 0.1 0 0
Scenario 4 20 30 40 50 60 65 70 75
CRM 1 24.8 42.6 20.1 8.1 0.8 0 0 0 3.6 9.0 29.3
# patients 11.3 9.0 5.4 2.8 0.7 0.1 0 0
CRM 2 23.0 46.7 21.9 4.6 0.4 0 0 0 34 8.9 29.3
# patients 10.7 10.4 5.7 1.9 0.6 0.1 0 0
CRM 3 22.9 46.1 22.4 3.9 0.2 0 0 0 4.5 8.6 29.1
# patients 11.2 10.0 6.0 1.6 0.2 0 0 0
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Table 1. (Continued)

Recommendation percentage at dose level Average Average
Design 1 2 3 4 5 6 7 8 None toxicity # patients
Scenario 4 (Continued)
CRM 4 23.5 46.0 22.3 3.7 0.2 0 0 0 4.3 8.6 29.2
# patients 11.3 9.9 6.0 1.7 0.2 0 0 0
BMA-CRM 22.3 46.7 21.6 4.8 0.4 0 0 0 4.2 8.7 29.2
# patients 11.2 9.9 5.8 1.9 0.3 0 0 0
BMAO-CRM 22.4 46.5 21.9 4.5 0.4 0 0 0 4.2 8.7 29.2
# patients 11.1 10.0 5.8 1.9 0.3 0 0 0
BMS-CRM 21.6 46.9 22.3 4.0 0.5 0.1 0 0 4.6 8.7 29.1
# patients 11.1 10.0 5.8 1.8 0.4 0 0 0
Scenario 5 10 20 30 40 50 60 70 80
CRM 1 2.3 23.2 33.2 31.5 8.8 0.8 0 0 0.2 8.6 30.0
# patients 5.5 7.1 7.4 6.5 3.1 0.4 0 0
CRM 2 1.6 25.8 41.9 23.4 5.9 1.2 0.1 0 0.2 8.4 30.0
# patients 5.0 8.0 8.8 5.1 2.2 0.6 0.1 0
CRM 3 1.6 25.4 45.7 22.8 4.0 0.3 0 0 0.2 8.0 30.0
# patients 53 8.0 9.8 5.2 1.4 0.2 0 0
CRM 4 2.0 23.9 45.1 24.6 3.9 0.2 0 0 0.2 7.9 30.0
# patients 5.5 7.9 9.6 54 1.4 0.2 0 0
BMA-CRM 1.7 24.4 42.1 25.8 5.2 0.5 0 0 0.2 8.1 29.9
# patients 5.3 7.9 9.1 5.7 1.6 0.3 0 0
BMAO-CRM 1.6 23.8 43.8 24.6 53 0.6 0 0 0.2 8.1 30.0
# patients 53 7.8 9.2 5.6 1.6 0.3 0 0
BMS-CRM 1.8 23.9 43.6 23.6 6.4 0.4 0.1 0 0.2 8.2 30.0
# patients 5.3 7.8 9.1 53 2.0 0.3 0 0
Scenario 6 2 3 5 7 30 50 70 80
CRM 1 0 0 0 7.3 60.3 30.6 1.7 0 0 7.6 30
# patients 3.2 3.0 3.1 3.8 8.6 6.9 1.3 0.1
CRM 2 0 0 0.8 20.7 49.7 24.4 4.0 0.4 0 8.1 30
# patients 3.2 3.0 3.1 4.4 6.9 5.6 3.0 0.6
CRM 3 0 0 0.1 9.9 64.2 24.9 0.9 0 0 6.7 30
# patients 3.2 3.0 3.2 4.9 9.6 5.3 0.7 0
CRM 4 0 0 0.1 12.5 62.3 23.6 1.5 0 0 6.9 30
# patients 3.2 3.0 3.2 5.0 9.4 4.8 1.3 0.1
BMA-CRM 0 0 0.1 10.4 60.2 27.9 1.5 0 0 7.2 30
# patients 3.2 3.0 3.1 4.5 8.6 6.2 1.3 0
BMAO-CRM 0 0 0 10.4 61.3 26.7 1.6 0 0 7.2 30
# patients 32 3.0 3.1 4.5 8.4 6.7 0.9 0
BMS-CRM 0 0 0 10.1 62.7 25.7 1.5 0 0 7.1 30
# patients 3.2 3.0 3.1 4.4 9.7 5.2 1.2 0.1
Scenario 7 3 7 10 15 20 30 50 70
CRM 1 0 0 04 5.2 27.3 49.3 16.5 1.2 0 6.1 30
# patients 34 3.2 3.3 4.0 6.7 6.6 2.5 0.4
CRM 2 0 0 0.9 7.0 24.0 38.9 23.3 5.7 0 7.0 30
# patients 3.3 3.2 3.7 4.1 4.8 5.2 3.8 1.8
CRM 3 0 0 1.7 10.9 33.7 41.9 11.6 0.1 0 54 30
# patients 34 32 4.1 5.5 6.7 54 1.7 0.1
CRM 4 0 0 1.5 12.2 31.1 39.2 14.7 1.2 0 5.8 30
# patients 3.3 3.2 4.0 5.5 6.3 4.7 2.5 0.4
BMA-CRM 0 0 1.0 7.4 27.3 46.6 16.2 1.3 0 6.0 30
# patients 34 3.2 3.7 4.9 6.0 5.7 2.8 0.3
BMAO-CRM 0 0 1.1 7.4 26.6 45.5 17.6 1.9 0 6.0 30
# patients 3.4 3.2 3.7 4.9 5.7 6.1 2.6 0.4
BMS-CRM 0 0.1 1.1 6.6 29.9 44.4 15.7 2.3 0 6.1 30
# patients 34 3.2 3.7 4.5 6.3 5.5 2.7 0.7
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Table 1. (Continued)

Recommendation percentage at dose level Average Average
Design 1 2 3 4 5 6 7 8 None toxicity # patients
Scenario 8 2 3 5 6 7 9 10 30
CRM 1 0 0 0 0.2 1.2 6.9 22.1 69.7 0 32 30
# patients 32 3.0 3.0 3.1 3.6 4.1 4.3 5.6
CRM 2 0 0 0 0.1 0.4 1.3 7.6 90.6 0 3.7 30
# patients 3.2 3.0 3.1 3.1 3.1 3.1 32 8.0
CRM 3 0 0 0 0.8 4.6 12.9 34.4 47.3 0 2.7 30
# patients 3.2 3.0 32 3.5 4.0 4.4 5.2 3.3
CRM 4 0 0 0 0.7 3.1 5.7 18.2 72.1 0 33 30
# patients 32 3.0 32 3.6 3.7 3.7 3.8 5.9
BMA-CRM 0 0 0 0.3 1.3 4.5 19.1 74.8 0 33 30
# patients 3.2 3.0 3.1 33 3.5 3.7 4.1 6.0
BMAO-CRM 0 0 0 0.3 1.2 3.6 19.0 76.0 0 33 30
# patients 3.2 3.0 3.1 33 34 3.7 4.1 6.2
BMS-CRM 0 0 0 0.1 1.2 4.4 18.6 75.7 0 34 30
# patients 3.2 3.0 3.1 32 3.5 3.6 3.8 6.6
Scenario 9 40 50 60 70 80 90 95 99
CRM 1 37.8 4.1 0.3 0 0 0 0 0 57.8 8.6 20.3
# patients 16.6 2.8 0.7 0.2 0 0 0 0
CRM 2 41.0 5.2 0.2 0 0 0 0 0 53.6 9.0 21.1
# patients 17.0 33 0.8 0.1 0 0 0 0
CRM 3 36.3 4.3 0.2 0 0 0 0 0 59.1 8.4 20.0
# patients 16.3 2.9 0.7 0.1 0 0 0 0
CRM 4 34.8 43 0.2 0 0 0 0 0 60.7 8.3 19.7
# patients 16.2 2.8 0.7 0.1 0 0 0 0
BMA-CRM 36.7 4.4 0.2 0 0 0 0 0 58.7 8.5 20.1
# patients 16.4 2.9 0.7 0.1 0 0 0 0
BMAO-CRM 36.1 4.5 0.2 0 0 0 0 0 59.2 8.4 19.9
# patients 16.2 2.9 0.7 0.1 0 0 0 0
BMS-CRM 345 4.3 0.3 0 0 0 0 0 60.9 8.3 19.7
# patients 16.0 2.8 0.7 0.1 0 0 0 0

with a percentage of 56.9%. In contrast, the proposed BMA-
CRM had an MTD selection percentage of 51.5%, and, using
Occam’s window, the BMAO-CRM yielded a slightly better se-
lection percentage than the BMA-CRM. The BMS-CRM se-
lected the MTD 50.5% of the time. The number of patients
treated at each dose was similar across all of the seven designs,
except that CRM 2 treated almost twice the number of patients
at dose level 8 as the other designs. Therefore, if skeleton 2 had
been recommended by physicians to carry out the CRM trial
design, then the eighth dose likely would have been selected
as the MTD. But the eighth dose was overly toxic, with a tox-
icity probability of 0.5. Scenario 2 had the MTD at the sixth
dose level, and the MTD selection percentage using the BMA-
CRM was the second best among the seven designs. The worst
skeleton corresponded to CRM 2, which yielded an MTD selec-
tion percentage of <30%, whereas the proposed designs recom-
mended the MTD approximately 40% of the time. In scenario 3,
the MTD was at the third dose level. CRM 1 behaved the worst
in this scenario, with an MTD selection percentage of <50%,
compared with MTD selection percentages of >60% for the
other three single CRMs. The BMA-CRM and BMAO-CRM
performed well, with MTD selection probabilities of 62.0% and
63.0%, and the BMS-CRM produced a slightly better MTD se-
lection probability. In scenario 4, all of the selection percent-
ages using different designs were quite close. In scenario 5, the

MTD was the third dose. CRM 1 performed the worst in this
scenario, with an MTD selection percentage almost 10% lower
than that of the others. In scenarios 6 and 7, again the proposed
BMA-CRM was very robust, with an MTD selection percent-
age always close to that of the best-conducted CRM. Evaluat-
ing relative model performances showed that typically one or
two CRMs did not perform well. In particular, in scenario 7,
CRM 1 performed the best, with an MTD selection percentage
10% greater than that of the other three individual CRMs. That
good-performing CRM using skeleton 1 was the highlight of
the BMA-CRM, and it lifted the MTD selection percentage of
the BMA-CRM to a level close to the best. Scenario 8 is an
interesting case, because the MTD is the last dose, and the per-
formance of the four individual CRMs differed dramatically in
this scenario. CRM 2 performed the best, with an MTD selec-
tion probability > 90%, compared with <50% for CRM 3.

These findings demonstrate that the skeleton indeed plays
a critical role in the CRM design. There was a difference
of >40% in the MTD selection probability when using differ-
ent skeletons in scenario 8. However, our BMA-CRM, BMAO-
CRM, and BMS-CRM performed similarly and second best,
with MTD selection probabilities of around 75%. In scenario 9,
in which all of the doses were overly toxic, all of the designs
were able to terminate the trial early because of the safety rule
that we implemented.
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Based on these simulations, we conclude that the proposed
BMA-CRM, BMAO-CRM, and BMS-CRM methods are quite
robust in terms of dose selection probabilities. These methods
typically cannot perform as well as the best single CRM in the
BMA set, but their performance is always quite close to that of
the best single CRM and can be much better than that of the
worst single CRM. Our proposed methods carry the essence
of the BMA by adaptively balancing among competing models,
and thus offer more reliable and robust estimates for the toxicity
probabilities. Occam’s window in the BMAO-CRM may help
to completely eliminate a model that makes a substantially bad
prediction based on the cumulating data, whereas the BMA-
CRM is also able to downweight poorly fitted models. A key
difference between the BMAO-CRM and other BMA methods
is that under the BMAO-CRM, the model space or the number
of skeletons keeps changing as the trial proceeds. At each dose
assignment, Occam’s window criterion may select a different
set of models over which to average, based on the cumulating
data. We found similar performance from our applications of
the BMA-CRM, BMAO-CRM, and BMS-CRM.

More interestingly, in scenarios 2, 4, and 5 we intention-
ally set the true toxicity probabilities at the eight doses to be
the same as those in one of the prespecified skeletons. As ex-
pected, in scenario 2, CRM 1 (with the true skeleton) gave the
highest MTD selection percentage, and the MTD selection per-
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centage of the BMA-CRM was only 2% lower. In scenario 4,
CRM 4 was based on the true skeleton, and the CRM was quite
robust with respect to the other three specified skeletons. The
true skeleton in scenario 5 corresponded to CRM 3, which in-
deed yielded the best selection probability of the MTD. The
proposed designs with multiple skeletons also performed well
under scenario 5.

4. SENSITIVITY ANALYSIS

In the scenarios considered, CRMs with certain skeletons
may outperform the others; for example, in scenario 1, CRM 1
and CRM 3 substantially outperformed the other two CRMs.
For scenarios 1, 2, 3, and 5, we examined the relationship be-
tween the performance of each individual CRM and the cor-
responding posterior model probabilities using the BMA ap-
proach. We took 30 cohorts of size 3 and simulated 5,000 trials.
For each trial, we computed the posterior model probabilities
for each CRM after every cohort was sequentially accrued. Fig-
ure 1 presents the average of these posterior model probabilities
over 5,000 simulations versus the accumulating number of co-
horts. In scenarios 1-3, the posterior model probabilities of the
four CRM models began to separate after approximately four
to eight cohorts and eventually approached the stabilized val-
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Figure 1. Posterior model probabilities of four CRMs versus the accumulating number of cohorts under scenarios 1, 2, 3, and 5.
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ues in an order matching the performances of each individual
CRM. This indicates that the BMA approach can indeed distin-
guish the model fitting as more data are collected in the trial,
and thus select the better-performing CRM with a higher pos-
terior model probability. For example, in scenario 1 the BMA
exactly selected CRM 3 as the best-fitting model and CRM 2
as the worst-fitting model after approximately 15 cohorts were
accrued. For scenarios 1 and 2, the true toxicity probabilities at
the beginning of the dose range were extremely low and toxi-
city outcomes were quite rare, and thus more patients or data
were needed to distinguish the model fit. In scenario 5 the order
of the posterior model probabilities of the four CRMs matched
their individual performance from the initiation of the trial. The
BMA with Occam’s window would begin to be more effective
to remove the underperforming models as the posterior model
probabilities stabilized. Figure 2 shows the frequency of each
CRM model included in the BMA set as the trial proceeds.

In the BMA with Occam’s window, we need to specify the
threshold § to ensure that only the models with an adequate fit
are included. Under exactly the same setup as in scenario 1,
we took 6 = 0.5 and 0.7 to examine its influence on the de-
sign properties. In addition, we experimented with more vague
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normal prior distributions for o by taking the corresponding
variance as 25 and 100. Table 2 presents the simulation results,
demonstrating little impact on the performance of the proposed
designs in terms of both the dose selection percentage and the
number of patients treated at each dose.

We also evaluated the performance of the proposed designs
using different numbers of skeletons. Under scenario 5, we in-
creased the number of skeletons from one up to six by succes-
sively adding one skeleton at a time in the original order. Table 1
presents the simulation results for the cases with one skeleton
and four skeletons. Table 3 presents the selection percentage
and number of patients treated at each dose when using two,
three, five, and six skeletons. The fifth skeleton is (0.08, 0.15,
0.21, 0.29, 0.37, 0.44, 0.51, 0.58), and the sixth is (0.05, 0.10,
0.20, 0.25, 0.30, 0.40, 0.47, 0.55). Recall that with only the first
skeleton in scenario 5, CRM 1 yielded the lowest MTD selec-
tion percentage. Adding the second skeleton slightly improved
the design performance, and the proposed design with three to
six skeletons produced similar results; they all increased the
MTPD selection percentage by approximately 10%. In practice,
we recommend using three to five skeletons in the trial design,
depending on the number of doses under consideration.
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Figure 2. The frequency of each CRM model included in the BMA set using Occam’s window with § = 0.6 versus the accumulating number

of cohorts under scenarios 1, 2, 3, and 5.



Yin and Yuan: Continual Reassessment Method in Phase | Clinical Trials 963
Table 2. Sensitivity analysis of the BMA-CRM, BMAO-CRM, and BMS-CRM with different values of § and o under scenario 1
Recommendation percentage at dose level Average Average

Design 1 2 3 4 5 6 7 8 None toxicity # patients
Scenario 1 2 3 4 6 8 10 30 50

oc=2and §=0.5
BMA-CRM 0.0 0.0 0.0 0.2 1.5 16.2 51.5 30.6 0.0 4.7 30.0
# patients 32 3.0 3.1 33 3.5 4.4 6.3 32
BMAO-CRM 0.0 0.0 0.0 0.2 1.4 15.7 54.1 28.6 0.0 4.7 30.0
# patients 32 3.0 3.1 33 35 4.5 6.1 33
BMS-CRM 0.0 0.0 0.0 0.1 1.5 19.2 50.5 28.6 0.0 4.8 30.0
# patients 32 3.0 3.1 32 3.6 4.5 54 4.0

oc=2and §=0.7
BMA-CRM 0.0 0.0 0.0 0.2 1.5 16.2 51.5 30.6 0.0 4.7 30.0
# patients 32 3.0 3.1 33 35 4.4 6.3 32
BMAO-CRM 0.0 0.0 0.0 0.2 1.4 16.7 53.7 28.0 0.0 4.7 30.0
# patients 32 3.0 3.1 32 35 4.6 59 35
BMS-CRM 0.0 0.0 0.0 0.1 1.5 19.2 50.5 28.6 0.0 4.8 30.0
# patients 32 3.0 3.1 32 3.6 4.5 5.4 4.0

oc=5and§=0.6
BMA-CRM 0.0 0.0 0.0 0.2 1.6 14.5 51.1 32.5 0.0 4.8 30.0
# patients 32 3.0 3.1 32 35 4.2 6.1 3.6
BMAO-CRM 0.0 0.0 0.0 0.3 1.3 14.7 55.2 28.5 0.0 4.7 30.0
# patients 32 3.0 3.1 33 34 4.2 6.4 33
BMS-CRM 0.0 0.0 0.0 0.1 1.5 16.9 54.2 27.4 0.0 4.7 30.0
# patients 3.2 3.0 3.1 32 3.6 4.5 59 3.5

oc=10and § =0.6
BMA-CRM 0.0 0.0 0.0 0.2 1.5 14.2 514 32.6 0.0 4.8 30.0
# patients 32 3.0 3.1 32 3.5 4.2 6.1 3.6
BMAO-CRM 0.0 0.0 0.0 0.3 1.4 15.0 54.1 29.2 0.0 4.8 30.0
# patients 3.2 3.0 3.1 33 35 4.2 6.4 33
BMS-CRM 0.0 0.0 0.0 0.1 1.5 16.9 55.4 26.0 0.0 4.8 30.0
# patients 32 3.0 3.1 32 3.6 4.5 5.8 3.6

To further examine the robustness of the proposed designs,
we simulated one true toxicity scenario with six dose levels.
The target toxicity rate was ¢ = 40%, and the true toxicity prob-
abilities were generated from the inverse cumulative distribu-
tion function of a normal distribution. We took three different
skeletons for each case, while keeping the true dose—toxicity
curve the same. We used different sets of skeletons to reflect
the changes in the model averaging set. As shown in Figure 3,
we conducted four simulations, each with three different skele-
tons. Our goal was to examine whether different sets of skele-
tons would have a substantial impact on the performance of the
proposed designs. From the simulation results summarized in
Table 4, we can see that for the first and fourth sets of skele-
tons, the proposed BMA-, BMAO-, and BMS-CRM designs
performed quite similarly, with each demonstrating an MTD
selection percentage of around 70%. For the second and third
sets of skeletons, the proposed designs yielded MTD selection
percentages of around 63%. There was not much difference in
the performance of the four trial designs, and they all correctly
selected the MTD with the highest percentages, demonstrating
the robustness of the proposed designs.

Of the three proposed methods, we recommend the BMA-
CRM for practical use, because it is simple and coherent in the

Bayesian framework. The BMAO-CRM requires specification
of the § value for Occam’s window, which may be subjective.
As for the BMS-CRM, model selection based on small samples
may not be reliable, especially at the beginning of the trial when
very few patients have been accrued. Although different skele-
tons may lead to quite different results, in general the original
CRM of O’Quigley, Pepe, and Fisher (1990) is quite robust, and
most skeletons will perform reasonably well under that method.
If the local fit and prediction of the toxicity probabilities are
reasonable, the CRM is usually able to identify the MTD accu-
rately.

5. APPLICATION

We illustrate the proposed designs using a pediatric phase I
clinical trial (Jakacki et al. 2008) that aimed to determine the
MTPD of erlotinib in children with refractory solid tumors. Er-
lotinib is an oral inhibitor of the epidermal growth factor re-
ceptor signal pathway that has been approved by the Food
and Drug Administration for adults with recurrent non—small
cell lung cancer and advanced pancreatic cancer. This clinical
trial studied five dose levels of erlotinib: 35, 50, 65, 85, and
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Table 3. Simulation study comparing the BMA-CRM, BMAO-CRM, and BMS-CRM with two, three, five, and six skeletons under scenario 5

Recommendation percentage at dose level

Average Average

Design 1 2 3 4 5 6 7 8 None toxicity # patients
Scenario 5 10 20 30 40 50 60 70 80

Two skeletons
BMA-CRM 1.7 24.7 37.6 26.5 8.3 1.0 0 0 0.2 8.5 30.0
# patients 52 7.6 8.4 5.5 2.7 0.6 0.1 0
BMAO-CRM 1.7 25.0 37.5 26.3 8.5 0.8 0.1 0 0.2 8.5 30.0
# patients 5.1 7.6 8.4 54 2.7 0.6 0.1 0
BMS-CRM 1.3 25.3 37.6 26.6 8.2 0.9 0 0 0.2 8.5 30.0
# patients 5.0 7.7 8.4 5.5 2.7 0.6 0.1 0

Three skeletons
BMA-CRM 1.6 234 42.0 259 6.1 0.8 0 0 0.2 8.2 30.0
# patients 5.4 7.7 8.8 5.6 1.9 0.4 0 0
BMAO-CRM 1.6 242 41.1 259 6.6 0.6 0.1 0 0.2 8.2 30.0
# patients 53 7.7 9.0 5.6 1.8 0.4 0 0
BMS-CRM 1.6 254 42.6 23.6 6.1 0.6 0.1 0 0.2 8.2 30.0
# patients 5.3 8.0 9.0 5.2 2.0 0.3 0 0

Five skeletons
BMA-CRM 1.8 232 429 25.6 5.7 0.7 0 0 0.2 8.1 30.0
# patients 5.4 7.7 9.0 5.6 1.8 0.3 0 0
BMAO-CRM 1.7 23.8 42.3 25.6 5.8 0.5 0 0 0.2 8.2 30.0
# patients 5.3 7.7 9.2 5.6 1.8 0.3 0 0
BMS-CRM 1.5 25.0 43.1 23.7 6.0 0.5 0 0 0.2 8.2 30.0
# patients 5.3 8.0 9.1 53 1.9 0.3 0 0

Six skeletons

BMA-CRM 1.6 244 41.8 25.3 6.0 0.6 0 0 0.2 8.2 30.0
# patients 1.6 24.4 41.8 25.3 6.0 0.6 0 0
BMAO-CRM 1.5 242 42.3 25.3 5.9 0.7 0 0 0.1 8.2 30.0
# patients 5.3 7.8 9.2 5.5 1.7 0.4 0 0
BMS-CRM 1.6 242 429 23.9 6.6 0.6 0 0 0.2 8.2 30.0
# patients 54 7.8 8.9 5.1 23 0.4 0 0

110 mg/m?/day. A total of 19 assessable patients were used
for dose escalation. DLT determination included any grade 3
or 4 thrombocytopenia or grade 4 neutropenia, or any grade 3
or 4 nonhematologic toxicity. We took the MTD as the dose
with a DLT rate of 20% and elicited three different skeletons in
the CRM,

(p1, 2,3, P4, P5)

(0.20, 0.40, 0.60, 0.70,0.80),  skeleton 1
= { (0.05,0.10, 0.20, 0.30,0.40), skeleton 2
(0.01, 0.05,0.10, 0.15,0.20),  skeleton 3.

These three skeletons represent different prior opinions on the
dose-response curve, from a toxicity increasing the most ag-
gressively to that increasing the least aggressively with dose.
We applied the BMA-CRM, BMAO-CRM, and BMS-CRM de-
signs to the trial conduct and for comparison also conducted the
CRM design under each of the three skeletons separately, des-
ignated CRM 1, CRM 2, and CRM 3.

Table 5 shows the path of dose escalation, the posterior mean
of the power parameter «, and the selected MTD. The dose as-
signment followed exactly the same scheme under each of the
six designs. The trial started with treating the first cohort of

three patients at the lowest dose, 35 mg/m?/day. Because no
DLT was observed, the dose was escalated to 50 mg/m?/day
for the second cohort. Again, no DLT was observed, so the dose
was escalated to 65 mg/m?/day; still no DLT occurred. The
dose was then escalated to 85 mg/m?/day, at which point one
of six patients experienced DLT. The trial ended by treating the
last cohort of patients at a dose of 110 mg/m?/day; this dose,
two of four patients experienced DLT.

Although the paths of dose escalation were the same for all
of these designs, the MTD selection differed slightly. CRM 1
selected dose 65 as the MTD, whereas both CRM 2 and CRM 3
selected dose 85 as the MTD. The inconsistency of MTD iden-
tification demonstrates the sensitivity of the CRM to the spec-
ification of the skeleton and its limitation when only a single
skeleton is used in the trial. In contrast, all proposed designs
BMA-CRM, BMAO-CRM, and BMS-CRM selected dose 85
as the MTD, which is consistent with the MTD identified by
Jakacki et al. (2008) based on the “3 + 3” design. Figure 4
shows the posterior probabilities of CRMs 1-3 under the BMA-
CRM and BMAO-CRM during the trial. For the BMA-CRM,
after no DLT was observed in the first cohort, our dose-finding
procedure correctly recognized that CRM 1 with the most ag-
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Figure 3. Robust analysis with six dose levels and four sets of three skeletons. The solid line is the true dose—toxicity curve, and the dotted
lines are the dose—toxicity curves for the prespecified toxicity probabilities. The line with triangles represents skeleton 1; the line with crosses,

skeleton 2; and the line with circles, skeleton 3.

gressive skeleton (skeleton 1) was the least supported by the ob-
served data, as reflected by the smallest posterior model prob-
ability. Because no DLT was observed in cohorts 2 and 3, the
posterior model probability of CRM model 1 kept decreasing.
At this stage, both CRM models 2 and 3 were reasonably sup-
ported by the data, and their posterior model probabilities were
comparable. After one DLT occurred in cohort 4 and two of
four patients experienced DLTs in cohort 5, the data began to
show more support to CRM 1, and its posterior model proba-
bility substantially increased. Similar patterns were observed in
the BMAO-CRM design, except that the model with a negligi-
ble posterior probability was dropped from the Bayesian model
averaging set by Occam’s window. For example, model 1 was
dropped after no DLTs were observed in cohort 2, but it was
later brought back into the model-averaging set until cohort 5,
when more DLTs were observed. The behavior of the BMS-
CRM was consistent with that of the BMA-CRM as well. For
the first three cohorts, CRM 3 fit the data the best. After one
DLT was observed in cohort 4, CRM 2, with a slightly more
aggressive skeleton (skeleton 2), became the best model; this
was also true for cohort 5.

During the trial, the posterior estimate of the power parame-
ter o was continuously updated to reflect the accumulating data.

Because each individual CRM (1, 2, and 3) used rather different
skeletons, & differed dramatically across these methods, partic-
ularly at the end of the trial when all of the data were available.
In contrast, the &’s using the BMA-based designs were much
more stable.

In another illustrative example, we applied the proposed de-
signs to a phase I prostate cancer clinical trial conducted at
M. D. Anderson Cancer Center (Mathew et al. 2004). The goal
was to find the MTD of docetaxel used in combination with
daily 600 mg imatinib with a targeted DLT rate of 30%. Patients
were treated in cohorts of six, and as many as eight cohorts
were possible. Six potential doses of docetaxel were investi-
gated: 20, 25, 30, 35, 40, and 45 mg/m2 weekly for 4 weeks
every 6 weeks. Three skeletons were elicited,

(p1, P2, P3, P4, P5,D6)

(0.30, 0.40, 0.50, 0.60, 0.70, 0.80),  skeleton 1
=1 (0.07,0.16,0.30, 0.40, 0.46, 0.53), skeleton 2
(0.01, 0.05,0.10,0.15, 0.20, 0.30),  skeleton 3,

representing different prior opinions on the location of the
MTD. Skeleton 2 is the skeleton used in the original CRM.
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Table 4. Robust analysis based on four different sets, each with three skeletons, comparing the BMA-CRM, BMAO-CRM, and BMS-CRM

with a toxicity target of ¢ =40%

Recommendation percentage at dose level

Average Average
Design 1 2 3 4 5 6 None toxicity # patients
Toxicity prob. 1 5 20 40 60 85
BMA-CRM 0 0 11.3 71.5 17.2 0 0 9.5 30
# patients 3.0 3.1 6.0 13.1 4.7 0
BMAO-CRM 0 0 11.4 70.8 17.7 0 0 9.6 30
# patients 3.0 3.1 6.0 12.9 4.8 0.1
BMS-CRM 0 0 12.4 68.5 19.0 0.1 0 9.6 30
# patients 3.0 3.1 6.6 11.6 5.5 0.2
BMA-CRM 0 0 13.0 63.7 232 0.1 0 10.1 30
# patients 3.1 3.1 59 10.9 6.6 0.4
BMAO-CRM 0 0 13.4 62.8 23.5 0.2 0 10.1 30
# patients 3.1 3.1 59 10.8 6.6 0.5
BMS-CRM 0 0 12.7 63.4 23.6 0.2 0 10.2 30
# patients 3.1 3.2 5.5 11.1 6.5 0.7
BMA-CRM 0 0 13.5 64.7 21.7 0.1 0 10.0 30
# patients 3.1 3.1 6.0 10.9 6.4 0.4
BMAO-CRM 0 0 13.7 64.5 21.6 0.2 0 10.0 30
# patients 3.1 3.1 6.0 10.8 6.4 0.5
BMS-CRM 0 0 13.9 64.6 21.2 0.2 0 10.0 30
# patients 3.1 3.1 6.2 10.8 6.1 0.7
BMA-CRM 0 0 11.6 69.1 19.3 0 0 9.6 30
# patients 3.0 3.1 6.1 12.6 5.0 0.2
BMAO-CRM 0 0 12.0 70.4 17.6 0.1 0 9.5 30
# patients 3.1 3.1 6.2 12.8 4.6 0.2
BMS-CRM 0 0 12.6 70.6 16.6 0.1 0 9.5 30
# patients 3.0 3.1 6.6 12.3 4.5 0.4
Table 5. Application of the proposed designs to the phase I pediatric solid tumor trial with erlotinib
Cohort sequence Selected
Method 1 2 3 4 5 MTD
CRM 1 Dose (mg/mz/day) 35 50 65 85 110 65
# of tox/# of pts 0/3 0/3 0/3 1/6 2/4
& 0.69 1.07 1.36 1.34 1.06
CRM 2 Dose (mg/mz/day) 35 50 65 85 110 85
# of tox/# of pts 0/3 0/3 0/3 1/6 2/4
a 0.44 0.69 0.89 0.56 0.31
CRM 3 Dose (mg/mz/day) 35 50 65 85 110 85
# of tox/# of pts 0/3 0/3 0/3 1/6 2/4
& 0.28 0.54 0.72 0.17 —0.13
BMA-CRM Dose (mg/mz/day) 35 50 65 85 110 85
# of tox/# of pts 0/3 0/3 0/3 1/6 2/4
a 0.44 0.70 0.87 0.60 0.59
BMAO-CRM Dose (mg/m?2/day) 35 50 65 85 110 85
# of tox/# of pts 0/3 0/3 0/3 1/6 2/4
& 0.44 0.61 0.79 0.37 0.59
BMS-CRM Dose (mg/mz/day) 35 50 65 85 110 85
# of tox/# of pts 0/3 0/3 0/3 1/6 2/4
a 0.28 0.54 0.72 0.56 0.31
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Figure 4. Posterior model probabilities under BMA-CRM and BMAO-CRM for the pediatric phase I clinical trial with erlotinib. Symbols

1-3 denote CRMs 1-3 in the Bayesian model-averaging set.

Based on these skeletons, we applied the BMA-CRM, BMAO-
CRM, and BMS-CRM to locate the MTD.

Table 6 presents the dose-finding results of the trial under
the proposed BMA-CRM and the CRM used by Mathew et al.
(2004). Using the BMAO-CRM and BMS-CRM led to the same
results as those obtained from the BMA-CRM. The main differ-
ence between the BMA-CRM and CRM was that after no DLT
was observed in the first cohort at dose 30 mg/m?, the CRM
took an aggressive dose escalation to 45 by skipping two inter-
mediate dose levels for the second cohort, at which three of four
patients experienced DLTs, whereas the BMA-CRM escalated
the dose to a more appropriate level of 35 mg/m?. Although
both designs eventually deescalated to a dose of 30 mg/m? and
subsequently selected it as the MTD, the BMA-CRM avoided
exposing patients to the overly toxic dose of 45 mg/m? and re-
quired fewer cohorts. These two illustrative trials demonstrate
that the CRM may be sensitive to the specified skeleton in prac-
tice and that the proposed BMA-based designs are more robust
and reliable.

6. CONCLUSION

We have proposed a new dose-finding algorithm based on
Bayesian model averaging and the original CRM, using multi-
ple sets of prespecified toxicity probabilities. The performance

Table 6. Application of the proposed designs to the phase I prostate
cancer trial

Cohort sequence Selected
Method 1 2 3 4 MTD
CRM Dose (mg/m2) 30 45 35 30 30
#oftox/#ofpts  0/6 3/4 56 3/6
BMA-CRM  Dose (mg/m?) 30 35 30 30
#oftox/of pts  0/6 56 3/6

of the proposed designs can be substantially improved over that
of the original CRM if the skeleton in the CRM happens to
be very far from the true model. The BMA-CRM method is
straightforward to implement and very easy to compute based
on the Gaussian quadrature approximation or the Markov chain
Monte Carlo procedure. This method requires specifying mul-
tiple skeletons to cover different potential scenarios for the un-
derlying dose—toxicity curve. It provides a nice compromise for
the initial guesses of toxicity probabilities from different physi-
cians. If one skeleton corresponds to the true toxicity probabil-
ities, then the BMA-CRM would perform very well, because it
often performs similarly to the best-performing CRM. In prac-
tice, as long as one skeleton in the BMA set leads to a well-
behaved CRM, then the performance of the BMA-CRM will
be close to that of the CRM. This Bayesian model-averaging
procedure dramatically improves the robustness of the CRM.
As shown in the simulations, a certain skeleton often yields
underperforming results; however, simultaneously specifying
multiple skeletons reduces the likelihood of all sets of toxic-
ity probabilities leading to a poorly performing CRM design.
The arbitrariness in the specification of the skeleton is elimi-
nated by incorporating the uncertainties associated with each
skeleton into the Bayesian model-averaging procedure.

In our numerical studies we focused on the power model of
the CRM because of its simplicity; other model structures can
be used as well, such as the one-parameter logistic model or the
parabolic function. As a referee mentioned, the power model
p;Xp(a) is exactly equivalent to (p}”)exl’(“) for w > 0. Therefore,
we need to take precautions to propose “reasonable” skeletons
in the BMA-CRM, because the skeleton with p}vl and that with

p]v-v2 (w1 # wp) are redundant in the BMA set. Moreover, the
spacing between the adjacent p;’s is more critical than the val-
ues of the p;’s themselves. In our simulations we used a cohort
size of three; however, cohort sizes of one or two also could
be used. Our setup is based on the improved versions of the
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CRM to optimize its practical performance. As an extension of
the CRM, the BMA-CRM makes this trial design more widely
applicable and reliable for phase I clinical trials.

[Received August 2008. Revised February 2009.]
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