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SUMMARY. We consider modeling correlated survival data when cluster sizes may be informative to the
outcome of interest based on a within-cluster resampling (WCR) approach and a weighted score function
(WSF) method. We derive the large sample properties for the WCR estimators under the Cox proportional
hazards model. We establish consistency and asymptotic normality of the regression coefficient estimators,
and the weak convergence property of the estimated baseline cumulative hazard function. The WSF method
is to incorporate the inverse of cluster sizes as weights in the score function. We conduct simulation studies
to assess and compare the finite-sample behaviors of the estimators and apply the proposed methods to a

dental study as an illustration.
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resampling.

1. Introduction

Correlated survival data often arise in biomedical research
settings. For example, in randomized multicenter clinical tri-
als, patients are recruited and grouped by study centers. In
dental or family disease studies, all teeth of the same person
or all members of the same family are naturally clustered to-
gether. Observations within the same cluster are likely to be
correlated, where the correlation needs to be accounted for in
statistical estimation and inference.

An interesting problem in clustered/correlated survival
data, which is often ignored, is the possible informativeness
of cluster sizes. Cluster size is informative when the outcome
of interest among individuals in a cluster is associated with
the size of that cluster. For example, in a toxicology study
assessing the effect of mother mice being exposed to certain
toxicant, mothers that are particularly susceptible to the toxi-
cant may produce more offspring with birth defects that have
lower survival probabilities and meanwhile may experience
more fetal resorptions, hence reducing the litter size. In this
case, pups of a smaller litter tend to have shorter survival,
thus the cluster size is informative to the effect of toxicant
exposure on offspring survival. Another example is found in
a dental study, where the effects of behavioral factors such
as cigarette smoking and hygiene status may predict tooth
survival for patients with chronic periodontitis (McGuire and
Nunn, 1996). The outcome of interest was the time to tooth
loss from initiation of therapy. Shown in Figure 1 are the
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Kaplan—Meier curves for molar teeth stratified by the cluster
sizes (the number of molars of a patient < 6, =7, or =8).
We can see that patients with more teeth have higher molar
survival probability. As a result, cluster size is informative to
tooth survival.

Marginal models (MMs) have been proposed and widely
used for analyzing clustered survival data. In analyzing mul-
tivariate failure times where individuals may experience differ-
ent types of failures, Wei, Lin, and Weissfeld (1989) proposed
the marginal proportional hazards model (Cox, 1975) sepa-
rately for each failure type, while the covariance matrix was
estimated jointly across all failure types to adjust for the cor-
relation. For clustered or highly stratified survival data, Lee
Wei, and Amato (1992) proposed a multiplicative intensity
model, for which they estimated the regression coefficients
assuming independence among observations and provided a
“sandwich” form of covariance matrix estimator. Spiekerman
and Lin (1998) and Clegg, Cai, and Sen (1999) presented a
more general marginal regression model for multivariate fail-
ure time data. Alternative MMs including the accelerated
failure time model, linear transformation model, and addi-
tive hazards model have been studied for analyzing correlated
survival data, see for example, Lin and Wei (1992), Lee, Wei,
and Ying (1993), Chen and Wei (1997), Cai, Wei, and Wilcox
(2000), Yin and Cai (2004), and Lu (2005).

However, all the aforementioned methods do not take into
account the possible informativeness of cluster sizes. In fact,
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Figure 1. Kaplan—Meier survival curves for molars stratified by cluster sizes in the dental study.

when cluster size is informative, the standard MMs tend to
overweigh the large clusters because each individual observa-
tion contributes equally in the likelihood function, and there-
fore produce biased estimates. Hoffman, Sen, and Weinberg
(2001) proposed a within-cluster resampling (WCR) proce-
dure, where one observation is randomly sampled from each
cluster. The observations in the resampled dataset are thus
independent and standard methods can be readily applied. By
resampling the observed data with replacement many times,
the final estimator can be obtained through averaging over
the estimates from the resampled data. Williamson, Datta,
and Satten (2003) proposed a modified generalized estimat-
ing equation (GEE) method (Liang and Zeger, 1986), where
the estimating equation is inversely weighted by cluster sizes.
Both methods can adequately account for informative cluster
sizes by assigning equal weights to clusters and produce valid
inference for the parameters of interest. Follmann, Proschan,
and Leifer (2003) established the asymptotic theories and
broad applications of the WCR approach, referred as multi-
ple outputation. More recently, Benhin, Rao, and Scott (2005)
gave a thorough and in-depth discussion on a mean estimating
equation approach that is in essence analogous to the work of
Williamson et al. (2003).

The theories of the WCR and weighted estimating equation
approaches are well developed in the GEE context. For corre-
lated survival data with informative cluster sizes, the problem
is much more complicated and challenging due to the exis-
tence of random censoring and the infinite dimensionality of

the unknown hazard function. In this article, we investigate
the WCR method for correlated survival data with informa-
tive cluster sizes, such that the resampled independent data
can be analyzed using the conventional Cox model. We also
generalize the standard MM of Lee et al. (1992) by incorpo-
rating the inverse of cluster sizes as weights into the score
function to account for informative cluster sizes.

The rest of the article is organized as follows. In Section 2,
we introduce the WCR method under the Cox proportional
hazards model and derive the large sample properties for the
estimators of the regression coefficients and the baseline cu-
mulative hazard function. We also study the weighted score
function (WSF) for correlated survival data to adjust for in-
formative cluster sizes. In Section 3, we conduct simulation
studies to assess the finite sample properties of the proposed
methods. In Section 4, we apply the two proposed methods to
a dental study and compare the results with those from the
standard MMs. We provide some discussion in Section 5, and
outline the technical proofs in the Web Appendices.

2. Proposed Methods

2.1 Notation

Let ¢ = 1,...,m index the clusters which are assumed to be
independent of each other, and j = 1,...,n; denote the indi-
viduals within the ith cluster. Let T;; and Cj; be the failure
and censoring times for the jth individual in the ith cluster,
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respectively. Let Z;(t) denote a p-vector of possibly time-
dependent covariates, where ¢ € [0, 7] for some finite constant
T > 0. We assume that Tj; is conditionally independent of
Cy; given Z;(t). The observed times are X;; = min(T};,Cy),
with the failure indicator A; = I(X;; = T};), where I(-) is the
indicator function. Within each cluster, we assume exchange-
ability among individuals.

We assume that the cluster size is informative to survival
probability. In other words, the survival probabilities of indi-
viduals in a cluster depend on the size of that cluster. How-
ever, the causes for cluster sizes being informative can be
complicated and usually unknown, because some latent vari-
ables may implicitly affect the baseline hazard for each clus-
ter and/or the covariates. For example, the marginal hazard
function may be associated with the cluster size through the
following frailty model:

A(t]Zij, wi) = No(t)w; exp{v(Zy (1)},

where the latent variable w; depends on cluster size, and Ao (t)
is an unspecified baseline hazard function.

If cluster sizes are ignorable (noninformative to survival),
the usual marginal proportional hazards model (Lee et al.,
(1992) is applicable, given by

At Zy) = Xo(t) exp{B,Z;; (1)}, (1)

where 3, is the regression coeflicient vector. However, when
cluster sizes are informative, the estimates and inference
based on equation (1) may be incorrect. To account for in-
formative cluster sizes, we propose two different approaches
in this regard.

We define the counting process Ny;(t) = I(X; <t,A; =1),
the at-risk process Y;;(t) = I(X; > t), and

My (1) = Ny (1) — / Y, (u) exp{ByZy ()} Aolu) du

Note that M;;(¢) is a local square-integrable martingale with
respect to the marginal filtration Fj;(t) = o{N;(u), Yy (u),
Z;(u) : 0 <wu < t}. However, due to the within-cluster depen-
dence, M;;(t) is not a martingale with respect to the joint fil-
tration generated by the history of all the failure, censoring
and covariate information up to time t.

2.2 Within-Cluster Resampling

We randomly sample, with replacement, one individual from
each of the m clusters. The bth resampled dataset denoted
by {X? A Z2(t);i =1,...,m,t € [0, 7]}, consists of m inde-
pendent ObSGI‘V&thHS, which can be analyzed using the Cox
proportional hazards model for independent failure time data.
For b=1,..., B, where Bis a large fixed number, we introduce
the following necessary notation:

=m™ Yy Ve {z®)}

M(B,t) = E{S{" (B, 1)},

st (8, Fexp{BZ2(1)},

e(B,1) =sV(8,1)/sV(B,1),

V(8,1 =S (8,0)/5"(8,1) - {8} (8,0 /5 (B,1)} 7,

where a®* = 1, a, aa’, for k=0, 1, 2.
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For the bth resampled data, the partial likelihood function
is given by

Ab
O | exp{B'Z8(X? ‘
Lb(ﬂ)=H[p{f)—'(f)}] : @

and accordingly, the score function is
S, (8,t)

Z/ {Zb 96,1

Solving Uy(8) =0, we obtain a consistent estimator for
B, denoted as B,. The baseline cumulative hazard Ay(t) =

fo Ao(u) du can be estimated by the Breslow—Aalen estima-
tor, Wthh for the bth resampled dataset is given by

Ro(t, ) = ij/

} dN2(t).  (3)

AN (u)

) exp{3,Z5 (u)}

ZYb

After repeating this procedure B times, the WCR estimator
for B is constructed as the average of the B resample-based
estimates,

Buer = % (4)

1M
P>

and similarly, the WCR estimator for Aq(¢) is

Mo(t:8) = 35 > R34, Bu), %)

b=1

where 8 = (B1,...,088).

An attractive feature of the WCR method is that the es-
timates can be obtained by maximizing the standard partial
likelihood function for independent data without specifying
any correlation matrix. Simply by averaging over the esti-
mates from the resampled data, we can obtain a consistent
estimator for 3, and the variance—covariance matrix of By
in a relatively straightforward fashion, as shown in the next
section.

2.3 Inference Procedures

Under certain regularity conditions (Anderson and Gill, 1982;
Fleming and Harrington, 1990, p. 289-290), for each resam-
pled dataset, Bb is consistent and asymptotically normal. To
prove the asymptotic normality of By, the central limit the-
orem (CLT) cannot be directly applied because By is the
average of B identically distributed but dependent maximum
partial likelihood estimators. Following similar arguments as
in Hoffman et al. (2001), we can rewrite Byer as the sum of
m independent cluster-specific terms so that the multivariate
CLT can be applied. The asymptotic normality is stated in
the following theorem, for which the proof is outlined in Web
Appendix A.

THEOREM 1:  Under regularity conditions, as m — oo,
Vm(Buwe — By) — Np(0,X) in distribution, where 3 is a finite
and positive definite matrix.
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As B increases, the covariance matrix of B, converges to
3. A consistent estimator for X is given as

{Zzb— ~1) Q} (6)

where X, is the estimated variance—covariance matrix for 3,
given by

—{Z/ V4Bt dN()} , ()

and Q is the estimated covariance matrix among the B
resample-based estimates 3y,

B

Q = (B - 1)71 Z(Bb - chr)(Bb - chr)/~

b=1

The consistency of 3 is given in Theorem 2, with a sketched
proof in Web Appendix B.

THEOREM 2: Under reqularity conditions, 3 is consistent.

Let W (t) = vim{A(t, B) — Ao(t)},t € [0, 7], and let W(¢)
be a zero-mean Gaussian process with a finite covariance
function.

THEOREM 3: The random process W(t) converges weakly to
W(t) fort e [0, T].

Proof of Theorem 3 is provided in Web Appendix C. Similar
to equation (6), the covariance function of Ay(t, 3), between
time ¢; and &, can be estimated by

B
% [Z COV{Ag(tth): Ag(t2, ﬁAb)}

B
—(B- 1)Z{Ag(t1,éb) - ]\U(thé)}{Ag(tLBb) - Ao(tm,é)}] )

b=1

(8)

where Cov{A (tl,,Bb) tg,,Bb)} is given by

min(ty,t2) b
A N . .
[ ot w0,
0 Sb (ﬂb:u)

and

3 _ - i S(l)(lébv ) b
H(By, 1) = Z/ mEEREA

=1

2.4 Weighted Score Function

In this section, we consider extending the work of Williamson
et al. (2003) to the clustered survival data with informative
cluster sizes. We propose the following WSF:
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U =

Z nik > Yult)Z(t) exp{B Zu(t)}

k=1 =1
g Z;
nz ] ng

i—1 j Z nik Z Y5 (t) exp{B8'Zy(t)}

9)

By setting U(8) = 0, we can obtain the estimators from the
WSF, denoted by Bwsf. To account for the informative clus-
ter sizes, the contribution of each individual to the overall
estimating equation is inversely weighted by the correspond-
ing cluster size. Similar to the WCR approach, this avoids
overweighing larger clusters as opposed to the standard un-
weighted MMs. Asymptotic properties of this estimator can
be developed similarly as in Lee et al. (1992) and following ar-
guments similar to those in Cai and Prentice (1997) by letting
the weight equal the inverse of each cluster size.

The covariance matrix of the limiting distribution of
\/ﬁ(,éwsf — B,) can be consistently estimated by

! (ﬁx\'sf) )

where J(+) is the information matrix, and

I HIACL

Zj1k1

Jil(ﬂﬁwsf)v‘]i (10)

nik Z Yia (t)Zy (t) exp{ Bl Zii (1) } A
=1 e dMJ (t)
Z ni Z Yu(t) exp{,éivsfzw(t)}

k=1 =1

The baseline cumulative hazard function at time ¢ can be
estimated using the weighted Breslow—Aalen estimator,

AO (ty B\vsf)
dN i (u)

i=1 Z ZYM Yexp{ B Z(u)}
k=1

The covariance function can be estimated as

Cov {]\o(th Bust), Ao(t27,éwsf)} = Z Vi(t)Yi(ta),

i=1

(11)

where
1 t
=3 |

- H,(Bwsfv t J71 (Bwst)ﬂz(t)7

Vg () exp{ B Zi () }
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Z Vi () Zig (w) exp{ Bl Zia (u) }
=
L 3 dNU (U)

/kl
0

Z ZYM ) exp{ Bl Zu(u)}
k=1

The WCR estimator and the WSF estimator are asymptot—
ically equivalent in the sense that as m — oo, 1 Bust — Buerll —
0, where ﬁwr is defined as limpg_..c Byer. In Web Appendix D,
we outline the proof that the limiting distributions are the

same for ,Bwsf and ,8 as m — o0.

wer)

3. Simulation Studies
We conducted simulation studies to assess the performance
of our proposed methods. We considered different scenar-
ios by varying the within-cluster correlation, censoring rate,
and more importantly, informative and noninformative clus-
ter sizes on survival.

Correlated failure times were simulated using the Cox
proportional hazards model with positive stable frailty
(Hougaard, 1996),

At |Zij, ws) = Xo(t)w; exp(vZy),

where w; follows a positive stable distribution with parameter
a, a € (0, 1). For cluster i, we first generated the frailty
w;, given which the survival times of the individuals within
this cluster can be independently simulated. A positive stable
variable can be generated using the following representation
(Chambers, Mallows, and Stuck, 1976; Nolan, 2006):

W = (a(0) /€)=,

where 6 and £ are independent, 0 is uniform on (0, 7), £ is
exponential with mean one, and

(sin(1 — «)0)(sin )/~
(sin )1/ (=)

a(f) =

The parameter « represents the degree of correlation between
cluster members, with o — 0 giving the maximal positive de-
pendence, and o — 1 corresponding to the independent case.
We let o equal 0.5 and 0.75, corresponding to the within-
cluster Pearson’s correlation coefficient p = 0.3 and 0.15, re-
spectively. For ease of exposition, we considered a constant
baseline hazard, A\¢(¢f) = 1. After integrating out the frailty,
the true marginal regression parameters are 3, = a-y, and the
true baseline cumulative hazard at time ¢ is Ag(t) = t©.

To induce informative cluster sizes, we let the size of each
cluster depend on the value of the generated frailty such that

= (k/10) + 2, if ¢ < w; < @10, for k=0,10,...,90,
where ¢ is the kth percentile of the frailty distribution. As
a result, the cluster sizes vary from 2 to 11, depending on
which percentile range the frailty values fall in. For the non-
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informative cases, the cluster sizes are randomly taken from
{2,...,11} regardless of the frailty values.

The censoring times were generated independently from a
uniform distribution, Unif(0, ¢), where the value of ¢ can be
selected to achieve desired censoring rates. Two covariates
were included in the simulation: one was a binary variable,
Zy, taking a value of 0 or 1 with probability 0.5, which may
represent the treatment or control group; the other was a con-
tinuous variable, Z, independently generated from Unif(0, 1).
We took the number of clusters m = 200 or 300. For each
setup, we simulated 1000 datasets and analyzed each dataset
using the WCR method with B = 2000 resamples, the WSF
and the standard MM by Lee et al. (1992) under the working
independence assumption.

For each data realization, we obtained the point estimates
of the regression coefficients using all three methods, Byer,
BWSf, and anu where ,émm denotes the estimator under the
standard MM. We also calculated the sample standard devia-
tion (SD) over the 1000 simulations, the mean standard error
(SE) and the 95% confidence interval coverage rate for each
estimated coefficient. As shown in Tables 1 and 2, when the
cluster size is informative, the point estimates of the coeffi-
cients using the WCR and WSF methods are approximately
unbiased and the 95% confidence interval coverage rates are
close to the nominal value, whereas the MM estimates are sub-
stantially biased. On the other hand, when the cluster size is
not informative, all point estimates are approximately unbi-
ased and the coverage rates of all three methods are reason-
ably close to the nominal level. In both tables, the variation of
the parameter estimates decreases when the number of clus-
ters increases, and increases when the censoring rate increases.
The sample SDs are close to the mean SEs for the WCR and
WSF methods, which suggests that our variance estimators
(6) and (10) provide good estimates for the variability of Bye
and Bwsf. The WSF method performs relatively better than
WCR when m is small, but when m is large, the estimators
from these two methods are very close to each other.

In Figure 2, we show the quantile-quantile (Q-Q) plots for
the estimated regression coefficient Bl after being standard-
ized versus a standard normal distribution. All six Q—Q plots
appear to lie closely on a straight line, which indicates that
the parameter estimators approximately follow normal distri-
butions. The deviation from the diagonal line (the solid line)
in the plot in the lower left corner shows the bias of the MM
estimator when the cluster size is informative.

For the baseline cumulative hazard, we computed the point-
wise estimates and SEs for some selected time points, which
were chosen to be the 20th, 40th, 60th, and 80th percentiles
of the underlying true failure time distribution. In Table 3,
we show the results with m = 200 and 300, o = 0.5, 50%
censoring rate, and informative and noninformative cluster
sizes. The WCR estimator, A4)(t,,3)7 and the WSF estima-
tor [Xo(t7 Bwsf) provide pointwise estimates that are very close
to the true cumulative baseline hazard regardless of whether
the cluster size is informative or not. The MM estimator is
substantially biased with poor 95% confidence interval cover-
age rates when the cluster size is informative, but performs
comparably with the other two when the cluster size is not
informative. The WCR and WSF methods yield similar point-
wise estimates for the baseline cumulative hazard, however,
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Table 1

Simulation results for (1, coefficient for the binary covariate, with true values 0.5, 0.75 for a = 0.5,
0.75: estimate (Est), SD, SE, and 95% confidence interval coverage rate (CR) in percentage

WCR WSF MM
True cen%  Est SD SE CR Est SD SE CR Est SD SE CR
m = 200, Informative cluster size
0.5 25 0.500 0.090 0.089 94.0 0.499 0.089 0.090 94.7 0.466 0.067 0.068 92.1
50  0.498 0.105 0.099 92.1 0.495 0.104 0.101 94.0 0.470 0.085 0.083 92.4
0.75 25 0.757 0.089 0.084 93.2 0.753 0.089 0.086 94.1 0.710 0.071 0.068 89.1
50  0.756 0.099 0.095 94.7 0.751 0.098 0.097 95.4 0.708 0.079 0.080 91.4
m = 300, Informative cluster size
0.5 25 0.501 0.074 0.072 93.6 0.500 0.073 0.072 93.9 0.464 0.053 0.053 88.7
50  0.501 0.076 0.073 93.8 0.500 0.076 0.074 94.4 0.467 0.056 0.055 89.5
0.75 25 0.751 0.069 0.068 94.8 0.748 0.068 0.068 95.8 0.705 0.051 0.054 87.8
50 0.751 0.072 0.072 94.7 0.748 0.072 0.073 95.2 0.706 0.056 0.058 89.3
m = 200, Noninformative cluster size
0.5 25 0.502 0.076 0.075 95.2 0.499 0.076 0.076 95.6 0.500 0.068 0.068 94.9
50  0.506 0.087 0.082 92.9 0.503 0.086 0.083 93.9 0.503 0.076 0.074 93.8
0.75 25 0.754 0.075 0.074 94.0 0.748 0.074 0.076 95.5 0.750 0.068 0.068 95.0
50  0.759 0.088 0.082 92.5 0.754 0.087 0.084 93.6 0.754 0.075 0.075 95.3
m = 300, Noninformative cluster size
0.5 25 0.505 0.062 0.062 94.9 0.503 0.062 0.063 95.2 0.504 0.055 0.056 95.5
50  0.506 0.068 0.067 93.6 0.505 0.067 0.068 94.7 0.505 0.060 0.061 95.7
0.75 25 0.759 0.063 0.061 94.2 0.754 0.062 0.062 95.0 0.754 0.056 0.056 95.3
50  0.758 0.069 0.067 93.4 0.755 0.069 0.068 95.4 0.754 0.061 0.061 95.1

Table 2

Simulation results for Ba, coefficient for the continuous covariate, with true values 0.5, 0.75 for a =
0.5, 0.75: estimate (Est), SD, SE, and 95% confidence interval coverage rate (CR) in percentage

WCR WSF MM
True cen%  Est SD SE CR Est SD SE CR Est SD SE CR
m = 200, Informative cluster size
0.5 25 0.501 0.154 0.150 93.5 0.499 0.153 0.152 95.0 0.466 0.111 0.113 94.4
50  0.508 0.175 0.165 92.3 0.506 0.173 0.170 94.7 0.479 0.140 0.137 93.7
0.75 25  0.765 0.147 0.142 93.5 0.759 0.145 0.144 94.2 0.715 0.110 0.112 94.9
50  0.754 0.166 0.157 92.0 0.748 0.165 0.163 93.8 0.708 0.131 0.131 93.3
m = 300, Informative cluster size
0.5 25  0.504 0.120 0.121 954 0.502 0.120 0.121 95.8 0.466 0.086 0.087 92.9
50  0.505 0.124 0.123 94.7 0.504 0.124 0.124 96.2 0.469 0.092 0.092 94.0
0.75 25 0.753 0.121 0.114 929 0.749 0.121 0.116 94.2 0.704 0.090 0.089 91.1
50  0.753 0.125 0.120 93.8 0.749 0.124 0.122 95.2 0.705 0.096 0.096 93.1
m = 200, Noninformative cluster size
0.5 25 0.503 0.133 0.125 92.2 0.500 0.131 0.128 94.7 0.500 0.114 0.113 94.8
50  0.511 0.142 0.137 93.7 0.508 0.140 0.139 95.6 0.509 0.121 0.123 95.5
0.75 25  0.755 0.127 0.123 92.6 0.749 0.124 0.126 95.3 0.749 0.110 0.112 94.4
50  0.763 0.141 0.137 93.0 0.757 0.139 0.139 95.1 0.758 0.120 0.123 96.1
m = 300, Noninformative cluster size
0.5 25 0.501 0.107 0.104 93.9 0.499 0.106 0.105 95.0 0.503 0.091 0.093 95.7
50  0.499 0.115 0.112 94.3 0496 0.114 0.114 949 0.500 0.099 0.100 94.9
0.75 25  0.752 0.107 0.102 91.9 0.748 0.106 0.103 93.3 0.752 0.092 0.091 94.7
50  0.750 0.118 0.112 93.1 0.746 0.117 0.114 94.0 0.751 0.102 0.100 94.6
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Figure 2.
200, o = 0.5, and 50% censoring rate.

the WCR estimator has better 95% confidence interval cov-
erage rates. The similarity between the columns SD and SE
suggests that equations (8) and (11) serve as good estimators
for the variance of Ay(t, ,@) and Ao(t, Bwsf)7 respectively.

4. Data Application

We applied the WCR, WSF, and MM methods to the dental
study described in Spiekerman and Lin (1998). The original

-3 -2 -1 0 1 2
Standardized Estimates

Q-Q plots for the WCR, WSF, and MM estimators, Byer, BWSh and Bmm for Z;, based on 1000 simulations with m =

study was conducted by McGuire and Nunn (1996) to assess
the effect of some commonly measured risk factors in predict-
ing tooth survival. The dataset consisted of 100 consecutive
patients from Dr McGuire’s appointment book. All of these
patients had been diagnosed with moderate to severe chronic
adult periodontitis and had received at least 5 years of mainte-
nance care. For this analysis, we considered two risk factors,
age and smoking status (0 = smoker, and 1 otherwise), to
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Table 3

Simulation results for the cumulative baseline hazard Ay(t): estimate (Est), SD, SE, 95% confidence
interval coverage rate (CR) in percentage with « = 0.5 and 50% censoring rate

WCR WSF MM
t Aog(t) Est SD SE CR  Est SD SE CR  Est SD SE CR
m = 200, Informative cluster size
0.04 0.200 0.203 0.031 0.031 95.7 0.202 0.031 0.030 94.5 0.332 0.046 0.043 10.5
0.15 0.387 0.392 0.052 0.052 95.1 0.390 0.051 0.048 93.5 0.618 0.069 0.063 2.6
0.25 0.500 0.507 0.063 0.064 95.7 0.503 0.062 0.059 93.4 0.782 0.080 0.074 1.7
0.50 0.707 0.719 0.085 0.087 95.8 0.711 0.084 0.079 94.5 1.077 0.101 0.092 0.8
m = 300, Informative cluster size
0.04 0.200 0.201 0.024 0.025 96.2 0.200 0.024 0.024 95.7 0.330 0.035 0.035 1.6
0.15 0.387 0.389 0.040 0.042 95.7 0.387 0.040 0.039 94.7 0.614 0.053 0.061 0.2
0.25 0.500 0.503 0.050 0.052 95.6 0.500 0.050 0.048 93.7 0.780 0.063 0.060 0.1
0.50 0.707 0.713 0.068 0.070 96.1 0.708 0.068 0.064 944 1.074 0.081 0.075 0.1
m = 200, Noninformative cluster size
0.04 0.200 0.203 0.031 0.031 94.8 0.202 0.031 0.028 92.6 0.202 0.031 0.029 92.9
0.15 0.387 0.393 0.052 0.051 93.8 0.390 0.051 0.046 90.7 0.390 0.050 0.045 92.6
0.25 0.500 0.508 0.064 0.063 94.0 0.503 0.063 0.056 91.1 0.503 0.059 0.054 93.0
0.50 0.707 0.718 0.084 0.084 94.2 0.710 0.083 0.074 90.6 0.710 0.078 0.069 92.5
m = 300, Noninformative cluster size
0.04 0.200 0.201 0.025 0.025 95.2 0.201 0.025 0.023 94.3 0.200 0.024 0.023 93.6
0.15 0.387 0.390 0.042 0.041 95.0 0.389 0.041 0.038 92.6 0.388 0.040 0.037 92.2
0.25 0.500 0.505 0.051 0.051 94.7 0.502 0.050 0.046 92.3 0.500 0.048 0.044 92.1
0.50 0.707 0.716 0.067 0.068 94.6 0.710 0.067 0.060 92.6 0.708 0.063 0.057 91.3

predict the tooth survival. The failure time for each tooth was
defined as the time to tooth loss measured from the initiation
of active periodontal therapy.

In this analysis, we focused on the upper and lower molars
(a normal person should have a maximum of eight molars).
We had 96 patients with both upper and lower molars, that
is, the number of clusters was 96. The cluster sizes ranged
from 1 to 8. The total number of teeth was 598 with 58 ob-
served failures. As illustrated in the introduction section, the
cluster size might be informative to tooth survival. Patients
who had more teeth tend to have higher tooth survival prob-
ability; more precisely, larger cluster sizes indicated better
survival.

We performed B = 10,000 resamplings for the WCR
method. The analysis results are summarized in Table 4,
where we compare the estimates of the regression coefficients
using the WCR and WSF methods with those using the stan-
dard MM. The point estimates for the effect of smoking sta-
tus are similar using WCR and WSF but different from that
obtained by the MM method. This might be due to the infor-

mativeness of cluster sizes. The hazard ratio of tooth loss for
cigarette smoking is 1.647 (WCR and WSF) and 1.747 (MM)
with overlapping 95% confidence intervals. Smoking is a very
important factor that hastens tooth loss. The estimates of the
age effect from the three methods are consistent, indicating
that older patients would lose their teeth significantly sooner
than younger patients.

As suggested by the associate editor, we also fit the data
with cluster size included as a covariate in the standard MM.
The estimated regression coefficients (SE, p-value) for smok-
ing status, age, and cluster size are —0.440 (0.352, 0.106),
1.478 (0.764, 0.026), and —0.166 (0.085, 0.026), respectively.
The cluster size effect is statistically significant and the haz-
ard of tooth loss decreases with increasing cluster size. This is
consistent with our observation from the Kaplan—Meier curves
in Figure 1. However, the interpretations of these estimates
are different. For the WCR and WSF methods, the inference
focuses on the effect of age and smoking status on a ran-
domly selected molar tooth from a randomly selected person,
while the informative cluster size is a nuisance variable but

Table 4
Estimates of the regression coefficients for the dental study
WCR WSF MM
Covariate Estimate SE  P-value Estimate SE  P-value Estimate SE  P-value
Smoking status  —0.501  0.304  0.049 —0.500 0.342 0.071 —0.558 0.340  0.050
Age 1.877 0.984 0.028 1.721  0.743 0.010 1.759 0.724  0.008
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properly adjusted. When taking the cluster size (the number
of molars) as a covariate in the standard MM, the covariate
effects of age and smoking status are based on a randomly se-
lected molar given a certain number of molars that a person
has. One feature of the WCR and WSF models is that the
effect of cluster size is considered as a nuisance. We do not
need to explicitly specify the correlation structure between
failure times and cluster size, which is often unknown and
difficult to model. Moreover, the WCR and WSF methods
provide valid estimates regardless of whether the cluster size
is informative or not.

5. Discussion

When cluster sizes are informative to the correlated survival
outcomes, the estimated regression coefficients could be sub-
stantially biased when using the standard MM approaches.
In contrast, both the WCR and WSF methods provide valid
estimates in the presence of informative cluster size and do
not require specification of the dependence structure of clus-
ter size and the outcome of interest. Simulation studies have
shown that the estimates under the WCR and WSF methods
are approximately unbiased with reasonable 95% confidence
interval coverages.

One advantage of the WCR method over WSF is that by
sampling one observation from each cluster, the estimation
problem reduces to the independent case; therefore, standard
software can be easily applied regardless of the underlying cor-
relation structure between the cluster size and failure time.
However, WCR is computationally intensive due to the re-
sampling scheme. Follmann et al. (2003) recommended that
it would be enough resamples when the WCR inference is sim-
ilar to that based on enumeration. Based on our experience
in the simulations, 2000 resamples are usually sufficient for
practical use.

The variance estimators defined in equations (6) and (8) in-
volve the subtraction of two terms, thus it is possible to obtain
a negative estimator for the variance. In our simulation, how-
ever, this is very rare. In particular, the occurrence frequency
is less than one out of a thousand when the number of re-
samplings is large. Another potential problem in applying the
WCR method is that the estimator from a single resampled
dataset might be unstable under heavy censoring, because
each resampled dataset only consists of partial information
from the original data.

6. Supplementary Materials

Web Appendices referenced in Sections 2—4 are available un-
der the paper information link at the Biometrics web site
http://wuw.tibs.org/biometrics.
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