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SUMMARY. Two-agent combination trials have recently attracted enormous attention in oncology research. There are several
strong motivations for combining different agents in a treatment: to induce the synergistic treatment effect, to increase the
dose intensity with nonoverlapping toxicities, and to target different tumor cell susceptibilities. To accommodate this growing
trend in clinical trials, we propose a Bayesian adaptive design for dose finding based on latent 2 x 2 tables. In the search
for the maximum tolerated dose combination, we continuously update the posterior estimates for the unknown parameters
associated with marginal probabilities and the correlation parameter based on the data from successive patients. By reordering
the dose toxicity probabilities in the two-dimensional space, we assign each coming cohort of patients to the most appropriate
dose combination. We conduct extensive simulation studies to examine the operating characteristics of the proposed method
under various practical scenarios. Finally, we illustrate our dose-finding procedure with a clinical trial of agent combinations

at M. D. Anderson Cancer Center.
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1. Introduction

A phase I clinical trial is typically conducted to establish the
maximum tolerated dose (MTD), which is the dose of a new
agent with a toxicity probability closest to the physician’s tar-
get. In the trial, successive cohorts of patients are adaptively
assigned to a set of prespecified doses so that the toxicity pro-
file of the agent under investigation can be determined. Many
statistical methods have been developed for single-agent phase
I trial designs (for examples, see Storer, 1989; O’Quigley,
Pepe, and Fisher, 1990; Goodman, Zahurak, and Piantadosi,
1995; Mgller, 1995; Whitehead and Brunier, 1995; Durham,
Flournoy, and Rosenberger, 1997; Babb, Rogatko, and
Zacks, 1998; Gasparini and Eisele, 2000; Leung and Wang,
2002; Stylianou and Flournoy, 2002; Haines, Perevozskaya,
and Rosengberger, 2003; Yuan, Chappell, and Bailey, 2007),
among which the continual reassessment method (CRM) is
quite popular. CRM relies on a single unknown parameter
to determine the shape of the dose—toxicity curve (O’Quigley
et al., 1990). Given the physician’s prespecified toxicity prob-
ability at each dose, CRM updates the posterior estimates of
these dose toxicity probabilities using either the exponential
or hyperbolic link function. The performance of CRM can be
practically improved by introducing a safety stopping rule,
limiting each dose escalation to one level and treating pa-
tients in cohorts; see Goodman et al. (1995). More recently,
Yuan et al. (2007) extended the CRM to incorporate the tox-
icity grade information. Chevret (2006) and Ting (2006) gave
comprehensive reviews and extensive discussions on current
dose-finding methods in drug development.
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The motivations for combining two agents in medical re-
search are: to induce a synergistic treatment effect, to increase
the joint dose intensity with nonoverlapping toxicities, and to
target various tumor cell susceptibilities and disease path-
ways. Unlike the single-agent phase I trial where the agent’s
toxicity probability can be assumed monotonically increas-
ing with the dose level, it is not reasonable to impose such a
monotonic toxicity relationship for combined agents. In par-
ticular, one cannot assume that each agent acts independently
on the patient. Interactive effects between the two agents of-
ten have an enormous impact on the toxicity probabilities of
the dose combinations. Consequently, the toxicity ordering in
the two-dimensional dose combination space is typically un-
known. Without fully understanding the toxicity order, it is
difficult to escalate or deescalate the dose correctly during the
trial. This difficulty severely limits the application of single-
agent dose finding designs for agent combination trials.

Early work related to agent combination studies includes
Ashford (1981) and Abdelbasit and Plackett (1982). Simon
and Korn (1990) proposed a mathematical model for select-
ing agents and dosages based on the antitumor activities and
organ-specific MTDs of the agents. Their model would serve
as a guide for selecting agent combinations from a large num-
ber of possibilities worthy of evaluation. Kramar, Lebecq, and
Candalh (1999) reported a trial that combined docetaxel and
irinotecan to maximize tumor cell eradication within a toler-
able toxicity range and prevent the development of new resis-
tant cell lines. To simplify the two-dimensional dose-finding
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problem, a selected subset of agent combinations in this trial
were assumed to follow a monotonic toxicity order. Lokich
(2001) presented a clinical trial that combined four dose lev-
els of topotecan with two dose levels of irinotecan to treat
patients with advanced malignancy. Kuzuya et al. (2001) pro-
posed treating ovarian cancer patients by combining pacli-
taxel and carboplatin, through alternately fixing one agent
at a dose level and varying the dose level of the other agent.
For a trial of combining gemcitabine and cyclophosphamide in
which the doses were continuous, Thall et al. (2003) proposed
a six-parameter model for the toxicity probabilities of the dose
combinations. In their two-dimensional space, the dose was
first escalated along the diagonal direction by increasing the
doses of both agents, and then two additional dose combi-
nations were identified using a toxicity equivalence contour.
Conaway, Dunbar, and Peddada (2004) distinguished the sim-
ple and partial orders of the toxicity probabilities by defining
the nodal and nonnodal parameters. Wang and Ivanova (2005)
proposed a logistic-type regression for dose combinations that
used the doses of the two agents as the covariates. Their pri-
mary goal was to find the MTD of one agent while fixing the
dose of the other. More recently, Huang et al. (2007) modified
the “3 4+ 3”7 design for use in the dose-escalation phase of an
agent combination trial, and utilized Bayesian posterior prob-
abilities for adaptive randomization. Yin and Yuan (2008)
proposed a copula-type model for phase I drug-combination
trial designs.

Before the initiation of an agent combination trial, each
agent should be carefully studied in advance. The interactive
effects between two agents can be complex, which often leads
to unforeseen toxicity patterns. To fulfill the needs for design-
ing agent combination trials, we propose a Bayesian adaptive
procedure to model the binary toxicity outcomes through a
series of 2 X 2 contingency tables. Cohorts of patients are se-
quentially assigned to a suitable dose combination as the trial
proceeds. Decisions on dose escalation and deescalation can
be made using the posterior estimates of the toxicity proba-
bilities of dose combinations.

In Section 2, we present the joint probability model for
the toxicity binary outcomes through a 2 x 2 contingency
table for each dose pair. We derive the likelihood function
and the posterior distribution for the unknown parameters. In
Section 3, we give the dose-finding algorithm, and in Section
4 we present extensive simulation studies to examine the op-
erating characteristics of the new design. We conclude with a
brief discussion of our findings in Section 5.

2. Probability Model
2.1 Bivariate Binary Outcomes

One goal for the use of agent combinations is to achieve a
higher dose intensity by exploiting the nonoverlapping dose-
limiting toxicities (DLT) of different agents. The ideal case
is that the two agents in the combination have nonoverlap-
ping DLT. This could be achieved by preventing patients from
experiencing the agents’ common toxicities. For example, in
a combination of taxol and cisplatin, if the common toxic-
ities leukopenia and neurotoxicity are prevented by the use
of chemoprotective agents such as colony-simulating factors,
then these two agents would have nonoverlapping mucosit
and renal DLT. In circumstances where the toxicities of the
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two agents can be explicitly distinguished, we can view the
observed outcomes for each dose combination in a 2 x 2 con-
tingency table.

Let A; be the jth dose for agent A, 4; < --- < A;, and By
be the kth dose for agent B, B; < --- < By . For a patient
treated with the dose combination (A;, Bj), if we observe
toxicity from agent A, let X;, = 1, otherwise X;; = 0; if we
observe toxicity from agent B, let Y}, = 1, otherwise Y ;;, = 0.
This can be represented using the following 2 x 2 probability
table,

pj 1-pj

g | _an | o)
B | Tk | Tk |, (1)

B | _(10) | _(00)
1—gq, T | Tk

where (p;, qx) are the physician-specified marginal proba-
bilities of toxicity associated with the combined agent pair
(A;, Bj). To allow for uncertainty in this specification, we
incorporate two unknown positive parameters (o, () as in
the CRM, such that the marginal toxicity probabilities for
(A;, By) are (pf, q)). We assume a monotonic relationship
between the toxicity probability and the dose level for each
agent marginally (i.e., p§f < --- < p9 and ¢ << q}’\)
In the 2 x 2 probability table (1), each cell WE.T"’) (z =0, 1;
y = 0, 1) represents the joint probability associated with the
bivariate binary outcomes.

At each dose combination, we jointly model (1) using the
Gumbel model (Murtaugh and Fisher, 1990). Observe that
the marginal probability for X ;; =1 is p{, and the marginal
probability for Y, = 1 is qf For j =1,...,J, and k =
1,..., K, the joint probability for the bivariate binary out-
comes (X, =z, Y, =y)is

i = (=w) e (- al)
, el —1

+ (=07 (L= ) el (1= 0) @
where the association parameter 7 characterizes the agent
synergistic effect. If v = 0, model (2) reduces to the indepen-
dent case. Our dose-finding method is not restricted to the
Gumbel model, and other models suitable for the bivariate
binary outcomes can be used as well.

Suppose that among the n;; patients treated at dose com-
bination (A;, By), nglkl) patients have experienced toxicities

10)

from both agents A and B, nﬁ. x  Datients have experienced

toxicities only from agent A, nﬂ,l)

patients have experienced
toxicities only from agent B, and nﬂo) patients have not expe-
rienced any toxicities. Based on the multinomial distribution,

the likelihood function under equation (2) is given by

J K
()
L(e, B,y |Data) o [T {5}

j=1 k=1

(10) (01) (00)
A\ £ (O™, [ (00)";
i } o {md } o
This likelihood is formulated in an ideal scenario where the
two agents in the combination have nonoverlapping toxici-
ties and thus the toxicities for the two agents can always be
distinguished.
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2.2 Latent Contingency Tables

However, the ideal situation in which the two combined agents
have nonoverlapping toxicities is rare in practice. A more re-
alistic scenario is that the toxicities from the two agents are
partially overlapping. For example, hypertension can only be
caused by agent A, elevated lipid levels can only be caused
by agent B, and nausea and fatigue are the common toxici-
ties of both agents. Although protection from some common
toxicities is possible, typically, most of the toxicities between
two agents are common and cannot be completely eliminated.
When an overlapping toxicity is observed, it is difficult to de-
termine whether the toxicity is from agent A (X ;;, = 1), agent
B (Y r = 1), or both (X, =Y, = 1). Nevertheless, we can
still introduce a latent 2 x 2 toxicity probability table as in (1)
for the combined doses (A4;, B},). Our strategy here is to col-
lapse the three indistinguishable cells with probabilities 7r§.1kl),
wlg-lk?), and WﬁU into a single cell with a probability of 7r;.1kl) +
ng,‘o) + ﬁ;(;l) (or, equivalently, 1 — Wﬂm) to represent the prob-
ability of any toxicity. We can then model the observed data
using a binomial distribution. Suppose that among n;, pa-
tients treated at the paired dose level of (j, k), nﬁo) patients
have not experienced any toxicities. Based on the binomial
model, the likelihood is given by

J K
L(a7ﬁ37 | Data) X HH {1 _ 71—]('(1){0)}"]](7”

j=1 k=1

(00) (00)
jk

iyt

where 1 — ﬂ;(;fo) is the probability of toxicity for the dose com-

bination (A;, Bj). The rationale is that once a patient has
experienced toxicity, regardless of whether the toxicity was
caused by agent A, agent B, or the combination of agents
A and B, the outcome would fall into the collapsed cell as-

sociated with 1 — 7T§.[Jk0). Only the cell with probability ﬂ_(}(zo)
corresponds to the patients with no toxicity, for j = 1,...,J

and k=1,..., K.

2.3 Posterior Computation

We take the prior distributions of the model parameters to be
independent, i.e.,

(e, 8,7) = m(@)m(B)7(7),

and assign vague prior distributions to a, 3, and =, so that
the likelihood dominates the posterior estimation. As o and (8
are power parameters, we can take w(a) = w(8) = Unif(0.2,
2), and w(y) = Gamma(0.1, 0.1) with mean one to model
the drug synergistic effect. The joint posterior distribution is
given by

(e, B,7|Data) o< L(a, 8,7 | Data)m () (B)m(7),

from which the full conditional distributions of the parame-
ters can be easily obtained. Because the toxicity profile for
each agent in a combination is usually known, we set (p;,
qr) at the toxicity probabilities when each agent is adminis-
tered alone. Based on the cumulated data, we sample from
the posterior distributions of the unknown parameters using
the Gibbs sampling algorithm (Gilks, Best, and Tan, 1995),

and estimate the toxicity probabilities 1 — 775%0) by their
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posterior means based on the posterior samples of («a, 3, 7),
and model (2). The dose-finding algorithm is guided by 1 —
7('5-(19) forj=1,...,J;k=1,..., K, regardless of the likelihood
function resulting from the explicitly observed or the latent
2 x 2 tables. The computer program to implement the pos-
terior computation was written in C, and is available upon
request.

3. Dose-Finding Algorithm

At the beginning of a trial, little data have been collected
from the patients and the posterior estimates are often un-
stable. As shown in Figure 1, we initiate a start-up rule by
first escalating the dose along the vertical direction (increas-
ing the dose of agent B while fixing agent A at dose level 1)
until the first toxicity is observed. We then treat the next co-
hort of patients at (Ay, B) and escalate the dose of agent A
along the horizontal direction by fixing agent B at dose level
1 until another toxicity is observed. We estimate the toxic-
ity probabilities for all of the dose combinations based on the
collected data, and choose the dose combination with the esti-
mated toxicity probability closest to the target as the starting
combination (A, By). After this initial period, the rest of the
trial follows the dose-finding algorithm given below.

From a conservative point of view, we restrict each dose es-
calation or deescalation by one level of change, and prohibit
a move along the diagonal line as illustrated in Figure 1. It
may be too aggressive to escalate doses along the diagonal
direction by increasing the doses of both agents simultane-
ously. Let ¢ be the physician-specified target toxicity rate,
and ¢, and c; be the fixed probabilities for dose escalation
and deescalation, respectively. Our Bayesian two-dimensional
dose-finding algorithm is described as follows:

(1) Patients in the first cohort are treated at the starting
dose combination (A, By/).

qf o 0 @) 0

p 7Ty | 7o
q; O O O @)

T | 7T

Drug B I 10 | 7“00
qzﬂ O < @) @) @)
g’ o o © o
p 23 Ps Pi

Drug A

Figure 1. Two-agent combinations with four dose levels for
each agent. Given the marginal toxicity probability (p§, qf),
we construct a latent 2 x 2 probability table, and present the
dose escalation and deescalation diagram.
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(2)

If the toxicity probability at the current dose combina-
tion, denoted by w3 satisfies

Pr(ﬂ_%urreut < ¢) > ¢,

the dose will be escalated to the higher dose combina-
tion that has a posterior estimate of the toxicity prob-
ability closest to the target ¢. If the current dose com-
bination is the highest (A;, Bk ), the next cohort of
patients continue to be treated at that dose combina-
tion.

If at the current dose combination,

Pr(r™ > ¢) > ¢,

the dose will be deescalated to the lower dose combina-
tion that has a posterior estimate of the toxicity prob-
ability closest to the target ¢. If the current dose is the
lowest (Aj, B1), the trial will be terminated.
Otherwise, the next cohort of patients continue to be
treated at the current dose combination.

Once the maximum sample size is reached, the dose
combination that has been utilized to treat patients and
has a toxicity probability closest to the target ¢ is se-
lected as the MTD combination.
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To ensure that the trial has desirable operating characteris-
tics, we can specify the maximum sample size and calibrate
c. and ¢4 using simulation studies.

4. Numerical Examples
4.1 Simulation Study

We examined the operating characteristics of the proposed
dose-finding procedure for two-agent combinations by sim-
ulating 14 scenarios as shown in Table 1. We used the
latent contingency table approach in our simulations to
accommodate overlapping toxicities between the two agents.
Instead of generating toxicity probabilities from our model,
we chose the toxicity probabilities arbitrarily so as to demon-
strate the robustness of the proposed design. Scenarios 1
to 8 simulated agent combination trials in which each agent
had four dose levels, and scenarios 9 to 14 simulated trials
with five dose levels of agent A and three dose levels of
agent B. We assumed a target toxicity probability of ¢ =
30%, a total sample size of 60, and a cohort size of three.

As a comparison for the proposed design, we also imple-
mented the CRM in which we converted each two-dimensional
dose-finding trial into a series of one-dimensional dose-finding
trials by fixing the dose of agent B and searching over the

Table 1
Fourteen scenarios for a two-agent combination trial with the target probability of toxicity 0.3. The MTD combinations
are in boldface.

Dose Agent A
level 1 2 3 4 5 1 2 3 4 5
Scenario 1 Scenario 2
4 0.30 0.50 0.60 0.70 0.20 0.30 0.45 0.50
3 0.15 0.30 0.52 0.60 0.16 0.18 0.30 0.45
2 0.10 0.20 0.30 0.55 0.14 0.16 0.20 0.30
1 0.08 0.14 0.19 0.30 0.08 0.13 0.16 0.18
Scenario 3 Scenario 4
4 0.30 0.50 0.55 0.60 0.50 0.55 0.60 0.70
3 0.12 0.30 0.50 0.55 0.30 0.50 0.55 0.60
2 0.10 0.15 0.30 0.45 0.12 0.30 0.50 0.55
1 0.08 0.12 0.16 0.18 0.10 0.15 0.30 0.45
Scenario 5 Scenario 6
4 0.48 0.52 0.55 0.58 0.50 0.55 0.60 0.70
3 0.42 0.45 0.50 0.52 0.15 0.30 0.50 0.60
2 0.30 0.40 0.48 0.50 0.10 0.12 0.30 0.45
1 0.15 0.30 0.40 0.45 0.06 0.08 0.10 0.15
Scenario 7 Scenario 8
Agent B 4 0.16 0.18 0.20 0.30 0.70 0.75 0.80 0.85
3 0.13 0.16 0.18 0.20 0.60 0.65 0.70 0.80
2 0.12 0.14 0.16 0.18 0.55 0.60 0.65 0.70
1 0.10 0.12 0.14 0.16 0.50 0.55 0.60 0.65
Scenario 9 Scenario 10
3 0.30 0.37 0.42 0.47 0.52 0.15 0.30 0.50 0.55 0.60
2 0.15 0.30 0.37 0.43 0.48 0.12 0.16 0.30 0.50 0.55
1 0.10 0.12 0.30 0.40 0.45 0.06 0.08 0.10 0.30 0.50
Scenario 11 Scenario 12
3 0.40 0.43 0.48 0.53 0.58 0.50 0.60 0.70 0.80 0.90
2 0.30 0.40 0.43 0.48 0.53 0.10 0.30 0.50 0.70 0.80
1 0.10 0.30 0.40 0.44 0.50 0.06 0.10 0.15 0.30 0.50
Scenario 13 Scenario 14
3 0.12 0.15 0.17 0.20 0.30 0.55 0.60 0.68 0.75 0.80
2 0.06 0.08 0.10 0.12 0.16 0.50 0.58 0.65 0.70 0.75
1 0.02 0.04 0.06 0.09 0.13 0.40 0.50 0.60 0.65 0.68
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Table 2
Selection probabilities of the CRM and the proposed two-dimensional design under
14 scenarios
CRM Two-dimensional design
Scenario 1 14.3 6.5 0.5 0.0 19.9 8.8 0.1 0.0
5.5 13.5 5.0 0.5 5.6 21.5 4.6 0.2
1.8 8.0 11.5 3.8 0.3 5.3 13.3 3.7
0.5 2.8 8.0 14.8 0.0 0.3 5.7 10.3
Scenario 2 6.0 10.8 6.0 1.8 4.9 19.1 13.2 2.8
2.3 6.8 10.3 5.3 1.0 5.9 16.2 11.3
1.8 4.5 6.3 12.5 0.2 0.9 4.7 15.4
0.5 2.0 3.25 19.3 0.0 0.0 0.4 3.1
Scenario 3 13.8 6.5 1.0 0.3 20.0 9.4 0.8 0.1
4.0 14.5 5.8 0.8 3.9 19.9 6.2 1.2
1.0 6.5 11.3 6.3 0.1 3.8 13.1 9.9
0.4 1.8 3.5 19.5 0.0 0.0 2.6 8.6
Scenario 4 8.5 2.0 0.5 0.0 2.5 0.3 0.0 0.0
14.3 6.0 1.0 0.3 27.3 7.3 0.2 0.0
4.3 14.5 5.0 1.0 5.5 22.9 6.8 0.2
1.0 5.5 12.5 6.3 0.0 5.6 17.5 2.6
Scenario 5 8.8 2.5 1.0 0.3 0.5 0.1 0.0 0.0
9.5 4.3 1.8 0.8 7.9 1.0 0.2 0.0
10.5 7.8 2.5 1.0 27.1 8.1 1.2 0.1
4.8 10.5 7.0 2.8 4.7 22.7 7.3 0.6
Scenario 6 8.8 1.8 0.5 0.0 13.4 1.7 0.1 0.0
5.5 13.5 5.0 0.8 8.9 24.5 6.5 0.5
0.8 5.8 12.0 6.5 0.1 1.9 16.8 14.6
0.3 1.0 2.0 22.0 0.0 0.1 1.2 9.8
Scenario 7 2.0 4.3 6.3 12.3 0.8 3.6 13.6 60.5
1.5 3.3 4.3 15.8 0.1 1.0 3.6 11.9
1.3 3.0 3.5 17.3 0.1 0.4 1.3 1.9
0.8 1.8 2.8 20.0 0.0 0.1 0.2 0.2
Scenario 8 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0
7.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0
8.0 1.8 0.5 0.0 0.2 0.0 0.0 0.0
CRM Two-dimensional design

Scenario 9 12.0 10.3 4.7 1.7 0.3 15.3 11.0 4.0 1.0 0.2
5.0 14.3 8.3 3.7 1.7 5.5 18.2 10.1 3.4 1.0
0.3 5.3 15.7 7.7 4.0 0.0 2.8 18.2 6.4 1.5
Scenario 10 5.7 19.7 6.7 0.7 0.3 9.7 22.9 6.4 0.6 0.1
1.3 8.0 17.0 5.7 1.0 0.0 2.4 21.8 9.4 1.0
0.0 0.3 6.3 19.7 6.7 0.0 0.0 2.6 18.2 4.9
Scenario 11 12.0 6.3 2.0 0.7 0.3 4.1 15 0.4 0.1 0.0
14.0 8.3 4.3 1.3 0.7 25.1 8.5 2.3 0.4 0.0
2.7 16.0 9.7 1.3 1.3 3.8 29.3 13.3 1.8 0.2
Scenario 12 9.7 1.3 0.0 0.0 0.0 12.6 0.3 0.1 0.0 0.0
4.0 22.7 6.3 0.0 0.0 4.8 37.1 13.9 0.5 0.0
0.0 1.0 8.3 17.7 6.3 0.0 0.5 7.7 18.6 3.5
Scenario 13 1.0 2.7 5.3 7.7 16.3 0.0 0.2 1.8 14.3 82.1
0.3 0.7 2.3 3.0 27.0 0.0 0.0 0.0 0.2 1.6
0.0 0.0 0.3 1.3 31.7 0.0 0.0 0.0 0.0 0.0
Scenario 14 6.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9.3 1.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0
16.0 4.7 0.3 0.0 0.0 1.4 0.7 0.0 0.0 0.0
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Table 3
Numbers of patients treated at each dose combination for the CRM and the proposed two-dimensional design under
14 scenarios
CRM Two-dimensional design
Scenario 1 8.2 4.2 1.2 0.4 8.1 4.3 1.1 0.2
4.4 6.5 3.0 1.1 5.6 7.0 2.2 0.6
2.6 4.4 5.0 3.0 3.8 2.9 4.6 2.2
1.9 2.7 3.8 6.7 3.3 2.9 3.6 4.0
Scenario 2 4.5 5.3 3.2 1.8 4.3 6.0 4.0 2.0
3.2 3.9 4.2 3.6 3.6 3.2 5.5 3.5
2.8 3.3 3.2 5.7 3.8 1.0 2.4 4.8
1.8 2.3 2.6 8.2 3.6 3.0 2.6 3.2
Scenario 3 8.1 4.1 1.3 0.5 8.3 4.4 1.5 0.6
3.8 6.5 3.3 1.3 5.1 6.7 2.6 1.3
2.2 3.8 4.9 4.0 3.5 2.0 4.2 3.6
1.8 2.2 2.7 8.4 3.3 2.7 2.9 4.0
Scenario 4 7.6 2.0 0.8 0.3 3.5 0.7 0.1 0.0
8.1 4.0 1.3 0.6 10.5 3.2 0.4 0.1
3.9 6.5 3.1 1.5 7.0 8.6 2.7 0.7
2.2 3.8 5.1 3.9 3.8 5.2 7.1 2.6
Scenario 5 7.8 2.1 0.9 0.4 1.0 0.2 0.0 0.0
7.3 2.8 1.3 0.8 4.9 0.9 0.1 0.0
7.1 4.2 1.7 1.0 12.4 3.9 0.8 0.2
4.1 5.4 3.3 2.1 9.5 10.5 4.3 0.8
Scenario 6 7.7 1.9 0.8 0.3 5.6 1.7 0.6 0.3
4.5 6.2 3.0 1.2 6.5 7.5 2.8 1.7
2.1 3.6 5.1 4.2 3.6 2.1 5.3 5.1
1.5 1.8 2.1 9.6 3.2 2.7 3.0 5.2
Scenario 7 3.0 3.1 3.0 5.7 3.9 3.7 5.9 14.0
2.6 2.9 2.7 6.8 3.3 1.2 1.8 4.9
2.3 2.6 2.5 7.6 3.6 0.5 0.8 2.3
2.0 2.2 2.3 8.5 3.5 2.6 2.2 2.3
Scenario 8 5.5 0.6 0.1 0.0 0.0 0.0 0.0 0.0
6.7 1.0 0.2 0.1 0.4 0.0 0.0 0.0
7.6 1.6 0.4 0.1 3.4 0.0 0.0 0.0
7.8 1.9 0.6 0.2 6.9 0.7 0.1 0.0
CRM Two-dimensional design
Scenario 9 8.0 5.6 2.9 1.4 0.8 8.0 4.2 2.4 0.9 0.2
4.7 7.4 4.2 2.1 1.5 6.5 7.0 4.3 2.0 0.7
1.9 4.3 6.6 3.9 3.3 3.7 4.9 7.2 3.2 1.0
Scenario 10 5.0 8.8 4.1 1.3 0.6 5.8 6.4 3.9 15 0.4
2.8 5.3 7.1 3.3 1.4 3.7 2.1 6.6 4.1 1.4
1.4 1.9 4.2 7.4 5.0 3.3 2.7 4.4 7.5 3.1
Scenario 11 9.2 3.9 1.7 0.7 0.4 4.2 1.4 0.4 0.1 0.0
8.9 5.0 2.4 1.2 0.8 10.4 4.8 1.6 0.4 0.1
3.7 7.8 4.6 2.3 1.6 8.5 14.2 5.7 1.2 0.2
Scenario 12 9.8 2.3 0.5 0.1 0.0 8.0 1.3 0.3 0.0 0.0
4.2 10.4 4.4 0.9 0.2 7.9 12.5 3.9 0.6 0.3
1.5 2.3 4.7 6.8 4.8 3.4 3.5 6.6 6.5 2.0
Scenario 13 2.5 3.3 3.1 3.7 7.4 4.1 1.9 2.6 6.3 21.8
1.6 2.0 2.3 2.4 11.7 3.1 0.1 0.2 0.4 2.5
1.1 1.3 1.5 2.0 14.1 3.0 2.8 2.6 2.2 3.2
Scenario 14 8.3 1.7 0.5 0.1 0.0 0.6 0.0 0.0 0.0 0.0
9.3 2.2 0.6 0.2 0.0 4.0 0.2 0.0 0.0 0.0
10.7 3.9 1.1 0.3 0.1 8.3 2.1 0.2 0.0 0.0
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Table 4
Total numbers of observed tozicities for the CRM and the proposed two-dimensional design under 14 scenarios
Scenario
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CRM 17.9 14.5 16.7 20.0 20.7 16.3 10.5 20.3 18.6 17.7 19.9 18.6 9.1 19.8
Two-dim. design 16.0 14.1 15.8 16.8 15.5 15.9 11.0 6.0 16.2 16.0 16.4 16.6 10.6 6.9

doses of agent A. For example, each 4 x 4 agent combina-
tion trial in scenarios 1 to 8 could be converted into four
one-dimensional dose-finding trials by fixing agent B at dose
levels 1, 2, 3, and 4, respectively. Similarly, each 5 x 3
trial in scenarios 9 to 14 could be converted into three par-
allel one-dimensional dose-finding trials and conducted us-
ing the CRM. For our simulations, 60 patients were equally
distributed to the resulting one-dimensional dose-finding tri-
als. For the 4 x 4 trial, we allocated 15 patients to each of the
four one-dimensional trials; for the 5 x 3 trial, we allocated
20 patients to each of the three one-dimensional trials. Due to
practical needs, we adopted a modified CRM:

(i) each trial always starts at the lowest dose level;

(ii) dose escalation is restricted to one level of change
only;

if Pr(toxicity at the lowest dose > ¢) > 0.9, the trial
will be terminated for safety.

We specified the prior toxicity probabilities as (pi, p2, ps,
p4) = (q1, g2, g3, q4) = (0.075, 0.15, 0.225, 0.3) for the 4 x 4
dose combinations; and (p1, pa, ps, ps, ps) = (0.06, 0.12, 0.18,
0.24, 0.30) and (q1, g2, g3) = (0.1, 0.2, 0.3) for the 5 x 3 dose
combinations. We set ¢, = 0.7 and ¢4 = 0.45, and simulated
2000 trials under each scenario.

We designed the scenarios to accommodate the commonly
encountered situations in which different numbers and lo-
cations of target dose combinations may exist in the dose
combination space. Table 2 presents the selection probabil-
ities for the MTD combinations, and Table 3 reports the
numbers of patients treated at each dose combination av-
eraged over 2000 simulations. In particular, scenario 1 had
four MTD combinations in the two-dimensional space, for
which the CRM and our design performed comparably. Both
designs selected the targets with similar percentages and
treated a similar amount of patients at each dose pair. For
scenarios 2 to 4, there were three MTD combinations, but
located at different positions. The proposed design showed
superior performances by increasing the selection percent-
age more than 15% compared to the CRM. Both designs
treated approximately the same number of patients at the
MTD combinations in scenarios 2 and 3, while the proposed
design treated six more patients in scenario 4. For scenarios 5
and 6, there existed two MTD combinations per scenario,
and scenario 7 had only one MTD combination. The CRM
performed worse when there were fewer MTD combinations
in the dose searching space, and the selection probabilities
based on our design were more than doubled as shown in sce-
narios 5, 6, and 7. The reason is that the CRM allocated the
same number of patients to each trial regardless of whether
there existed an MTD combination, and no information was

borrowed across these parallel trials. More patients in the
CRM trials were treated at doses either excessively toxic or
far below the MTD. In contrast, our proposed design pro-
vided the freedom to move around the entire dose combina-
tion space. All the data collected across the two-dimensional
dose space would be modeled and integrated together for de-
cision making. Scenario 8 was designed to examine whether
the proposed method would terminate the trial early if all
the dose combinations were excessively toxic. Both our pro-
posed procedure and the CRM had the ability to stop the
trial before a large number of patients were treated at toxic
doses. In the 5 x 3 grid with 15 dose pairs, scenarios 9 and 10
contained three MTD combinations each, with our proposed
design showing slightly higher selection percentages. Scenar-
ios 11 to 13 had one or two MTD combinations, in which the
performance of the CRM again was inferior because informa-
tion could not be shared across the parallel trials. In scenario
14, all of the dose combinations were excessively toxic, but
the CRM selected the overtoxic doses as the MTD with cer-
tain percentages. Our design collected all the data to map out
the dose combinations’ toxicity profile in the whole space, and
terminated the trial in scenario 14 much sooner.

Table 4 exhibits the total number of observed toxicities
averaged over 2000 simulations. Across these 14 scenarios,
our design demonstrated a total of 193.8 observed toxicities,
whereas the CRM demonstrated 240.6 toxicities. The gain of
our design stems from the freedom to move around the dose
combination space to choose the optimal dose combination to
treat patients during the trial.

4.2 Robustness Analysis

To further examine the robustness of our design, we simulated
six scenarios from a logistic regression model by taking the
doses of the two agents as covariates. We took the doses for
agent A as Z,4 = 0.125, 0.25, 0.375, and 0.5, and those for
agent B as Zp = 0.1, 0.15, 0.2, and 0.25. The joint toxicity
probability was given by

— exp(Bo + B124 + FoZp + 3324 Z5)
! 1+exp(Bo+ $1Za + PoZp + BsZaZp)’

(3)

where (j, k) are the dose levels corresponding to (Z4, Zp).
We present the six different scenarios generated from model
(3) in Table 5, and the selection percentage and the number
of patients treated at each dose combination in Table 6. In
scenarios 1, 3, and 4, the proposed method selected the tar-
get with the highest percentage, while the dose combinations
close to the target were also selected with certain percentages.
However, in scenarios 2 and 5, our design selected the target
dose combination with the second highest percentage, because
the toxicity probabilities were very close and the sample size
was small. For scenario 6 with all of the doses being overtoxic,
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Table 5
Six scenarios generated from a logistic regression model for a 4 x 4 two-agent combination
trial with the target probability of toxicity 0.3. The MTD combinations are in boldface.

Dose Agent A
level 1 2 3 4 1 2 3 4
Scenario 1 Scenario 2
4 0.28 0.41 0.55 0.68 0.17 0.29 0.45 0.62
3 0.25 0.35 0.48 0.60 0.14 0.23 0.35 0.50
2 0.22 0.30 0.40 0.51 0.12 0.18 0.27 0.38
1 0.19 0.26 0.34 0.43 0.09 0.14 0.19 0.27
Scenario 3 Scenario 4
4 0.37 0.72 0.92 0.98 0.04 0.09 0.17 0.32
Agent B 3 0.26 0.59 0.85 0.96 0.03 0.06 0.12 0.23
2 0.18 0.44 0.74 0.91 0.02 0.05 0.09 0.16
1 0.12 0.30 0.59 0.82 0.02 0.03 0.06 0.11
Scenario 5 Scenario 6
4 0.12 0.26 0.48 0.71 0.78 0.94 0.99 1.00
3 0.09 0.19 0.36 0.57 0.68 0.90 0.97 0.99
2 0.07 0.14 0.26 0.43 0.57 0.83 0.94 0.98
1 0.05 0.10 0.18 0.30 0.45 0.73 0.90 0.97
Table 6 Table 7

Robustness analysis: selection probabilities and numbers of
patients treated at each dose combination for the proposed
two-dimensional design under six scenarios generated from a
logistic regression model

Selection probability Number of patients

Scenariol 6.7 43 04 0.0 33 23 0.7 0.2
94 115 25 0.1 58 51 1.5 0.3
6.3 16.1 6.4 05 87 7.2 29 0.5
1.2 123 87 14 54 6.0 37 12
Scenario 2 4.0 13.3 10.0 1.1 3.7 5.1 4.3 2.6
22 87 181 49 36 43 55 2.9
05 18 11.2 88 39 23 45 3.3
00 08 63 82 32 30 37 37
Scenario3 9.7 0.1 0.0 0.0 38 06 0.0 0.0
187 25 00 00 90 21 01 0.0
143 151 0.2 0.0 133 7.6 05 0.0
1.6 28.8 25 00 56 11.8 2.8 0.3
Scenario4 0.1 0.1 19 91.5 3.7 12 19 27.9
00 00 01 54 31 01 02 32
00 00 00 07 31 00 01 22
00 00 00 05 30 30 32 4.0
Scenario 5 2.7 9.9 106 0.5 3.2 41 42 27
09 38 196 33 31 28 6.1 3.1
01 05 133 94 33 11 56 4.4
0.0 0.1 10.0 15,5 3.0 3.1 45 5.7
Scenario6 0.0 0.0 00 00 00 0.0 0.0 0.0
00 00 00 00 04 00 00 0.0
00 00 00 00 41 01 00 0.0
00 00 00 00 86 07 00 0.0

the proposed design did not select any dose combination. It
can be seen that our design still performs reasonably well,
even though the underlying true model is so different from
our model.

We also conducted a sensitivity analysis to examine the
performance of our design using different hyperparameters in

Sensitivity analysis: selection probabilities and numbers of
patients treated at each dose combination for the
two-dimensional design under different prior distributions.
The true toxicity probabilities for dose combinations are
displayed in scenario 1 in Table 1.

Selection probability Number of patients

a, B ~ Unif(0.2, 2); v ~ Gamma(0.1, 0.1)

19.9 8.8 0.1 0.0 8.1 4.3 1.1 0.2
5.6 21.5 4.6 0.2 5.6 7.0 2.2 0.6
0.3 5.3 13.3 3.7 3.8 2.9 4.6 2.2
0.0 0.3 5.7 10.3 3.3 2.9 3.6 4.0

a, B ~ Unif(0.01, 4); v ~ Gamma(0.05, 0.05)

12.9 7.2 0.5 0.1 6.4 3.8 1.3 0.5
6.3 22.1 7.4 0.3 5.7 7.9 3.0 1.0
0.5 6.7 17.9 3.7 3.8 4.0 5.9 2.5
0.0 0.7 6.9 7.1 3.3 3.0 4.0 3.8

a, B ~ Unif(0.01, 8); v ~ Gamma(0.01, 0.01)

10.6 6.6 0.8 0.1 6.0 3.6 1.4 0.7
7.8 21.6 8.7 0.8 5.8 7.8 3.1 1.2
0.7 6.2 16.1 3.5 4.1 4.1 5.4 2.3
0.0 2.1 7.0 7.7 3.1 3.3 4.2 3.8

a, B ~ Unif(0.01, 16); v ~ Gamma(0.005, 0.005)

10.3 7.0 1.3 0.2 5.6 3.5 1.4 0.8
8.1 20.9 9.1 0.7 5.8 7.5 3.3 1.2
0.9 6.8 14.7 4.0 4.1 4.1 5.6 2.2
0.0 2.1 6.7 7.6 3.1 3.4 4.5 3.9

the prior distributions. Focusing on scenario 1 in Table 1, we
took several different sets of parameter values for the prior
distributions of «, 3, and 7. From Table 7, we can see that
the selection percentages of the MTD combinations and the
numbers of patients treated at each dose combination are
quite similar under these different prior distributions.
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4.3 Trial Conduct

We illustrate the proposed method with a renal cell cancer
trial design at M. D. Anderson Cancer Center. The trial aimed
to investigate the toxicity of 16 dose combinations consisting
of four dose levels of an oral, small-molecule inhibitor (agent
A) and four dose levels of an intravenous drug (agent B). The
target toxicity rate was 30%, and the total number of patients
in the trial was 60 with a cohort size of 3. We took ¢, = 0.7 and
c¢qg = 0.45. During the initial phase of the trial, dose combina-
tions of (Al, Bl), (Ah Bz), (1417 B;\;)7 (AQ, Bl), and (A3, Bl)
were administered until two toxicities occurred. Our proposed
model was then used to estimate the toxicity probability for
each dose combination. The estimated toxicity probability of
(A1, Bj) was closest to the trial’s target toxicity rate, and
was therefore chosen as the starting dose combination for the
formal two-dimensional design, i.e., (A5, By') = (A1, B3). Our
design assigned the cohorts to the dose combinations in the
following sequence: (A1, Bj3), (A1, B4), (Aa, Bs), (A2, Bj),
(A, By), (As, By), (As, By), (As, Bs), (Ay, Bo), (As, Bs),
(Ag, Bg)7 (Ag, Bz)7 (Af;, Bz), (A‘;, BQ), and (A‘;, BQ) Cor-
respondingly, the numbers of patients per cohort who experi-
enced toxicity were 0, 2,0,1,1,2,1,1,2,0,0,0, 1, 2, and 1.
Once the outcomes of all the 60 patients were observed and
analyzed, (A3, By) was recommended as the MTD combina-
tion, with an estimated toxicity probability of 0.302.

5. Concluding Remarks

We have proposed to model the toxicity probabilities of two
combined agents by constructing a latent 2 x 2 contingency
table into which the correlation between the bivariate binary
outcomes can be easily incorporated. Due to partially overlap-
ping toxicities in agent combinations, we collapsed the three
undistinguishable cells in the 2 x 2 table to derive a bino-
mial likelihood function. Our design utilized all the available
data information to efficiently reorder the toxicity probabil-
ities in the entire dose combination space. It escalates and
deescalates the dose by moving freely in the two-dimensional
dose-finding space, which in turn helps to find the MTD com-
bination faster. The proposed procedure is coherently updated
with additional data as more patients enter the trial and more
outcomes are observed. Simulation studies showed that our
method is rather robust to the model misspecifications.

The key of using the latent 2 x 2 tables is to model the tox-
icity probabilities from the two agents and then collapse the
three cells with undistinguishable toxicity. Usually, the toxi-
cities of two agents are mostly overlapping. Thus, we cannot
recover the information on the common toxicities, i.e., which
agent has produced what proportion of the toxicity. Our goal
is to use the latent process as a mechanism so that we can
easily introduce the correlation and model the joint toxicity
probability.

Although several MTDs may exist in a set of dose com-
binations, our procedure focuses on finding one MTD. The
proposed design can be easily adapted for trials in which the
goal is to find multiple MTD combinations (i.e., a trial that
fixes the dose of one agent and searches over the other agent’s
doses to find its MTD in the combination). In this situation,
we can select the MTD as the dose of agent A that has a
toxicity probability closest to the target, while fixing agent B
at each prespecified dose.
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