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Inference for a Class of Transformed Hazards Models
Donglin ZENG, Guosheng YIN, and Joseph G. IBRAHIM

A new class of transformed hazard rate models is considered that contains both the multiplicative hazards model and the additive hazards
model as special cases. The sieve maximum likelihood estimators are derived for the model parameters, and the estimators for the regression
coefficients are shown to be consistent and asymptotically normal with variance achieving the semiparametric efficiency bound. Simulation
studies are conducted to examine the small-sample properties of the proposed estimates, and a real dataset is used to illustrate our approach.

KEY WORDS: Box–Cox transformation; Sieve estimation; Transformed hazard rate; Wavelet approximation.

1. INTRODUCTION

In survival analysis, the Cox multiplicative hazards model
(Cox 1972) has been used extensively. In this model, the hazard
rate function of the survival time given an external (possibly
time-dependent) covariate vector Z(t) is assumed to be

λ(t|Z(t)) = λ(t) exp{βTZ(t)},
where λ(t) is an unknown and unspecified baseline hazard func-
tion and β is the regression coefficient for Z(t). An efficient es-
timate for β can be obtained by maximizing a partial likelihood
function (Cox 1975; Andersen and Gill 1982). Because the pro-
portionality in the multiplicative hazards model does not hold
in many applications, one alternative form of modeling the haz-
ard rate function is to assume that the hazard risks are additive
across covariates, that is,

λ(t|Z(t)) = µ(t) + βTZ(t),

where µ(t) is an unknown baseline hazard function. The addi-
tive hazards model has been studied by Lin and Ying (1994).
Furthermore, to accommodate both the multiplicative and ad-
ditive hazards structures, Lin and Ying (1995) proposed a
multiplicative-additive hazards model where the hazard func-
tion takes the form

λ
(
t|Z1(t),Z2(t)

) = λ(t) exp{βT
1 Z1(t)} + βT

2 Z2(t),

where Z1(t) and Z2(t) are different covariates of Z(t). But all
of these hazard-based regression models are restrictive in prac-
tice, because they may not be flexible enough to entertain situa-
tions where hazard risks are neither multiplicative nor additive
among groups. Therefore, it is desirable to obtain a class of
hazard-based models that allows a wide range of hazard struc-
tures while at the same time retaining the simple structures of
the multiplicative and additive hazards models.

In this article we propose a unified family of hazard-based
regression models. We propose a class of transformed hazards
models by imposing both an additive structure and a known
transformation G(·) on the hazard function. In this class, the
hazard function for the survival times given covariate Z(t) takes
the form

G{λ(t|Z(t))} = µ(t) + βTZ(t), (1)
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where β is the unknown regression coefficient vector, µ(t) is an
unknown baseline hazard function, and G(·) is a known and in-
creasing transformation function. Essentially, model (1) can be
considered a partial linear regression model for the transformed
hazard function. One example of the transformation G(·) is the
Box–Cox transformation (Box and Cox 1964), in which G(x) is
given by

G(x) = (xs − 1)/s (2)

for s > 0 and we define G(x) = log(x) if s = 0. Within the
Box–Cox transformation family, when s = 1 in (2), (1) is the
additive hazards model, and if s = 0, then (1) becomes the mul-
tiplicative hazards model. Thus the transformed model in (1)
with G(·) given by (2) can be considered a smoothed class of
hazards models linking the additive and multiplicative hazards
models, which are the extremes of this class if s is restricted
to the range of [0,1]. Because our proposed class (1) allows a
much broader class of hazard patterns than are allowed in the
proportional hazards and additive hazards models, it provides
us with more flexible models for analyzing survival data.

Our goal in this article is to provide a unified framework for
deriving an efficient estimate for β in model (1) for any given
transformation G, where G−1 is continuously three times dif-
ferentiable. In particular, we use the sieve maximum likelihood
estimation approach to construct an estimate of β . We then ex-
amine the asymptotic properties of the resulting estimator.

The rest of this article is organized as follows. In Section 2
we present a general framework of sieve maximum likelihood
estimation. In Section 3 we derive the asymptotic properties of
the estimator, including consistency and asymptotic normality.
In Section 4 we report on simulation studies that we conducted
to examine the numerical properties of the proposed method in
small samples. In Section 5 we analyze a lung cancer dataset
using the proposed class of models and estimation procedure.
We present a brief discussion in Section 6, and provide proofs
of all theorems in the Appendix.

2. INFERENCE PROCEDURE

Suppose that we observe survival data with n iid observa-
tions in a study with termination time τ . We denote the obser-
vation for subject i by (Yi = Ti ∧Ci,�i = I(Ti ≤ Ci), {Zi(t) : t ∈
[0, τ ]}), where Ti is the failure time of subject i, Ci is the cen-
soring time, {Zi(t) : t ∈ [0, τ ]} denotes the external covariate
process, “∧” denotes the minimum of two values, and I(·) is
the indicator function.
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Zeng, Yin, and Ibrahim: A New Class of Transformed Hazards Models 1001

We assume that Ci is independent of Ti conditional on the
covariates. Under the assumption that the transformation G(·)
in the model (1) is strictly increasing and differentiable, the
observed likelihood function of the parameters (β,µ) can be
written as

Ln(β,µ) =
n∏

i=1

{
H

(
µ(Yi) + βTZ(Yi)

)}�i

× exp

{
−

∫ Yi

0
H

(
µ(t) + βTZ(t)

)
dt

}
, (3)

where H(·) is the inverse function of G(·).
To obtain estimates for β and µ(t), we wish to maxi-

mize Ln(β,µ) in (3). But such a maximum does not ex-
ist, because one can always find some function µ(t) such
that Ln(β,µ) = ∞. Therefore, we must restrict µ(t) to some
smaller functional space to ensure that the maximum of
Ln(β,µ) exists. One important method of doing this is sieve
maximum likelihood estimation, which has been used in many
semiparametric estimation problems (Shen and Wong 1994;
Shen 1997, 1998). In the sieve estimation method, the infinite-
dimensional functional parameter µ(t) is restricted to a func-
tional space with finite dimension, which is called the sieve
space for µ(t). Moreover, the size of this sieve space increases
with increasing sample size n, and as n → ∞, the sieve space
approximates the whole space for µ(t). However, for fixed sam-
ple size n, the choice of the sieve space for µ(t) cannot be arbi-
trary; the space should be chosen large enough so that the bias
of the sieve estimate for µ(t) does not dominate. On the other
hand, the space cannot be chosen too large so that the varia-
tion in estimating µ(t) dominates the variation in estimating β ,
which is the main parameter of interest. Once a sieve space is
chosen, maximizing the likelihood function can be carried out
on this space, which contains only a finite number of parame-
ters.

Usually, the sieve space for µ(t) is constructed from a lin-
ear space with a finite number of basis functions. Many basis
functions can be used for this purpose. The most commonly
used basis functions include B-splines and wavelet basis func-
tions. In this article, we use wavelet basis functions to construct
a sieve space for µ(t) for both mathematical and computational
convenience, as is demonstrated in the subsequent arguments.
A sequence of wavelet basis functions can be obtained from a
single function φ(t), which is called the “father” wavelet and
satisfies the following conditions:

(a) {φ(t − k) : k ∈ Z} is an orthonormal system in L2(R),
where Z consists of all the integers.

(b) Denote Vj = {∑k ckφ(2jt − k) :
∑

k |ck|2 < ∞} for any
j ≥ 0; then V0 ⊂ V1 ⊂ · · ·, and

⋃
j≥0 Vj is dense in L2(R).

The sequence {Vj : j = 0,1, . . .} is called a multiresolution
approximation in the wavelet analysis (Mallat 1998, sec. 7.1).
From (b), the basis functions {φ(2jt − k)} from Vj for some
suitable j can be candidates for constructing a sieve space.
Furthermore, the orthogonality given in (a) concludes that the
L2 distance between any two functions in the sieve space can be
expressed as the summed square difference of the coefficients
of the basis functions, which does not hold for B-spline sieves.
We note that Vj is still of infinite dimension. However, because

our function µ(t) is of interest only for t ∈ [0, τ ], the basis func-
tions in Vj whose supports do not overlap with [0, τ ] can be dis-
carded. Thus the number of those remaining basis functions is
finite, particularly if we choose φ(t) to have a compact support.
Furthermore, φ(t) needs to be smooth to ensure the approxima-
tion of the sieve space to the whole space for µ(t). In summary,
we assume that the father wavelet φ(t) satisfies the following:

(c) φ(t) has a finite support [0, τ ] and φ ∈ W3,2[0, τ ], where
W3,2[0, τ ] is a Sobolev space containing all of the functions
whose third derivatives are L2-integrable in [0, τ ] (cf. Adams
1975, chap. 1).

Typical choices of φ(t) satisfying (c) are the Daubechies
wavelets (Daubechies 1992), after suitable shifting and scal-
ing. In the commercial package MATLAB, the Wavelet toolbox
provides a number of these choices.

After φ(t) is given, we can approximate the function µ(t), t ∈
[0, τ ], using the functions in the Kn-level multiresolution VKn .
We choose the basis functions from {φ(2Knt − k + 1) : 1 −
τ ≤ k ≤ 2Knτ + 1} whose supports overlap with [0, τ ]. Let
B1(t), . . . ,Bmn(t) denote these basis functions, where mn is the
number of integers between 1− τ and 2Knτ +1. In addition, we
impose an upper bound Mn for the summation of absolute val-
ues of all of the wavelet coefficients, to prevent the divergence
of these coefficients in the maximization. As a result, a sieve
space for the parameters (β,µ) is proposed as

Sn =
{

(β,µ(t)) :µ(t) =
mn∑

k=1

αkBk(t),

Bk(t) = φ(2Knt − k + 1),

mn∑

k=1

|αk| ≤ Mn,

β ∈ B0,B0 is a known bounded open set

containing the true value of β

}

,

where Mn is a constant depending on n. The choice of Mn is
discussed in Section 3.

We thus maximize the likelihood function Ln(β,µ) over Sn.
The maximization is carried out by an optimum search over the
space

{
(
β, α1, . . . , αmn

)
:β ∈ B0,

mn∑

k=1

|αk| ≤ Mn

}

.

Many optimization algorithms for estimating the parameters
can be implemented. In particular, in the numerical computa-
tions of Section 4, we use the algorithm for searching the opti-
mum in MATLAB. Details of the computational procedure are
discussed in Section 4.

We denote the sieve maximum likelihood estimate for (β,µ)

by ( β̂, µ̂). Our subsequent results show that
√

n( β̂ − β0) has
an asymptotically normal distribution with mean 0 and covari-
ance matrix �, which is equal to the semiparametric efficiency
bound for β . Unfortunately, � does not have an explicit ex-
pression. Thus, to estimate the asymptotic covariance of β̂ , we
propose the following sieve profile likelihood function. We de-
fine

pln(β) = max
µ∈Sn

log Ln(β,µ).
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Then for any constant vector e, we can approximate eT�−1e by

− 1

nh2
n
{pln( β̂ + hne) − 2pln( β̂) + pln( β̂ − hne)},

where hn is a constant of order 1/
√

n. The sieve profile like-
lihood function imitates the profile likelihood function inves-
tigated by Murphy and van der Vaart (2000), and has been
discussed by Fan and Wong (2000). Additionally, likelihood ra-
tio inference based on the sieve likelihood function has been
recently studied by Shen and Shi (2004) and Fan and Zhang
(2004). Our simulation study in Section 4 shows that for mod-
erate sample sizes, the profile sieve likelihood approach gives
valid estimates of the variance.

3. ASYMPTOTIC PROPERTIES

We obtain the asymptotic properties for β̂ in this section. In
particular, we show that the sieve maximum likelihood estimate
( β̂, µ̂) is consistent under some suitable metric. Next we show
that

√
n( β̂ −β0) converges in distribution to a normal distribu-

tion and the asymptotic variance attains the semiparametric ef-
ficiency bound (cf. Bickle, Klaassen, Ritov, and Wellner 1993,
chap. 3). All proofs are given in the Appendix.

To establish these results, we assume that the following con-
ditions hold:

(C.1) With probability 1, {Z(t) : t ∈ [0, τ ]} is a bounded
process. Moreover, if there exists some vector β̃
such that β̃TZ(t) = c(t) for some deterministic func-
tion c(t), then β̃ = 0 and c(t) = 0.

(C.2) C is independent of T given {Z(t) : t ∈ [0, τ ]}. More-
over, with probability 1,

inf
z(t),t∈[0,τ ] P

(
C ≥ τ |Z(t) = z(t), t ∈ [0, τ ])

= inf
z(t),t∈[0,τ ] P

(
C = τ |Z(t) = z(t), t ∈ [0, τ ])

> 0.

(C.3) Denote the true values of (β,µ) by (β0,µ0). Assume
that β0 ∈ B0 and that µ0(t) is a continuously three
times differentiable function in [0, τ ]. Moreover, as-
sume that with probability 1,

inf
t∈[0,τ ]H

(
µ0(t)+βT

0 Z(t)
)
> 0, sup

t∈[0,τ ]
|µ′′′

0 (t)| < ∞.

Condition (C.1) ensures the identifiability of β in model (1).
Condition (C.2) implies that the distribution for the censoring
times is not informative, and thus Ln(β,µ) is the only part of
the full likelihood function that we need to maximize. The sec-
ond part of (C.2) is equivalent to saying that any subjects sur-
viving to at least τ are considered right-censored at τ . Both
(C.1) and (C.2) are standard assumptions in the Cox propor-
tional hazards model. Condition (C.3) implies that the true con-
ditional hazard rate for T given the covariates is bounded away
from 0.

We also need assumptions for the choices of mn (or Kn)
and Mn. Specifically, we assume that the number of basis func-
tions in the sieve space increases with sample size n, but at a low
rate. Moreover, we assume that the upper bound Mn in the sieve
space should tend toward infinity at an appropriate rate depend-
ing on the transformation function H. The details are given in
the following theorem.

Theorem 1. In addition to conditions (C.1)–(C.3), for each
Mn > 0, define

γ1(Mn) = 2H(Mn + B),

γ2(Mn) = sup
x∈[−Mn−B,Mn+B]

H′(x),

γ3(Mn) =
{

inf
x∈[−Mn−B,Mn+B] H′(x)

}−1
,

where B is the upper bound of |βTZ(t)|. Assume that the fol-
lowing condition holds:

(C.4) mn satisfies that mn → ∞ and m7
n/n → 0. Moreover,

Mn satisfies that

M1/3
n ξ(Mn)

2/3
(

√
m7/6

n

n1/6
+ 1

mn

)
→ 0,

where ξ(Mn) = M2
nγ1(Mn)

2γ2(Mn)
4γ3(Mn)

2.

Then β̂ and µ̂(·) are consistent in the sense that |β̂ −β0|+‖µ̂−
µ0‖L2[0,τ ] → 0 in probability.

The first part of (C.4) stipulates that the number of ba-
sis functions in the sieve space, mn, increases at a lower rate
than n1/7. We also remark that Mn satisfying (C.4) always ex-
ists for a given mn and n. We specify some particular choices of
mn and Mn for the class of Box–Cox transformations at the end
of this section. The convergence rates of ( β̂, µ̂) are obtained
explicitly in the following theorem.

Theorem 2. Under conditions (C.1)–(C.4),

|β̂ − β0|2 + ‖µ̂ − µ0‖2
L2[0,τ ] ≤ op

(
1√
n

)
+ Op

(
1

m6
n

)
.

Finally, the asymptotic distribution for β̂ can be summarized
in the following theorem.

Theorem 3. In addition to conditions (C.1)–(C.4), suppose
that with probability 1, Z(t) is continuously three times differ-
entiable in [0, τ ], and with respect to some dominating mea-
sure, the conditional density of C given {Z(t) : t ∈ [0, τ ]} is three
times continuously differentiable. Moreover, H = G−1 is con-
tinuously three times differentiable, and mn satisfies the follow-
ing condition

(C.5)
√

n/m6
n → 0.

Then
√

n( β̂ − β0) converges weakly to a normal distribution
with mean 0, and its asymptotic variance attains the semipara-
metric efficiency bound.

The regularity condition for Z(t) in Theorem 3 holds when
Z(t) is time-independent. Because, from Theorem 2, the bias of
the sieve estimate µ̂(t) is of order m−12

n , condition (C.5) implies
that the square of this bias does not dominate the variation of β̂ ,
which is of order n−1/2.

The choices of Kn and Mn satisfying (C.4) and (C.5) exist.
For large n, we can choose Kn = θ log n/ log 2 (thus mn = nθ ),
where θ is a constant in the interval (1/12,1/7). If G is the
Box–Cox transformation, then Mn can be chosen to be particu-
larly of order log n.
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4. SIMULATION STUDY

We conducted simulation studies to examine the small-
sample performance of our proposed estimators. In the sim-
ulation we generated two independent covariates, Z1 and Z2,
from Uniform(0,1) and Bernoulli(.5). We generated the failure
time from the model

{λ(t|Z1,Z2)}s − 1

s
= t

2
+ β1Z1 + β2Z2,

where β1 = .7 and β2 = .2. We varied the choices of s using the
values of 0, .25, .5, .75, and 1. Thus when s = 0, the failure time
was generated from a proportional hazards regression model
with baseline hazard exp(t/2), and when s = 1, the failure time
was generated from an additive hazards model with baseline
hazard t/2 + 1. The censoring time was taken as the minimum
of 1 and C∗, where C∗ ∼ Uniform(.5,1.5), and the censoring
rates varied from 20% to 25% for s = 0 to s = 1.

For each s, we simulated 500 datasets, and for each data
realization, we used the proposed sieve maximum likelihood
estimation approach to estimate the regression coefficients. In
sieve estimation, we chose the Db4-father wavelet (Daubechies
1992) for φ(t) and used resolution level Kn = 3 to estimate the
nuisance parameter µ(t). We obtained the sieve maximum like-
lihood estimates by the algorithm for searching the optimum in
the Optimization toolbox in MATLAB. This algorithm is a sub-
space trust region method and is based on the interior-reflective
Newton method (Coleman and Li 1994, 1996), after both gra-
dients and Hessian derivatives of the objective function are pro-
vided. Because the objective function may not be concave in
the parameters, choosing initial values can be very important.
In our experience, when the initial values were chosen not too
far away from the true values, the estimates at convergence were
very similar. In the simulation study, the optimum search usu-
ally converged within a few iterations when either the step size
of the search or the gradient of the function was very small. We
used the sieve profile likelihood function to estimate the asymp-
totic variance of β̂ , where we chose hn = n−1/2. In the simula-
tion study, we also used Kn = 4,5 and hn = .1n−1/2,5n−1/2,

and found the results to be fairly robust with respect to these
choices.

Table 1 summarizes the simulation results for different
choices of s values for n = 200 and n = 400. The columns
after the true value correspond to the average values of the
estimates, the standard errors of the estimates, the average esti-
mates of the asymptotic standard errors, and the coverage pro-
portions of the 95% confidence intervals, based on the normal
distribution. The results in Table 1 indicate that the sieve max-
imum likelihood estimates for the regression coefficients have
a small bias, the estimated standard errors based on the sieve
profile likelihood function are close to the empirical standard
errors, and the coverage proportions of 95% confidence inter-
vals are accurate. Increasing the sample size from 200 to 400
decreases both the bias and the standard errors of the estimates.

5. APPLICATION

We applied our proposed approach to a lung cancer dataset
from a recent phase III clinical trial (Socinski et al. 2002)
of nonsmall-cell lung cancer (NSCLC), the leading cause of
cancer-related mortality. In the year 2001, among approxi-
mately 170,000 patients newly diagnosed, more than 90% died
from NSCLC, and approximately 35% of all new cases were
disease stage IIIB/IV (malignant pleural effusion). A random-
ized, two-armed, multicenter trial was initiated in 1998 with
the aim of determining the optimal duration of chemotherapy
by comparing four cycles of therapy versus continuous therapy
in advanced NSCLC. Patients were randomized to two treat-
ment arms: four cycles of carboplatin at an area under the curve
of 6 and paclitaxel 200 mg/m2 every 21 days (arm A), or con-
tinuous treatment with carboplatin/paclitaxel until progression
(arm B). At progression, all patients on both arms received
second-line weekly paclitaxel at 80 mg/m2. One of the primary
endpoints was survival, which could be right-censored due to
loss to follow-up. The original dataset comprised 230 NSCLC
patients; 4 cases were missing follow-up times, and hence our
analysis is based on n = 226 cases, of which 113 were in

Table 1. Simulation Results From 500 Repetitions

s n Coefficient True value Estimate SE Estimated SE 95% coverage proportion

0 200 β1 .7 .703 .236 .234 .948
β2 .2 .207 .156 .151 .942

400 β1 .7 .701 .160 .165 .966
β2 .2 .192 .108 .107 .936

.25 200 β1 .7 .691 .260 .278 .968
β2 .2 .203 .182 .179 .960

400 β1 .7 .708 .190 .194 .956
β2 .2 .195 .126 .125 .956

.5 200 β1 .7 .708 .327 .317 .930
β2 .2 .210 .207 .203 .948

400 β1 .7 .691 .224 .222 .936
β2 .2 .194 .136 .142 .956

.75 200 β1 .7 .678 .356 .349 .936
β2 .2 .191 .212 .222 .964

400 β1 .7 .693 .251 .249 .950
β2 .2 .208 .166 .158 .950

1 200 β1 .7 .735 .384 .379 .944
β2 .2 .172 .254 .241 .928

400 β1 .7 .695 .286 .273 .934
β2 .2 .203 .170 .173 .960

NOTE: Estimated SE is the average of the profile likelihood estimated standard errors.
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arm A and 113 were in arm B. The censoring rate was approxi-
mately 32%.

We illustrate the proposed additive transformation hazards
models with these NSCLC data and demonstrate the flexibility
and generality of this class of models. The covariates included
in the model were treatment (0, arm A; 1, arm B), sex (0, fe-
male; 1, male), and age at entry. In this population, 63% of
the patients were male, and the age at entry ranged from 32
to 82 years (mean, 62 years). In the analysis, we rescaled the
time axis to the interval [0,1].

We fit a class of Box–Cox transformed hazard models to the
NSCLC data. The parameter s in the transformation was chosen
as 0, .25, .5, .75, or 1; the multiresolution level Kn was chosen
from 2, 3, 4, and 5. The Akaike information criteria (AIC), de-
fined as twice the negative log-likelihood function plus twice
the number of the parameters, was used as a criterion to se-
lect the best-fitting model. Using the AIC by varying s and Kn

ensured the best model choice in terms of both model struc-
ture and parsimony, although it is difficult to determine whether
the best fit is due to the transformation or to the choice of ba-
sis functions. We also penalized those choices of s and Kn for
which the estimated parameters induced negative predicted val-
ues for the hazard function. If the estimated hazard rate was
negative, then we set the objective function that needed to be
maximized to be a very small negative number. Thus the best
model using AIC always ensures that the predicted hazard func-
tion is positive. From the analysis, we found that increasing the
number of basis functions dramatically increased the value of
AIC, and the model with s = .5 and Kn = 2 yielded the min-
imal AIC value. The estimates and standard errors for the co-
efficients of the three covariates were β̂treat = −.1176 (.2841),
β̂sex = .7086 (.2966), and β̂age = .6568 (.5332). Thus only the
covariate sex was significantly predictive of hazard risk. The
male patients had a higher risk than the females. Neither treat-
ment nor age was significant. We also plotted the predicted
survival curves versus the Kaplan–Meier survival curves in Fig-
ure 1. Each plot in Figure 1 represents the predicted survival
curves and the Kaplan–Meier curves stratified by treatment and
sex, where the age value is substituted with its median value 63.
The plots indicate that the best model (s = .5, K = 2) indeed
provides a good fit to the data.

6. DISCUSSION

We have proposed a class of transformation models for mod-
eling the hazard function. This class of models contains both
multiplicative and additive hazards models as special cases. We
have propose a unified estimation procedure in which the sieve
maximum likelihood estimates are obtained by maximizing the
observed likelihood function over a sieve space of wavelets.
The resulting estimators for the regression coefficients have
been shown to be asymptotically normal. Simulation studies in-
dicated that the proposed estimates performed well for sample
sizes of 200 and 400. Applying the Box–Cox transformed haz-
ards model to the lung cancer data demonstrated that the best
model might not be either the multiplicative or the additive haz-
ards model.

In the optimization for computing the maximum likelihood
estimates, choosing the initial values is an important issue. Al-
though our numerical studies indicate that convergence is often

(a) (b)

(c) (d)

Figure 1. Predicated Survival Curves (- - - -) Based on the Best Model
versus the Kaplan–Meier Curves (—–). (a) Arm A, female; (b) arm A,
male; (c) arm B, female; (d) arm B, male.

satisfactory if initial values are not far from true values, one
must guess an initial value in practice. One possible way to do
this is to use the estimates from the proportional hazards model,
which corresponds to transformation H(x) = exp{x} and has the
concave log-likelihood function, as the initial values. Another,
more general solution is to choose a few widespread points in
the parameter domain as initial values, and from among all of
the estimates starting from these initial values, consider the one
with the maximal likelihood function to be the maximum like-
lihood estimate.

Although in our theoretical derivations a high-order smooth
father wavelet is needed to ensure that the asymptotic results
hold for the regression parameters, our simulation study and
data application showed that using a low-order smooth father
wavelet (e.g., the Db4 wavelet) works quite well. In practice, if
one is interested only in inference on the regression coefficients,
then a low-order smooth wavelet basis such as the Db4 wavelet
may be used, whereas a high-order smooth wavelet should be
used to obtain a smooth predicted function of the hazard rate.

In many other nonparametric estimation contexts, it is im-
portant to choose a suitable smoothing parameter. In the sieve
maximum likelihood estimation that we have proposed, such a
parameter is the multiresolution level Kn (thus mn). In data ap-
plications, we used the AIC criterion to choose Kn, but other cri-
teria can be used to choose Kn; one possibility is to replace the
negative log-likelihood function in the AIC criterion by a dis-
tance measure, which is defined as the L2 distance between the
predicted survival function based on the model and the Kaplan–
Meier survival function. The AIC criterion or the just-proposed
criterion can also be used to choose the model that best fits the
data from a class of transformed hazards models, as we did in
the data application. In all of these model selection procedures,
the variation in choosing the best model is not accounted for in
our inference for the regression parameters. One possibility for
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accounting for such variation is to treat the transformation G,
indexed by the parameter s, as another model parameter; then
we maximize the observed likelihood function over all model
parameters, including the transformation G. However, the as-
ymptotic properties of the estimators for the regression coeffi-
cients are not yet available.

APPENDIX: PROOFS

A.1 Proof of Theorem 1

The consistency proof contains the following steps, where r = 3.

Step 1. We first choose µ̃(t) as the approximate function in the
Knth multiresolution to µ0(t) such that (β0, µ̃) ∈ Sn. According to
the results of the wavelet analysis (Härdle, Kerkyacharian, Picard, and
Tsybakov 2000, sec. 9.4),

‖µ̃ − µ0‖W1,∞ ≤ O(1)
‖µ0‖Wr,∞

mr−1
n

,

‖µ̃ − µ0‖L∞ ≤ O(1)
‖µ0‖Wr,∞

mr
n

,

where ‖µ‖Wr,∞ = supl≤r supt∈[0,τ ] |µ( j)(t)| for k = 0, . . . , r. More-
over, the wavelet coefficients for µ̃(t) = ∑mn

j=1 α̃jBj(t) satisfy that
∑mn

j=1 |α̃j| < ∞. Thus (β0, µ̃) ∈ Sn.

Step 2. We obtain a bound for the distance

d
(
( β̂, µ̂), (β0,µ0)

) ≡ |β̂ − β0| + ‖µ̂ − µ0‖L2 ,

where ‖µ‖L2 = {∫ τ
0 |µ(t)|2 dt}1/2. From the construction of µ̃, we im-

mediately obtain that

Ln( β̂, µ̂) ≥ Ln(β0, µ̃). (A.1)

If we let Pn denote the empirical measure based on the n iid obser-
vations and P denote the corresponding expectation, then, after taking
the log on both sides of (A.1) and dividing by n, we have that

Pn

{
� log H

(
µ̂(Y) + β̂T Z(Y)

) −
∫ Y

0
H

(
µ̂(t) + β̂T Z(t)

)
dt

}

≥ Pn

{
� log H

(
µ̃(Y) + βT

0 Z(Y)
) −

∫ Y

0
H

(
µ̃(t) + βT

0 Z(t)
)

dt

}
.

Note that the function � log H(·)−∫ Y
0 H(·)dt is concave in H(·). Thus,

for any δn > 0, if we define

Hδn(t) = δnH
(
µ̂(t) + β̂T Z(t)

) + (1 − δn)H
(
µ̃(t) + βT

0 Z(t)
)
,

then we have

Pn

{
� log Hδn(Y) −

∫ Y

0
Hδn(t)dt

}

≥ Pn

{
� log H

(
µ̃(Y) + βT

0 Z(Y)
) −

∫ Y

0
H

(
µ̃(t) + βT

0 Z(t)
)

dt

}
.

Thus

n−1/2Gn

{
� log Hδn(Y) −

∫ Y

0
Hδn(t)dt

− � log H
(
µ̃(Y) + βT

0 Z(Y)
) +

∫ Y

0
H

(
µ̃(t) + βT

0 Z(t)
)

dt

}

≥ −P
{
� log Hδn(Y) −

∫ Y

0
Hδn(t)dt − � log H

(
µ̃(Y) + βT

0 Z(Y)
)

+
∫ Y

0
H

(
µ̃(t) + βT

0 Z(t)
)

dt

}
, (A.2)

where Gn denotes the empirical process
√

n(Pn − P).
We now want to bound the left side of (A.2) using the results of

the empirical process theory. Toward this goal, we choose δn such
that for some small constant δ0, δn = δ0/{Mnγ1(Mn)γ2(Mn)}, where
γ1(Mn) = 2H(Mn + B) and γ2(Mn) = supx∈[−Mn−B,Mn+B] H′(x).
Hence,

∥∥Hδn(t) − H
(
µ̃(t) + βT

0 Z(t)
)∥∥

L∞

≤ δn
∥
∥H

(
µ̂(t) + β̂T Z(t)

) − H
(
µ̃(t) + βT

0 Z(t)
)∥∥

L∞
≤ δ0.

Moreover, we define a class of functions

Hn = {
δnH

(
µ(t) + βT Z(t)

)

+ (1 − δn)H
(
µ̃(t) + βT

0 Z(t)
)

: (β,µ) ∈ Sn
}
.

By the property of the father wavelet, for any (β,µ) ∈ Sn,

|µ′(t)| ≤
mn∑

j=1

|αj||B′
j(t)| ≤ c0mnMn

for some constant c0, so the ε-bracket covering number for the class
of such µ with respect to L2(P)-norm is of the order exp{O(Mnmn/ε)}
(van der Vaart and Wellner 1996, corollary 2.7.2). By the monotonic-
ity of H(·), we thus can construct the exp{O(Mnmn/ε)} brackets to
cover Hn such that within each bracket, any two functions, indexed by
(β1,µ1) and (β2,µ2), satisfy |β1 − β2| + ‖µ1 − µ2‖L2(P) ≤ ε. But
because

δnH′(x)|x=µ(t)+βT Z(t) ≤ δnO(γ2(Mn)) ≤ O(1)

Mn
,

for these two functions,
∥
∥δnH

(
µ1(t) + βT

1 Z(t)
) − δnH

(
µ2(t) + βT

2 Z(t)
)∥∥

L2(P)
≤ O(ε/Mn).

We thus conclude that

N[](ε,Hn,L2(P)) ≤ O
(
exp{O(mn/ε)}).

Consequently, another class of functions, defined as

Fn =
{
� log Hδn(Y) −

∫ Y

0
Hδn(t)dt : Hδn ∈Hn

}
,

has a bracket covering number of order

N[·](ε,Fn,L2(P)) ≤ O
(
exp{O(mn/ε)}).

Note that Fn has a bounded covering function. According to
lemma 19.38 of van der Vaart (1998), we obtain that

E∗
p‖Gn‖Fn ≤

∫ O(1)

0

√
log N[](ε,Fn,L2(P))dε

≤ O(
√

mn ).

This implies that the left side of (A.2) is bounded by Op(
√

mn/
√

n ).

In contrast, the right side of (A.2) can be written as

−P
{
� log Hδn(Y) − � log H

(
µ0(Y) + βT

0 Z(Y)
)

−
∫ Y

0
Hδn(t)dt +

∫ Y

0
H

(
µ0(t) + βT

0 Z(t)
)

dt

}

− P
{
� log H

(
µ0(Y) + βT

0 Z(Y)
) − � log H

(
µ0(Y) + βT

0 Z(Y)
)

−
∫ Y

0
H

(
µ̃(t) + βT

0 Z(t)
)

dt +
∫ Y

0
H

(
µ̃(t) + βT

0 Z(t)
)

dt

}
.

(A.3)
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We denote the two terms in (A.3) by (I) and (II) and denote H0(Y)

by H(µ0(Y) + βT
0 Z(t)). Then applying the mean value theorem to the

term (I) yields

(I) = −P
{

�

H0(Y)

(
Hδn(Y) − H0(Y)

) −
∫ Y

0

(
Hδn(t) − H0(t)

)
dt

}

+ P
{

�

H̃(Y)2

(
Hδn(Y) − H0(Y)

)2
}
,

where H̃ is a function between H0 and Hδn . Because (β0,µ0) max-

imizes P{� log H(µ(Y) + βT Z(Y)) − ∫ Y
0 H(µ(t) + βT Z(t))dt}, the

derivative of the previous function along the submodel β = β0,µ(t) =
µ0(t) + εq(t), ε ∈ (0, ε0), where ε0 is a small positive constant and
q(t) is any measurable function in L2(P), should be 0. This gives that

P
{

�

H0(Y)
H′(µ0(Y) + βT

0 Z(Y)
)
q(Y)

−
∫ Y

0
H′(µ0(t) + βT

0 Z(t)
)
q(t)dt

}
= 0.

Thus the first part of the right side in (I) is 0. Because H̃(Y) is smaller
than some constant and H′(x) ≥ 1/γ3(Mn) for x ∈ [−Mn −B,Mn +B],
we have that

(I) ≥ O(1)P
{

�

H̃(Y)2

(
Hδn(Y) − H0(Y)

)2
}

≥ O(1)
δ2

n

γ2(Mn)2
E
[{

(µ̂(Y) − µ0(Y)) + ( β̂ − β0)T Z(Y)
}2]

− O
(
γ3(Mn)2‖µ̃(t) − µ0‖2

L2

)
.

Similarly, we apply the expansion to the second term (II) of (A.3)
around the true parameter (β0,µ0). The first order in the expan-
sion vanishes, and the second order is bounded by O(1)

∫ τ
0 (µ̃(t) −

µ0(t))2 dt ≤ O(1/m2r
n ) from the construction of µ̃(t). Thus the

term (II) is at least −c0/m2r
n for some positive constant c0.

Hence we obtain that

E
[{

(µ̂(Y) − µ0(Y)) + ( β̂ − β0)T Z(Y)
}2]

≤ O(1)

{
M2

nγ1(Mn)2γ2(Mn)4√
mn√

n
+ γ1(Mn)2γ2(Mn)4γ3(Mn)2

m2r
n

}

≤ O(1)ξ(Mn)2
{√

mn√
n

+ 1

m2r
n

}
.

Because {Z(t) : t ∈ [0, τ ]} is external and linearly independent with the
constant, we obtain that

E
{
(µ̂(Y) − µ0(Y))2} + ( β̂ − β0)T E{Z(Y)Z(Y)T }( β̂ − β0)

≤ O(1)ξ(Mn)2
(√

mn√
n

+ 1

m2r
n

)
.

Furthermore, by assumption (C.4), E{Z(Y)T Z(Y)} > 0. It then follows
that
∫ τ

0
(µ̂(t) − µ0(t))2 dt + |β̂ − β0|2 ≤ O(1)ξ(Mn)2

(√
mn√
n

+ 1

m2r
n

)
.

Thus, by the choices of Mn and Kn in (C.4), Theorem 1 holds.

A.2 Proof of Theorem 2

To prove Theorem 2, we need a consistency result of µ̂ under a
stronger norm than the L2 norm. First, from the construction of Sn, we
have that

‖µ̂ − µ0‖Wr,2 ≤ O

( mn∑

j=1

|α̂j|‖Bj(t)‖Wr,2

)

≤ O(Mn)mr
n.

Then, according to the Sobolev interpolation theorem (Adams 1975),
it holds that

‖µ̂′(t) − µ′
0(t)‖L2 ≤ c1‖µ̂ − µ0‖1/r

Wr,2‖µ̂ − µ0‖1−1/r
L2

for some constant c1. Then

‖µ̂′(t) − µ′
0(t)‖L2 ≤ O(1)mnM1/r

n

[
ξ(Mn)

{
m1/4

n

n1/4
+ 1

mr
n

}]1−1/r

≤ O(1)M1/r
n ξ(Mn)1−1/r

[
m5/4−1/4r

n

n1/4−1/4r
+ 1

mr−2
n

]
.

Based on the choice of Mn and Kn in (C.4), this term converges to 0.
We thus conclude that, in probability,

|β̂ − β0| → 0, ‖µ̂ − µ0‖W1,2 → 0.

In addition, from the Sobolev embedding theorem (Adams 1975), we
have that, in probability,

‖µ̂ − µ0‖L∞ → 0.

We further improve the convergence rate of β̂ and µ̂. We simply
repeat Step 2 in proving Theorem 1 and obtain a similar inequality
as (A.2), but set δn to 1. Then the left side of (A.2) belongs to the
process n−1/2Gn(F∗

n ), where

F∗
n =

{
� log H

(
µ(Y) + βT Z(Y)

) − � log H
(
µ̃(Y) + βT

0 Z(Y)
)

−
∫ Y

0
H

(
µ(t) + βT Z(t)

)
dt +

∫ Y

0
H

(
µ̃(t) + βT

0 Z(t)
)

dt :

|β − β0| < ε,‖µ − µ0‖W1,2 < ε

}

for any small number ε. Hence Fn is P-Donsker, and thus the left side
is bounded by op(n−1/2). We again apply Taylor’s series expansion to
the right side of (A.2), but in this case the bounds γ1(Mn), γ2(Mn),
and γ3(Mn) can all be replaced by constants independent of n, due to
the fact that ‖µ̂ − µ0‖L∞ → 0. Thus we conclude that

|β̂ − β0|2 + ‖µ̂ − µ0‖2
L2[0,τ ] ≤ op

(
1√
n

)
+ Op

(
1

m2r
n

)
.

A.3 Proof of Theorem 3

The proof of asymptotic normality is outlined as follows. We first
obtain the least-favorable direction for β0, then expand the score equa-
tion for β̂ and µ̂ along an approximate least-favorable model. Here the
least-favorable direction for β0 is defined as a tangent function at µ0,
denoted by q(t), such that l∗µlµ[q(t)] = l∗µlβ , where lβ is the score
function for β0, lµ[q(t)] is the score function for µ0 along the sub-
model µ0(t)+ εq(t), and l∗µ is the dual operator of lµ. Thus we in turn
prove the following steps:

Step 1. We first show that the least-favorable direction q(t)
exists. Recall that H0(Y) = H(µ0(Y) + βT

0 Z(Y)) and �(Y) =
H′(x)|x=µ0(Y)+βT

0 Z(Y)
. By simple algebraic manipulations, we obtain

that

lβ = ��(Y)

H0(Y)
Z(Y) −

∫ Y

0
�(t)Z(t)dt

and

lµ[q(t)] = ��(Y)

H0(Y)
q(Y) −

∫ Y

0
�(t)q(t)dt.

Moreover, the closed linear space spanned by the score functions for µ

in L2(ν), where ν is the dominating measure, is given by
{

��(Y)

H0(Y)
q(Y) −

∫ Y

0
�(t)q(t)dt : q(t) ∈ L2[0, τ ]

}
.
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Thus lµ is a linear operator from L2[0, τ ] to L2(ν). Its dual operator l∗µ
satisfies that for any q ∈ L2[0, τ ] and a measurable function g(�,Y,Z)

(where Z denotes the covariate process {Z(t) : t ∈ [0, τ ]}),

E
[
lµ[q]g(�,Y,Z)

] =
∫ τ

0
l∗µ[g(�,Y,Z)]q(t)dt.

We expand both sides and, after comparison, obtain that

l∗µ[g(�,Y,Z)] = EZ

[
�(t)

H0(t)
g(1, t,Z)SC(t|Z)fT (t|Z)

]

− {
ET,Z

[
I(T ≥ t)�(t)g(1,T,Z)SC(T|Z)

]

+ EC,Z
[
I(C ≥ t)�(t)g(0,C,Z)ST (C|Z)

]}
,

where ST (·|Z) and SC(·|Z) are the conditional survival functions for
T and C given Z. Therefore,

l∗µlµ[q] = q(t)E

[
�(t)2

H0(t)2
SC(t|Z)fT (t|Z)

]
+

∫
q(s)k(s, t)ds,

where

k(s, t) = −EZ

[
fT (t|Z)SC(t|Z)I(t ≥ s)�(s)

�(t)

H0(t)

]

− EZ

[
fT (s|Z)SC(s|Z)I(s ≥ t)�(t)

�(s)

H0(s)

]

+ EY,Z[�(t)�(s)I(Y ≥ t)I(Y ≥ s)].
Note that k(s, t) is a continuous function of (t, s) based on (C.5). There-
fore, l∗µlµ[q] = l∗µlβ is a Fredholm-type equation, and the existence of
the solution is equivalent to showing that l∗µlµ[q̃] = 0 has a trivial so-
lution. The latter is clear from the following argument: If l∗µlµ[q̃] = 0,
then E{lµ[q̃]lµ[q̃]} = 0. Thus lµ[q̃] = 0, so it is clear that q̃(t) ≡ 0. We
conclude that there exists a solution q(t) such that l∗µlµ[q(t)] = l∗µlβ .
Clearly, from the equation for q(t) and condition (C.5), as well as the
smoothness condition in Theorem 2, q(t) is continuously three times
differentiable in [0, τ ].

Step 2. We choose an approximate submodel ( β̂ + εb, µ̂ + εq̂),
where q̂ is the approximate wavelet function for q in the sieve
space Sn, and thus q̂ ∈ Wr,2 and ‖q̂ − q‖L2 ≤ O(1/mr

n). Because

( β̂, µ̂) maximizes the observed likelihood function along this sub-
model, we immediately obtain that

Pn
{
lβ ( β̂, µ̂) + lµ( β̂, µ̂)[q̂]} = 0,

where lβ ( β̂, µ̂) is the score function for β evaluated at ( β̂, µ̂) and

lµ( β̂, µ̂)[q̂] is the score function for µ evaluated at ( β̂, µ̂). Thus

Gn
{
lβ ( β̂, µ̂) + lµ( β̂, µ̂)[q̂]} = −√

nP
{
lβ ( β̂, µ̂) + lµ( β̂, µ̂)[q̂]}.

Because the function lβ ( β̂, µ̂) + lµ( β̂, µ̂)[q̂] belongs to a P-Donsker
class, the foregoing equation becomes

Gn
{
lβ (β0,µ0) + lµ(β0,µ0)[q]} + op(1)

= −√
nP

{
lβ ( β̂, µ̂) + lµ( β̂, µ̂)[q̂]}.

We perform Taylor’s series expansion of the right side at (β0,µ0), and
obtain

Gn
{
lβ (β0,µ0) + lµ(β0,µ0)[q]} + op(1)

= −√
nP

{
lββ (β0,µ0) + lβµ(β0,µ0)[q]}( β̂ − β0)

− √
nP

{
lβµ(β0,µ0)[µ̂ − µ0] + lµµ(β0,µ0)[q, µ̂ − µ0]}

+ √
nO

(|β̂ − β0|2 + ‖µ̂ − µ0‖2
L2

+ ‖q̂ − q‖2
L2

)
. (A.4)

Here lβµ(β0,µ0)[µ̂ − µ0] is the derivative of lβ along the path
β = β0, µ = µ0 + ε(µ̂ − µ0), and lµµ(β0,µ0)[q, µ̂ − µ0] is the

derivative of lµ[q] along the path β = β0,µ = µ0 + ε(µ̂ − µ0). The
second term on the right side of (A.4) is 0, because q(t) satisfies
l∗µlµ[q(t)] = l∗µlβ ; the third term on the right side of (A.4) is op(1)

based on the results of the convergence rate for ( β̂, µ̂) and the condi-
tion that

√
n/m2r

n → 0. Hence,

−√
nP

{
lββ (β0,µ0) + lβµ(β0,µ0)[q]}( β̂ − β0)

= Gn
{
lβ (β0,µ0) + lµ(β0,µ0)[q]} + op(1). (A.5)

Step 3. We show that the matrix P{lββ (β0,µ0) + lβµ(β0,

µ0)[q]} is nonsingular. If it is not, then there exists a non-0 vector b
such that

bT P
{
lββ (β0,µ0) + lβµ(β0,µ0)[q]}b = 0;

that is, P[{bT lβ +bT lµ[q]}2] = 0. Then bT lβ +bT lµ[q] = 0. It is easy

to see that bT Z(t) + q(t) = 0. We thus obtain a contradiction.

Step 4. Finally, from (A.5), we obtain that
√

n( β̂ − β0) = −[
P
{
lββ (β0,µ0) + lβµ(β0,µ0)[q]}]−1

× Gn
{
lβ (β0,µ0) + lµ(β0,µ0)[q]}

+ op(1).

Therefore,
√

n( β̂ − β0) converges to a normal distribution and has
influence function given by
[
P
{
lββ (β0,µ0) + lβµ(β0,µ0)[q]}]−1

× {
lβ (β0,µ0) + lµ(β0,µ0)[q]}.

Because this influence function is on the linear space spanned by the
score functions lβ and lµ[q], the influence function is the same as the
efficient influence function for β0. Hence the asymptotic variance of√

n( β̂ − β0) attains the semiparametric efficiency bound.

[Received April 2004. Revised September 2004.]
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