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Partially Linear Additive Hazards Regression
With Varying Coefficients

Guosheng YIN, Hui LI, and Donglin ZENG

To explore the nonlinear interactions between some covariates and an exposure variable, we propose the partially linear additive hazards
model for survival data. In a semiparametric setting, we construct a local pseudoscore function to estimate the varying and constant coeffi-
cients and establish the asymptotic normality of the proposed estimators. Moreover, we develop the weak convergence property for the local
estimator of the baseline cumulative hazard function. We conduct simulation studies to empirically examine the finite-sample performance
of the proposed methods and use real data from a breast cancer study for illustration.

KEY WORDS: Asymptotic normality; Censored data; Estimating equation; Kernel function; Local polynomial; Semiparametric estima-
tion; Varying-coefficient model.

1. INTRODUCTION

Varying-coefficient models have been extensively investi-
gated in various contexts and are becoming standard statisti-
cal tools in many applications (see, e.g., Hoover, Rice, Wu,
and Yang 1998; Cai, Fan, and Li 2000; Chiang, Rice, and Wu
2001; Huang, Wu, and Zhou 2002; Zhang 2004; Sun and Wu
2005; Martinussen and Scheike 2006). The proportional haz-
ards model (Cox 1972) can be extended to enhance model
flexibility by incorporating time-varying coefficients (see, e.g.,
Zucker and Karr 1990; Murphy and Sen 1991; Gamerman
1991; Hastie and Tibshirani 1993; Murphy 1993; Nielsen and
Linton 1995; Marzec and Marzec 1997; Dabrowska 1997;
Nielsen and Tanggaard 2001; Martinussen, Scheike, and Skov-
gaard 2002; Cai and Sun 2003; Tian, Zucker, and Wei 2005).
Although time-varying coefficient models have attracted much
attention, in many applications the covariate effects may vary
with an exposure variable. This formulation is well suited for
exploring the nonlinear interaction effects between risk factors
(see Fan, Lin, and Zhou 2006). Fan, Gijbels, and King (1997)
studied the nonparametric Cox model, in which the unknown
risk function can be estimated by integrating its derivative.
Chen and Zhou (2006) proposed to directly estimate the relative
risk function by constructing the local partial likelihood around
two sets of covariates. By selecting observations in the shrink-
ing neighborhoods of two covariate values, the nonparametric
risk function can be easily estimated, and its large-sample the-
ories are rigorously derived.

Alternatively, the additive hazards model produces the risk
difference as opposed to the risk ratio (e.g., Aalen 1989; Huf-
fer and McKeague 1991; Lin and Ying 1994; McKeague and
Sasieni 1994). Moreover, certain covariate effects may be much
more complex than linear effects, which motivates simultane-
ously modeling the parametric and nonparametric components
in the model. For subject i, let Ti be the failure time and
Ci be the censoring time; then Xi = Ti ∧ Ci is the observed
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time, where a ∧ b takes the minimum value of a and b. Let
�i = I (Ti ≤ Ci) be the failure indicator, where I (·) is the indi-
cator function. The corresponding possibly time-dependent co-
variates (external as defined by Kalbfleisch and Prentice 2002)
are denoted by a p-vector Zi (t), a q-vector Vi (t), and a scalar
Wi(t), where Zi (t) may interact nonlinearly with the expo-
sure variable Wi(t). Assume that Ti and Ci are condition-
ally independent given the covariates and that the observed
data {Xi,�i,Zi (t),Vi (t),Wi(t), t ∈ [0, τ ]} are independent
and identically distributed (iid) for i = 1, . . . , n, where τ is the
end time of a study.

To characterize the varying-covariate effects of Zi (t) with
respect to Wi(t), we propose the partially linear varying-
coefficient additive hazards model

λ(t |Zi ,Vi ,Wi)

= λ0(t) + βT (Wi(t))Zi (t) + γ T Vi (t) + α(Wi(t)), (1)

where λ0(t) is the baseline hazard function, β(Wi(t)) charac-
terizes the nonlinear interaction between Zi (t) and Wi(t), and
α(Wi(t)) represents the main effect of Wi(t). For model iden-
tifiability, we set α(w1) = 0, where w1 belongs to the interior
of the support of Wi(t) denoted by W . Using the local polyno-
mial technique (Fan and Gijbels 1996), we derive a local kernel-
weighted estimator, which includes the pseudoscore estimator
of Lin and Ying (1994) as a special case. We obtain an analytic
solution for the estimator that overcomes the difficulties of nu-
merical convergence and initial value selection (Fan and Chen
1999).

The rest of the article is organized as follows. In Section 2
we propose the local estimating equation under the varying-
coefficient additive hazards model. In Section 3 we establish the
asymptotic theories for the varying- and constant-coefficient es-
timators and the local estimator for the baseline cumulative haz-
ard function. In Section 4 we examine the finite-sample proper-
ties using simulation studies and illustrate the proposed meth-
ods with a recent breast cancer data set. We give concluding
remarks in Section 5, and delineate the proofs of our theorems
in Appendix A.
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2. ESTIMATION PROCEDURES

Assume that β(·) and α(·) are smooth so that their first and
second derivatives β ′(·), α′(·), β ′′(·), and α′′(·) exist. By the
Taylor series expansion, for each given w0 ∈ W , we have that

β(w) ≈ β(w0) + β ′(w0)(w − w0)

and

α(w) ≈ α(w0) + α′(w0)(w − w0).

Thus model (1) can be approximated by

λ(t |Zi ,Vi ,Wi,w0) = λ∗
0(t,w0) + ξT (w0)Z∗

i (t,w0), (2)

where λ∗
0(t,w0) = λ0(t) + α(w0), ξ(w0) = {βT (w0),γ

T (w0),

(β ′(w0))
T ,α′(w0)}T , and Z∗

i (t,w0) = {ZT
i (t),VT

i (t),ZT
i (t) ×

(Wi(t) − w0), (Wi(t) − w0)}T . We write γ (w0), even though
in our model γ is nonvarying, because in the sequel we will
consider both local and global estimates of γ . We write Ni(t) =
I (Xi ≤ t,�i = 1) and Yi(t) = I (Xi ≥ t) and define

Z̄(t,w0) =
∑n

i=1 Kh(Wi(t) − w0)Yi(t)Z∗
i (t,w0)

∑n
i=1 Kh(Wi(t) − w0)Yi(t)

,

where K(·) is a kernel density function, h is a bandwidth, and
Kh(·) = K(·/h)/h. Motivated by the work of Lin and Ying
(1994), we propose the local score-type function

Un(ξ ,w0) = 1

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)

× {Z∗
i (t,w0) − Z̄(t,w0)}dMi(t,w0), (3)

where dMi(t,w0) = dNi(t) − Yi(t){λ∗
0(t,w0) + ξT (w0)Z∗

i (t,

w0)}dt .
If we denote the solution to Un(ξ ,w0) = 0 by ξ̂(w0), then

we obtain an analytic closed form of

ξ̂(w0) =
[

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)Yi(t)

× {Z∗
i (t,w0) − Z̄(t,w0)}⊗2 dt

]−1

×
[

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)

× {Z∗
i (t,w0) − Z̄(t,w0)}dNi(t)

]

, (4)

where a⊗k = 1,a, and aaT for k = 0,1, and 2. Note that
the coefficient α(w0) itself cannot be directly estimated, be-
cause it is incorporated into the local baseline hazard func-
tion λ∗

0(t,w0). But α(w0) can be estimated by integrating α̂′(·)
over W , based on the trapezoidal rule, and its confidence in-
terval can be obtained by the usual bootstrap method (Efron
and Tibshirani 1993). The local baseline cumulative hazard
function, �∗

0(t,w0) = ∫ t

0 λ∗
0(u,w0) du, can be consistently es-

timated by

�̂∗
0(t,w0) =

∫ t

0

(
n∑

i=1

Kh(Wi(u) − w0)

× {dNi(u) − Yi(u)̂ξ
T
(w0)Z∗

i (u,w0) du
}
)

/( n∑

i=1

Kh(Wi(u) − w0)Yi(u)

)

. (5)

This is a major generalization of the pseudoscore estimator of
Lin and Ying (1994) to nonparametric regression, which is ap-
pealing because (4) nicely circumvents the convergence and
other numerical challenges.

Because only the local data are used for estimating γ in (4),
the resulting estimator γ̂ (w0) is not root-n consistent. To im-
prove its convergence rate, we take

γ̃ =
∫

W
�(w0)γ̂ (w0) dw0, (6)

where the weight matrix �(w0) satisfies
∫

W �(w0) dw0 =
Iq×q , an identity matrix. We typically can choose �(w0) to be
the standardized inverse covariance matrix of γ̂ (w0) (see Tian
et al. 2005).

3. ASYMPTOTIC THEORIES

3.1 Notation

Let H be a (2p + q + 1)-diagonal matrix, with the first
p + q elements equal to 1 and the remaining p + 1 ele-
ments equal to h. Let μj = ∫ ujK(u)du, νj = ∫ ujK2(u) du,
P(t,Z,V,W) = Pr(X ≥ t |Z(t),V(t),W(t)), and ρ(t,Z,V,

W) = P(t,Z,V,W)λ(t |Z,V,W) given the external time-
dependent covariates. For k = 0,1, and 2, we define

ak(t,w0) = fW(t,w0)E{P(t,Z,V,w0)Z⊗k(t)|W(t) = w0}

and

a∗
k(t,w0) = fW(t,w0)E{ρ(t,Z,V,w0)Z⊗k(t)|W(t) = w0},

where fW (t,w0) is the density function of W(t) evaluated at
w0. Denote ak(w0) = ∫ τ

0 ak(t,w0) dt and a∗
k(w0) = ∫ τ

0 a∗
k(t,

w0) dt . For k = 1 and 2, we define

ck(t,w0) = fW(t,w0)E{P(t,Z,V,w0)V⊗k(t)|W(t) = w0},
c∗
k(t,w0) = fW(t,w0)E{ρ(t,Z,V,w0)V⊗k(t)|W(t) = w0},
g(t,w0) = fW(t,w0)

× E{P(t,Z,V,w0)Z(t)VT (t)|W(t) = w0},

and

g∗(t,w0) = fW(t,w0)

× E{ρ(t,Z,V,w0)Z(t)VT (t)|W(t) = w0},
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where ck(w0), c∗
k(w0), g(w0), and g∗(w0) are defined similarly

to ak(w0) and a∗
k(w0). Finally, let

ω11(w0) = ν0

∫ τ

0

{

a∗
2(t,w0) − a∗

1(t,w0)aT
1 (t,w0)

a0(t,w0)

− a1(t,w0)(a∗
1(t,w0))

T

a0(t,w0)

+ a⊗2
1 (t,w0)a

∗
0(t,w0)

a2
0(t,w0)

}

dt,

ω12(w0) = ν0

∫ τ

0

{

g∗(t,w0) − a∗
1(t,w0)cT

1 (t,w0)

a0(t,w0)

− a1(t,w0)(c∗
1(t,w0))

T

a0(t,w0)

+ a1(t,w0)cT
1 (t,w0)a

∗
0(t,w0)

a2
0(t,w0)

}

dt,

ω22(w0) = ν0

∫ τ

0

{

c∗
2(t,w0) − c∗

1(t,w0)cT
1 (t,w0)

a0(t,w0)

− c1(t,w0)(c∗
1(t,w0))

T

a0(t,w0)

+ c⊗2
1 (t,w0)a

∗
0(t,w0)

a2
0(t,w0)

}

dt,

�11(w0) = ν0

(
ω11(w0) ω12(w0)

ωT
12(w0) ω22(w0)

)

,

�22(w0) = ν2

(
a∗

2(w0) a∗
1(w0)

(a∗
1(w0))

T a∗
0(w0)

)

,

and

�(w0) = diag(�11(w0),�22(w0)).

3.2 Asymptotic Properties

Let ξ0(w0) = {βT
0 (w0),γ

T
0 (w0), (β

′
0(w0))

T ,α′
0(w0)}T be

the true parameter vector. The following theorems character-
ize the asymptotic properties of the proposed local estimator
ξ̂(w0).

Theorem 1. Under conditions (C.1)–(C.6) in the Appendix,
we have that
√

nh
{
H(̂ξ(w0) − ξ0(w0)) − 1

2h2μ2D−1(w0)b(w0)
}

D−→ N
(
0,D−1(w0)�(w0)D−1(w0)

)
,

where b(w0) = (b1(w0)
T ,b2(w0)

T ,0T
p+1)

T with 0p+1 denot-
ing a zero column vector of length p + 1,

b1(w0) =
∫ τ

0

{

a2(t,w0) − a⊗2
1 (t,w0)

a0(t,w0)

}

dt β ′′
0(w0),

b2(w0) =
∫ τ

0

{

gT (t,w0) − c1(t,w0)aT
1 (t,w0)

a0(t,w0)

}

dt

× β ′′
0(w0),

and

D(w0) = diag

⎛

⎝

⎛

⎝

∫ τ

0

{
a2(t,w0) − a⊗2

1 (t,w0)

a0(t,w0)

}
dt

∫ τ

0

{
g(t,w0) − a1(t,w0)cT

1 (t,w0)

a0(t,w0)

}T
dt

∫ τ

0

{
g(t,w0) − a1(t,w0)cT

1 (t,w0)

a0(t,w0)

}
dt

∫ τ

0

{
c2(t,w0) − c⊗2

1 (t,w0)

a0(t,w0)

}
dt

⎞

⎠ ,

μ2

(
a2(w0) a1(w0)

aT
1 (w0) a0(w0)

))

.

The proof is outlined in the Appendix. We define G∗
i (t,w0) =

H−1Z∗
i (t,w0) and

Ḡ(t,w0) =
∑n

i=1 Kh(Wi(t) − w0)Yi(t)G∗
i (t,w0)

∑n
i=1 Kh(Wi(t) − w0)Yi(t)

.

To obtain a consistent estimator for the asymptotic variance
of ξ̂(w0), we replace D(w0) and �(w0) by their empirical
counterparts. The covariance matrix of H{̂ξ(w0)− ξ0(w0)} can
be consistently estimated by (nh)−1D−1

n (w0)�n(w0)D−1
n (w0),

where

Dn(w0) = 1

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)Yi(t)

× {G∗
i (t,w0) − Ḡ(t,w0)}⊗2 dt

and

�n(w0) = h

n

n∑

i=1

∫ τ

0
K2

h(Wi(t) − w0)

× {G∗
i (t,w0) − Ḡ(t,w0)}⊗2 dNi(t).

The consistency of such variance estimate naturally follows
from the proof of Theorem 1.

We can further obtain the asymptotic distribution of �̂∗
0(t,

w0) as defined in (5).

Theorem 2. Under conditions (C.1)–(C.6) in the Appendix,√
nh{�̂∗

0(t,w0) − �∗
0(t,w0) − h2μ2α

′′(w0)t/2} converges in
distribution to a mean-zero Gaussian process, where the covari-
ance function between time t and s can be consistently esti-
mated by

nh

n∑

i=1

∫ t∧s

0

K2
h(Wi(u) − w0) dNi(u)

{∑n
i=1 Kh(Wi(u) − w0)Yi(u)}2

−
∫ t

0
ḠT (u,w0) duD−1

n (w0)ηn(s,w0)

− ηT
n (t,w0)D−1

n (w0)

∫ s

0
Ḡ(u,w0) du

+
∫ t

0
ḠT (u,w0) du {D−1

n (w0)�n(w0)D−1
n (w0)}

×
∫ s

0
Ḡ(u,w0) du,
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with

ηn(t,w0) = h

n∑

i=1

∫ t

0

K2
h(Wi(u) − w0)

∑n
i=1 Kh(Wi(u) − w0)Yi(u)

× {G∗
i (u,w0) − Ḡ(u,w0)}dNi(u).

We establish the asymptotic properties of the proposed esti-
mator γ̃ by arguments similar to those of Tian et al. (2005). In
particular, the following result holds.

Theorem 3. Under conditions (C.1)–(C.6) in the Appendix,
assume that �(w0) is twice-continuously differentiable. Then√

n(γ̃ − γ 0) converges in distribution to a mean-zero normal
distribution.

The proof is given in the Appendix. The asymptotic co-
variance of γ̃ can be estimated as follows. We let I = {Ijk}
be a q × (2p + q + 1) matrix with elements Ijk = 1 for
j = 1, . . . , q , k = p + j , and Ijk = 0 otherwise, and let
Z†

i (t) = (ZT
i (t),VT

i (t),0T
p+1)

T and Z̄†(t) =∑n
i=1 Yi(t)Z

†
i (t)/∑n

i=1 Yi(t). Then the limiting variance–covariance matrix can
be consistently estimated by

1

n

n∑

i=1

∫ τ

0
�(Wi(t))ID−1

n (Wi(t))(Z
†
i (t) − Z̄†(t))⊗2

× D−1
n (Wi(t))IT �T (Wi(t)) dNi(t).

3.3 Confidence Bands

For varying-coefficient models, simultaneous confidence
bands for the estimated coefficient functions are more desir-
able than the pointwise confidence intervals. Motivated by the
work of Lin, Fleming, and Wei (1994) and Tian et al. (2005), we
consider a stochastic perturbation of (3) by replacing Mi(t,w0)

by Ni(t)ψi , that is,

Ũn(ξ ,w0) = 1

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)

× {Z∗
i (t,w0) − Z̄(t,w0)}dNi(t)ψi,

where {ψ1, . . . ,ψn} is an iid sample from the standard normal
distribution. Then, within a properly chosen interval [w1,w2],
we define the standardized distribution

S̃k = sup
w0∈[w1,w2]

|vk(w0)Ũk (̂ξ ,w0)|, k = 1, . . . , (2p+q+1),

where Ũk (̂ξ ,w0) is the kth component of the vector
{HDn(w0)H}−1Ũn(̂ξ ,w0) and vk(w0) is a positive weight
function that converges uniformly to a deterministic function.
By repeatedly generating samples of {ψ1, . . . ,ψn}, the distrib-
ution of

Sk = sup
w0∈[w1,w2]

∣
∣vk(w0){̂ξk(w0) − ξ0k(w0)}

∣
∣,

k = 1, . . . , (2p + q + 1),

can be approximated by that of S̃k . Let cαk be the 100(1 − α)th
percentile of this approximate distribution; then the (1−α) con-
fidence band for {ξ0k(w0),w0 ∈ [w1,w2]} is given by ξ̂k(w0)±
cαkv

−1
k (w0). The validity of the approximation of Sk using the

simulation technique can be justified following almost the same
arguments as those of Tian et al. (2005); we leave the justifica-
tion to Appendix B.

3.4 Bandwidth Selection

The bandwidth selection often is a critical part of nonpara-
metric regression. We can select the optimal h by minimizing
the asymptotic weighted mean squared error. For the kth com-
ponent of ξ̂(w0), we minimize

∫

W

{
1

4
h4μ2

2φ
2
k (w0) + 1

nh
σkk(w0)

}

(w0) dw0,

where φk(w0) is the kth element of the vector D−1(w0)b(w0),
σkk(w0) is the kth diagonal element of D−1(w0)�(w0)D−1(w0),
and (·) is a nonnegative and integrable weight function.
Therefore, the theoretical optimal bandwidth is given by

hopt,k =
{ ∫

σkk(w0)(w0) dw0
∫

μ2
2φ

2
k (w0)(w0) dw0

}1/5

n−1/5.

Alternatively, we could choose the bandwidth h by the K-
fold cross-validation method (see, e.g., Tian et al. 2005; Fan
et al. 2006). Here we first divide the data into K equal-sized
groups. If we let Dk denote the kth subgroup of data, then the
kth prediction error is given by

PEk(h) =
∑

i∈Dk

∫ τ

0

{
Ni(t) − Ê(Ni(t))

}2
d

{∑

j∈Dk

Nj (t)

}

,

k = 1, . . . ,K,

where

Ê(Ni(t)) =
∫ t

0
Yi(u)

[
d�̂0(−k)(u) + {β̂T

(−k)(Wi(u))Zi (u)

+ γ̃ T
(−k)Vi (u) + α̂(−k)(Wi(u))

}
du
]
,

in which β̂(−k)(·), γ̃ (−k), α̂(−k)(·), and �̂0(−k)(t) are estimated
using the data from all subgroups other than Dk . The global
estimator of �0(t) is given by

�̂0(t) =
∫ t

0

(
n∑

i=1

[
dNi(u) − Yi(u)

× {β̂T
(Wi(u))Zi (u) + γ̃ T Vi (u) + α̂(Wi(u))

}
du
]
)

/ n∑

i=1

Yi(u).

The optimal bandwidth can be obtained by minimizing the to-
tal prediction error,

∑K
k=1 PEk(h), with respect to h. We note

that the numerical procedure for the bandwidth selection is to
balance the trade-offs between the variance and bias, whereas
condition (C.3) in the Appendix removes the asymptotic bias.

4. NUMERICAL STUDIES

4.1 Simulations

We carried out two sets of simulation studies to examine the
finite-sample properties of the proposed methods. In Simula-
tion I we generated the failure times from the partially linear
additive hazards model

λ(t |Z,V,W) = λ0(t) + β(W)Z + γV + α(W), (7)
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Table 1. Simulation I: Estimation of coefficients with h = .12 and 25% censoring

β(w) = 1.2 + sin(2w) α′(w) = .2 γ = 1

n w0 Bias SD SE CR (%) Bias SD SE CR (%) Bias SD SE CR (%)

200 .5 .190 1.226 1.186 95.4 −.069 1.787 1.740 95.8 .081 .370 .311 91.6
1.0 .075 1.171 1.205 96.0 .095 1.644 1.565 95.8
1.5 .021 1.123 1.078 95.6 .112 1.623 1.559 95.0
2.0 .064 .925 .948 96.8 .023 1.561 1.518 95.2
2.5 .016 1.048 .994 95.8 .071 1.780 1.804 95.2

400 .5 −.061 .798 .790 94.6 .065 1.229 1.156 94.2 .025 .223 .218 95.2
1.0 −.047 .824 .810 94.4 −.102 1.094 1.069 94.6
1.5 .069 .768 .734 95.8 .030 .970 1.045 96.0
2.0 .104 .643 .638 93.2 −.052 1.037 1.024 94.2
2.5 .109 .674 .660 94.4 .098 1.197 1.192 96.4

where β(w) = 1.2 + sin(2w), γ = 1, α(w) = .2w, and
λ0(t) = .5. Covariate Z was generated from a uniform distri-
bution, Unif[0,1], and covariate V was a Bernoulli random
variable taking value 0 or 1 with probability .5. The exposure
variable W was generated from Unif[0,3]. The censoring time
was taken as the minimum value of τ and a random number in-
dependently generated from Unif[τ/2,3τ/2]. We took τ = .86
to yield an approximate censoring rate of 25%. We used the
Gaussian kernel function and chose 29 even partitions along
the range of W , that is, w0 = (.1, .2, . . . ,2.9). The bandwidth
of h = .12 was chosen based on a preliminary investigation in
which the cross-validation method was applied to a few sim-
ulated data sets. We used sample sizes n = 200 and 400. For
each configuration, we replicated 500 simulations. Based on
each data realization, we computed the estimators for β(w0),
α(w0), γ , and �∗

0(t,w0), along with the corresponding stan-
dard errors.

We present the regression coefficient estimates of Simula-
tion I in Table 1 and the local baseline cumulative hazard func-
tion estimates in Table 2. We report the standard deviations
(SDs) characterizing the sample variations over 500 simula-
tions, the average standard errors (SEs) using the asymptotic

approximation, and the 95% confidence interval coverage rates
(CRs). The SEs are approximately unbiased for the SDs and the
95% confidence interval CRs are centered around the nominal
level. The variances of the estimates decrease as the sample size
increases. As shown in Table 2, for the selected time points and
w0, the local estimators �̂∗

0(t,w0) are close to the true values,
and the SE provides a good approximation for the variation of
the point estimates. The CRs of the 95% confidence intervals
are close to the nominal value.

Figures 1(a) and (b) show the varying-coefficient estimates
and the 95% pointwise confidence intervals averaged over
500 simulations, (c) and (d) correspond to the local estima-
tor and the true function of the baseline cumulative hazard
�∗

0(t,w0), and (e) shows the global estimator and the true curve
of �0(t). We can see that the estimated varying-coefficient
curves are close to the true curves. For the baseline cumula-
tive hazard function, the local estimator �̂∗

0(t,w0) matches the
true pattern of the surface, increasing with respect to both t and
w0 and clearly indicating an interaction between t and w0. The
global estimator �̂0(t) lies slightly above the true line. Overall,
our proposed methods behave well with sample sizes of practi-
cal use.

Table 2. Simulation I: Estimation of the local baseline cumulative hazard function �∗
0(t,w) = .5t + .2wt with h = .12 and 25% censoring

n = 200 n = 400

t w0 True value �̂∗
0(t,w0) SD SE CR (%) �̂∗

0(t,w0) SD SE CR (%)

.25 .5 .150 .121 .170 .166 94.0 .153 .109 .116 95.6
1.0 .175 .156 .172 .173 95.0 .165 .121 .119 94.8
1.5 .200 .197 .165 .164 95.0 .189 .116 .112 92.8
2.0 .225 .228 .152 .150 94.6 .224 .106 .103 93.4
2.5 .250 .262 .167 .159 95.8 .251 .105 .107 96.0

.5 .5 .300 .243 .300 .297 94.6 .306 .206 .205 94.8
1.0 .350 .319 .312 .312 94.6 .346 .216 .212 95.4
1.5 .400 .405 .300 .290 94.6 .391 .214 .201 94.4
2.0 .450 .470 .276 .276 95.6 .449 .190 .186 95.4
2.5 .500 .538 .305 .296 95.0 .497 .193 .196 95.0

.7 .5 .450 .388 .428 .429 93.4 .474 .297 .295 94.8
1.0 .525 .517 .450 .450 93.6 .537 .314 .306 94.8
1.5 .600 .630 .449 .422 93.8 .591 .310 .292 94.6
2.0 .675 .728 .417 .403 95.4 .681 .271 .273 95.6
2.5 .750 .835 .460 .436 94.6 .762 .288 .288 96.4
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Yin, Li, and Zeng: Partially Linear Additive Hazards Regression 1205

Figure 1. Simulation I with n = 200 and h = .12 averaging over 500 data replicates. (a) Estimated curves of β(w). (b) Estimated curves
of α′(w). In (a) and (b) solid lines are the true functions, dashed lines are the estimates of varying coefficients, and dashed–dotted lines are
the pointwise 95% confidence intervals. (c), (d) The local estimator �̂∗

0(t,w0) and the true surface of the baseline cumulative hazard. (e) The
global estimator �̂0(t) of the baseline cumulative hazard, with the solid line representing the true function and the dashed line representing the
estimate.

In Simulation II we examined model (7), where β(w) =
1.2 + cos(2w), γ = 1, α(w) = 0, and λ0(t) = t . In this case the
exposure variable had no effect on the baseline hazard function
as α(w) = 0, that is, �∗

0(t,w0) ≡ �∗
0(t). We generated covari-

ates and censoring times in the same way as in Simulation I,
and we took τ = 1.1 to yield a censoring rate of 25%. Tables
3 and 4 summarize the simulation results, from which we can
see that the biases are quite small, the SEs based on the asymp-
totic approximation provide good approximation of the vari-

ability of the estimators, and the 95% confidence interval CRs
are reasonably accurate. Figures 2(a) and (b) show that the aver-
aged varying-coefficient estimates are close to the true curves.
Figure 2(c) shows the averaged surface estimate of �∗

0(t,w0)

over 500 simulations, which matches the pattern of the true sur-
face in (d); that is, it gradually increases with t while staying
constant with respect to w0. Comparing Figures 2(c) and 1(c)
demonstrates the role of α(w0) in the estimation of �∗

0(t,w0):
If α(w0) = 0, then W has no influence on �∗

0(t,w0), such that
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1206 Journal of the American Statistical Association, September 2008

Table 3. Simulation II: Estimation of coefficients with h = .1 and 25% censoring

β(w) = 1.2 + cos(2w) β ′(w) = −2 sin(2w) γ = 1

n w0 Bias SD SE CR (%) Bias SD SE CR (%) Bias SD SE CR (%)

200 .5 .209 1.055 1.003 95.0 −.052 2.114 2.102 96.0 .072 .236 .275 91.0
1.0 .131 .752 .773 96.8 −.022 1.575 1.529 96.4
1.5 .082 .654 .638 96.4 .054 1.190 1.243 96.8
2.0 .073 .703 .720 96.8 −.092 1.514 1.423 94.4
2.5 .033 1.007 .948 93.0 .028 2.089 1.971 94.4

400 .5 −.004 .685 .679 95.0 .034 1.421 1.409 95.4 .023 .165 .168 96.0
1.0 .050 .537 .525 94.8 .112 1.079 1.048 94.2
1.5 .128 .456 .443 95.8 .083 .836 .862 95.2
2.0 .073 .506 .494 95.4 −.119 .976 .984 94.8
2.5 .062 .648 .644 95.0 −.119 1.363 1.348 94.4

�̂∗
0(t,w0) is parallel to the horizontal axis of W . Figure 2(e) in-

dicates reasonable performance of the global estimator for the
baseline cumulative hazard function.

4.2 Breast Cancer Data Analysis

As an illustration, we applied our methods to data from a
recent study on 197 patients with high-risk primary or metasta-
tic breast cancer. The study was initiated in April 1992, and
patient follow-up continued until November 2005. The pri-
mary aim was to determine whether chemotherapy at a dose
higher than the standard maximum tolerated dose might in-
duce a better response. Patients were randomized to either
systemic chemotherapy with standard doses of 5-FU, doxoru-
bicin, and cyclophosphamide (FAC) or a dose-intense regimen
of FAC supported by the granulocyte colony-stimulating fac-
tor (G–CSF). G–CSF was shown to reduce the likelihood and
severity of neutropenia and its attendant complications. In the
neoadjuvant setting, patients in the FAC arm were treated for
four cycles with a cycle duration of 21 days, whereas those in
the treatment arm of FAC combined with G–CSF received a
higher dose of FAC with a shorter cycle duration. But the dose

intensity was defined as the amount of drug administered per
unit time, which was different for different patients. There were
197 distinct values of dose intensity, which were computed us-
ing the method of Ang, Buzdar, Smith, Kau, and Hortobagyi
(1989). We were interested in characterizing the relationship
between the disease-free survival (DFS) and known risk factors
and evaluating how the dose intensity interacted with other co-
variates, including disease stage, pathological response, num-
ber of positive axillary (AX) nodes, tamoxifen use (1 if yes;
0 if no), and menopausal status (1 if premenopausal; 0 other-
wise). To explore the nonlinear interactions between dose in-
tensity (W ) and other covariates, we started by fitting the fully
nonparametric model to the breast cancer data. After observing
that the parameters associated with disease stages III and IV
and menopausal status appeared to be invariant with respect to
dose intensity, we obtained the following model:

λ(t |Z,V,W) = λ0(t) + β1(W)ZPath Resp + β2(W)ZTamox

+ β3(W)ZAX nodes + γ1VStage III

+ γ2VStage IV + γ3VManop + α(W).

Table 4. Simulation II: Estimation of the local baseline cumulative hazard function �∗
0(t,w) = .5t2 with h = .1 and 25% censoring

n = 200 n = 400

t w0 True value �̂∗
0(t,w0) SD SE CR (%) �̂∗

0(t,w0) SD SE CR (%)

.25 .5 .031 .016 .151 .143 93.8 .027 .098 .116 95.2
1.0 .022 .123 .116 94.4 .029 .080 .119 95.0
1.5 .021 .102 .099 94.4 .029 .070 .112 93.4
2.0 .020 .109 .107 94.4 .023 .076 .103 95.4
2.5 .028 .138 .133 94.8 .032 .093 .107 95.6

.5 .5 .125 .106 .262 .252 93.8 .122 .167 .173 95.4
1.0 .118 .228 .211 93.2 .117 .143 .144 95.6
1.5 .111 .189 .181 94.8 .126 .134 .127 94.2
2.0 .108 .196 .195 94.0 .114 .138 .138 94.2
2.5 .119 .252 .240 92.6 .131 .164 .166 96.2

.7 .5 .281 .265 .385 .362 94.2 .278 .243 .248 95.8
1.0 .271 .331 .307 93.2 .270 .209 .210 94.6
1.5 .259 .293 .266 92.2 .288 .199 .187 94.6
2.0 .265 .294 .286 93.4 .275 .208 .201 93.4
2.5 .278 .379 .346 93.0 .298 .232 .239 96.2
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Yin, Li, and Zeng: Partially Linear Additive Hazards Regression 1207

Figure 2. Simulation II with n = 200 and h = .12 averaging over 500 data replicates. (a) Estimated curves of β(w). (b) Estimated curves of
β ′(w). In (a) and (b) the solid lines are the true functions, dashed lines are the estimates of varying coefficients, and dashed–dotted lines are
the pointwise 95% confidence intervals. (c), (d) The local estimator �̂∗

0(t,w0) and the true surface of the baseline cumulative hazard. (e) The
global estimator �̂0(t) of the baseline cumulative hazard, with the solid line representing the true function and the dashed line representing the
estimate.

We used the K-fold cross-validation method to select the op-
timal bandwidth with K = 39. As shown in Figure 3, h = 2.5
yielded the smallest prediction error. We used the Gaussian ker-
nel function and partitioned the entire range of W into 70 inter-
vals, with w0 = 6.25 + .25(j − 1), j = 1, . . . ,70. For the con-
stant coefficient associated with disease stage III, γ̃1 = .035 (the
standard error of .018); for stage IV, γ̃2 = .057(.030); and for
the menopausal status, γ̃3 = −.026(.016). Patients with stage
III or IV breast cancer had a higher risk of disease relapse, but

the difference was not statistically significant. Menopausal sta-
tus did not appear to affect the DFS significantly either. The
estimated regression curves and their 95% pointwise and simul-
taneous confidence bands are presented in Figure 4(a)–(d). We
see an overall trend of a higher dose intensity associated with
a decreased hazard, thus leading to a better DFS. Pathological
response decreased the risk significantly at low dose intensities,
whereas the risk reduction gradually disappeared with increas-
ing dose intensity. The covariate effects of tamoxifen use and
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1208 Journal of the American Statistical Association, September 2008

Figure 3. Prediction errors versus bandwidths, indicating the opti-
mal bandwidth h = 2.5.

the number of positive AX nodes were not statistically signif-
icant. Tamoxifen use resulted in an interesting trend over the
dose intensity; for patients treated at low dose intensities, ta-
moxifen helped prolong the DFS, whereas for patients treated at
high dose intensities, its use did not improve survival as much.
That is, the effect of tamoxifen use might be offset by increas-
ing the dose intensity. The effect of the number of positive AX
nodes showed an increasing pattern as the dose intensity in-
creased; the more positive nodes a patient had, the worse her
DFS, particularly at high dose intensities. The dose intensity
main effect showed a steady decreasing trend; the higher the
dose intensity, the lower the risk of disease relapse. Figures
4(e) and (f) show the local and global estimators of �∗

0(t,w0)

and �0(t). The local estimator �̂∗
0(t,w0) increases with respect

to both t and w0.

5. DISCUSSION

The additive hazards model serves as an important alterna-
tive to the proportional hazards model. To enhance modeling
flexibility, we have studied the semiparametric partially linear
additive hazards model and proposed the estimation and infer-
ence procedures. The coefficients may vary and thus exhibit dif-
ferent covariate effects over the level of an exposure variable.
Based on a different perspective than the time-varying coeffi-
cient model, our model imposes a covariate-varying structure.
We applied the local polynomial technique and estimated the
coefficient functions nonparametrically. The proposed model
and estimation procedure are particularly attractive due to the
analytic solution for the estimator, because convergence and
initial value selection are the well-known challenges for non-
parametric regression. The choice of the smoothing parameter
in the kernel function requires more caution in practice. Based
on the simulation studies, the estimation procedure appears to
be quite robust to the bandwidth. We typically truncate both
the left and right sides of W by the bandwidth h, because the
estimates at the boundaries often are not very stable. To gain
efficiency, a weight function can be incorporated into the esti-
mating equation; however, this may lessen the ease of compu-
tation. The baseline cumulative hazard function is completely

unspecified, and we can ensure its monotonicity by forcing the
estimator to be nondecreasing over time (Lin and Ying 1994;
Peng and Huang 2007).

APPENDIX A: PROOFS OF THEOREMS

We impose the following conditions:

(C.1) The kernel function K(·) > 0 is a bounded and symmetric
density with a compact bounded support.

(C.2) The functions β(·) and α(·) have continuous second deriva-
tives in W including the boundary and

∫ τ
0 λ0(t) dt < ∞.

(C.3) h → 0, logh/
√

nh2 → 0 and nh4 is bounded.
(C.4) inft∈[0,τ ],w0∈W a0(t,w0) > 0, the matrices

a2(w0) −
∫ τ

0

a⊗2
1 (t,w0)

a0(t,w0)
dt

and
(

a2(w0) a1(w0)

aT
1 (w0) a0(w0)

)

are nonsingular, and �(w0) is positive definite for all w0 ∈
W .

(C.5) The sample path of (Z(t),V(t),W(t)) has bounded total vari-
ation in [0, τ ].

(C.6) The conditional density of (Z(t),V(t)) given W(t) = w0
is twice continuously differentiable with respect to w0.
The marginal density of W(t) evaluated at w0, denoted by
fW (t,w0), is twice continuously differentiable with respect
to w0 and satisfies inft∈[0,τ ],w0∈W fW (t,w0) > 0.

All of these conditions are standard conditions in statistical inference
using local linear estimation. For (C.3), we can choose the bandwidth
h = n−ν with ν ∈ [1/4,1/3). Condition (C.5) allows discontinuous
sample paths of time-dependent covariates.

Let the filtration {Ft : t ∈ [0, τ ]} be the data history up to time t ,
that is,

Ft = σ
{
Ni(s), Yi(s),0 ≤ s ≤ t;

Zi (s),Vi (s),Wi(s),0 ≤ s ≤ τ, i = 1, . . . , n
}
.

Define Mi(t) = Ni(t) − ∫ t
0 Yi(u)λ(u|Zi ,Vi ,Wi) du. Then Mi(t) is a

Ft -martingale.
Recall that G∗

i
(t,w0) = H−1Z∗

i
(t,w0). For t ∈ [0, τ ], k = 0,1,

and 2, we define

Snk(t,w0) = 1

n

n∑

i=1

Kh(Wi(t) − w0)Yi(t)(G
∗
i (t,w0))⊗k

and

S∗
nk(t,w0) = 1

n

n∑

i=1

Kh(Wi(t) − w0)

× Yi(t)λ(t |Zi ,Vi ,Wi)(G
∗
i (t,w0))⊗k.

For w0 ∈ W , we define

s0(t,w0) = a0(t,w0),

s1(t,w0) = (aT
1 (t,w0), cT

1 (t,w0),0T
p+1

)T
,

s2(t,w0) = diag

((
a2(t,w0) g(t,w0)

gT (t,w0) c2(t,w0)

)

,

μ2

(
a2(t,w0) a1(t,w0)

aT
1 (t,w0) a0(t,w0)

))
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Yin, Li, and Zeng: Partially Linear Additive Hazards Regression 1209

Figure 4. Estimates of regression coefficient curves for the breast cancer data with h = 2.5. (a) Pathological response; (b) tamoxifen; (c) num-
ber of positive AX nodes; (d) dose intensity main effect. In (a)–(d), the solid lines are the estimates of varying coefficients, dashed lines are the
95% pointwise confidence intervals, and dashed–dotted lines are the 95% simultaneous confidence bands. (e) The local estimator of the baseline
cumulative hazard. (f) The global estimator of the baseline cumulative hazard.

and

s∗
0 (t,w0) = a∗

0 (t,w0),

s∗1(t,w0) = ((a∗
1(t,w0))T , (c∗

1(t,w0))T ,0T
p+1

)T
,

s∗2(t,w0) = diag

((
a∗

2(t,w0) g∗(t,w0)

(g∗(t,w0))T c∗
2(t,w0)

)

,

μ2

(
a∗

2(t,w0) a∗
1(t,w0)

(a∗
1(t,w0))T a0(t,w0)

))

.

Lemma A.1. Under Conditions (C.1)–(C.6), we have that, for k =
0,1, and 2,

sup
t∈[0,τ ],w0∈W

|Snk(t,w0) − sk(t,w0)| = Op

(
logh√

nh

)

+ O(h2)
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and

sup
t∈[0,τ ],w0∈W

|S∗
nk(t,w0) − s∗k(t,w0)| = Op

(
logh√

nh

)

+ O(h2).

Proof of Lemma A.1. Let Pn and Gn denote the empirical mea-
sure and the empirical process from n iid observations. We can rewrite
Snk(t,w0) as

Snk(t,w0) = Pn

⎡

⎢
⎢
⎢
⎢
⎣

1

h
K

(
W(t) − w0

h

)

Y (t)

⎛

⎜
⎜
⎜
⎝

Z(t)

V(t)

Z(t)
W(t)−w0

h
W(t)−w0

h

⎞

⎟
⎟
⎟
⎠

⊗k
⎤

⎥
⎥
⎥
⎥
⎦

,

k = 0,1,2.

Note that W(t), Z(t), V(t), and Y (t) are stochastic processes with
bounded total variation. From lemma 9.10 of Kosorok (2008), they are
all VC-subgraph with finite VC-index. Thus, by theorem 2.6.7 of van
der Vaart and Wellner (1996), there exist an m = O(δ−N) number of
balls covering {(W(t),Z(t),V(t), Y (t)) : t ∈ [0, τ ]} with Lr(Q) radius
<δ, where N is a constant depending only on r and Q is any probabil-
ity measure. We also partition W into intervals with the length <δ/2. It
is direct to verify that for any pairs of (W(t),Z(t),V(t), Y (t)) within
the same ball and any pairs of w0 within the same interval, the Lr(Q)

distance of the associate function in the class

F =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

h
K

(
W(t) − w0

h

)

Y (t)

⎛

⎜
⎜
⎜
⎝

Z(t)

V(t)

Z(t)
W(t)−w0

h
W(t)−w0

h

⎞

⎟
⎟
⎟
⎠

⊗k

:

w0 ∈ W, t ∈ [0, τ ]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

cannot exceed O(h−4δ), that is,

N(δ, F ,Lr (Q)) ≤ O
(
h−4(N+1)δ−(N+1)

)
.

In addition, F has a covering function O(h−1). According to corol-
lary 19.38 of van der Vaart (1998), we obtain

E∗‖G‖F ≤
∫ 1

0

√
1 + logO

(
h−4(N+1)δ−(N+1)

)
dδ h−1

= O

(
logh

h

)

.

Thus we obtain

sup
t∈[0,τ ],w0∈W

∣
∣
∣
∣
∣
∣
∣
∣

Snk(t,w0)

−E

⎡

⎢
⎢
⎢
⎢
⎣

1

h
K

(
W(t) − w0

h

)

Y (t)

⎛

⎜
⎜
⎜
⎝

Z(t)

V(t)

Z(t)
W(t)−w0

h
W(t)−w0

h

⎞

⎟
⎟
⎟
⎠

⊗k
⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= Op

(
logh√

nh

)

.

Furthermore, because

E

⎡

⎢
⎢
⎢
⎢
⎣

1

h
K

(
W(t) − w0

h

)

Y (t)

⎛

⎜
⎜
⎜
⎝

Z(t)

V(t)

Z(t)
W(t)−w0

h
W(t)−w0

h

⎞

⎟
⎟
⎟
⎠

⊗k
⎤

⎥
⎥
⎥
⎥
⎦

=
∫

x
K(x)E

⎧
⎪⎪⎨

⎪⎪⎩

Y (t)

⎛

⎜
⎝

Z(t)

V(t)

Z(t)x

x

⎞

⎟
⎠

⊗k
∣
∣
∣
∣W(t) = xh + w0

⎫
⎪⎪⎬

⎪⎪⎭

× fW (t, xh + w0) dx,

by the Taylor expansion, we have

sup
t∈[0,τ ],w0∈W

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

E

⎡

⎢
⎢
⎢
⎢
⎣

1

h
K

(
W(t) − w0

h

)

Y (t)

⎛

⎜
⎜
⎜
⎝

Z(t)

V(t)

Z(t)
W(t)−w0

h
W(t)−w0

h

⎞

⎟
⎟
⎟
⎠

⊗k
⎤

⎥
⎥
⎥
⎥
⎦

− sk(t,w0)

∣
∣
∣
∣
∣
∣
∣
∣
∣

= O(h2).

We conclude that

sup
t∈[0,τ ],w0∈W

|Snk(t,w0) − sk(t,w0)| = Op

(
logh√

nh

)

+ O(h2).

The proof of the second half of the lemma follows similar arguments,
so we omit it here.

Proof of Theorem 1

First, we note that

H−1Un(ξ ,w0) = 1

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0){G∗

i (t,w0) − Ḡ(t,w0)}

× {dNi(t) − Yi(t)ξ
T (w0)Z∗

i (t,w0) dt}.
Because Un(̂ξ ,w0) = 0, we have

H−1Un(ξ0,w0) = Dn(w0)H(̂ξ(w0) − ξ0(w0)), (A.1)

where

Dn(w0) = 1

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)Yi(t)

× {G∗
i (t,w0) − Ḡ(t,w0)}⊗2 dt.

By the definition of the martingale,

dMi(t) = dNi(t) − Yi(t)
{
βT (Wi(t))Zi (t)

+ γ T Vi (t) + α(Wi(t))
}
dt − Yi(t) d�0(t),

we have

Un(ξ0,w0) = 1

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0){Z∗

i (t,w0) − Z̄(t,w0)}

× [Yi(t)
{
βT (Wi(t))Zi (t) + γ T Vi (t) + α(Wi(t))

− α(w0) − ξT
0 (w0)Z∗

i (t,w0)
}
dt + dMi(t)

]
.
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Because

βT (Wi(t))Zi (t) + γ T Vi (t) + α(Wi(t))

= ξT
0 (w0)Z∗

i (t,w0) + α(w0)

+ 1

2

{
(β ′′(w0))T Zi (t) + α′′(w0)

}
(Wi(t) − w0)2

+ op

(
(Wi(t) − w0)2),

it yields H−1Un(ξ0,w0) = An(τ,w0) + Bn(τ,w0) + op(h2), where

An(τ,w0) = 1

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)

× {G∗
i (t,w0) − Ḡ(t,w0)}dMi(t)

and

Bn(τ,w0) = 1

2n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)(Wi(t) − w0)2Yi(t)

× {G∗
i (t,w0) − Ḡ(t,w0)}

× {(β′′(w0))T Zi (t) + α′′(w0)
}
dt.

Note that
√

nhAn(τ,w0) is a sum of local square-integrable mar-
tingales with the quadratic variation process given by

nh〈An,An〉(s,w0)

= h

n

n∑

i=1

∫ s

0
K2

h(Wi(t) − w0)

{

G∗
i (t,w0) − Sn1(t,w0)

Sn0(t,w0)

}⊗2

× Yi(t)λ(t |Zi ,Vi ,Wi) dt,

for 0 ≤ s ≤ τ . From Lemma A.1, we have
∣
∣
∣
∣
∣
nh〈An,An〉(s,w0)

− h

n

n∑

i=1

∫ s

0
K2

h(Wi(t) − w0)

{

G∗
i (t,w0) − s1(t,w0)

s0(t,w0)

}⊗2

× Yi(t)λ(t |Zi ,Vi ,Wi) dt

∣
∣
∣
∣
∣

≤ Op

(
logh√

nh
+ h2

)
h

n

n∑

i=1

∫ s

0
K2

h(Wi(t) − w0)Yi(t)

× λ(t |Zi ,Vi ,Wi) dt.

Using exactly the same argument, we can easily show that the right

side is of order Op(
logh√

nh
+ h2) and so converges in probability to 0,

and that

h

n

n∑

i=1

∫ τ

0
K2

h(Wi(t) − w0)

{

G∗
i (t,w0) − s1(t,w0)

s0(t,w0)

}⊗2

× Yi(t)λ(t |Zi ,Vi ,Wi)}dt
P−→ �(w0).

Moreover, for any δ > 0, because |Kh(Wi(t) − w0)(G∗
i
(t,w0) −

Ḡ(t,w0))| is bounded by O(h−1),

I

{√
h

n

∣
∣Kh(Wi(t) − w0)Yi(t)

(
G∗

i (t,w0) − Ḡ(t,w0)
)∣
∣> δ

}

= 0

as n is sufficiently large. Thus

h

n

n∑

i=1

∫ τ

0
K2

h(Wi(t) − w0)g2
ij (t,w0)Yi(t)λ(t |Zi ,Vi ,Wi)

× I

{√
h

n

∣
∣Kh(Wi(t) − w0)Yi(t)

× (G∗
i (t,w0) − Ḡ(t,w0)

)∣
∣> δ

}

dt

P−→ 0,

where gij (t,w0) is the j th element of G∗
i
(t,w0) − G(t,w0). Thus,

from theorem 5.11 of Fleming and Harrington (1991), we conclude
that

√
nhAn(τ,w0)

D−→ N(0,�(w0)). (A.2)

On the other hand, from Lemma A.1,

1

h2
Bn(τ,w0) = 1

2n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)

(
Wi(t) − w0

h

)2

× Yi(t)

{

G∗
i (t,w0) − s1(t,w0)

s0(t,w0)

}

× {(β ′′(w0))T Zi (t) + α′′(w0)
}
dt

+ Op

(
logh√

nh
+ h2

)

,

Dn(w0) = 1

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)Yi(t)

×
{

G∗
i (t,w0) − s1(t,ω0)

s0(t,ω0)

}⊗2
dt

+ Op

(
logh√

nh
+ h2

)

.

Again, following the same arguments as in Lemma A.1, we have that

1

h2
Bn(τ,w0)

P−→ 1

2
μ2b(w0), Dn(w0)

P−→ D(w0). (A.3)

Combining all the results of (A.1)–(A.3), we have
√

nh
{
H(̂ξ − ξ0) − 1

2h2μ2D−1(w0)b(w0)
}

D−→ N
(
0,D−1(w0)�(w0)D−1(w0)

)
.

It is easy to verify that D(w0)−1b(w0) = ((β′′(w0))T ,0T
p+q+1)T .

Proof of Theorem 2

Note that

�̂∗
0(t,w0) − �∗

0(t,w0)

=
∫ t

0

∑n
i=1 Kh(Wi(u) − w0) dMi(u)
∑n

i=1 Kh(Wi(u) − w0)Yi(u)

− (̂ξ(w0) − ξ0(w0))T

×
∫ t

0

∑n
i=1 Kh(Wi(u) − w0)Yi(u)Z∗

i
(u,w0) du

∑n
i=1 Kh(Wi(u) − w0)Yi(u)

+
∫ t

0

(
n∑

i=1

Kh(Wi(u) − w0)
{
βT (Wi(u))Zi (u) + γ T Vi (u)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ri
es

] 
at

 0
5:

17
 0

2 
Se

pt
em

be
r 

20
13

 



1212 Journal of the American Statistical Association, September 2008

+ α(Wi(u)) − α(w0) − ξT
0 Z∗

i (u,w0)
}
du

)

/
(

n∑

i=1

Kh(Wi(u) − w0)Yi(u)

)

.

By the Taylor expansion, the last term on the right side is equal to

h2μ2

{
1

2

∫ t

0

a1(u,w0)

a0(u,w0)
duβ ′′(w0) + 1

2
α′′(w0)t

}

+ o(h2)

uniformly in t and w0. From (A.1) and the proof of Theorem 1, the first
two terms can be written as the summation of local square-integrable
martingales and a bias term that equals −h2μ2

∫ t
0

a1(u,w0)
a0(u,w0)

du

× β ′′(w0)/2 + o(h2). Finally, using the same arguments as in prov-
ing Theorem 1 and the uniform central limit theorem for martingale
process, we obtain the result.

Proof of Theorem 3

From the proof of Theorem 1, we have that, uniformly in w0 ∈ W ,
√

nhH(̂ξ(w0) − ξ0(w0))

= D−1
n (w0)

√
h

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)

× {G∗
i (t,w0) − Ḡ(t,w0)}dMi(t)

+ Op

(√
nh5/2D−1(w0)b(w0)

)+ op

(√
nh5/2).

Moreover, because D−1(w0)b(w0) is 0 except for the first p compo-
nents, we obtain

√
nh(γ̂ (w0) − γ 0(w0))

= ID−1
n (w0)

√
h

n

n∑

i=1

∫ τ

0
Kh(Wi(t) − w0)

× {G∗
i (t,w0) − Ḡ(t,w0)}dMi(t) + op

(√
nh5/2).

This implies that
√

n(γ̃ − γ 0)

= 1√
n

n∑

i=1

∫ τ

0

∫

W
�(w0)Kh(Wi(t) − w0)ID−1

n (w0)

× {G∗
i (t,w0) − Ḡ(t,w0)}dw0 dMi(t) + op(

√
nh2).

Because

D−1
n (w0){G∗

i (t,w0) − Ḡ(t,w0)}

= D−1(w0)

{

G∗
i (t,w0) − s1(t,w0)

s0(t,w0)

}

+ Op

(
logh√

nh
+ h2

)

uniformly in w0, the quadratic variance of the martingale

1√
n

n∑

i=1

[∫

W
�(w0)Kh(Wi(t) − w0)ID−1

n (w0)

× {G∗
i (t,w0) − Ḡ(t,w0)}dw0.

−
∫

W
�(w0)Kh(Wi(t) − w0)ID−1(w0)

×
{

G∗
i (t,w0) − s1(t,w0)

s0(t,w0)

}

dw0

]

Mi(t)

is Op(logh/
√

nh + h2). Thus
√

n(γ̃ − γ 0)

= 1√
n

n∑

i=1

∫ τ

0

∫

W
�(w0)Kh(Wi(t) − w0)ID−1(w0)

×
{

G∗
i (t,w0) − s1(t,w0)

s0(t,w0)

}

dw0 dMi(t) + op(1).

Furthermore, note that
∫

W
�(w0)Kh(Wi(t) − w0)ID−1(w0)

×
{

G∗
i (t,w0) − s1(t,w0)

s0(t,w0)

}

dw0

= �(Wi(t))ID−1(Wi(t))

×
⎡

⎣

⎛

⎝
Zi (t)

Vi (t)

0p+1

⎞

⎠−
E{Y (t)(ZT (t),VT (t),0T

p+1)T }
E{Y (t)}

⎤

⎦+ Op(h2).

This gives
√

n(γ̃ − γ 0)

= 1√
n

n∑

i=1

∫ τ

0
�(Wi(t))ID−1(Wi(t))

×
⎡

⎣

⎛

⎝
Zi (t)

Vi (t)

0p+1

⎞

⎠−
E{Y (t)(ZT (t),VT (t),0T

p+1)T }
E{Y (t)}

⎤

⎦ dMi(t)

+ op(1).

Applying the martingale central limit theorem to the right side, the
proof is complete.

APPENDIX B: APPROXIMATION OF
THE CONFIDENCE BANDS

The arguments follow from appendix B of Tian et al. (2005). We as-
sume that h = n−ν with ν ∈ [1/4,1/3). We note that their function U
corresponds to

1√
nh

n∑

i=1

∫ τ

0
K

(
Wi(t) − w0

h

)

×

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

Zi (t)

Vi (t)

Zi (t)(Wi(t) − w0)

(Wi(t) − w0)

⎞

⎟
⎟
⎠− Z̄(t,w0)

⎫
⎪⎪⎬

⎪⎪⎭

dNi(t)

in our case and thus is independent of parameters. With the exact
proofs of their propositions B.3 and B.4, the foregoing process can
be represented as

1√
h

∫

x,z,v,w
K

(
w − w0

h

)
⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

z
v

z(w − w0)

(w − w0)

⎞

⎟
⎟
⎠− Z̄(x,w0)

⎤

⎥
⎥
⎦ d
[√

n

× {F̂n(x, z,v,w) − E(F̂n(x, z,v,w))
}]

, (B.1)

where F̂n is the empirical distribution of the observed data (X∗ =
X� + ∞(1 − �),Z(X),V(X),W(X)). Using the approximation of
the empirical process by the Brownian bridge Bn,

sup
x,z,v,w

∣
∣
√

n
{
F̂n(x, z,v,w) − E(F̂n(x, z,v,w))

}− Bn(R(x, z,v,w))
∣
∣

= O
(
n−1/2(logn)2),
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where R is the quantile function of the observed data, we obtain from
integration by parts that (B.1) can be replaced by

1√
h

∫

x,z,v,w̃

{
Bn(R(x, z,v,w0 + w̃h)) + O

(
n−1/2(logn)2)}

× K ′(w̃) dw̃ dx,z,v

⎡

⎢
⎣

⎛

⎜
⎝

z
v

zw̃h

w̃h

⎞

⎟
⎠− Z̄(x,w0)

⎤

⎥
⎦ .

From Lemma A.1, this is further approximated by

1√
h

∫

x,z,v,w̃

{
Bn(R(x, z,v,w0 + w̃h)) + O

(
n−1/2(logn)2)}

× K ′(w̃) dw̃ dx,z,v

⎡

⎢
⎣

⎛

⎜
⎝

z
v

zw̃h

w̃h

⎞

⎟
⎠− s1(x,w0)

s0(x,w0)

⎤

⎥
⎦

+ O

(
logh√
nh3/2

)

+ O
(
h3/2).

By integration by parts again, we obtain that (B.1) approximates, uni-
formly in w0,

1√
h

∫

x,z,v,w
K

(
w − w0

h

)

×

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

z
v

z(w − w0)

(w − w0)

⎞

⎟
⎟
⎠− s1(x,w0)

s0(x,w0)

⎤

⎥
⎥
⎦ dBn(R(x, z,v,w)),

which is some kernel-smoothed Wiener process. The latter, by the ar-
guments used in proving proposition B.4 of Tian et al. (2005), has
the same distribution as the conditional distribution of the simulated
process given the observed data.

[Received September 2006. Revised March 2008.]
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