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We propose a class of power-transformed linear quantile regression models for survival data subject to random censoring. The estimation
procedure follows two sequential steps. First, for a given transformation parameter, we can easily obtain the estimates for the regression
coefficients by minimizing a well-defined convex objective function. Second, we can estimate the transformation parameter based on a
model discrepancy measure by constructing cumulative sum processes. We show that both the regression and transformation parameter
estimates are strongly consistent and asymptotically normal. The variance–covariance matrix depends on the unknown density function of
the error term, so we estimate the variance by the usual bootstrap approach. We examine the performance of the proposed method for finite
sample sizes through simulation studies and illustrate it with a real data example.
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1. INTRODUCTION

Linear regression models have been extensively studied for
randomly censored survival data (e.g., see Prentice 1978; Buck-
ley and James 1979; Ritov 1990; Tsiatis 1990; Wei, Ying, and
Lin 1990; Lai and Ying 1991; Jin, Lin, Wei, and Ying 2003).
In particular, the accelerated failure time (AFT) model is in-
tuitively attractive by formulating a linear model between the
logarithm of the failure time and covariates Z,

log(T ) = βT
0 Z + ε, (1)

where the error term ε typically has mean 0, but its distribu-
tion is unknown and unspecified. Extensive research has been
carried out on the semiparametric least squares or rank estima-
tion of model (1). The interpretation of β0 is straightforward,
which explicitly characterizes prolonging or shortening the sub-
ject survival time. The usual AFT model is a mean-based re-
gression model that may be viewed as a special case of the
quantile regression model. The mean-AFT model in (1) gives
mainly an overall quantification of patient survival but cannot
characterize the local effects of covariates for lower or higher
quantiles of the survival time. In the biomedical literature, the
median survival time (which is known to be robust to outliers)
often is used as a summary statistic. Likewise, in contrast to the
mean-based model, quantile regression can give a more com-
plete assessment of covariate effects at a properly chosen set of
quantiles (e.g., Koenker and Bassett 1978; Portnoy and Koenker
1997; Yu, Lu, and Stander 2003; Koenker 2005). The regression
parameters often are estimated by solving quantile-based esti-
mating equations through linear programming or interior point
methods, and the corresponding variances typically depend on
the density function of the error terms. To avoid nonparametric
functional density estimation, which may not be stable for small
sample sizes, various resampling methods have been proposed
for variance estimation (see, e.g., Parzen, Wei, and Ying 1994;
Buchinsky 1995; Hahn 1995; Horowitz 1998; Bilias, Chen, and
Ying 2000; Jin, Ying, and Wei 2001). In economics, a special
type of censored data often arise, under which the maximum of
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zero and a latent response is observed. Quantile regression has
been extensively investigated for such censored data (e.g., Pow-
ell 1986; Buchinsky and Hahn 1998; Khan and Powell 2001).
Interest has been growing in quantile regression with randomly
censored failure time data, and such models have become in-
creasingly important in survival analysis (Ying, Jung, and Wei
1995; Lindgren 1997; Yang 1999; Koenker and Geling 2001;
Honoré, Khan, and Powell 2002; Portnoy 2003). When the fo-
cus is on an earlier or later stage of the follow-up, conventional
methods, such as the proportional hazards model (Cox 1972) or
the AFT model, may not be very useful. Quantile regression,
in contrast, can directly model the lower or higher quantile of
interest to provide a natural assessment of covariate effects spe-
cific for those quantiles. This distinctive feature makes quantile
regression very attractive for randomly censored survival data,
because the failure times often are quite right-skewed, and the
extreme survival times and the long-term treatment effect may
be of the special interest.

For randomly censored survival data, Ying et al. (1995)
proposed a novel median regression model under which the
minimum dispersion test statistic was used for inferences be-
cause the variances of the parameter estimates depend on the
unknown density function of the error. Yang (1999) studied
median regression by constructing an empirically covariate-
weighted cumulative hazard function. Honoré et al. (2002)
adapted quantile regression estimators for the fixed censor-
ing case to the random censoring scenario by considering the
censoring value as missing when the latent dependent vari-
able is uncensored. A key assumptions of the approaches of
Ying et al. (1995) and Honoré et al. (2002) is the indepen-
dence of the covariates and censoring, whereas that of Yang
(1999) requires that the covariates and errors be independent.
For medical cost data, Bang and Tsiatis (2002) studied a median
regression model based on the inverse probability-weighted
estimating equation. Portnoy (2003) proposed censored regres-
sion quantiles that allow censoring times to depend on covari-
ates. Furthermore, Portnoy (2003) introduced an efficient com-
puting algorithm based on the redistribute-to-the-right form of
the Kaplan–Meier estimator (i.e., the recursively reweighted
empirical survival function). Khan and Tamer (2007) studied
a partial rank estimator (up to a scale of the true parameter)
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that accommodates covariate-dependent censoring but assumes
homoscedastic errors. More recently, Khan and Tamer (2008)
proposed a general method with weaker assumptions based on
conditional moment inequalities that allows for conditional het-
eroscedasticity, covariate dependent censoring, and endogenous
censoring.

Transformation models are flexible and typically include a
broad class of modeling structures (e.g., Cheng, Wei, and Ying
1995; Cai, Tian, and Wei 2005; Khan and Tamer 2007). The
Box–Cox transformation (Box and Cox 1964) is often used to
improve the error normality in linear models. Particularly, for
the failure time T , we define Hγ (T ) = (T γ − 1)/γ for γ > 0
and Hγ (T ) = log(T ) for γ = 0. Transformation quantile re-
gression has recently been proposed for complete data without
any censoring, which may have great potential in various ap-
plications (Mu and He 2007). But when data are subject to ran-
dom censoring, the theoretical and computational developments
for quantile regression become much more involved and chal-
lenging. In this article we propose a power-transformed linear
quantile regression model for randomly censored survival data.
By imposing a monotonic transformation on the failure time,
the equivariance property of quantiles is preserved. We estab-
lish the consistency and asymptotic normality of the transfor-
mation and regression parameter estimates. We derive the ex-
plicit form for the variance–covariance matrix of the estimators,
and use a bootstrap resampling method to estimate the variance,
to circumvent the nonparametric functional density estimation.
We explore the cases with known transformation parameter γ

and unknown γ that correspond to the conditional and uncondi-
tional regression. The variances for the regression coefficients
are greatly inflated by the variation from estimating γ when we
conduct a unconditional inference compared with conditional
inference with a fixed γ .

The rest of the article is organized as follows. In Section 2 we
propose the estimation procedure under the censored transfor-
mation quantile regression model. In Section 3 we establish the
strong consistency and asymptotic normality of the parameter
estimates. In Section 4 we examine the finite-sample properties
using simulation studies, and in Section 5 we illustrate the pro-
posed method with application to a lung cancer data set. We
give concluding remarks in Section 6 and delineate the proofs
of our theorems in the Appendix.

2. TRANSFORMED QUANTILE REGRESSION

For i = 1, . . . , n, we let Ti be the failure time for the ith
subject and Ci be the censoring time, and we observe Xi =
min(Ti,Ci) and the failure time indicator �i = I (Ti ≤ Ci),
where I (·) is the indicator function. We let Zi be the corre-
sponding p×1 vector of bounded covariates and assume that Ci

is independent of Ti and Zi . The assumption of completely ran-
dom censorship that we use here has been used in almost all of
the quantile regression literature for censored data, whereas in a
different regression setting from ours, Portnoy (2003) presented
a very innovative way of relaxing this assumption to missing
at random. For i = 1, . . . , n, (Xi,�i,Zi ) are independent and
identically distributed (iid).

Let Hγ (Ti) be the failure time under a monotonic transfor-
mation and let ξτ (·|Zi ) be the 100τ th conditional quantile func-
tion for 0 < τ < 1. To enhance modeling flexibility, we propose

the censored transformation linear quantile regression model in
the form of

ξτ (Hγ (Ti)|Zi ) = βT
τ Zi , (2)

where ξτ (ε
(γ )

τ i |Zi ) = 0 with ε
(γ )

τ i = Hγ (Ti) − βT
τ Zi . The con-

ditional distribution of ε
(γ )

τ i is unspecified and may depend on
Zi . If there is no censoring, then βτ can be estimated by mini-
mizing n−1 ∑n

i=1 φτ (Hγ (Ti) − βT
τ Zi ), where the “check func-

tion” is defined as φτ (u) = u{τ − I (u < 0)} (see Mu and He
2007). Moreover, the transformation parameter γ can be esti-
mated by constructing a cusum process of residuals that per-
forms better than other two-stage estimators (e.g., Chamberlain
1994; Buchinsky 1995).

Under random censorship, we observe that Pr(Xi ≥
H−1

γ (β(γ )T Zi )) = τG(H−1
γ (β(γ )T Zi )), where G(·) is the

survival function for the censoring time Ci and we drop the
dependence on τ for notational brevity. For a fixed γ , the esti-
mator for β can be obtained by solving the following estimating
equation:

n−1
n∑

i=1

Zi

{
I (Hγ (Xi) − β(γ )T Zi ≥ 0)

Ĝ(H−1
γ (β(γ )T Zi ))

− τ

}

= 0, (3)

where Ĝ(·) is the Kaplan–Meier estimator for the censoring
times based on {(Xi,1 − �i), i = 1, . . . , n}. In practice, if
Ĝ(H−1

γ (β(γ )T Zi )) = 0, then we set I (Hγ (Xi) − β(γ )T Zi ≥
0)/Ĝ(H−1

γ (β(γ )T Zi )) = 0, as in the work of Ying et al. (1995).
A limitation of (3) is that the censoring times must be inde-
pendent of the covariates. To relax this assumption, a stratified
Kaplan–Meier estimator can be constructed by categorizing the
covariate values into groups and thus replacing Ĝ(·) by Ĝ(·|Z)

in (3), which, however, may suffer from the high dimensional-
ity of covariates. In practice, we can apply the log-rank test to
examine the censoring time distribution across each covariate
and use only Ĝ(·|Z) stratified by those statistically significant
covariates.

Because of the discontinuity of the estimating function in (3),
its solution may not exist. Instead, we can minimize the Euclid-
ean norm of the estimating function; however, this is discontin-
uous and has no derivatives. Even if we implement the Nelder–
Mead simplex algorithm, which does not require any deriva-
tives or continuity of the target function, a unique minimum
still is not guaranteed. To overcome the numerical difficulties,
we use the following two-step procedure, which minimizes a
convex function at each stage. For a fixed γ , we first obtain
α̂(γ ) by minimizing

�n0(α;γ )

= n−1
n∑

i=1

�i

Ĝ(Xi)

{
(Hγ (Xi) − αT Zi )

× I (Hγ (Xi) − αT Zi ≥ 0) − τ(Hγ (Xi) − αT Zi )
}
.

This is based on the inverse probability weighted estimating
equation (see, e.g., Robins and Rotnitzky 1992; Robins 1996).
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We take α̂(γ ) as an initial value and then obtain β̂(γ ) by mini-
mizing

�n1(β;γ )

= n−1
n∑

i=1

{
(Hγ (Xi) − βT Zi )I (Hγ (Xi) − βT Zi ≥ 0)

Ĝ(H−1
γ (̂α(γ )T Zi ))

− τ(Hγ (Xi) − βT Zi )

}

,

where we substitute α̂(γ ) for β(γ ) in the denominator func-
tion Ĝ(·). We show that both α̂(γ ) and β̂(γ ) are consistent
estimators, but the numerical performance of β̂(γ ) is typi-
cally better than that of α̂(γ ). Furthermore, because �n0(α;γ )

and �n1(β;γ ) are both convex functions, the minimizers are
unique.

To estimate γ , we define a discrepancy measure based on
the cusum process that can distinguish the correct transforma-
tion from those misspecified ones. The cusum process based
on residuals or score-type functions is very useful in modeling
goodness-of-fit tests (e.g., He and Zhu 2003; Mu and He 2007).
Let γ̂ be the estimator minimizing Rn(γ ) = ∑n

i=1 Dn(Zi , γ )2,
where

Dn(z, γ ) =
n∑

i=1

I (Zi ≤ z)
{

I (Hγ (Xi) − β̂(γ )T Zi ≥ 0)

Ĝ(H−1
γ (β̂(γ )T Zi ))

− τ

}

and I (Zi ≤ z) = I (Zi1 ≤ z1, . . . ,Zip ≤ zp). In the case with
high-dimensional covariates, especially many categorical vari-
ables, minimization of Rn(γ ) may not be numerically stable.
An alternative cusum process is given by

D∗
n(t, γ ) =

n∑

i=1

I (β̂(γ )T Zi ≤ t)

×
{

I (Hγ (Xi) − β̂(γ )T Zi ≥ 0)

Ĝ(H−1
γ (β̂(γ )T Zi ))

− τ

}

.

Intuitively, if the transformation is correctly specified, then
D∗

n(t, γ ) asymptotically converges to a mean-zero Gaussian
process. Therefore, the transformation parameter γ can be con-
sistently estimated by minimizing

R∗
n(γ ) =

n∑

i=1

∫ ∞

0
D∗

n(t, γ )2 dNi(t),

where Ni(t) = I (Xi ≤ t) regardless of failure or censoring ob-
servations. Because both Rn(γ ) and R∗

n(γ ) are functions of a
single unknown parameter γ , the standard grid search algorithm
can be used.

3. LARGE–SAMPLE PROPERTIES

Let L be the end time of a study, and let (β0, γ0) be the true
parameters. Throughout the derivations that follow, we assume
that the following conditions hold:

(C.1) γ0 belongs to a compact set 	.
(C.2) With probability 1, Z is bounded, and if H−1

γ (βT Z) =
H−1

γ0
(βT

0 Z), then β = β0 and γ = γ0.

(C.3) There exists a constant δ > 0 such that Pr(C ≥ L) >

δ. Moreover, the conditional density of T given Z is
continuous and positive in its support, and the density
of C is continuous in [0,L).

(C.4) The 100τ th quantile of Hγ0(T ) given Z is unique with
probability 1 and is strictly less than L.

(C.5) The transformation Hγ (·) is strictly increasing and
twice-continuously differentiable in a neighborhood
of γ0.

Conditions (C.1) and (C.3) are standard in the context of
survival analysis. Condition (C.2) guarantees the identifiability
of the transformation and regression parameters. In particular,
when Hγ is the Box–Cox transformation and Z contains one
continuous covariate with a nonzero effect, this condition can
be replaced by the linear independence of Z. This is because
both sides of the equality H−1

γ (βT Z) = H−1
γ0

(βT
0 Z) are ana-

lytic in the continuous covariate, so examining the behavior of
the covariate at infinity gives γ = γ0; thus (C.2) is implied by
the condition that if βT Z = βT

0 Z, then β = β0. Condition (C.4)
is needed because otherwise, the 100τ th quantile would not be
estimable from the data. Condition (C.5) ensures the unique pa-
rameterization of the transformation.

To facilitate the theoretical development, we introduce some
necessary notations. We define α(γ ) as the minimizer of

�0(α;γ ) = E
{
(Hγ (T ) − αT Z)I (Hγ (T ) − αT Z ≥ 0)

− τ(Hγ (T ) − αT Z)
}

and define β(γ ) as the minimizer of

�1(β;γ ) = E

{
(Hγ (X) − βT Z)I (Hγ (X) − βT Z ≥ 0)

G0(H
−1
γ (α(γ )T Z))

− τ(Hγ (X) − βT Z)

}

,

where G0(x) = Pr(C > x) is the true survival function for
the censoring distribution. Clearly, �0 and �1 are the limit-
ing functions of �n0 and �n1, and both are strictly convex. In
addition, we define

�0(Z;α, γ ) = E
{
I (Hγ (T ) − αT Z ≥ 0) − τ |Z}

and

�1(Z;α,β, γ ) = E

{
I (Hγ (X) − βT Z ≥ 0)

G0(H
−1
γ (αT Z))

− τ

∣
∣
∣Z

}

.

Deriving the gradients ∇α�0(α;γ ) = −E{Z�0(Z;α, γ )} and
∇β�1(β;γ ) = −E{Z�1(Z;α,β, γ )} is straightforward. We
use �0γ , �0α , and �0β to denote the row-vector gradients of
�0 with respect to γ , α, and β evaluated at the true parameters
(γ0,α0,β0). We define (�1γ ,�1α,�1β) as the gradients of �1

in the same manner. Note that E(Z�0α(Z)) = E(ZT Zf (βT
0 Z;

γ0)), where f (·;γ0) denotes the conditional density of Hγ0(T )

given Z. In condition (C.2), if we let γ = γ0, then this im-
plies that Z is linearly independent. This, combined with con-
dition (C.3), implies that E(Z�0α(Z)) is positive definite. Sim-
ilarly, E(Z�0β(Z)) also is positive definite.

We first state a useful lemma and sketch its proof.
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Lemma 1. α(γ0) = β(γ0) = β0, and in a neighborhood of
γ0, it holds that

α(γ ) = β0 − {
E(Z�0α(Z))

}−1
E(Z�0γ (Z))(γ − γ0)

+ o(|γ − γ0|)
and

β(γ ) = β0 − {
E(Z�1β(Z))

}−1{
E(Z�1γ (Z))

− E(Z�1α(Z))
{
E(Z�0α(Z))

}−1
E(Z�0γ (Z))

}

× (γ − γ0) + o(|γ − γ0|).
Proof. Clearly, β0 satisfies both ∇β�0(α;γ0) = 0 and

∇β�1(β;γ0) = 0. From the strict convexity of �0(α;γ0) and
�1(β;γ0), the first part of the conclusion should hold. By di-
rect calculation and the positive density condition in (C.3), both
�0(α;γ0) and �1(β;γ0) have invertible Hessian matrixes at
β0. The second part follows from the inverse mapping theo-
rem.

In what follows, we lay out the asymptotic properties of the
estimators.

Theorem 1. Under conditions (C.1)–(C.5), with probabil-
ity 1,

|γ̂ − γ0| + ‖α̂(γ̂ ) − β0‖ + ‖β̂(γ̂ ) − β0‖ → 0.

Both the transformation and regression parameter estimates
are strongly consistent. Because the initial value obtained from
the inverse probability weighted equation, α̂(γ̂ ), is consistent,
this ensures that β̂(γ̂ ) has well-behaved asymptotic properties.

Theorem 2. Under conditions (C.1)–(C.5),

√
n

(
γ̂ − γ0

β̂(γ̂ ) − β0

)
D−→ N(0,�),

where � is given at the end of the Appendix.

The proofs depend heavily on the modern empirical process
theories (van der Vaart and Wellner 2000), which are outlined
briefly in the Appendix.

4. SIMULATIONS

We conducted simulation studies to examine the finite-
sample properties of the proposed methods. We considered the
Box–Cox transformation linear quantile regression model

Hγ (T ) = T γ − 1

γ
= β0 + β1Z + ε, (4)

where we took the true values of β0 = .2, β1 = 1, and γ = 0, .5
and 1. The covariate Z was generated from a uniform distri-
bution, Unif[0,2]. The error, ε, was simulated from a normal
distribution with mean 0 and variance .25, N(0, .25). Censoring
times were generated independently from uniform distributions
to yield an approximate censoring rate of 20% or 40%. We took
τ = .5 to examine the median regression model, along with the
sample size n = 300. For each configuration, we replicated 500
simulations. To obtain the standard errors (SEs) of the parame-
ter estimates, we used the bootstrap method with 400 resampled
data sets (Efron and Tibishirani 1993; Koenker 2005).

Table 1 summarizes the estimation results when γ is taken as
an unknown parameter. We present the average of the parameter
estimates over 500 simulations (γ̂ , β̂0, β̂1), the sample standard
deviation of the estimates (SD), the average of the estimated

Table 1. Estimation under the transformation quantile regression model with an unknown γ

γ = (0, .5,1) β0 = .2 β1 = 1

γ c% γ̂ SD SE CP% β̂0 SD SE CP% β̂1 SD SE CP%

Minimizing Rn(γ )

0 0 .010 .261 .301 96.8 .182 .114 .121 95.4 1.057 .328 .399 97.0
20 .027 .315 .359 96.4 .181 .130 .138 96.6 1.092 .409 .506 97.6
40 .183 .417 .478 95.8 .148 .158 .188 97.4 1.295 .601 .793 98.6

.5 0 .503 .440 .470 95.6 .181 .119 .123 93.4 1.078 .427 .483 96.6
20 .528 .513 .566 96.2 .177 .128 .144 93.6 1.123 .497 .615 97.2
40 .560 .621 .673 95.8 .155 .151 .171 97.2 1.202 .640 .768 96.6

1 0 .979 .555 .620 96.2 .193 .116 .121 93.6 1.057 .432 .525 96.2
20 .975 .692 .713 93.6 .185 .132 .141 94.2 1.103 .583 .640 94.8
40 .982 .873 .816 91.4 .158 .167 .160 93.4 1.189 .751 .740 94.0

Minimizing R∗
n(γ )

0 0 −.014 .278 .315 96.6 .193 .111 .117 93.4 1.028 .331 .393 95.4
20 .024 .337 .379 96.6 .185 .125 .135 95.6 1.094 .427 .500 97.4
40 .152 .401 .498 97.4 .158 .160 .166 95.6 1.249 .634 .699 98.8

.5 0 .468 .418 .478 98.0 .192 .115 .118 94.0 1.032 .386 .464 96.8
20 .535 .530 .568 95.6 .172 .127 .137 93.6 1.137 .503 .589 96.2
40 .519 .625 .691 94.8 .171 .141 .161 96.0 1.152 .586 .741 96.4

1 0 .937 .571 .625 95.8 .200 .110 .116 94.2 1.031 .442 .509 95.8
20 1.001 .680 .715 95.0 .184 .127 .135 93.8 1.116 .543 .625 95.4
40 .989 .836 .819 94.2 .176 .144 .149 94.6 1.158 .665 .707 95.4



1218 Journal of the American Statistical Association, September 2008

Table 2. Estimation under the transformation quantile regression
model when fixing γ = 0, .5, and 1

β0 = .2 β1 = 1

γ c% β̂0 SD SE CP% β̂1 SD SE CP%

0 0 .200 .073 .077 94.6 1.000 .062 .066 95.6
20 .200 .080 .084 94.0 .997 .071 .076 95.0
40 .229 .087 .090 93.8 .948 .078 .081 91.6

.5 0 .200 .073 .077 94.6 1.000 .062 .066 95.6
20 .199 .081 .088 94.8 1.000 .073 .079 95.2
40 .203 .094 .098 95.6 .997 .089 .092 95.4

1 0 .202 .069 .075 95.0 1.001 .060 .065 96.2
20 .204 .080 .086 95.2 1.000 .074 .077 95.0
40 .205 .095 .098 94.4 .998 .089 .092 95.2

SEs based on the bootstrap method, and the coverage proba-
bility of the 95% confidence intervals (CP%). We can see that
the biases of the parameter estimates are small; the estimated
SEs based on the bootstrap resampling method are reasonably
close to the empirical SDs, and that the CP% generally match
the nominal level. As the censoring percentage (c%) increases,
the biases and the variances of the estimators clearly increase,
whereas the CP% is still maintained at around 95%. The nu-
merical performance from minimizing R∗

n(γ ) is slightly better
than that based on Rn(γ ) in terms of the estimation bias and
variance.

To compare the unconditional and conditional inferences un-
der model (4), we carried out estimations conditioning on the
fixed γ under the same setups. Table 2 shows that the esti-
mates of β0 and β1 are much more stable when γ is fixed at
the true values of 0, .5, and 1. The biases of the parameter esti-
mates are negligible and increase as the c% increases. The SE
based on the bootstrap method provides a reasonable approxi-
mation to the empirical SD, and the corresponding CP% closely
matches the nominal level. The variances of β̂0 and β̂1 decrease
dramatically compared with those in Table 1. We thus conclude

Table 3. Comparison of the joint MSE when using α̂(γ̂ ) or β̂(γ̂ )

as the final estimator

Final
estimator

Minimizing Rn(γ ) Minimizing R∗
n(γ )

20% 40% 20% 40%

α̂(γ̂ ) 2.658 5.397 2.546 4.498
β̂(γ̂ ) 2.459 3.963 2.513 3.943

that taking γ as an additional unknown parameter highly in-
flates the estimation variability for β0 and β1.

Note that α̂(γ̂ ) itself also is a consistent estimator of β0,
whereas the main advantage of using β̂(γ̂ ) as the final esti-
mator is to improve the estimation efficiency. To examine the
gain in efficiency, we computed the joint mean squared errors
(MSEs) for (γ̂ , β̂0, β̂1), when taking α̂(γ̂ ) or β̂(γ̂ ) as the final
estimator. Table 3 presents the joint MSEs based on minimizing
either Rn(γ ) or R∗

n(γ ) under censoring rates of 20% and 40%.
When there is no censoring [i.e., Ĝ(·) = 1], the results based on
α̂(γ̂ ) and β̂(γ̂ ) are exactly the same. We can see a trend toward
improved efficiency using β̂(γ̂ ) in contrast to α̂(γ̂ ) as the final
estimator, and the gain in efficiency is more prominent when
the censoring percentage is high.

One major attraction of quantile regression is that it can han-
dle the skewed or heteroscedastic error distribution. Following
this route, we considered model (4) with the skewed error. We
took ε from a shifted chi-squared distribution with 1 degree
of freedom and a median of 0, and also examined model (4)
with a heteroscedastic error of εZ, where ε ∼ N(0, .25) and
Z ∼ Unif[0,2]. The true parameters were γ = .5, β0 = −.5,
and β1 = 1, whereas other model setups remained the same as
before. As shown in Table 4, the proposed method can pro-
duce satisfactory estimation results with small biases, reason-
able variance estimates, and 95% coverage probabilities. More-
over, we conducted the corresponding simulation studies with
skewed or heteroscedastic errors while fixing γ = .5. Table 5
shows that the conditional estimation is more stable and accu-
rate, and that the variance estimates are greatly reduced in these
fixed γ scenarios.

Table 4. Estimation under the transformation quantile regression model with an unknown γ and skewed or heteroscedastic errors

γ = .5 β0 = −.5 β1 = 1

Error c% γ̂ SD SE CP% β̂0 SD SE CP% β̂1 SD SE CP%

Minimizing Rn(γ )

Skewed 0 .402 .554 .598 95.5 −.478 .155 .149 93.7 .984 .243 .262 94.9
20 .422 .614 .652 95.1 −.475 .149 .154 93.9 .993 .257 .282 96.9
40 .508 .704 .748 97.1 −.469 .158 .159 93.9 1.009 .299 .319 97.4

Heteroscedastic 0 .520 .272 .268 95.9 −.498 .023 .022 94.5 1.000 .057 .066 96.5
20 .526 .305 .326 96.5 −.499 .026 .026 95.1 1.002 .066 .081 97.1
40 .660 .361 .434 97.2 −.488 .028 .033 95.9 .998 .080 .112 98.2

Minimizing R∗
n(γ )

Skewed 0 .413 .539 .600 96.5 −.474 .156 .155 92.9 .982 .240 .260 95.3
20 .382 .630 .652 94.5 −.463 .159 .160 93.1 .973 .268 .280 94.3
40 .453 .711 .750 96.3 −.459 .159 .163 94.5 .979 .285 .306 96.5

Heteroscedastic 0 .524 .251 .253 97.4 −.497 .023 .022 94.5 .998 .052 .060 97.4
20 .539 .299 .301 96.7 −.497 .027 .026 94.1 1.001 .060 .071 97.1
40 .629 .311 .382 97.6 −.487 .027 .030 92.0 .990 .073 .088 96.6
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Table 5. Estimation under the transformation quantile regression
model with a fixed γ = .5 and skewed or heteroscedastic errors

β0 = −.5 β1 = 1

Error c% β̂0 SD SE CP% β̂1 SD SE CP%

Skewed 0 −.487 .127 .128 92.4 .994 .113 .111 94.6
20 −.488 .138 .136 92.0 .993 .124 .122 93.0
40 −.486 .140 .104 94.2 .967 .124 .125 93.8

Hetero- 0 −.501 .016 .019 98.4 1.000 .050 .054 95.8
scedastic 20 −.499 .019 .023 98.8 .998 .059 .064 95.8

40 −.492 .024 .028 98.2 .967 .068 .073 92.0

5. EXAMPLE

As an illustration, we applied our model to a data set in-
volving patients with non–small-cell lung cancer (NSCLC), the
leading cause of cancer-related mortality in the United States.
To determine an optimum duration of chemotherapy in the
treatment of advanced NSCLC, a multicenter phase III clinical
trial was initiated in 1998 to investigate four cycles of therapy
versus continuous therapy (Socinski et al. 2002). In this trial,
patients were randomized to one of two arms: four cycles of
carboplatin and paclitaxel every 21 days (arm A) or continuous
treatment with carboplatin/paclitaxel until progression (arm B).
In this analysis, 223 patients were diagnosed with NSCLC, of
whom 111 were randomized to arm A and 112 to arm B. The
primary endpoint was survival, and the censoring rate was 31%
caused by loss to follow-up. Figure 1 shows the Kaplan–Meier
survival curves for patients in the two treatment arms. There
seems to be no survival difference between the two arms; of
particular note is the presence of several crossings of the two
curves. The covariates included patient sex (0, male; 1, female),
the logarithm of age at entry, and treatment status (0, arm A;
1, arm B). In this population, 63% of the patients were male,
and the age at entry ranged from 32 to 82 years, a mean of 62
years. To examine the assumption of covariate-dependent cen-
soring, we fit the Cox proportional hazards model to the cen-
soring times with respect to covariates and found that all three
covariate effects were not significant. Moreover, we conducted

Figure 1. Estimated Kaplan–Meier survival curves for the NSCLC
data (—, arm A: four cycles of treatment; , arm B: continuous
treatment).

the log-rank test for the censoring times by each covariate (with
patient age stratified into several groups by different cutoffs).
We found no censoring time difference across each covariate,
providing empirical support for a common censoring distribu-
tion.

We applied the Box–Cox–transformed quantile regression
model to the NSCLC data, taking the transformation parameter
γ as unknown. We estimated γ by minimizing R∗

n(γ ) and took
400 bootstrap samples for the variance estimation. We speci-
fied the value of τ from .1 up to .8 in steps of .05 to cover the
entire follow-up period. Because of the transformation on the
failure time, the covariate effects obtained from each quantile
regression have different scales. The marginal covariate effects
in the original scale of the outcome are more useful (Koenker
and Geling 2001; Mu and He 2007). Evaluated at a set of co-
variates z0, if the j th covariate is continuous, then its marginal
effect is given by

∂ξτ (T |Z)

∂Zj

∣
∣
∣
∣
z0

=
{

βτ,j (γτβ
T
τ z0 + 1)1/γτ −1, γτ �= 0

βτ,j exp(βT
τ z0), γτ = 0.

For a discrete covariate, the marginal effect is ξτ (T |z0(−j),

Zj = 1) − ξτ (T |z0(−j),Zj = 0), where z0(−j) is the rest of z0

without Zj . We took z0 as specific covariates from a 50-year-
old male patient in arm B. Figure 2 presents the estimates and
the pointwise 95% confidence bands for the marginal covari-
ate effects and the transformation parameter γ . Female patients
survived significantly longer than males at the earlier follow-
up, but this difference gradually decreased over time. Patient
age did not appear to significantly affect survival. The patients
in arm B seemed to have a slightly better rate of survival, as
also shown in Figure 1, in which the survival curve of arm B
lies close to that of arm A; however, there was no significant
difference in survival between patients in these two arms. The
estimate of the Box–Cox transformation parameter γ oscillates
around the horizontal zero axis but tends to take a negative value
for most of the regression quantiles. To compare our model
with Portnoy’s method, we first transformed the observations
Hγ̂τ (Xi) based on our estimator γ̂τ for each τ , and then applied
the censored regression quantiles (the R package “crq”) devel-
oped by Portnoy (2003), the estimates of which are indicated by
the dotted lines in Figure 2. We can see that the marginal effects
of treatment are quite close between the two quantile regression
models; however, the marginal effects of patient sex are quite
different at the lower quantiles but are basically matched at the
higher quantiles. The marginal effects of patient age are sim-
ilar at most of the quantiles except those few above the 70th
quantile.

For conditional inferences when fixing γ = 0, Figure 3
presents the estimation results based on our method and Port-
noy’s method. For the covariate effects of sex and age, the para-
meter estimates at most of quantiles using Portnoy’s method lie
within the pointwise 95% confidence band of our method, ex-
cept for the first few early quantiles (τ < .2). For the treatment
effect, Portnoy’s estimates are completely covered by our 95%
confidence band. The results show that female patients survived
significantly longer than males up to the 70th quantile, whereas
the significant survival difference eventually disappeared at the
end of the follow-up period due to a larger variance. Evaluating
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(a) (b)

(c) (d)

Figure 2. Marginal covariate effects for a 50-year-old male patient in arm B based on the quantile regression analysis of the NSCLC data
with a parametric Box–Cox transformation (—, our proposed method; · · · · · ·, Portnoy’s method). (a) Transformation; (b) sex; (c) log(age);
(d) treatment.

the covariates of age and treatment, we found no significant ef-
fects on survival for all of the regression quantiles. The overall
trend is for younger patients and patients in arm B to have bet-
ter survival rates. Moreover, we fit the usual Cox proportional
hazards model to the same data; the estimates are summarized
in Table 6. The Cox model gives an overall mean-based assess-
ment of the covariate effects on survival for the entire follow-

up period, which cannot distinguish the survival difference oc-
curring mainly at the earlier or later stage of the trial. We can
see that male patients had a significantly higher risk of death
than females; however, treatment and patient age did not signif-
icantly affect the hazard. These results are generally consistent
with those given by our quantile regression models. The quan-
tile regression offers substantially more information, however,

(a) (b)

(c) (d)

(e) (f)

Figure 3. Quantile regression covariate effects for the NSCLC data when fixing the Box–Cox transformation parameter γ = 0. (a), (c), and
(e) sex, log(age), and treatment for the proposed method. (b), (d), and (f) sex, log(age), and treatment for Portnoy’s method.
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Table 6. Estimates of the covariate effects for the NSCLC data
under the Cox proportional hazards model

Covariate Estimate SE p value

Sex −.460 .174 .008
log(age) −.211 .511 .680
Treatment −.114 .168 .500

and thus provides a global picture of the relationship between
the covariates and patient survival.

6. DISCUSSION

We have proposed a class of semiparametric transformation
linear quantile regression models for randomly censored sur-
vival data. This class is broad, rich, and robust, and includes
the well-known AFT mean-based model as a special case. We
have provided an efficient two-stage algorithm for calculating
the parameter estimates. At each stage, the estimation proce-
dure minimizes a convex objective function that guarantees a
unique solution. We have shown that the parameter estimators
are strongly consistent and asymptotically normal. Numerical
studies have demonstrated that the proposed method performs
well for sample sizes of practical use.

Regarding the transformation Hγ (T ), we have studied both
the conditional (with a known γ ) and unconditional (with an
unknown γ ) inferences. Which approach is preferable in real
applications is debatable. Each has its own advantages and dis-
advantages; for example, fixing γ = 0 yields the quantile-AFT
model, which is popular and easily interpretable, and compar-
isons with other benchmarks (e.g., the Cox and Portnoy models)
are straightforward, whereas the γ random case corresponds to
a more flexible regression model under which the usual regres-
sion coefficients are not directly comparable due to different
scales or transformations, and only the marginal covariate ef-
fects are meaningful, depending on subject-specific covariates.
For the case with fixed γ , we can use a suitable model selec-
tion criterion to choose the model that best fits the data from
a class of power-transformed quantile regression models. We
then can interpret the estimates and inferences as conditioning
on the given transformation. To account for variation in the esti-
mation of γ , we can take the unconditional estimation by treat-
ing the transformation Hγ (T ), indexed by γ , as another model
parameter. As a byproduct, the bootstrap resampling method
automatically takes into account the variation from the estima-
tion of γ , and thus provides correct inferences for the regression
parameters.

APPENDIX: PROOFS

Proof of Theorem 1

For any fixed probability sample such that conditions (C.1)–(C.5)
hold, because 	 is compact, by choosing a subsequence indexed by n,
we assume that γ̂ → γ ∗. We now show that α̂(γ̂ ) is bounded. Other-
wise, for a subsequence, still denoted by n, ‖α̂(γ̂ )‖ → ∞. Define

α̂∗ =
(

1 − 1

‖α̂(γ̂ ) − α(γ ∗)‖
)

α(γ ∗) + 1

‖α̂(γ̂ ) − α(γ ∗)‖ α̂(γ̂ ).

Note that α̂∗ is bounded and that its distance from α(γ ∗) is 1. We
can further choose a subsequence to assume that α̂∗ has a limit α∗.

By the convexity, �0n(̂α∗; γ̂ ) ≥ �0n(α(γ ∗); γ̂ ). Because the class of
functions
{
(Hγ (X) − αT Z)I (Hγ (X) − αT Z ≥ 0) − τ (Hγ (X) − αT Z) :

γ ∈ 	,‖α − α(γ ∗)‖ ≤ 1
}

is the Glivenko–Cantelli class and Ĝ(t) → G0(t) uniformly in t ∈
[0,L], we conclude that as n → ∞, �0(α∗;γ ∗) ≥ �0(α(γ ∗);γ ∗).
This is a contradiction, because ‖α∗ − α(γ ∗)‖ = 1.

Because α̂(γ̂ ) is bounded, by choosing a further subsequence, we
assume that α̂(γ̂ ) converges to some α∗. After taking the limit of
inequality �0n(̂α(γ̂ ); γ̂ ) ≥ �0n(α(γ ∗); γ̂ ), we conclude that α∗ =
α(γ ∗). Similarly, we can show that β̂(γ̂ ) → β(γ ∗).

The result holds if we can show that γ ∗ = γ0 and α(γ ∗) = β(γ ∗) =
β0. As the covariates are bounded, by the Glivenko–Cantelli theorem,
for any compact set B,

sup
z,β∈B,γ∈	

∣
∣
∣
∣
∣
n−1

n∑

i=1

I (Zi ≤ z)
{

I (Hγ (Xi) − βT Zi ≥ 0)

Ĝ(H−1
γ (βT Zi ))

− τ

}

− E
[
I (Z ≤ z)

{
I (Hγ (T ) − βT Z ≥ 0) − τ

}]
∣
∣
∣
∣
∣

a.s.−→ 0.

Thus

n−3Rn(γ̂ )

→ E
(
E

[
I (Z ≤ z)

{
I (Hγ ∗(T ) − β(γ ∗)T Z ≥ 0) − τ

}]2∣
∣
z=Z

)
.

Because n−3Rn(γ0) → 0 and n−3Rn(γ0) ≥ n−3Rn(γ̂ ), we conclude
that

E
[
I (Z ≤ z)

{
I (Hγ ∗(T ) − β(γ ∗)T Z ≥ 0) − τ

}∣
∣
z=Z

] = 0;
that is, for any Z, Pr(Hγ ∗ (T ) ≥ β(γ ∗)T Z|Z) = τ. From condition
(C.4), this gives

β(γ ∗)T Z = Hγ ∗
(
H−1

γ0
(βT

0 Z)
)
.

From condition (C.2), we obtain that γ ∗ = γ0. This completes the
proof.

Proof of Theorem 2

Clearly, α̂(γ̂ ) is the solution to the equation of

n−1
n∑

i=1

�i

Ĝ(Xi)
Zi

{
I (Hγ̂ (Xi) − αT Zi ≥ 0) − τ

} = 0.

From the uniform expansion (Fleming and Harrington 1991),

√
n(Ĝ(t) − G0(t)) = n−1/2

n∑

i=1

V (Xi,�i ; t) + op(1), (A.1)

where V (Xi,�i ; t) is the influence function for the Kaplan–Meier es-
timator for the censoring distribution, that is,

V (Xi,�i ; t) = −G0(t)

∫ t

0

Ĝ(u−) dMi(u)

G0(u)
∑n

i=1 I (Xi ≥ u)
,

where Mi(t) is the martingale for the censoring time. Noting the
Donsker property of the class

{
�

G(X)
Z

{
I (Hγ (X) − βT Z ≥ 0) − τ

}
:

G is decreasing bounded away from 0,

γ and β are in the neighborhood of γ0 and β0

}

,
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we obtain that

−√
nE

[
Z

{
I (Hγ̂ (T ) − α̂(γ̂ )T Z ≥ 0) − τ

}]

= √
n(Pn − P)Q0(X,Z,�) + op(1),

where Pn denotes the empirical measure, P is the expectation, and

Q0(X,Z,�)

= �

G0(X)
Z

{
I
(
Hγ0 (X) − βT

0 Z ≥ 0
) − τ

}

− Ẽ

{
�̃

G0(X̃)2
Z̃

(
I
(
Hγ0(X̃) − βT

0 Z̃ ≥ 0
) − τ

)
V (X,�; X̃)

}

,

where (X̃, Z̃, �̃) are iid copies of (X,Z,�) and Ẽ(·) takes the expec-
tation with respect to (X̃, Z̃, �̃) only. Therefore, after Taylor expansion
of the left side, we have that

−√
n
[
E{Z�0γ (Z)}(γ̂ − γ0) + E{Z�0α(Z)}(̂α(γ̂ ) − β0)

]

= √
n(Pn − P)Q0(X,Z,�)

+ op

(
1 + √

n|γ̂ − γ0| + √
n‖α̂(γ̂ ) − β0‖). (A.2)

Similarly, we obtain that

−√
nE

[

Z
{

I (Hγ̂ (X) − β̂(γ̂ )T Z ≥ 0)

G0(H−1
γ̂ (̂α(γ̂ )T Z))

− τ

}]

= √
n(Pn − P)Q1(X,Z,�) + op(1),

where

Q1(X,Z,�)

= Z
{

I (Hγ0(X) − βT
0 Z ≥ 0)

G0(H−1
γ0 (βT

0 Z))
− τ

}

− Ẽ

{

Z̃
I (Hγ0(X̃) − βT

0 Z̃ ≥ 0)

G0(H−1
γ0 (βT

0 Z̃))2
V

(
X,�;H−1

γ0
(βT

0 Z̃)
)
}

.

After Taylor expansion of the left side, we have that

−√
nE{Z�1γ (Z)}(γ̂ − γ0) − √

nE{Z�1β (Z)}(β̂(γ̂ ) − β0)

− √
nE{Z�1α(Z)}(̂α(γ̂ ) − β0)

= √
n(Pn − P)Q1(X,Z,�)

+ op

(
1 + √

n|γ̂ − γ0| + √
n‖β̂(γ̂ ) − β0‖

+ √
n‖α̂(γ̂ ) − β0‖). (A.3)

From (A.2) and (A.3), we cancel the term (̂α(γ̂ ) − β0) on the left side
and obtain

√
n
[−E{Z�1β (Z)}A1

]
(γ̂ − γ0) + √

nE{Z�1β (Z)}(β̂(γ̂ ) − β0)

= √
n(Pn − P)

[
E{Z�1α(Z)}E{Z�0α(Z)}−1Q0(X,Z,�)

+ Q1(X,Z,�)
] + op(1),

where

A1 = −[
E{Z�1β (Z)}]−1

× [
E{Z�1γ (Z)} − E{Z�1α(Z)}E{Z�0α(Z)}−1E{Z�0γ (Z)}].

On the other hand, we note that the class of functions
{

I (Z ≤ z)
(

I (Hγ (X) − βT Z ≥ 0)

G(H−1
γ (βT Z))

− τ

)

:

γ is in a neighborhood of γ0,

β is in a neighborhood of β0,

G is a nonincreasing function in [0,L] and

bounded away from 0, z ∈ Rp

}

is a Donsker class. Thus

sup
z,γ∈	

∣
∣
∣
∣n

−1Dn(z, γ )

− E

[

I (Z ≤ z)
(

I (Hγ (X) − β̂(γ )T Z ≥ 0)

Ĝ(H−1
γ (β̂(γ )T Z))

− τ

)]

− (Pn − P)

[

I (Z ≤ z)
(

I (Hγ (X) − β(γ )T Z ≥ 0)

G0(H−1
γ (β(γ )T Z))

− τ

)]∣
∣
∣
∣

= op

(
n−1/2)

.

In addition,

E

[

I (Z ≤ z)
(

I (Hγ (X) − β̂(γ )T Z ≥ 0)

Ĝ(H−1
γ (β̂(γ )T Z))

− τ

)]

= E

[

I (Z ≤ z)
(

I (Hγ (X) − β̂(γ )T Z ≥ 0)

G0(H−1
γ (β̂(γ )T Z))

− τ

)]

− (1 + op(1))E

[

I (Z ≤ z)
I (Hγ (X) − β̂(γ )T Z ≥ 0)

G0(H−1
γ (β̂(γ )T Z))2

× {
Ĝ

(
H−1

γ (β̂(γ )T Z)
) − G0

(
H−1

γ (β̂(γ )T Z)
)}

]

.

After Taylor expansion of the first term at β(γ ) and using the expan-
sion of Ĝ in (A.1), we obtain that, uniformly in z and γ in a neighbor-
hood of γ0,

n−1Dn(z, γ ) = E
[
I (Z ≤ z)

{
I (Hγ (T ) − β(γ )T Z ≥ 0) − τ

}]

+ (Pn − P)Q2(X,Z,�;γ, z)

+ E[I (Z ≤ z)�0α(Z)](β̂(γ ) − β(γ ))

+ op

(‖β̂(γ ) − β(γ )‖ + |γ − γ0|) + op

(
n−1/2)

,

where

Q2(X,Z,�;γ, z)

= I (Z ≤ z)
{

I (Hγ (X) − β(γ )T Z ≥ 0)

G0(H−1
γ (β(γ )T Z))

− τ

}

− Ẽ

{

I (Z̃ ≤ z)
I (Hγ (X̃) − β(γ )T Z̃ ≥ 0)

G0(H−1
γ (β(γ )T Z̃))

× V
(
X,�;H−1

γ (β(γ )T Z̃)
)
}

.

As a result,

n−3Rn(γ )

= E
{(

E
[
I (Z ≤ z)

{
I (Hγ (T ) − β(γ )T Z ≥ 0) − τ

}])2∣
∣
z=Z

}

+ 2E
(
E

[
I (Z ≤ z)

{
I (Hγ (T ) − β(γ )T Z ≥ 0) − τ

}]

× (Pn − P)Q2(X,Z,�;γ, z)
∣
∣
z=Z

)

+ 2E
(
E

[
I (Z ≤ z)

{
I
(
Hγ (T ) − β(γ )T Z ≥ 0

) − τ
}]

× E{I (Z ≤ z)�0α(Z)}(β̂(γ ) − β(γ ))
∣
∣
z=Z

)

+ op(n−1) + op

(‖β̂(γ ) − β(γ )‖2 + |γ − γ0|2)
.
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From Lemma 1, we note that

E
[
I (Z ≤ z)

{
I (Hγ (T ) − β(γ )T Z ≥ 0) − τ

}]

= B(z)(γ − γ0) + o(|γ − γ0|)
in a neighborhood of γ0, where

B(z) = E{I (Z ≤ z)�0γ (Z)} + A2(z)T A1,

with A2(z) = E{I (Z ≤ z)�0α(Z)T }. Therefore, n−3Rn(γ ) has a
quadratic expansion near γ0 as

op

(|γ − γ0|2 + n−1 + ‖β̂(γ ) − β(γ )‖2) + E{B(Z)2}(γ − γ0)2

+ 2(γ − γ0)
[
(Pn − P)Ẽ{B(Z̃)Q2(X,Z,�;γ0, Z̃)}

+ E{B(Z)A2(Z)T }(β̂(γ ) − β(γ ))
]
.

Because γ̂ minimizes Rn(γ ), we obtain that

E{B(Z)2}(γ̂ − γ0) + E{B(Z)A2(Z)T }(β̂(γ̂ ) − β(γ̂ ))

= −(Pn − P)Ẽ{B(Z̃)Q2(X,Z,�;γ0, Z̃)}
+ op

(|γ̂ − γ0| + n−1/2 + ‖β̂(γ̂ ) − β(γ̂ )‖).
Using the expansion of β(γ̂ ) = β0 + A1(γ̂ − γ0) + o(|γ̂ − γ0|),
after some algebraic manipulations and defining A3(z) = E{I (Z ≤
z)�0γ (Z)}, we have that

√
n
[
E{A3(Z)2} − AT

1 E{A2(Z)A3(Z)}](γ̂ − γ0)

− √
n
[
E{A3(Z)A2(Z)T } − AT

1 E{A2(Z)A2(Z)T }]

× (β̂(γ̂ ) − β0)

= −√
n(Pn − P)Ẽ{B(Z̃)Q2(X,Z,�;γ0, Z̃)}

+ op

(√
n|γ̂ − γ0| + 1 + √

n‖β̂(γ̂ ) − β0‖). (A.4)

Finally, asymptotic normality follows if we can show that the coef-
ficient matrix is nonsingular. We note that the coefficient matrix

�0 =
( −E{Z�1β (Z)}A1

E{A3(Z)2} − AT
1 E{A2(Z)A3(Z)}

E{Z�1β (Z)}
E{A3(Z)A2(Z)T } − AT

1 E{A2(Z)A2(Z)T }
)

has the same rank as
(

0

E{A3(Z)2} + AT
1 E{A2(Z)⊗2}A1

−E{Z�0α(Z)}E{Z�1β (Z)}
E{A3(Z)A2(Z)T } − AT

1 E{A2(Z)⊗2}
)

.

The latter has full rank because E{Z�0α(Z)}E{Z�1β (Z)} is positive
definite by some straightforward calculations. Thus the asymptotic co-
variance is given by

� = �−1
0

× E

[(
E{Z�1α(Z)}E{Z�0α(Z)}−1Q0(X,Z,�) + Q1(X,Z,�)

Ẽ{B(Z̃)Q2(X,Z,�;γ0, Z̃)}

)⊗2
]

× (�−1
0 )T .

Although we consider only the situation in which γ is estimated by
minimizing Rn(γ ), the same arguments also apply to the case corre-
sponding to R∗

n(γ ), whereas (A.4) will be different, reflecting the use
of I (β̂(γ̂ )T Z ≤ t) instead of I (Z ≤ z).

[Received March 2007. Revised April 2008.]
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