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Summary. A Bayesian adaptive design is proposed for dose-finding in phase I/II clinical trials to incorpo-
rate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric
functional form for the drug dose–response curve, we jointly model the bivariate binary data to account for
the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients,
the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio
criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions
is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity
probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to
evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian
design based on the toxicity–efficacy odds ratio trade-offs exhibits good properties and treats most patients
at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology
study.
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1. Introduction
Phase I clinical trials usually aim to find the maximum tol-
erated dose (MTD) for an investigational drug. It is common
to assume that higher doses induce more severe toxici-
ties, while efficacy is not considered in the design (Storer,
1989; O’Quigley, Pepe, and Fisher, 1990; Korn et al., 1994;
Goodman, Zahurak, and Piantadosi, 1995; Møller, 1995;
O’Quigley and Shen, 1996; Leung and Wang, 2002; among
others). Traditional phase II trials are designed to examine
the potential efficacy or any responsive activity of a new drug
based on the MTD obtained from the phase I trials. However,
with a very limited sample size in the phase I trial, the MTD
might not be obtained in a reliable way, which thus affects the
subsequent phase II and III trials. Therefore, it is critically
important to find the optimal dosage of a drug which has the
highest effectiveness as well as tolerable toxicity.

A typical dose-finding design is driven by one-level dose
escalation or deescalation based on the cumulated data in a
trial. Dose-finding solely based on toxicity while ignoring ef-
ficacy may not be the best strategy. Recently, there has been
increasing research in the development of dose-finding
methodologies based on both toxicity and efficacy outcomes
(Gooley et al., 1994; Thall and Russell, 1998; Thall and
Cheng, 1999; O’Quigley, Hughes, and Fenton, 2001; Braun,
2002; Ivanova, 2003; Thall and Cook, 2004; Bekele and
Shen, 2005; among others). Many of these methods assume
a parametric function to model the relationship between the
toxicity–efficacy responses and the dose levels. However, at

the early stage of drug evaluation, little is known about the
behavior of the drug dose–response curve. It thus could be dif-
ficult to capture the response pattern based on the commonly
used parametric forms since the underlying model structure
is usually unknown (Mukhopadhyay, 2000). When searching
for the optimal dose using a small number of subjects, this
type of parametric modeling might lead to undesirable and
unstable results when the specified parametric model is incor-
rect (Korn et al., 1994). Gasparini and Eisele (2000) proposed
a curve-free dose-finding method by relaxing the rigid func-
tional form between toxicities and dose levels. They focused
on phase I trials by only considering toxicity and studied a
product of the beta prior (PBP) to simplify the computation.
However, the PBP could lead to undesirable operating char-
acteristics under certain circumstances (Cheung, 2002). The
work of Braun (2002) generalized the continual reassessment
method (O’Quigley et al., 1990) to two competing outcomes,
which however did not construct the proposed bivariate distri-
bution from the marginal probabilities of the two outcomes of
interest. Thall and Cook (2004) proposed to partition the two-
dimensional toxicity–efficacy probability domain by introduc-
ing a trade-off contour. The set of contours was constructed
with a polynomial model based on three physician-specified
equivalent points, which might be subjective. In an adaptive
fashion, the design by Thall and Cook (2004) updates the
dose information coherently as more data are observed in the
trial, and the next cohort of patients will then be treated at
the current best dose in an admissible set. Bekele and Shen
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(2005) investigated a joint distribution of a binary and a con-
tinuous outcome by introducing latent variables in a probit
model.

Our aim is to make a design more efficient and ethical, as
well as to save resources, by incorporating the different per-
spectives of a dose-finding trial. Toward this goal, we propose
a single-arm Bayesian adaptive design based on toxicity and
efficacy odds ratio trade-offs. The design evaluates doses by
considering the toxicity and efficacy outcomes simultaneously,
which is thus suitable for a combination of traditional phase
I/II clinical trials. In order to find the optimal dose at which as
many patients as possible can be treated, we derive a Bayesian
adaptive decision-making procedure based on the odds ra-
tio equivalence contour between toxicity and efficacy. This
method eliminates the subjectivity of the trade-off contours
according to the three physician-specified equivalent points,
and inherits a natural interpretation of the odds ratio. In this
procedure, patients are recruited sequentially in cohorts, and
decisions are made on dose escalation, deescalation, or staying
at the current dose level after observing the responses of each
cohort. An order constraint in the dose toxicity probabilities
is imposed so that higher doses are associated with more ex-
cessive toxicities. Although constrained parameter problems
often make Bayesian computation and inference difficult, we
propose a class of transformations on the parameters that
naturally accommodates the order constraint on the probabil-
ities of toxicity. No constraints are assumed for the probabil-
ities of efficacy. Hence, the proposed method is quite general
and suitable for clinical trials with cytotoxic and biological
agents.

The research work in this article was motivated from
a phase I/II clinical trial design conducted at the M. D.
Anderson Cancer Center. The primary objective was to de-
sign an open-label, multi-center, dose-finding study to evalu-
ate the efficacy and tolerability of RAD001 in combination
with a standard 3-week cycle of docetaxel therapy in pa-
tients with metastatic breast cancer. As a novel macrolide,
RAD001 was developed as an antiproliferative drug with ap-
plications as an immunosuppressant and antitumor agent.
It acts on interleukin and the growth-factor-dependent pro-
liferation of cells through their high affinity for an in-
tracellular receptor protein. Docetaxel exerts its cytotoxic
effect through the promotion of tubulin assembly and the de-
lay of its depolymerization, which prevents normal mitosis,
and alters the normal functions and skeletal structure of the
cell. The investigators are interested in finding the optimal
dose of the combination of RAD001 (three dose levels) and
docetaxel (a constant dose level) in treating breast cancer
patients.

The rest of the article is organized as follows. In Section 2.1,
we propose the probability model and derive the likelihood
function. In Section 2.2, we specify the joint prior distribu-
tions based on logit transformations and derive the posterior
distributions for the implementation of Gibbs sampling in the
Bayesian paradigm. In Section 2.3, we present the dose se-
lection rule and the toxicity–efficacy odds ratio criteria. In
Section 3, we conduct simulation studies to evaluate the
properties of our Bayesian adaptive design. In Section 4, we
illustrate the proposed methodologies with the phase I/II

dose-finding breast oncology trial. Concluding remarks follow
in Section 5.

2. Probability Model
2.1 Likelihood Function
In phase I/II clinical trials, we are concerned with finding a
therapeutic dose of a new drug that maximizes the efficacy as
well as controls the toxicity. Let Dosej be the jth dose level
for j = 1, . . . ,d, and Dose1 < Dose2 < · · · < Dosed. Let pj

and qj be the probabilities of toxicity and efficacy associated
with Dosej . For toxicity, one usually assumes a monotonically
increasing relationship between pj and Dosej , that is,

pj−1 < pj , j = 2, . . . , d. (1)

We do not impose the monotonic constraint for qj since the
efficacy for a certain therapy (e.g., cytotoxic agents) may de-
crease as the dose level increases.

We consider jointly modeling the toxicity and efficacy out-
comes using a bivariate binary model. Let Xij denote the toxi-
city outcome for subject i under dose j, and let Yij denote the
efficacy outcome of the same subject, i.e., Xij = 1 with prob-
ability pj , or 0 with probability 1 − pj ; Yij = 1 with probabil-
ity qj , or 0 with probability 1 − qj . Dale (1986) proposed the
global cross-ratio as a measure of association which is suitable
for bivariate, discrete, ordered responses. The global cross-
ratio model can be formulated for the bivariate outcomes as
follows (Dale, 1986). Define π

(j)
xy = Pr(Xij = x ,Yij = y) where

x, y = 0, 1, and at dose level j, let

θj =
π

(j)
00 π

(j)
11

π
(j)
01 π

(j)
10

, j = 1, . . . , d,

which quantifies the association between the two responses.
Then, the probabilities π

(j)
xy can be obtained from θj and the

marginal probabilities pj and qj , i.e.,

π
(j)
11 =

{(
aj −

√
a2
j + bj

)
/{2(θj − 1)} θj �= 1

pjqj θj = 1,

π
(j)
10 = pj − π

(j)
11 , π

(j)
01 = qj − π

(j)
11 , π

(j)
00 = 1 − pj − qj + π

(j)
11 ,

(2)

where aj = 1 + (pj + qj )(θj − 1) and bj = −4θj(θj − 1)pj qj .
Let p = (p1, . . . , pd )

′, q = (q1, . . . , qd )
′, and θ = (θ1, . . . , θd)

′.
Suppose that nj subjects are treated at Dosej for j = 1, . . . ,d,
then the likelihood function under (2) is

L(p,q,θ |Data) =

d∏
j=1

nj∏
i=1

1∏
x=0

1∏
y=0

{
π(j)
xy

}I(Xij=x,Yij=y)
,

where I(·) is the indicator function.

2.2 Prior Specification
We propose two different transformations to the pj ’s and qj ’s
for the specification of the priors with or without incorporat-
ing the inherent ordering constraint, respectively. To model
toxicity, let
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φ1 = log
p1

1 − p1
, φj = log

(
pj

1 − pj
− pj−1

1 − pj−1

)
,

j = 2, . . . , d,

and then

p1 =
eφ1

1 + eφ1
, pj =

eφ1 + · · · + eφj

1 + eφ1 + · · · + eφj
, j = 2, . . . , d.

Clearly, the pj ’s satisfy the monotonic condition (1). For effi-
cacy, we do not enforce the ordering constraint with respect
to the dose level, thus define

ψ1 = log
q1

1 − q1
, ψj = log

(
qj

1 − qj

)
− log

(
qj−1

1 − qj−1

)
,

j = 2, . . . , d.

Therefore,

q1 =
eψ1

1 + eψ1
, qj =

eψ1+···+ψj

1 + eψ1+···+ψj
, j = 2, . . . , d.

Let φ = (φ1, . . . ,φd)
′ and ψ = (ψ1, . . . ,ψd)

′. To induce the
prior correlations between and within the probabilities of ef-
ficacy and toxicity among different dose levels, we assume
a 2d-dimensional multivariate normal prior distribution for
(φ, ψ),

π(φ,ψ) = (2π)−d|Σ|−1/2 exp
{
−1

2
(φ′,ψ′)Σ−1(φ′,ψ′)′

}
,

where Σ is a 2d × 2d symmetric covariance matrix.
We take the prior for θ, π(θ), to be a log-normal distribu-

tion, and for ease of computation and implementation, all the
θj ’s are assumed to be independent (j = 1, . . . ,d). An alterna-
tive prior for θ is a gamma distribution since the support for
θ is the positive real line. If we assume a priori independence
between θ and (φ, ψ), the joint posterior distribution is given
by

π(φ,ψ,θ |Data) ∝ L(p(φ),q(ψ),θ |Data)π(φ,ψ)π(θ),

from which the full conditional distributions of the parameters
(φj , ψj , θj ; j = 1, . . . ,d) can be obtained. Under noninforma-
tive priors, the likelihood dominates the posterior estimation
and inference.

2.3 Dose-Finding Criteria
Following Thall and Russell (1998), we define a set of accept-
able doses, A(Dose), containing those Dosej ’s (j = 1, . . . ,d)
for which the following two conditions are satisfied:

Pr(pj < π̄T ) > p∗, Pr(qj > π
¯E) > q∗. (3)

Here, π̄T and π
¯E are physician-specified upper toxicity and

lower efficacy limits, and p∗ and q∗ are fixed probability
cutoffs.

To facilitate the dose selection procedure, we formulate the
toxicity–efficacy odds ratio contour in the following way. For
the optimal dose j, we expect its efficacy and toxicity probabil-
ities (qj , pj ) to be the closest to the lower-right corner (1, 0) in
the two-dimensional efficacy and toxicity domain, as shown in
Figure 1. The horizontal and vertical lines which cross point A
(qj , pj ) partition the probability square into four rectangles.

It follows that the odds ratio ω
(2)
j between the toxicity and

efficacy of dose j, defined by

ω
(2)
j =

pj/(1 − pj)

qj/(1 − qj)
=

pj(1 − qj)

(1 − pj)qj
, (4)

is exactly the ratio of the area of the lower-right versus that
of the upper-left rectangle. A dose with a smaller value of ω

(2)
j

is more desirable since it indicates higher efficacy and lower
toxicity. Figure 1 shows an equivalent odds ratio contour, i.e.,
all the points along the curve have the same toxicity–efficacy
odds ratio, ω

(2)
j .

The odds ratio ω
(2)
j is based on the marginal probabili-

ties (qj , pj ). To incorporate the correlation between toxicity
and efficacy in dose responses, we construct an alternative
three-dimensional volume ratio by adding a third dimension
of the conditional probability of efficacy given no toxicity,
π

(j)
E|Tc . Thus, for dose j, let

ω
(3)
j =

pj(1 − qj)
(
1 − π

(j)
E|Tc

)
(1 − pj)qjπ

(j)
E|Tc

= ω
(2)
j

1 − π
(j)
E|Tc

π
(j)
E|Tc

= ω
(2)
j

π
(j)
00

π
(j)
01

. (5)

Figure 2 presents a three-dimensional probability space by
adding an axis of the probability of efficacy given no toxicity
(π

(j)
E|Tc) as the third scale. The point (1, 1, 0) represents the

best combination for a given dose, i.e., qj = 1, π
(j)
E|Tc = 1, and

pj = 0. In this probability cube, the horizontal and vertical

planes across point A (qj , π
(j)
E|Tc , pj) partition the unit cube into

eight pieces. Focusing on the two cubes along the diagonal
line, ω

(3)
j is the ratio between the volumes of the lower-left

and the upper-right cubes. Therefore, the dose that yields
the smallest value of ω

(3)
j is considered the best one that may

be used to treat the next cohort of patients. Figure 2 presents
an equivalent odds ratio surface crossing point A, i.e., all the
points on this smooth surface have the same ω

(3)
j .

Let q̃j = E(qj |Data) and p̃j = E(pj |Data) be the poste-
rior means of the probabilities of efficacy and toxicity, and
let π̃

(j)
00 and π̃

(j)
01 be the posterior means of π

(j)
00 and π

(j)
01 , respec-

tively. To implement a dose-finding clinical trial, we replace
the unknown quantities in (4) and (5) by the corresponding

posterior means. Based on the odds ratio criteria ω
(2)
j and ω

(3)
j ,

the dose-finding algorithm is described as follows:

1. Patients in the first cohort are treated with the lowest
dose level.

2. The dose will be escalated to the lowest untried dose
level if the toxicity probability of the highest tried dose,
denoted by plast, satisfies

Pr
(
plast < π̄T

)
> pescl, (6)

for some chosen cutoff probability of escalation, pescl ≥
p∗, where p∗ is given in (3).

3. If a given dose j satisfies the two conditions in (3),
Dosej ∈ A(Dose). If (6) is not satisfied and A(Dose) is
an empty set, then the trial is terminated and no dose is
selected as long as the minimum sample size is reached.

4. Otherwise, patients in the next cohort are treated at the
most desirable dose from A(Dose) as determined by the
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Figure 1. Two-dimensional toxicity–efficacy odds ratio trade-off contours with point A (qj , pj ) corresponding to dose j.

odds ratio criterion, under the restriction that untried
doses cannot be skipped when escalating or deescalating.

5. Once the maximum sample size is reached, the final dose
Dosef is selected such that Dosef ∈ A(Dose), and mini-
mizes the toxicity–efficacy odds ratio.

Decisions on dose escalation, deescalation, or staying at the
current dose should be determined by the observed data on
the tried doses. Hence, the dose needs to be escalated as long
as the highest tried dose level has not exceeded the toxicity
threshold in (6). If (6) is not satisfied and A(Dose) is an empty
set, while the minimum sample size is not reached, the next
cohort of patients will be treated at the most desirable dose as
determined by the odds ratio criterion despite that A(Dose)
is empty. In our computer simulations, we set the minimum
sample size at three, so the minimum sample size require-
ment is automatically met after the first cohort of patients is
accrued to the study.

3. Simulation Studies
We conducted simulations to examine the operating charac-
teristics of the proposed Bayesian dose-finding design. The
maximum sample size was 60, the minimum was 3, and pa-
tients were accrued in cohorts of size 3. We considered 5 dose
levels and 13 scenarios with different true probabilities of tox-
icity and efficacy, i.e., {(pj , qj ), j = 1, . . . , 5}. The actual dose
levels were (0.25, 0.5, 0.75, 1, 2), and the first cohort of pa-

tients was treated at the lowest dose level. The upper toxicity
and lower efficacy limits were taken to be π̄T = π

¯E = 0.3, and
the cutoff probabilities were p∗ = 0.25 and q∗ = 0.1 in (3), and
pescl = 0.5 in (6). For each configuration, we conducted 1000
simulated trials.

The priors for the Dale model parameters in our proposed
designs were taken to be noninformative, e.g., var(φj) =
var(ψj) = 100 for j = 1, . . . , 5. The off-diagonal elements in Σ
characterizing the correlations were assigned as 0, since the
prior correlation coefficients did not have much influence on
the results based on our simulations. This robustness feature
is very attractive since there is usually little prior informa-
tion on these correlations and it is also difficult to elicit from
physicians. Figure 3 shows the prior distributions of the five
probabilities of toxicity and efficacy. The large prior variances
of φ and ψ indeed induce noninformative priors on p and q,
and there appears to be an obvious trend of shifting to the
right for toxicity due to the monotonic constraint on those
probabilities. For the θj ’s, we took noninformative priors, i.e.,
log θj ∼N(0, 10) for j = 1, . . . , 5.

To implement Gibbs sampling, we derived the full condi-
tional distribution for each model parameter and obtained
the posterior samples using the adaptive rejection Metropolis
sampling (ARMS) algorithm proposed by Gilks, Best, and
Tan (1995). We took 1000 burn-ins and then recorded every
fifth sample out of 5000 iterations to reduce the autocorrela-
tion in the Markov chain, and based all the computations and
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Figure 2. Three-dimensional toxicity–efficacy odds ratio trade-offs incorporating an axis of efficacy given no toxicity, with
point A (qj , π

(j)
E|Tc , pj) corresponding to dose j.

inference strategies on the resulting 1000 posterior samples.
The Markov chains converged very fast and mixed well. In a
coherent and adaptive fashion, after the bivariate binary out-
comes for each cohort of patients were observed, we sequen-
tially updated the posterior distribution and reestimated the
posterior means of parameters (p̃j , q̃j , π̃

(j)
00 , π̃

(j)
01 ) for each dose.

We then computed the odds ratios to determine the best dose
at the current stage of the trial to treat the next cohort of
patients.

For comparison, we examined the dose-finding method by
Thall and Cook (2004) under the same 13 scenarios. They gen-
erated the bivariate binary toxicity–efficacy outcomes based
on a Gumbel model (Murtaugh and Fisher, 1990). For j =
1, . . . ,d, the joint probability for the bivariate outcomes (x, y)
is

π
(j)
xy = pxj (1 − pj)

1−xqyj (1 − qj)
1−y

+(−1)x+ypj(1 − pj)qj(1 − qj)
eγ − 1

eγ + 1
, (7)

where γ is an association parameter related to the correla-
tion between toxicity and efficacy. A concave toxicity–efficacy
trade-off contour was constructed based on three physician-
specified points on the two-dimensional probability domain.
For each given dose, they could obtain an intersection point
between the trade-off contour and a straight line across the
points of toxicity–efficacy probabilities and (1, 0). The de-
sirability parameter δj is defined as a ratio of the Euclidean
distance from the intersection point to (1, 0) versus that from
the point of the toxicity–efficacy probabilities. A larger value
of δj indicates a more desirable dose. To implement the design
in Thall and Cook (2004), we set the prior mean probabilities
of toxicity as (0.05, 0.15, 0.25, 0.35, 0.45) and those of effi-
cacy as (0.15, 0.30, 0.45, 0.60, 0.75). The hyperparameters in

the prior distributions were obtained by minimizing an objec-
tive function that quantifies the distance of the prior means
and standard deviations from those elicited from physicians.
The prior was specified to reasonably represent a physician’s
knowledge and uncertainty with respect to the drug. For de-
tails, see Thall and Cook (2004).

For ease of exposition, we refer to the methods based
on ω

(2)
j and ω

(3)
j as the 2d-OR (two-dimensional odds ra-

tio) and 3d-OR designs, and the proposal by Thall and
Cook (2004) as the TC design. As suggested by a ref-
eree, another reasonable criterion is to select the dose with
the largest joint posterior probability of π

(j)
01 = Pr(E = 1,

T = 0) to treat the next cohort of patients. Hence, we
compare the operating characteristics of the above four dif-
ferent clinical trial designs in the simulation studies. The
bivariate binary outcomes were simulated from the Dale
model based on prespecified marginal probabilities of toxi-
city and efficacy with θj = 1 (corresponding to γ = 0 in the
Gumbel model, i.e. independent cases). Table A1 (available
at http://www.tibs.org/biometrics) summarizes the simu-
lation results with respect to the 13 different toxicity–efficacy
probability configurations using the TC (δj ), 2d-OR (ω

(2)
j ),

3d-OR (ω
(3)
j ), and π

(j)
01 criteria (j = 1, . . . , 5). For each sce-

nario, the first row represents the true probability combina-
tions (pj , qj ) multiplied by 100; the second is the desirability
value δj from the TC method; the third shows the selection
percentages of the dose levels using the δj desirability cri-
terion with the average number of patients treated at each
dose given in the parentheses based on 1000 simulations; the
fourth gives the true values of ω

(2)
j ; the fifth exhibits dose se-

lection percentages and average numbers of treated patients
using the 2d-OR criterion; the sixth corresponds to the true
values of ω

(3)
j ; the seventh row is the selection percentages of

doses using ω
(3)
j ; the eighth row gives the true value of the cell
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Figure 3. Prior densities for toxicity (pj ) and efficacy (qj ) for j = 1, . . . , 5.

probability π
(j)
01 ; and the last row is the selection percentages

corresponding to the proposal using π
(j)
01 = Pr(E = 1, T =

0). The column of “None” represents the percentages of the
1000 simulated trials that did not select any of the doses, i.e.,
inconclusive trials.

Scenarios 1–9 represent the cases in which both toxicity
and efficacy increase as the dose level increases, at various
increasing rates. When toxicity increases substantially with
respect to the dose level while efficacy does not change much
(Scenario 1), all four methods yield very similar results by
treating most patients at the first dose. Scenario 2 is the op-
posite case where toxicity is negligible but efficacy increases
significantly over dose levels. The 3d-OR and π

(j)
01 criteria per-

form similarly while the TC and 2d-OR methods select the
first dose with substantial percentages of around 20%. This
scenario clearly demonstrates the advantage and importance
of incorporating a third dimension π

(j)
E|Tc as opposed to only

using the marginal probabilities (pj , qj ). Scenario 3 is a spe-

cial case where all the ω
(2)
j ’s are equal to 1. In Scenario 4, all

the four methods select the fifth dose with the highest per-
centages though the TC design performs relatively better. In
Scenario 5, all five dose levels are toxic and thus none of them

should be selected using any of these methods. The methods
using ω

(2)
j , ω

(3)
j , and π

(j)
01 are more conservative and safer. In

Scenario 6, the TC design behaves slightly better than other
methods by mostly selecting the fourth dose. Scenarios 7–9
are constructed to accommodate other possible situations in
the real trial, and we see that the proposed 2d-OR and 3d-
OR methods behave well and are comparable to the TC and
π

(j)
01 methods. In particular, when all the five doses are nei-

ther efficacious nor toxic (Scenario 9), all the designs are able
to terminate the trial after trying all the doses while the TC
method has 3.2% selection of dose 1 or dose 5.

In Scenarios 10 and 11, efficacy is not monotonically in-
creasing over the dose level, i.e., the dose–response curve may
have a parabolic shape: efficacy first increases and then de-
creases with increasing dose levels. It shows that our designs
are quite conservative and robust, and tend not to treat pa-
tients at excessively toxic doses, although the percentage of
selecting the optimal dose is slightly lower than that of the
TC method.

We conducted a sensitivity analysis to examine the effi-
ciency loss of the proposed nonparametric method compared
to the TC method (the parametric model) in Scenarios 12
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and 13. We generated the bivariate binary outcomes from the
parametric logistic models and thus the probabilities of tox-
icity and efficacy were obtained from the following marginal
logistic models with the dose level as a covariate,

logit(pj) = α0 + α1Dosej ,

logit(qj) = β0 + β1Dosej + β2Dose2
j , j = 1, . . . , 5.

In Scenario 12, the regression parameters were taken to be
α0 = −4.482 and α1 = 0.578 for toxicity, and β0 = −0.059,
β1 = 1.207, and β2 = 0 for efficacy. Scenario 13 is the case
with a nonmonotonic relationship between efficacy and the
dose level, which therefore requires a quadratic covariate term
in the model, with α0 = −4.082 and α1 = 1.876 for toxicity,
and β0 = −3.937, β1 = 7.605, and β2 = −2.918 for efficacy.
Our methods perform better under Scenario 12 with higher
percentages of selecting the last dose, while the TC method
appears to be superior with a higher percentage of selecting
the fourth dose under Scenario 13.

To assess the robustness of the proposed design with re-
spect to the association parameter γ between toxicity and
efficacy, we generated data with γ = −2 (θj ≈ 0.47) and γ =
2 (θj ≈ 2.2) based on the true marginal probabilities under
Scenario 1. The likelihoods of selecting each dose are very
close. For doses 1–5, the selection percentages out of 1000
simulations are (60.1, 21.7, 4.4, 0.9, 0.4) based on 2d-OR and
(53.6, 26.8, 7.1, 0.9, 0.1) based on 3d-OR when γ = 2; and are
(60.0, 20.1, 6.4, 0.7, 0.3) based on 2d-OR and (52.1, 24.4, 7.5,
1.3, 0.1) based on 3d-OR when γ = −2. These results demon-
strate the robustness of our proposed designs regardless of the
association parameters in the data generation.

4. Trial Conduct
As an illustration, we applied the proposed method to the
phase I/II clinical trial design for the dose-finding of RAD001
in combination with docetaxel. RAD001 is taken as a single,
once-weekly oral dose of 30 mg, 50 mg, or 70 mg accord-
ing to the treatment schedule, while docetaxel has a constant
dose level of 75 mg/m2. After docetaxel treatment is stopped,
RAD001 alone may continue to be given as a once-weekly dose
until progression of the disease or appearance of unacceptable
toxicity. Dose escalation or deescalation within a cohort is not
allowed. The target is to find the highest tolerated dose among
the three dose levels of RAD001, which will be combined with
docetaxel. The efficacy of the combination of the two treat-
ments in patients with metastatic breast cancer is assessed by
a tumor response characterized as a complete response (dis-
appearance of all target lesions) or a partial response (at least
a 30% decrease in the sum of the longest diameter of target
lesions with respect to the baseline). Of scientific interest for
further investigation will be a finding of a response rate of at
least 30%. Toxicity is continuously monitored and is defined
as grade 4 hematological toxicity, grade 3–4 nonhematologi-
cal toxicity, or other well-defined serious adverse events. The
target toxicity of the maximum tolerated dose is assumed to
be 25%. Therefore, we took π̄T = 0.25, π

¯E = 0.3 and p∗ = 0.2,
q∗ = 0.1 as threshold values for acceptable doses, and pescl =
0.55 in (6).

Patients will be recruited by a cohort size of three, start-
ing at (RAD001 30 mg + docetaxel 75 mg/m2). A mini-

mum of 3 and a maximum of 36 patients will be accrued to
the study. Cumulated bivariate outcomes will be evaluated
during the trial and decisions will be sequentially made
on which dose level the next cohort of patients will
be treated. Table A2 (available at http://www.tibs.org/

biometrics) summarizes the simulation results for four sce-
narios with respect to the prespecified toxicity–efficacy prob-
abilities of the three doses. To implement the TC design, we
specified the prior mean probabilities of toxicity and efficacy
for the three doses to be (0.1, 0.2, 0.3) and (0.05, 0.2, 0.4),
respectively. In Scenario 1 where the second dose is the best,
the π

(j)
01 criterion has a slightly lower selection percentage of

dose 2 while the TC design seems to have a relatively higher
likelihood of treating patients at dose 3. In Scenario 2, all four
methods behave similarly except that the TC design treats a
few more patients at dose 2. In Scenario 3, the TC and π

(j)
01

designs yield better results with higher percentages of select-
ing the last dose. When all the doses are excessively toxic
as in Scenario 4, the four methods are able to stop the trial
early.

The designs based on the ω
(2)
j and ω

(3)
j criteria are generally

conservative and lead to similar results. The 3d-OR criterion
accounts for the correlation between toxicity and efficacy and
intuitively puts more weight on efficacy relative to the 2d-OR
criterion. The operating characteristics under these four sce-
narios are quite satisfactory and reasonable. Based on various
configurations of the underlying toxicity–efficacy probabilities
in the simulations, the designs using the 2d-OR and 3d-OR
criteria seem to be robust and reliable, and may be recom-
mended for general practical use.

5. Discussion
We have proposed a new dose-finding method by combin-
ing phase I and II clinical trials. The odds ratio trade-off
contours between toxicity and efficacy are intuitively attrac-
tive and practically feasible. It has an objective and meaning-
ful interpretation of quantifying the relative degree of toxicity
versus efficacy. In the proposed design, we constrained the pa-
rameters associated with toxicity probabilities in a monotonic
order, while leaving efficacy probabilities free of constraints.
The prior specification can be easily adapted to allow either
the probabilities of toxicity or efficacy to be ordered with re-
spect to the dose levels, depending on practical situations.

The new design inherits the curve-free advantage, which is
nonparametric and thus does not depend on the dose settings.
The conventional methods usually assume a proportional odds
or a continual ratio model which might be unstable under
certain dosage configurations. For example, if the dose levels
double or triple in a consecutive order, the parametric model
could result in undesirable operating characteristics, or even
become computationally intractable in some cases. As an al-
ternative to the Dale model, one may consider modeling the
correlation between toxicity and efficacy at different dose lev-
els using a single association parameter as in the Gumbel
model (Murtaugh and Fisher, 1990). The feasibility of the
proposed design requires a full evaluation of toxicity and effi-
cacy responses for each cohort before assigning patients in the
next cohort to a certain dose level. Therefore, the method may
not be directly applicable to a trial in which there is a long
period of lagged time to observe the bivariate outcomes.
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Table A1
(Continued)

Selection percentage of dose (# of patients)

1 2 3 4 5 None

Scenario 2 (1, 52) (1.5, 61) (2, 71) (2.5, 82) (3, 90)
δj 0.3464 0.4653 0.5975 0.7427 0.8455

22.1 (16.4) 4.2 (8.9) 5.3 (7.0) 29.6 (17.3) 38.8 (10.5) 0

ω
(2)
j 0.0093 0.0097 0.0083 0.0056 0.0034

21.8 (11.5) 11.5 (8.4) 11.5 (8.8) 17.4 (11.9) 37.5 (19.2) 0.3

ω
(3)
j 0.0086 0.0062 0.0034 0.0012 0.0004

5.8 (6.1) 7.3 (6.8) 12.1 (9.1) 25.1 (14.5) 49.3 (23.2) 0.4

π
(j)
01 0.5148 0.6008 0.6958 0.7995 0.8730

1.2 (4.4) 1.9 (5.5) 9.5 (8.6) 29.6 (16.8) 57.8 (24.8) 0

Scenario 3 (15, 15) (25, 25) (35, 35) (45, 45) (55, 55)
δj −0.2358 −0.1789 −0.1484 −0.1536 −0.1973

2.7 (7.7) 18.1 (10.6) 17.6 (10.5) 4.9 (5.7) 0.1 (1.4) 56.6

ω
(2)
j 1 1 1 1 1

3.1 (8.6) 12.8 (9.7) 11.1 (7.5) 2.1 (2.7) 0.2 (1.0) 70.7

ω
(3)
j 5.6667 3.0000 1.8571 1.2222 0.8182

3.3 (8.3) 14.9 (10.5) 8.8 (6.9) 2.0 (2.9) 0.1 (1.0) 70.9

π
(j)
01 0.1275 0.1875 0.2275 0.2475 0.2475

4.2 (8.4) 12.9 (9.6) 10.9 (7.8) 3.9 (3.9) 0.1 (1.3) 68.0

Scenario 4 (1, 5) (2, 20) (3, 35) (4, 60) (5, 80)
δj −0.2886 −0.0911 0.1061 0.4377 0.6988

0 (3.4) 0 (3.0) 0.2 (3.4) 4.6 (9.4) 95.2 (40.8) 0

ω
(2)
j 0.1919 0.0816 0.0574 0.0278 0.0132

0 (3.1) 1.3 (4.2) 6.3 (6.6) 28.0 (16.0) 61.5 (28.5) 2.9

ω
(3)
j 3.6465 0.3265 0.1067 0.0185 0.0033

0 (3.1) 0.5 (3.7) 5.3 (5.6) 26.4 (14.8) 65.1 (31.3) 2.7

π
(j)
01 0.0495 0.1960 0.3395 0.5760 0.7600

0 (3.1) 0.3 (3.3) 1.6 (4.4) 17.1 (12.5) 79.1 (35.7) 1.9

Scenario 5 (30, 5) (40, 20) (50, 35) (60, 50) (70, 60)
δj −0.4795 −0.3815 −0.3229 −0.3140 −0.3873

0.5 (3.6) 6.0 (5.1) 0.4 (3.2) 0.1 (1.2) 0.1 (0.3) 92.9

ω
(2)
j 8.1429 2.6667 1.8571 1.5000 1.5556

0 (3.8) 0.4 (2.6) 0 (1.4) 0 (0.3) 0 (0.1) 99.6

ω
(3)
j 154.7143 10.6667 3.4490 1.5000 1.0370

0.3 (3.8) 1.0 (3.2) 0.1 (1.7) 0 (0.4) 0 (0.0) 98.6

π
(j)
01 0.0350 0.1200 0.1750 0.2000 0.1800

0 (4.0) 0.8 (3.3) 0.1 (1.6) 0 (0.4) 0 (0.1) 99.1

Scenario 6 (1, 20) (3, 40) (4, 60) (5, 70) (35, 75)
δj −0.0859 0.1736 0.4377 0.5658 0.2683

1.6 (5.7) 0.7 (3.8) 2.2 (5.8) 82.8 (36.0) 12.6 (8.7) 0.1

ω
(2)
j 0.0404 0.0464 0.0278 0.0226 0.1795

4.8 (6.4) 15.2 (10.4) 35.1 (17.2) 38.5 (18.2) 4.3 (6.6) 2.1

ω
(3)
j 0.1616 0.0696 0.0185 0.0097 0.0598

2.0 (4.4) 11.6 (8.3) 32.3 (16.4) 42.9 (20.8) 9.0 (8.8) 2.2

π
(j)
01 0.1980 0.3880 0.5760 0.6650 0.4875

0.5 (3.6) 5.6 (6.4) 30.0 (16.8) 53.4 (23.3) 9.1 (9.2) 1.4
Scenario 7 (2, 60) (4, 62) (6, 64) (25, 66) (35, 68)
δj 0.4491 0.4646 0.4790 0.3224 0.2083

41.0 (24.5) 16.8 (14.0) 29.9 (14.0) 11.9 (7.2) 0.4 (0.4) 0

ω
(2)
j 0.0136 0.0255 0.0359 0.1717 0.2534

60.5 (28.8) 24.6 (14.2) 11.1 (8.3) 2.6 (5.0) 1.0 (3.5) 0.2

ω
(3)
j 0.0091 0.0156 0.0202 0.0885 0.1192

45.1 (21.9) 25.8 (14.3) 20.5 (12.5) 6.4 (6.8) 1.6 (4.2) 0.6

π
(j)
01 0.5880 0.5952 0.6016 0.4950 0.4420

31.7 (18.0) 28.1 (15.1) 26.8 (14.4) 9.5 (7.7) 3.5 (4.6) 0.4
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Table A1
(Continued)

Selection percentage of dose (# of patients)

1 2 3 4 5 None

Scenario 8 (8, 15) (10, 35) (12, 52) (45, 65) (55, 70)
δj −0.1919 0.0647 0.2772 0.0358 −0.0799

0.6 (5.2) 5.8 (5.9) 72.4 (30.7) 17.6 (15.4) 0.1 (0.9) 3.5

ω
(2)
j 0.4928 0.2063 0.1259 0.4406 0.5238

2.8 (6.7) 24.9 (13.4) 47.8 (21.8) 4.5 (6.0) 0.3 (2.0) 19.7

ω
(3)
j 2.7923 0.3832 0.1162 0.2372 0.2245

1.8 (5.5) 25.5 (13.6) 50.4 (22.9) 3.6 (6.6) 0.4 (2.0) 18.3

π
(j)
01 0.1380 0.3150 0.4576 0.3575 0.3150

1.3 (4.9) 19.8 (11.5) 56.0 (24.9) 5.0 (7.1) 0.6 (2.4) 17.3

Scenario 9 (1, 1) (2, 2) (3, 3) (4, 4) (5, 5)
δj −0.3426 −0.3343 −0.3260 −0.3178 −0.3098

1.5 (3.2) 0 (3.0) 0 (3.0) 0 (3.0) 1.7 (4.9) 96.8

ω
(2)
j 1 1 1 1 1

0 (3.1) 0 (3.2) 0 (3.4) 0 (3.6) 0 (4.0) 100

ω
(3)
j 99.0000 49.0000 32.3333 24.0000 19.0000

0 (3.2) 0 (3.3) 0 (3.5) 0 (3.8) 0 (4.0) 100

π
(j)
01 0.0099 0.0196 0.0291 0.0384 0.0475

0 (3.2) 0 (3.3) 0 (3.5) 0 (3.9) 0 (4.2) 100

Scenario 10 (5, 40) (15, 60) (40, 50) (60, 40) (80, 30)
δj 0.1624 0.3569 −0.0371 −0.4051 −0.7813

22.7 (15.7) 68.9 (34.0) 4.5 (7.6) 0.1 (0.8) 0 (0) 3.8

ω
(2)
j 0.0789 0.1176 0.6667 2.2500 9.3333

43.6 (24.8) 48.6 (25.0) 1.3 (4.6) 0 (1.8) 0 (0.5) 6.5

ω
(3)
j 0.1184 0.0784 0.6667 3.3750 21.7778

38.1 (21.6) 52.6 (27.2) 2.5 (5.4) 0 (1.9) 0 (0.5) 6.8

π
(j)
01 0.3800 0.5100 0.3000 0.16 0.0600

28.3 (18.2) 62.3 (30.2) 1.9 (5.3) 0.3 (2.0) 0 (0.5) 7.2

Scenario 11 (1, 10) (5, 30) (10, 50) (40, 80) (50, 60)
δj −0.2210 0.0276 0.2651 0.2271 −0.0807

0.1 (3.7) 0.6 (3.7) 65.2 (28.3) 33.0 (23.3) 0 (0.4) 1.1

ω
(2)
j 0.0909 0.1228 0.1111 0.1667 0.6667

1.2 (4.8) 28.1 (15.6) 47.4 (21.7) 14.2 (12.0) 0.1 (2.4) 9.0

ω
(3)
j 0.8182 0.2865 0.1111 0.0417 0.4444

1.0 (4.2) 22.5 (12.4) 52.9 (23.5) 14.0 (13.5) 0.1 (2.7) 9.5

π
(j)
01 0.099 0.2850 0.4500 0.4800 0.3000

0.5 (4.1) 16.5 (10.9) 54.3 (23.8) 17.9 (14.6) 0.4 (2.6) 10.4

Scenario 12 (1.3, 58.9) (1.5, 66.0) (1.7, 72.4) (2, 78.0) (3.5, 92.2)
δj 0.4380 0.5328 0.6181 0.6919 0.8693

25.9 (17.7) 8.1 (11.3) 6.7 (8.4) 24.7 (13.6) 34.6 (9.0) 0

ω
(2)
j 0.0092 0.0078 0.0066 0.0058 0.0031

23.8 (12.8) 11.4 (8.9) 9.3 (7.9) 8.3 (8.2) 46.8 (22.0) 0.4

ω
(3)
j 0.0064 0.0040 0.0025 0.0016 0.0003

10.4 (7.9) 9.6 (8.3) 9.7 (8.5) 15.2 (10.4) 54.3 (24.4) 0.8

π
(j)
01 0.5813 0.6501 0.7117 0.7644 0.8897

2.3 (5.2) 4.6 (6.6) 8.1 (8.2) 14.5 (10.7) 70.4 (29.2) 0.1
Scenario 13 (2.6, 9.8) (4.1, 29.7) (6.4, 53.1) (9.9, 67.9) (41.8, 40.2)
δj −0.2321 0.0286 0.3303 0.5020 −0.1654

0.1 (4.0) 0.7 (3.4) 6.3 (7.0) 88.3 (39.8) 2.8 (5.0) 1.8

ω
(2)
j 0.2457 0.1012 0.0604 0.0519 1.0684

0.4 (4.0) 11.3 (9.0) 35.6 (18.1) 47.0 (22.7) 0.3 (3.2) 5.4

ω
(3)
j 2.2614 0.2395 0.0533 0.0246 1.5893

0.1 (3.6) 7.5 (6.9) 33.2 (17.3) 52.8 (25.5) 0.4 (3.5) 6.0

π
(j)
01 0.0954 0.2848 0.4970 0.6118 0.2340

0.1 (3.3) 4.4 (6.2) 29.0 (16.9) 61.3 (27.6) 0.4 (3.3) 4.8
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Table A2
Simulation results for the breast cancer trial with RAD001 and docetaxel

Selection percentage of dose (# of patients)

1 2 3 None

Scenario 1 (4, 15) (8, 60) (40, 75)
δj −0.1693 0.4120 0.1915

0.1 (3.1) 74.5 (19.2) 19.9 (12.1) 5.5

ω
(2)
j 0.2361 0.0580 0.2222

4.2 (5.5) 72.0 (19.8) 10.2 (6.9) 13.6

ω
(3)
j 1.3380 0.0386 0.0741

3.0 (4.8) 74.7 (20.7) 9.5 (7.2) 12.8

π
(j)
01 0.1440 0.5520 0.4500

9.4 (8.2) 63.7 (16.8) 12.6 (6.9) 14.3

Scenario 2 (10, 40) (40, 50) (60, 80)
δj 0.1316 −0.0371 −0.0968

53.8 (15.7) 14.6 (10.9) 0.2 (1.5) 31.4

ω
(2)
j 0.1667 0.6667 0.3750

64.6 (21.0) 5.8 (5.6) 1.5 (2.2) 28.1

ω
(3)
j 0.2500 0.6667 0.0938

66.3 (20.8) 6.0 (6.3) 1.0 (2.1) 26.7

π
(j)
01 0.3600 0.3000 0.3200

60.9 (18.9) 9.2 (7.7) 0.4 (2.0) 29.5

Scenario 3 (1, 20) (2, 50) (3, 80)
δj −0.0859 0.3141 0.7127

0 (3.0) 0.3 (3.8) 99.6 (29.2) 0.1

ω
(2)
j 0.0404 0.0204 0.0077

3.6 (4.8) 24.8 (10.1) 69.6 (20.4) 2.0

ω
(3)
j 0.1616 0.0204 0.0019

2.6 (4.1) 22.1 (9.3) 73.6 (22.1) 1.7

π
(j)
01 0.1980 0.4900 0.7760

0 (3.0) 0 (3.1) 97.9 (29.1) 2.1

Scenario 4 (35, 10) (45, 40) (55, 70)
δj −0.4582 −0.2067 −0.0799

0.9 (3.6) 5.0 (4.7) 0.3 (1.9) 93.8

ω
(2)
j 4.8462 1.2273 0.5238

0.9 (4.6) 0.8 (2.2) 0.2 (0.5) 98.1

ω
(3)
j 43.6154 1.8409 0.2245

1.1 (4.4) 0.9 (2.3) 0 (0.6) 98.0

π
(j)
01 0.0650 0.2200 0.3150

0.6 (4.5) 1.2 (2.6) 0.1 (0.7) 98.1


