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SUMMARY

We propose a generalized method of moments approach to the accelerated failure time model
with correlated survival data. We study the semiparametric rank estimator using martingale-
based moments. We circumvent direct estimation of correlation parameters by concatenating
the moments and minimizing a quadratic objective function. We establish the consistency and
asymptotic normality of the parameter estimators, and derive the limiting distribution of the
objective function. We carry out simulation studies to examine the finite-sample properties of the
method, and demonstrate its substantial efficiency gain over the conventional method. Finally, we
illustrate the new proposal with an example from a diabetic retinopathy study.

Some key words: Accelerated failure time model; Asymptotic normality; Correlated survival data; Estimation
efficiency; Moment condition; Rank estimation; Semiparametric model.

1. INTRODUCTION

Multivariate failure-time data often arise in biomedical and clinical studies, where the un-
derlying correlations among the observed failure times may be artificially or naturally induced
through clustering. For instance, in litter-matched mice experiments or family based genetic re-
search, observations from subjects within the same cluster cannot be assumed to be independent,
and ignoring the correlations would cause estimation efficiency loss. The proportional hazards
model (Cox, 1972) has been generalized to accommodate correlated survival data (Wei et al.,
1989; Lee et al., 1992). As an important alternative, the accelerated failure time model directly
characterizes the covariate effects on accelerating or decelerating survival. It formulates a linear
relationship between the logarithm of the failure time and covariates. Estimation and inference
under the accelerated failure time model are often based on least-squares or rank estimators
(Prentice, 1978; Buckley & James, 1979; Tsiatis, 1990; Ying, 1993; Jin et al., 2003).

When the survival data are correlated, Lin & Wei (1992) and Lee et al. (1993) adopted a
working independence assumption for the least-squares and rank estimators under the marginal
linear regression model. A natural way of gaining efficiency is to incorporate the correlation
matrix in the estimation procedure. However, the true correlation structure is usually un-
known. Gray (2003) studied weighted estimating equations for linear regression analysis of
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clustered survival data. More recently, Jin et al. (2006) developed rank-based monotone esti-
mating functions based on the Gehan weight (Gehan, 1965), which guarantees a unique solu-
tion, as a global minimum, via linear programming. Under the accelerated failure time model,
the variance-covariance matrix of the parameter estimators typically depends on the baseline
hazard. Various resampling methods have been proposed for overcoming the difficulty of non-
parametric functional estimation of the baseline hazard, but these are computationally intensive
(Parzen et al., 1994; Jin et al., 2001).

The usual estimating equation can be viewed as a special case of the generalized method of
moments, which has been extensively studied in econometrics (Hansen, 1982; Pakes & Pollard,
1989; Newey, 2004; Hall, 2005). Hansen (1982) established a comprehensive framework for
the generalized method of moments and provided rigorous justification and asymptotics for
the estimator. Pakes & Pollard (1989) derived asymptotic theories for the simulated method of
moments when the function in the moment condition may be discontinuous. Qu et al. (2000)
applied the generalized method of moments to longitudinal studies, and showed its advantages
over generalized estimating equations (Liang & Zeger, 1986). Lai & Small (2007) proposed to
analyze longitudinal data with three different types of time-dependent covariates based on the
generalized method of moments. Since it combines moments, the generalized method of mo-
ments is parsimonious and useful for constructing efficient estimators, particularly when the
efficiency bound is complicated and moment conditions are relatively easy to obtain. Under
some regularity conditions (Chamberlain, 1987), the generalized method of moments estimator
achieves the semiparametric efficiency bound in the sense of Bickel et al. (1993). In contrast to
the generalized linear model, in which the variance component is usually a function of the mean
parameter (McCullagh & Nelder, 1989, Ch. 2), rank estimation based on the generalized method
of moments under the accelerated failure time model does not have this elegant structure. It thus
makes estimation and inference much more challenging from both numerical and theoretical
perspectives. Without needing to specify the correlation structure and the baseline hazard, we
take a linear expansion of the weight matrix over a set of commonly used basis matrices, and
develop rank-based moments using martingale properties.

2. RANK ESTIMATION

For i = 1, . . . , n and k = 1, . . . , Ki , let Tik and Cik be the failure and censoring times for the
kth subject in the i th cluster. We assume that Tik is conditionally independent of Cik given the
p-dimensional bounded covariates Zik . Denote the observed time by Xik = min(Tik, Cik) and
the censoring indicator by �ik = I (Tik � Cik), where I (·) is the indicator function. Observations
from the same cluster may be dependent but exchangeable. We allow the cluster size to vary by
setting log(Xik) to be −∞, with taking log(Xik) = −106 being satisfactory in numerical studies,
�ik = 0 and Zik = 0, when Tik is missing for cluster i .

The marginal accelerated failure time model is given by

log(Tik) = βT
0 Zik + εik,

where the distribution of the errors (εi1, . . . , εi Ki )
T is unknown and unspecified. For each i ,

(εi1, . . . , εi Ki ) are potentially dependent and share a common marginal distribution. For any i
and j , let K = min(Ki , K j ). Then (εi1, . . . , εi K ) and (ε j1, . . . , ε j K ) have the same distribution
with a continuous and bounded density on (−∞, τ + ξ ]K , for fixed truncation points τ > 0 and
ξ > 0. We compute the residuals, eik(β) = log(Xik) − βT Zik , based on which we define the at-
risk process Yik(u, β) = I {eik(β) � u} and the counting process Nik(u, β) = �ik I {eik(β) � u}.
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The linear rank-estimating equation takes the form

n−1
n∑

i=1

Ki∑
k=1

∫ τ

−∞
φ(u, β)

{
Zik − Z̄ (u, β)

}
dNik(u, β) = 0, (1)

where φ(u, β) satisfies Condition 5 in Ying (1993, pp. 90–1), and

Z̄ (u, β) =
∑n

i=1
∑Ki

k=1 Yik(u, β)Zik∑n
i=1

∑Ki
k=1 Yik(u, β)

.

If φ(u, β) = 1, (1) reduces to the log-rank statistic; if φ(u, β) = n−1 ∑n
i=1

∑Ki
k=1 Yik(u, β), it

becomes the Gehan statistic; and if φ(u, β) is the marginal Kaplan–Meier estimator based on
{(eik(β),�ik), i = 1, . . . , n; k = 1, . . . , Ki }, it corresponds to the Peto–Prentice generalization
of the Wilcoxon statistic (Peto & Peto, 1972; Prentice, 1978). The empirical estimator of the
square-integrable martingale is M̂ik(t, β) = Nik(t, β) − ∫ t

−∞ Yik(u, β)d�̂0(u, β), where

�̂0(t, β) =
∫ t

−∞

∑n
i=1

∑Ki
k=1 d Nik(u, β)∑n

i=1
∑Ki

k=1 Yik(u, β)
.

We can rewrite (1) in the vector form

n−1
n∑

i=1

∫ τ

−∞
Zi	i (u, β) dM̂i (u, β) = 0, (2)

where M̂i (u, β) = {M̂i1(u, β), . . . , M̂i Ki (u, β)}T, Zi = (Zi1, . . . , Zi Ki ), and 	i (u, β) is a
Ki -diagonal matrix with elements φ(u, β).

The estimator obtained from (2), although still consistent, may not be efficient, as it completely
ignores the correlation information. A natural way of enhancing estimation efficiency is by
incorporating a weight matrix to account for the within-cluster correlation; that is,

n−1
n∑

i=1

∫ τ

−∞
Zi	

1/2
i (u, β)R−1(α)	1/2

i (u, β) dM̂i (u, β) = 0, (3)

where R(α) is the unknown correlation matrix. Regardless of the complexity of R−1(α), it may
be represented as

R−1(α) =
m∑

l=1

αlC(l),

where (α1, . . . , αm) are unknown constants, and (C(1), . . . , C(m)) are a set of known basis matrices.
The linear span of C(l) provides an adequate approximation of the true correlation structure. For
example, if R(α) is an exchangeable matrix, then R−1(α) = α1C(1) + α2C(2), where C(1) = I ,
the identity matrix, and C(2) has 0 on the diagonal and 1 elsewhere; and, if R(α) is a first-order
autoregressive AR(1) correlation matrix, R−1(α) = α1C(1) + α2C(2) + α3C(3), where C(1) = I ,
C(2) is of the sandwich form with two main off-diagonals of 1 and 0 elsewhere, and C(3) is a
matrix with the (1, 1) and (K , K ) elements equal to 1 and 0 elsewhere.

Since martingale integrals have zero-mean, the expanded moment conditions are

n−1
n∑

i=1

∫ τ

−∞
Zi	

1/2
i (u, β)C(l)	

1/2
i (u, β) dM̂i (u, β) = 0 (l = 1, . . . , m). (4)
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The unknown coefficients αl can take any real values, which, however, do not need to be estimated
in the generalized method of moments procedure. Furthermore, the αl form an implicit weighting
scheme that automatically adjusts the contribution of C(l) to the entire correlation structure.
The proposed method is completely different from the usual weighted estimating equation;
see for example Cai & Prentice (1995) and Gray (2003). Traditionally, one would solve the
weighted estimating equation (3) directly, and this can be computationally difficult. In our case,
we concatenate the moments in (4) and import them into a minimization procedure in such a way
that we do not need to estimate R(α).

3. GENERALIZED METHOD OF MOMENTS

3·1. Estimation procedure

Instead of estimating αl , we split up the moment conditions corresponding to C(l) (l =
1, . . . , m). In this case, there are more estimating equations than unknown parameters. If we
define W (l)

i (u, β) = 	
1/2
i (u, β)C(l)	

1/2
i (u, β), and w

(l)
i jk(u, β) is its ( j, k)th element, then let

a(l)
ik (u, β) = ∑Ki

j=1 Zi jw
(l)
i jk(u, β) and

ā(l)(u, β) =
∑n

i=1
∑Ki

k=1 Yik(u, β)a(l)
ik (u, β)∑n

i=1
∑Ki

k=1 Yik(u, β)
.

We construct an extended moment in the form Sn(β) = n−1 ∑n
i=1 Ui (β), where

Ui (β) =

⎛
⎜⎜⎝

∑Ki
k=1

∫ τ
−∞

{
a(1)

ik (u, β) − ā(1)(u, β)
}

dM̂ik(u, β)
...∑Ki

k=1

∫ τ
−∞

{
a(m)

ik (u, β) − ā(m)(u, β)
}

dM̂ik(u, β)

⎞
⎟⎟⎠ .

The quadratic objective function is given by Qn(β) = ST
n(β)�−1

n (β)Sn(β), where it makes in-
tuitive sense to choose �n(β) as the empirical estimate of the variance-covariance matrix for
n1/2Sn(β),

�n(β) = n−1
n∑

i=1

Ui (β)U T
i (β) − Sn(β)ST

n(β).

We obtain β̂ by minimizing Qn(β), i.e., β̂ = arg min
β

Qn(β). To minimize Qn(β), we can use

the Nelder–Mead simplex algorithm, which does not require any derivatives or continuity of
the target function (Nelder & Mead, 1965; Press et al., 1989). In the original work of Hansen
(1982), a two-stage estimation procedure was provided: at the j th iteration, one can obtain β̂ j

by minimizing ST
n(β)�−1

n (β̂ j−1)Sn(β), with the estimator from the previous iteration plugged
into �−1

n (β̂ j−1) so that the only unknown parameter is in Sn(β). Equivalently, we can minimize
ST

n(β)�−1
n (β)Sn(β) directly with respect to β (Hansen et al., 1996), and this is the procedure we

used in our numerical studies.

3·2. Asymptotic properties

Let Gn(β) = {GT
(1)(β), . . . , GT

(m)(β)}T, where G(l)(β) = ∫ τ
−∞ A(l)(u, β) dλ0(u), λ0(u) is the

baseline hazard function and

A(l)(u, β) = n−1
n∑

i=1

Ki∑
k=1

Yik(u, β)
{

a(l)
ik (u, β) − ā(l)(u, β)

}
Z T

ik (l = 1, . . . , m).
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Let G(β) = {GT
(1)(β), . . . ,GT

(m)(β)}T, where G(l)(β) is the limit of G(l)(β), and let �(β) be the limit
of �n(β).

THEOREM 1. Under Assumptions A1–A7 in the Appendix, β̂ converges to β0, in probability.

THEOREM 2. Under Assumptions A1–A7 in the Appendix,

n1/2(β̂ − β0)→N
[
0, {GT(β0)�−1(β0)G(β0)}−1],

in distribution.

The limiting distribution of Qn(β) can be used for statistical inference. More generally, when
β contains nuisance parameters, the following theorem lays out the theoretical foundation for the
asymptotic distribution of the quadratic function.

THEOREM 3. Suppose that β = (γ T, θT)T, where the q-dimensional parameter γ is of interest,
and θ is a (p − q)-dimensional nuisance parameter. Under the null hypothesis H0 : γ = γ0, and
the local alternative hypothesis H1 : γ = γ0 + n−1/2ε, if we define θ̃ = arg min

θ
Qn(γ0, θ) and

(γ̂ , θ̂ ) = arg min
(γ,θ )

Qn(γ, θ), then, in distribution,

n{Qn(γ0, θ̃ ) − Qn(γ̂ , θ̂ )}→χ2
q (c),

a chi-squared distribution with q degrees of freedom and noncentrality parameter c =
εT(Jγ γ − Jγ θ J−1

θθ Jθγ )ε, where Jγ γ , Jγ θ and Jθθ correspond to the block matrices in
GT(β0)�−1(β0)G(β0).

The proofs of the three theorems are outlined in the Appendix. As special cases without
any nuisance parameters, under the null hypothesis, the quadratic function nQn(β̂) has the
asymptotic distribution of χ2

mp−p, with m > 1. Moreover, in distribution, nQn(β0) → χ2
mp

and n{Qn(β0) − Qn(β̂)} → χ2
p, as n → ∞. These chi-squared tests are closely related to

the usual likelihood ratio tests, and GT(β0)�−1(β0)G(β0) behaves like Fisher’s information
matrix.

3·3. Estimation efficiency

We examine the efficiency gain of our estimator β̂ based on the generalized method of moments
approach. Without loss of generality, we compare the estimation efficiency of the generalized
method of moments procedure with only one correlation matrix, C(1), and that with additional
basis matrices.

We first partition G(β0) as G(β0) = {GT
(1)(β0), G̃T(β0)}T, where G(1)(β0) corresponds to the

first basis matrix C(1) and G̃(β0) = {GT
(2)(β0), . . . ,GT

(m)(β0)}T correspond to the remaining basis

matrices. If we let H (β0) = �22(β0) − �21(β0)�−1
11 (β0)�12(β0), then

�(β0) =
(

�11(β0) �12(β0)
�21(β0) �22(β0)

)
, �−1(β0) =

(
B11(β0) B12(β0)
B21(β0) B22(β0)

)
,

where

B11(β0) = �−1
11 (β0) + �−1

11 (β0)�12(β0)H−1(β0)�21(β0)�−1
11 (β0),

B12(β0) = BT
21(β0) = −�−1

11 (β0)�12(β0)H−1(β0),

B22(β0) = H−1(β0).
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Since �(β0) is positive definite, as is H (β0), we can write H (β0) = LT(β0)L(β0). Then, some
algebraic manipulation gives

GT(β0)�−1(β0)G(β0) = GT
(1)(β0)�−1

11 (β0)G(1)(β0)

+{
GT

(1)(β0)�−1
11 (β0)�12(β0)L−1(β0) − G̃T(β0)L−1(β0)

}⊗2.

Since {GT
(1)(β0)�−1

11 (β0)G(1)(β0)}−1 is the covariance matrix of β̂ obtained by only incorpo-

rating C(1), it follows that {GT
(1)(β0)�−1

11 (β0)G(1)(β0)}−1 − {GT(β0)�−1(β0)G(β0)}−1 is positive
semidefinite.

3·4. Variance estimation

The variance-covariance matrix of β̂ involves the baseline hazard function of the error, which
is difficult to estimate reliably through nonparametric methods. Various resampling techniques
have been investigated for variance estimation that circumvent nonparametric estimation; see
for example Parzen et al. (1994) and Jin et al. (2001). To overcome the intensive computation of
resampling procedures, we take a variance decomposition method based on a linear expansion of
Sn(β) around β0, motivated by Huang (2002). Through a Cholesky decomposition, we decompose
the estimated variance-covariance matrix of Sn(β) at β = β̂, i.e., n−1�n(β̂) = DT D, where
D = (d1, . . . , dmp). Then the perturbed version of the generalized method of moments estimator
β̃ j satisfies

n−1
n∑

i=1

Ui (β̃ j ) = d j ( j = 1, . . . , mp).

Once again, we can obtain β̃ j by minimizing Q̃n(β j ) = S̃T
n(β j )�̃−1

n (β j )S̃n(β j ), where

S̃n(β j ) = n−1 ∑n
i=1 Ũi (β j ), Ũi (β j ) = Ui (β j ) − d j and �̃n(β j ) = n−1 ∑n

i=1 Ũi (β j )Ũ T
i (β j ) −

S̃n(β j )S̃T
n(β j ). Finally, if we define η = (β̃1 − β̂, . . . , β̃mp − β̂), then ηηT is a consistent es-

timator for the variance-covariance matrix of β̂. The validity of the proposed variance
estimation can be established by taking a linear expansion of the estimating function.
For each j , we can show that β̃ j = β̂ + �(β0)d j + op(n−1/2 + ‖β̃ j − β̂‖), where �(β0) =
{GT(β0)�−1(β0)G(β0)}−1GT(β0)�−1(β0).

4. SIMULATION STUDIES

In our simulation studies, the failure times were simulated from the marginal linear regres-
sion model, where (εi1, . . . , εi K )T were generated from a multivariate normal distribution with
zero-mean and an exchangeable covariance matrix of IK + ρ(1K 1T

K − IK ), with ρ = 0·5 and
0·8, IK being the K × K identity matrix and 1K a K -vector of ones. We included two indepen-
dent covariates in the model: Z1 ∼ Ber(0·5) and Z2 ∼ Un[0, 1], with the regression coefficients
β1 = β2 = 1. Censoring times were generated from uniform distributions to yield desirable cen-
soring percentages. The number of clusters was n = 100, and the cluster size was K = 4. We
implemented the log-rank, Gehan and Wilcoxon linear rank statistics for comparison. For each
configuration, we carried out 1000 simulations.

For each data realization, we computed the biases for the proposed estimators of β1 and β2,
the standard errors, using the decomposition method, the standard deviations, characterizing the
sampling variation over 1000 simulations, and the 95% confidence interval coverage rates. The
estimation performance can be assessed via the mean squared error. Table 1 summarizes results for
m = 1 with only one identity matrix, C(1) = I4, and for m = 2, with an additional basis matrix with

 at U
niversity of H

ong K
ong on Septem

ber 2, 2013
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


Method of moments estimation for regression 299

Table 1. Simulation study of generalized method of moments rank estimation with cluster size
K = 4 and exchangeable multivariate normal errors. The basis matrices are C(1) = I4 and

C(2) = 141T
4 − I4

β1 β2

ρ c% Method m Bias SE SD MSE CR Bias SE SD MSE CR

(×10−2) (×10−2)
0·5 0 Log rank 1 −0·2 10·9 10·9 1·2 94·1 −0·3 18·7 18·5 3·4 94·8

2 −0·1 9·0 9·1 0·8 93·6 −0·6 15·6 16·1 2·6 94·0
Gehan 1 −0·2 10·2 10·0 1·0 95·0 −0·1 17·5 17·4 3·0 94·1

2 −0·2 8·3 8·3 0·7 94·9 −0·6 14·3 14·9 2·2 94·1
Wilcoxon 1 −0·2 10·2 10·1 1·0 94·9 −0·1 17·5 17·4 3·0 94·4

2 −0·2 8·3 8·3 0·7 94·6 −0·6 14·3 14·9 2·2 94·4
25 Log rank 1 −0·3 11·5 11·4 1·3 95·1 0·0 19·9 19·7 3·9 94·6

2 −0·4 10·1 10·1 1·0 95·0 −0·1 17·6 17·6 3·1 94·1
Gehan 1 −0·2 10·9 10·7 1·2 94·6 −0·1 18·7 18·7 3·5 94·2

2 −0·3 9·3 9·3 0·9 94·4 −0·3 15·9 16·3 2·7 94·3
Wilcoxon 1 −0·3 10·8 10·7 1·1 95·2 −0·1 18·5 18·6 3·5 94·3

2 −0·3 9·2 9·2 0·8 94·5 −0·2 15·9 16·2 2·6 93·3
0·8 0 Log rank 1 0·0 10·6 10·7 1·1 93·7 0·1 18·4 18·2 3·3 94·7

2 0·0 6·1 6·3 0·4 92·5 −0·4 10·5 10·8 1·2 92·9
Gehan 1 −0·1 10·2 10·0 1·0 95·1 0·3 17·4 17·0 2·9 94·3

2 −0·2 5·5 5·4 0·3 94·1 −0·4 9·3 9·9 1·0 92·5
Wilcoxon 1 −0·1 10·2 10·0 1·0 95·4 0·3 17·4 17·0 2·9 94·6

2 −0·2 5·5 5·4 0·3 94·1 −0·4 9·3 9·9 1·0 93·2
25 Log rank 1 −0·2 11·5 11·5 1·3 94·2 0·0 19·8 19·6 3·8 93·8

2 −0·4 8·1 8·3 0·7 93·3 −0·4 13·8 14·4 2·1 92·9
Gehan 1 0·0 10·8 10·7 1·1 94·8 0·0 18·5 18·4 3·4 94·8

2 −0·2 6·7 6·8 0·5 94·1 −0·3 11·5 12·0 1·4 92·8
Wilcoxon 1 −0·1 10·8 10·7 1·1 94·8 0·1 18·5 18·3 3·3 95·6

2 −0·2 6·7 6·8 0·5 94·0 −0·5 11·6 12·1 1·5 93·4
SE, average of estimated standard errors; SD, standard deviation; MSE, mean squared error; CR, 95% coverage rate;
m, number of basis matrices.

diagonal elements of 0 and off-diagonal elements of 1, C(2) = 141T
4 − I4. The biases are very small

no matter which weight function is used. The standard errors are close to the standard deviations,
indicating good performance of the variance estimation based on the Cholesky decomposition
method. The 95% confidence interval coverage rates match the nominal level very well. Among
the three different weight functions, the Gehan and Wilcoxon weights appear to behave slightly
better in terms of mean squared error and the 95% coverage rate. When the number of moments
increased from m = 1 to 2, the former is substantially reduced. In particular, there is more
efficiency gain in the scenarios with higher correlations and a lower rate of censoring.

In Table 2, we examine cases with more basis matrices by taking m = 1, 2 and 3, corresponding
to C(1) = I4, C(2) of the sandwich form with two main off-diagonals of 1 and 0 elsewhere, and
C(3) with the three main diagonal elements of 0 and 1 elsewhere, respectively. Clearly, there
is an overall tendency for mean squared error to decrease as m increases. The efficiency gain
is greater when m is increased from one to two than when m is increased from two to three.
The biases of the proposed estimators are negligible. The standard errors are very close to the
standard deviations, which provide a good approximation of the variability of the estimators. The
95% coverage rates are accurate. We can compare the efficiency gain between adding a correctly
specified or a misspecified second basis matrix. For the cases with m = 2 in Tables 1 and 2, the
data were generated with an exchangeable correlation structure for the error. The estimates in
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Table 2. Simulation study of generalized method of moments rank estimation with 25% censoring,
cluster size K = 4 and exchangeable multivariate normal errors. The basis matrices are C(1) =
I4, C(2) of the sandwich form with two main off-diagonals of 1 and 0 elsewhere, and C(3) with the

three main diagonal elements of 0 and 1 elsewhere
β1 β2

ρ Method m Bias SE SD MSE CR Bias SE SD MSE CR

(×10−2) (×10−2)
0·5 Log rank 1 −0·3 11·5 11·4 1·3 95·1 0·0 19·9 19·7 3·9 94·6

2 −0·3 10·8 10·6 1·1 94·5 0·2 18·9 19·0 3·6 94·1
3 −0·2 10·4 10·2 1·0 93·9 −0·2 18·4 17·9 3·2 94·3

Gehan 1 −0·2 10·9 10·7 1·2 94·6 −0·1 18·7 18·7 3·5 94·2
2 −0·2 9·9 9·8 1·0 94·9 −0·1 17·3 17·3 3·0 93·7
3 −0·1 9·5 9·4 0·9 94·2 0·0 16·4 16·4 2·7 94·1

Wilcoxon 1 −0·3 10·8 10·7 1·1 95·2 −0·1 18·5 18·6 3·5 94·3
2 −0·3 9·9 9·8 1·0 94·0 0·0 17·2 17·3 3·0 94·2
3 −0·2 9·4 9·3 0·9 93·7 −0·2 16·4 16·4 2·7 93·9

0·8 Log rank 1 −0·2 11·5 11·5 1·3 94·2 0·0 19·8 19·6 3·8 93·8
2 −0·4 9·1 9·3 0·9 93·4 0·1 16·0 16·6 2·7 93·2
3 −0·4 8·2 8·4 0·7 94·4 −0·7 14·3 14·7 2·2 91·9

Gehan 1 0·0 10·8 10·7 1·1 94·8 0·0 18·5 18·4 3·4 94·8
2 −0·3 7·7 7·9 0·6 93·3 0·0 13·8 13·8 1·9 95·2
3 −0·2 6·9 6·9 0·5 94·2 −0·4 12·0 12·1 1·5 94·2

Wilcoxon 1 −0·1 10·8 10·7 1·1 94·8 0·1 18·5 18·3 3·3 95·6
2 −0·3 7·8 7·9 0·6 94·1 0·0 13·9 14·0 2·0 94·2
3 −0·2 6·9 7·0 0·5 93·9 −0·4 12·1 12·2 1·5 93·5

SE, average of estimated standard errors; SD, standard deviation; MSE, mean squared error; CR, 95% coverage rate;
m, number of basis matrices.

Table 1 were based on the correct basis matrices, namely C(1) = I4 and C(2) = 141T
4 − I4, while

those in Table 2 were estimated using C(1) = I4 and C(2) consisting of two main off-diagonals
of 1 and 0 elsewhere. Therefore, the efficiency gain with m = 2 in Table 2 is relatively smaller
than that in Table 1. Once the third basis matrix is added in Table 2, we can see some additional
efficiency gain.

To examine the robustness of our method, when K = 4, we simulated the errors from a heavier-
tailed distribution: a multivariate t-distribution with three degrees of freedom, and covariance
matrix 3I4 + 3ρ(141T

4 − I4), ρ = 0·5 and 0·8. The results summarized in Table 3 show good
performance of our method, and are comparable to those with normal errors in Table 1. We
conclude that the estimation procedure based on the generalized method of moments with m > 1
can enhance estimation efficiency over the working independence model with m = 1. When
data are highly correlated and lightly censored, the efficiency gain can be substantial. However,
because of possible redundancy, adding more basis matrices may not have further impact on the
efficiency gain, after a certain number of basis matrices are included. In the numerical studies
with K = 4, adding the third basis matrix still improves the efficiency, but only to a small extent.

The proposed method also performed well with varying cluster sizes. We also examined the
limiting chi-squared distribution for the quadratic function with finite-sample sizes. In the case
with K = 2, ρ = 0·5, n = 200 and 25% censoring, we computed the quadratic functions at
the true value β0 and the estimator β̂. We took m = 2 with C(1) = I2 and C(2) = 121T

2 − I2.
Quantile-quantile plots of the observed quantiles of nQn(β0) and n{Qn(β0) − Qn(β̂)} against the
theoretical quantiles from χ2

(4) and χ2
(2), respectively, showed the desired linear patterns.
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Table 3. Simulation study of generalized method of moments rank estimation with 25%
censoring, cluster size K = 4, where the errors are generated from a multivariate t-distribution.

The basis matrices are C(1) = I4 and C(2) = 141T
4 − I4

β1 β2

ρ Method m Bias SE SD MSE CR Bias SE SD MSE CR

(×10−2) (×10−2)
0·5 Log rank 1 0·5 14·8 14·7 2·2 94·3 1·5 25·3 26·3 7·0 93·4

2 0·3 12·8 13·3 1·8 93·1 1·2 22·2 23·1 5·3 93·5
Gehan 1 0·4 13·4 13·1 1·7 93·9 1·7 22·9 23·3 5·4 94·8

2 0·2 11·3 11·2 1·3 95·2 1·1 19·4 19·6 3·8 93·6
Wilcoxon 1 0·4 13·2 13·0 1·7 94·7 1·6 22·9 23·3 5·5 94·1

2 0·3 11·2 11·3 1·3 94·6 1·1 19·5 19·6 3·9 94·1
0·8 Log rank 1 0·6 14·8 14·5 2·1 94·8 1·2 25·3 26·0 6·7 93·8

2 0·2 10·2 10·8 1·2 92·6 0·6 17·6 18·2 3·3 92·8
Gehan 1 0·6 13·3 12·7 1·6 95·2 1·6 22·8 22·8 5·2 94·2

2 0·3 8·1 8·2 0·7 94·2 0·9 14·1 13·8 1·9 95·0
Wilcoxon 1 0·6 13·1 12·6 1·6 94·4 1·5 22·5 22·7 5·2 93·6

2 0·3 8·2 8·4 0·7 94·4 0·8 14·3 14·1 2·0 94·5
SE, average of estimated standard errors; SD, standard deviation; MSE, mean squared error; CR, 95% coverage rate;
m, number of basis matrices.

5. EXAMPLE

We applied our method to data from a study which was conducted by the Diabetic Retinopathy
Study Research Group (1985). The primary objective of the study was to determine whether
or not laser photocoagulation would help prevent severe visual loss from proliferative diabetic
retinopathy. The outcome of interest was time to onset of blindness from the initiation of treatment,
recorded in months. The 197 patients in this analysis represented a 50% simple random sample
of the patients with high-risk diabetic retinopathy. Each patient had one eye randomized to
laser treatment, while the other eye received no treatment. The prognostic factors included
treatment, equal to 1 if treated and 0 if untreated, diabetic type, equal to 1 for adult diabetes
and 0 for juvenile, age at diagnosis of diabetes and the risk of each eye. The risk scores could
be different for the left and right eyes of each patient, ranging from 0·5 to 1 after being divided
by 12. To assess the laser treatment effect while adjusting for other covariates, we fitted the
marginal accelerated failure time model and implemented the generalized method of moments
estimation procedure using one and two basis matrices, respectively. We took C(1) = I2, and
C(2) = 121T

2 − I2. We explored three different weight functions φ(u, β), corresponding to the
log-rank, Gehan and Wilcoxon methods. Figure 1 shows different patterns for these three weight
functions evaluated at β̂ based on two basis matrices: both the Gehan and Wilcoxon methods
give relatively smaller weights to the larger observations; the Gehan statistic down-weights
the long-term survival times the most; and the log-rank method treats all the data equally.
Table 4 shows that the treatment and eye-specific risk appeared to be statistically significant.
Laser photocoagulation significantly prolonged time to onset of blindness, while the higher eye
risk was associated with shorter vision survival. Patient age and diabetic type did not have
much influence on the time to blindness. The generalized method of moments with two basis
matrices yielded similar point estimates, but smaller variances, compared to those with a single-
identity basis matrix. The estimates and inferences are consistent across the three different
weight functions and the generalized method of moments procedures with either one or two basis
matrices.
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Fig. 1. Diabetic retinopathy study data. Plots of three different weight functions
versus the estimated residuals, log rank (dashed), Wilcoxon (dash-dotted) and Gehan

(solid).

Table 4. Diabetic retinopathy study. Generalized method of moments rank estimates of covariate
effects under the marginal accelerated failure time model with one and two basis matrices

Log rank Gehan Wilcoxon
m Covariate Estimate SE p-value Estimate SE p-value Estimate SE p-value

1 Treatment 1·094 0·203 <0·001 0·987 0·219 <0·001 1·058 0·171 <0·001
Diabetic type 0·189 0·396 0·633 0·340 0·415 0·413 0·236 0·382 0·537
Age −0·196 0·224 0·382 −0·164 0·243 0·500 −0·149 0·189 0·431
Risk group −2·090 0·908 0·021 −2·547 0·979 0·009 −2·466 0·860 0·004

2 Treatment 1·085 0·172 <0·001 1·053 0·202 <0·001 1·008 0·286 <0·001
Diabetic type 0·163 0·389 0·675 0·272 0·469 0·562 0·215 0·392 0·583
Age −0·171 0·190 0·368 −0·124 0·228 0·587 −0·144 0·201 0·474
Risk group −2·323 0·953 0·015 −2·195 0·798 0·006 −2·244 0·828 0·007

SE, estimated standard error; m, number of basis matrices.

6. DISCUSSION

The generalized method of moments framework is not limited to linear regression models with
multivariate censored data; it is readily applicable to other hazard-based survival models. The
method is very attractive in situations in which it is difficult to obtain the likelihood, but where
martingale-based moments are easier to construct. We can select the basis matrices by examining
the reduction of the standard errors of the parameter estimates. If adding an extra basis matrix
does not improve the estimation precision, this basis matrix may be redundant and thus can be
disregarded. It would be interesting to allow the correlation matrix R(α) to be time-dependent,
which would then require the basis matrices to depend on time.
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APPENDIX

Technical details

We assume the following regularity conditions throughout the derivations.

Assumption A1. There exists ξ > 0, such that pr{log(Xik) − βT
0 Zik > τ + ξ} > 0, for all i and k.

Assumption A2. The density of the error is bounded and continuous, and censoring times and covariates
Zik are bounded.

Assumption A3. For i = 1, . . . , n and l = 1, . . . , m, W (l)
i (u, β) is uniformly bounded.

Assumption A4. There exists an integrable function g(u), such that the marginal baseline hazard function
λ0(u) of the error satisfies ∣∣∣∣λ0(u + ε) − λ0(u) − ε

dλ0(u)

du

∣∣∣∣ � ε2g(u),

for u < τ , and |ε| � ξ .

Assumption A5. There is a matrix A(l)(u, β), for l = 1, . . . , m, such that, in a neighbourhood B of β0,

sup
β∈B,u�τ+ξ

∥∥A(l)(u, β) − A(l)(u, β)
∥∥→0,

in probability, and G(l)(β0) = ∫ τ

−∞ A(l)(u, β0) dλ0(u) is nonsingular.

Assumption A6. For l = 1, . . . , m, there exists a continuous function μ̄(l)(u, β), such that

sup
‖β−β0‖<δ/√ n

n−1/2

∥∥∥∥∥
n∑

i=1

Ki∑
k=1

∫ τ

−∞
{ā(l)(u, β) − μ̄(l)(u, β)} dMik(u, β)

∥∥∥∥∥ = op(1),

for any δ > 0.

Assumption A7. There exists a deterministic positive definite matrix �(β0), such that, in probability,

sup
‖β−β0‖<δ/ √ n

‖�n(β) − �(β0)‖→0.

Most of these conditions are similar to those given by Tsiatis (1990) and Gray (2003).

Proof of Theorem 1. Without loss of generality, we consider the lth component of Sn(β),

S(l)(β) = n−1
n∑

i=1

Ki∑
k=1

∫ τ

−∞

{
a(l)

ik (u, β) − ā(l)(u, β)
}

dMik(u, β).

Along the lines of similar arguments in Tsiatis (1990) and Gray (2003), S(l)(β) is asymptotically linear in
a small neighbourhood of the true parameter β0. For any δ > 0,

sup
‖β−β0‖<δ/ √ n

n1/2‖S(l)(β) − S(l)(β0) − G(l)(β0)(β − β0)‖ = op(1).
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Therefore, we have

n1/2Sn(β) = n1/2

⎛
⎜⎝

S(1)(β)
...

S(m)(β)

⎞
⎟⎠ = n1/2

⎛
⎜⎝

S(1)(β0) + G(1)(β0)(β − β0)
...

S(m)(β0) + G(m)(β0)(β − β0)

⎞
⎟⎠ + op(1).

Following this route, we define a function S∗
n (β) as a linear expansion around β0, S∗

n (β) =
Sn(β0) + Gn(β0)(β − β0), so that Sn(β) is asymptotically equivalent to S∗

n (β). We can write S∗
n (β) =

n−1
∑n

i=1 U ∗
i (β), where

U ∗
i (β) = Ui (β0) +

⎛
⎜⎝

∑Ki
k=1

∫ τ

−∞ Yik(u, β0)
{

a(1)
ik (u, β0) − ā(1)(u, β0)

}
Z T

ikdλ0(u) (β − β0)
...∑Ki

k=1

∫ τ

−∞ Yik(u, β0)
{

a(m)
ik (u, β0) − ā(m)(u, β0)

}
Z T

ikdλ0(u) (β − β0)

⎞
⎟⎠ .

Furthermore, let Q∗
n(β) = {S∗

n (β)}T{�∗
n (β)}−1S∗

n (β), where �∗
n (β) = n−1

∑n
i=1 U ∗

i (β){U ∗
i (β)}T −

S∗
n (β){S∗

n (β)}T· We then have that

sup
‖β−β0‖<δ/ √ n

∥∥Qn(β) − Q∗
n(β)

∥∥ = op(n−1).

Since β̂ minimizes Qn(β), and equivalently Q∗
n(β), and by Assumption A7, we obtain that

∂ Q∗
n(β)

∂β
= 2

{
GT

n(β0)�−1(β0)Gn(β0)
}

(β − β0) + 2GT
n(β0)�−1(β0)Sn(β0) + op(n−1/2),

∂2 Q∗
n(β)

∂β∂βT
= 2GT

n(β0)�−1(β0)Gn(β0) + op(1).

The second derivative matrix is asymptotically positive definite, which guarantees a unique minimum.
Since β̂ satisfies ∂ Q∗

n(β)/∂β‖β̂ = 0 and Qn(β0) = Q∗
n(β0), and by the continuity of ∂ Q∗

n(β)/∂β at β, β̂

converges to β0 in probability, as n → ∞. �

Proof of Theorem 2. Recall that a(l)
ik (u, β0) = ∑Ki

j=1 Zi jw
(l)
i jk(u, β0). We define μ

(l)
ik (u, β0) the same as

a(l)
ik (u, β0) except for replacing w

(l)
i jk(u, β0) by its limit. Since φ(u, β) satisfies Condition 5 in Ying

(1993) and the cluster size Ki is bounded, it follows from the Skorohod strong embedding theorem
(Shorack & Wellner, 1986, § 2.5) and similar arguments in Lee et al. (1993) that S(l)(β0) is asymptotically
equivalent to

S†
(l)(β0) = n−1

n∑
i=1

Ki∑
k=1

∫ τ

−∞

{
μ

(l)
ik (u, β0) − μ̄(l)(u, β0)

}
dMik(u, β0).

Therefore, by the multivariate central limit theorem for a sum of independent terms, we can show that
n1/2S†

(l)(β0), and thus n1/2S(l)(β0), converge to a zero-mean normal distribution with a variance-covariance
matrix asymptotically equivalent to

n−1
n∑

i=1

Ki∑
k=1

Ki∑
j=1

ζ
(l)
ik (β0)

{
ζ

(l)
i j (β0)

}T
,

where

ζ
(l)
ik (β0) =

∫ τ

−∞

{
μ

(l)
ik (u, β0) − μ̄(l)(u, β0)

}
dMik(u, β0).

A consistent estimator for the covariance matrix can be obtained if we replace the true quantities in ζ
(l)
ik (β0)

with their empirical counterparts. Likewise, n1/2Sn(β0) converges to a zero-mean normal distribution with
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the variance-covariance matrix �(β0); that is, in distribution, n1/2Sn(β0)→N {0, �(β0)}. Finally, noting
Assumption A5 and by Slutsky’s theorem, we have that, in distribution,

n1/2(β̂ − β0)→N
[
0, {GT(β0)�−1(β0)G(β0)}−1

]
.

�
Proof of Theorem 3. In a small neighbourhood of β0, Qn(β) and Q∗

n(β) are asymptotically equivalent.
It follows that

Q∗
n(γ0, θ̃ ) − Q∗

n(γ̂ , θ̂ ) = (θ̃ − θ0)T Jθθ (θ̃ − θ0) − 2ST
n(β0)�−1(β0)Gn(β0)

(
γ̂ − γ0

θ̂ − θ̃

)

−
(

γ̂ − γ0

θ̂ − θ0

)T (
Jγ γ Jγ θ

Jθγ Jθθ

)(
γ̂ − γ0

θ̂ − θ0

)
+ op(n−1).

Furthermore, both ∂ Q∗
n(γ̂ , θ̂ )/∂θ and ∂ Q∗

n(γ0, θ̃ )/∂θ are approximately zero, since Qn(γ, θ ) and Qn(γ0, θ )
take their minimum values at (γ̂ , θ̂ ) and (γ0, θ̃ ), respectively. Thus, the second item on the right-hand side
of the above equation is equivalent to

2

(
γ̂ − γ0

θ̂ − θ0

)T (
Jγ γ Jγ θ

Jθγ Jθθ

) (
γ̂ − γ0

θ̂ − θ0

)
− 2(θ̃ − θ0)T Jθθ (θ̃ − θ0) + op(n−1).

Therefore,

Q∗
n(γ0, θ̃ ) − Q∗

n(γ̂ , θ̂ ) =
(

γ̂ − γ0

θ̂ − θ0

)T (
Jγ γ Jγ θ

Jθγ Jθθ

) (
γ̂ − γ0

θ̂ − θ0

)

−(θ̃ − θ0)T Jθθ (θ̃ − θ0) + op(n−1).

From the Taylor-series expansion of ∂ Q∗
n(γ0, θ̃ )/∂θ and ∂ Q∗

n(γ̂ , θ̂ )/∂θ around θ0 and (γ0, θ0), respectively,
and after some matrix algebra, we have that θ̃ − θ0 = J−1

θθ Jθγ (γ̂ − γ0) + (θ̂ − θ0) + op(n−1/2). Therefore,
n{Q∗

n(γ0, θ̃ ) − Q∗
n(γ̂ , θ̂ )} is asymptotically equivalent to n(γ̂ − γ0)T(Jγ γ − Jγ θ J−1

θθ Jθγ )(γ̂ − γ0). By the
conclusion of Theorem 2, we have that, in distribution,

n1/2

(
γ̂ − γ0

θ̂ − θ0

)
→N

{(
0
0

)
,

(
Jγ γ Jγ θ

Jθγ Jθθ

)−1 }
.

Thus, in distribution, n1/2(γ̂ − γ0)→N {0, (Jγ γ − Jγ θ J−1
θθ Jθγ )−1}, which implies the limiting chi-

squared distribution of n{Q∗
n(γ0, θ̃ ) − Q∗

n(γ̂ , θ̂ )} under H0. Under H1 : γ = γ0 + n−1/2ε, the limiting nor-
mal distribution of n1/2{(γ̂ − γ0)T, (θ̂ − θ0)T}T is not zero-mean, and this leads to a noncentral chi-squared
distribution. �
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