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Maximum Likelihood Estimation for the Proportional
Odds Model With Random Effects

Donglin ZENG, D. Y. LIN, and Guosheng YIN

In this article we study the semiparametric proportional odds model with random effects for correlated, right-censored failure time data. We
establish that the maximum likelihood estimators for the parameters of this model are consistent and asymptotically Gaussian. Furthermore,
the limiting variances achieve the semiparametric efficiency bounds and can be consistently estimated. Simulation studies show that the
asymptotic approximations are accurate for practical sample sizes and that the efficiency gains of the proposed estimators over those of Cai,
Cheng, and Wei can be substantial. A real example is provided to illustrate the proposed methods.

KEY WORDS: Correlated failure time data; Frailty model; Linear transformation model; Proportional hazards; Semiparametric efficiency;
Survival data.

1. INTRODUCTION

In many scientific studies, there exists natural or artificial
clustering of study subjects such that the survival times or fail-
ure times of the subjects within the same cluster are correlated.
A common approach to accommodating the intraclass depen-
dence is to incorporate an unobserved random effect, the so-
called frailty, into the Cox (1972) proportional hazards model.
Specifically, the hazard function for the jth subject of the ith
cluster associated with a d1-vector of covariates Xij is postu-
lated to take the form

λ(t|Xij, ξi) = ξiλ0(t)e
XT

ijα, i = 1, . . . ,n; j = 1, . . . ,ni, (1)

where λ0(·) is an unspecified baseline hazard function, α is a
vector of unknown regression parameters, and ξi is the unob-
served frailty for the ith cluster. Although various parametric
distributions for the frailty have been suggested, the existing
literature has been focused on the simple case of gamma frailty.
The consistency and asymptotic distribution of the maximum
likelihood estimator for the gamma frailty model have been rig-
orously studied by Murphy (1994, 1995) for the case with no
covariates and by Parner (1998) for the case with covariates.

Model (1) imposes a common gamma frailty on all members
of the same cluster. Several authors have extended this shared
gamma frailty model to accommodate more flexible depen-
dence among cluster members. In particular, Petersen (1998)
allowed different additive frailties for different members of the
same cluster. Parner (1998) assumed that the frailty for each
cluster consists of two independent components, a common
cluster-level effect and a subject-specific effect, and showed
that the maximum likelihood estimator is efficient.

Under model (1), the conditional hazard functions given
frailties are required to be proportionate over time among dif-
ferent sets of covariate values. This assumption of proportional
hazards may not be satisfied in certain applications. For inde-
pendent failure time data, an attractive alternative to the pro-
portional hazards model is the proportional odds model (Pettitt
1984; Bennett 1983). The proportional odds model constrains
the ratio of the odds of survival associated with two sets of co-
variate values to be constant over time, and, consequently, the
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ratio of the hazards to converge to unity as time increases. In
contrast, the proportional hazards model constrains the hazard
ratio to be constant while the odds ratio tends to 0 or infin-
ity. Physical and biological rationale behind the proportional
odds model was provided by Bennett (1983) and others. Sta-
tistical inference is much more challenging under the propor-
tional odds model than under the proportional hazards model.
Important contributions have been made by Bennett (1983),
Pettitt (1984), Cuzick (1988), Dabrowska and Doksum (1988),
Cheng, Wei, and Ying (1995), Wu (1995), Murphy, Rossini, and
van der Vaart (1997), Shen (1998), Lam and Leung (2001), and
Chen, Jin, and Ying (2002), among others.

In this article we consider the proportional odds model with
random effects for correlated failure time data. Specifically,

− logit{S(t|Xij,Zij,bi)} = G(t) + XT
ijβ + ZT

ijbi,

i = 1, . . . ,n; j = 1, . . . ,ni, (2)

where Xij is a d1-vector of covariates as defined earlier, Zij is
a d2-vector of covariates that usually contains 1 and part of
Xij, G(·) is an unspecified strictly increasing function, β is
a set of unknown regression parameters, bi is a set of un-
observed random effects, and S(·|Xij,Zij,bi) is the survival
function conditional on Xij Zij, and bi. We assume that bi fol-
lows a normal distribution with mean 0 and unknown covari-
ance matrix �. Note that model (2) allows covariate-specific or
subject-specific random effects, whereas model (1) only allows
a cluster-specific frailty.

Two recent articles are concerned with special versions of
model (2). Specifically, Cai, Cheng, and Wei (2002) studied
model (2) with a scalar random effect (i.e., Zij ≡ 1). The para-
meter estimators are obtained by minimizing the empirical sum
of squares of the differences between certain observed quanti-
ties and their expected values. The estimators are not asymptot-
ically efficient, and the variance estimation is computationally
demanding. The censoring mechanism is required to be purely
random and independent of covariates. Lam, Lee, and Leung
(2002) considered the proportional odds model with scalar ran-
dom effects µij, i = 1, . . . ,n and j = 1, . . . ,ni. Within the ith
cluster, µij, j = 1, . . . ,ni, are multivariate normal with a spe-
cific covariance structure. Lam et al. (2002) obtained the esti-
mators for the regression parameters by maximizing a marginal
likelihood based on the ranks of the failure times. They did not

© 2005 American Statistical Association
Journal of the American Statistical Association

June 2005, Vol. 100, No. 470, Theory and Methods
DOI 10.1198/016214504000001420

470

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ri
es

] 
at

 0
5:

12
 0

2 
Se

pt
em

be
r 

20
13

 



Zeng, Lin, and Yin: Proportional Odds Model With Random Effects 471

provide formal asymptotic results or consider the problem of
survival function estimation.

In this article we study the maximum likelihood estimation
of model (2). The estimators are shown to be consistent and
asymptotically efficient. The asymptotic distributions of the es-
timators and consistent variance estimators are also obtained.
Numerical studies reveal that the proposed estimators perform
well for practical sample sizes and that the efficiency gains over
the estimators of Cai et al. (2002) can be substantial.

We describe in greater detail the data structure and model as-
sumptions in the next section, and develop the estimation the-
ory in Section 3. We then present the results of our numerical
studies in Section 4 and provide an application to a real med-
ical study in Section 5. We give some concluding remarks in
Section 6. Most of the technical details are relegated to the Ap-
pendix.

2. DATA STRUCTURE AND MODEL ASSUMPTIONS

Suppose that there is a random sample of n clusters with po-
tentially different sizes. For i = 1, . . . ,n and j = 1, . . . ,ni, let Tij

and C∗
ij be the latent failure time and censoring time for the jth

member of the ith cluster and let Xij and Zij be the correspond-
ing d1- and d2-vectors of covariates. The regression relation-
ship between Tij and (Xij,Zij) is given by model (2). The data
consist of (Yij,�ij,Xij,Zij) (i = 1, . . . ,n; j = 1, . . . ,ni), where
Yij = Tij ∧ Cij, �ij = I(Tij ≤ Cij), and Cij = C∗

ij ∧ τ . Here and
in the sequel, a ∧ b = min(a,b), a ∨ b = max(a,b), I(·) is the
indicator function, and τ is a fixed constant denoting the end of
the study.

We impose the following regularity conditions:

C1. Conditional on covariates Xij and Zij, the censoring time
C∗

ij is independent of the failure time Tij and random
effects bi.

C2. There exists some positive constant δ0 such that
Pr(C∗

ij ≥ τ |Xij,Zij) ≥ δ0 almost surely.
C3. All of the Xij and Zij are bounded. In addition, if there

exist a constant vector c and a symmetric matrix � such
that

[1,XT
ij ]c + ZT

ij�Zij = 0, j = 1, . . . ,ni

and

ZT
ij�Zij′ = 0, j �= j′; j, j′ = 1, . . . ,ni

almost surely, then c = 0 and � = 0.
C4. The true value G0(t) of G(t) is a strictly increasing func-

tion in [0, τ ] and is continuously differentiable. In ad-
dition, G0(0) = −∞,deG0(t)/dt|t=0+ > 0, and G0(τ ) <

∞.
C5. The true values of β and �, β0 and �0, belong to the

interior of a known compact set,

� = {
(β,�) : |β| ≤ B for some constant B,

� is positive definite and its eigenvalues

are bounded away from 0 and ∞}
.

C6. The cluster size is completely random. In addition, there
exists a positive integer n0 such that 1 ≤ ni ≤ n0 and
Pr(ni ≥ 2) > 0.

Remark 1. Conditions C3, C4, and C6 ensure the identifi-
ability of the parameters in model (2). If Zij = Zij′ in con-
dition C3 for continuous covariates, then the two displays
in this condition are equivalent to the linear independence
of [1,XT

ij ] and the linear independence of Zij. In condi-
tion C4, the equality G0(0) = −∞ follows from the fact that
S(0|Xij,Zij,bi) = 1, and the inequality G0(τ ) < ∞ implies that
Pr(Tij > τ |Xij,Zij,bi) > 0. The bound G0(τ ) is unknown in
practice. Condition C6 implies that the cluster size is bounded
and some clusters have at least two subjects.

3. MAXIMUM LIKELIHOOD ESTIMATION

Define H(t) = eG(t) and H0(t) = eG0(t). Note that H0(0) = 0.
Under model (2) and condition C1, the likelihood function for
the parameters (β0,�0,H0) is proportional to

n∏

i=1

[∫

b

ni∏

j=1

{
e−(XT

ijβ+ZT
ij b)

H(Yij) + e−(XT
ijβ+ZT

ij b)

}1−�ij

×
{

e−(XT
ijβ+ZT

ij b)H′(Yij)

(H(Yij) + e−(XT
ijβ+ZT

ij b)
)2

}�ij

× |�|−1/2e−bT�−1b/2 db

]

,

where H′(t) is the derivative of H(t). It would seem natural
to calculate the maximum likelihood estimators (MLEs) of
(β0,�0,H0) by maximizing the foregoing likelihood function.
The maximum of this function is infinity, however, because we
can always choose some function H(·) with fixed values at the
Yij while letting H′(Yij) go to infinity for some Yij with �ij = 1.
Thus we relax H(·) to be right-continuous and allow H(·) to
have jumps at the Yij. We then maximize the function

Ln(β,�,H) ≡
n∏

i=1

[∫

b

ni∏

j=1

{
e−(XT

ijβ+ZT
ij b)

H(Yij) + e−(XT
ijβ+ZT

ij b)

}1−�ij

×
{

e−(XT
ijβ+ZT

ij b)H{Yij}
(H(Yij) + e−(XT

ijβ+ZT
ij b)

)2

}�ij

× |�|−1/2e−bT�−1b/2 db

]

, (3)

where H{t} denotes the jump size of H(t) at t. To be specific,
we maximize Ln(β,�,H) over the parameter space
{
(β,�,H) : (β,�) ∈ �, H(t) is an increasing

right-continuous function in [0, τ ] with H(0) = 0
}
.

The resulting estimators, denoted by β̂n, �̂n, and Ĥn, are
referred to as the nonparametric MLEs (NPMLEs) (Parner
1998) or the sieve MLEs (Huang and Rossini 1997; Murphy
et al. 1997).

The existence of the maximizers follows from the following
arguments. First, for any (β,�,H) in the parameter space, the
ith term on the right side of (3) is bounded by

max
Xij,Zij,(β,�)∈�

∫

b

ni∏

j=1

eXT
ijβ+ZT

ij b|�|−1/2e−bT�−1b/2 db < ∞,
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where the inequality follows from the boundedness of
Xij and Zij and the compactness of �. Second, for any H, we
can always construct a new increasing function H∗, which is a
step function with jumps only at the Yij for which �ij = 1 such
that H∗(Yij) = H(Yij). Clearly, H∗{Yij} ≥ H{Yij} for �ij = 1, so
that Ln(β,�,H∗) ≥ Ln(β,�,H). This implies that the func-
tion H that maximizes Ln(β,�,H) should be a step func-
tion with positive jumps only at the Yij for which �ij = 1.
Third, if H{Yij} = ∞ for some Yij, then it is easy to see that
Ln(β,�,H) = 0. Therefore, we conclude that the maximizers
exist.

The foregoing arguments imply that Ĥn(t) is a step function
with jumps only at the Yij for which �ij = 1. Thus, the NPMLEs
for (β0,�0,H0) can be obtained by maximizing Ln(β,�,H)

over the parameter space (β,�) ∈ � and the jump sizes of H at
the Yij. This maximization can be realized via many optimiza-
tion algorithms such as the large-scale unconstrained optimiza-
tion function fminunc in MATLAB, which is described in the
next section.

The asymptotic properties of the proposed estimators are
stated in the following theorems.

Theorem 1. Under conditions C1–C6, ‖β̂n − β0‖ → 0,
‖�̂n − �0‖ → 0 and supt∈[0,τ ] |Ĥn(t) − H0(t)| → 0 almost
surely, where ‖ · ‖ is the Euclidean norm.

Theorem 2. Under conditions C1–C6, the random element√
n(β̂ T

n − βT
0 , �̂T

n − � T
0 , Ĥn(·) − H0(·))T converges weakly

to a 0-mean Gaussian process in the metric space Rd1 ×
Rd2(d2+1)/2 × l∞[0, τ ], where �̂n and �0 are treated as ex-
tended column vectors consisting of the upper triangle ele-
ments and l∞[0, τ ] is a normed space consisting of all the
bounded functions and the norm is defined as the supremum
norm on [0, τ ]. Furthermore, β̂n and �̂n are asymptotically ef-
ficient.

Remark 2. Theorem 1 presents the consistency of the MLEs.
In conditions C1–C6, H(·) is not assumed to be a bounded func-
tion, which means that the weak-compactness of the parame-
ter H(·) is not assumed. Thus obtaining a bound for the MLEs
Ĥn(·) is a key to the proof of Theorem 1. The proof of The-
orem 1 adopts some ideas from Murphy’s (1994) proof of the
consistency for the gamma frailty model, but the technical de-
tails are quite different. Once the consistency is established, the
asymptotic distributions of the MLE’s stated in Theorem 2 can
be derived along the lines of Murphy (1995) and Parner (1998),
although the verification of the continuous invertibility of the
information operator is substantially different from theirs. In
the statement of Theorem 2, asymptotically efficient estimators
mean that the asymptotic variances attain the semiparametric
efficiency bounds as defined by Bickel, Klaassen, Ritov and
Wellner (1993, chap. 3). The proofs of Theorems 1 and 2 are
given in the Appendix.

It is essential to estimate the asymptotic covariance matrices
of β̂n and �̂n. Intuitively, the variation in estimating the pa-
rameter H(·) arises from the variation in estimating the jump
sizes of H(·) at the Yij for which �ij = 1. Thus we can re-
gard the observed likelihood function as a likelihood function
indexed by the parameters β and � and the parameters that rep-
resent the jump sizes of H(·) at the Yij for which �ij = 1. From

the Fisher information theory in the parametric setting, the as-
ymptotic covariance matrix in Theorem 2 can be estimated
by the inverse of the observed information matrix for all of
the parameters. Specifically, for any constant vector (h1,h2) ∈
Rd1 × Rd2(d2+1)/2 and any bounded function h3, the asymp-
totic variance of hT

1 β̂n + hT
2 �̂n + ∫ τ

0 h3(t)dĤn(t) is equal to the
asymptotic variance of hT

1 β̂n + hT
2 �̂n +∑

�ij=1 h3(Yij)Ĥn{Yij}
so that it can be estimated by hT

n J−1
n hn, where hn is the vector

comprising of h1, h2, and the h3(Yij) for which �ij = 1 and Jn is
the negative Hessian matrix of log Ln(β̂, �̂, Ĥ) with respect to
(β,�) and the jump sizes of H at the Yij for which �ij = 1. The
next theorem formalizes this approximation.

Theorem 3. Let V(h1,h2,h3) be the asymptotic variance
of the random variable n1/2{hT

1 (β̂n − β0) + hT
2 (�̂n − �0) +∫ τ

0 h3(t)d(Ĥn(t) − H0(t))}. Under conditions C1–C6, the esti-
mator nhT

n J−1
n hn → V(h1,h2,h3) uniformly in (h1,h2,h3) in

probability.

Theorem 3 implies that when the number of uncensored ob-
servations is not too large, one can simply invert the observed
information matrix for all the parameters, including β,�, and
the H{Yij} for which �ij = 1 to calculate the variances and co-
variances. Our numerical studies revealed that this approxima-
tion is satisfactory for practical sample sizes.

4. NUMERICAL STUDIES

Simulation studies were conducted to evaluate the finite-
sample properties of the proposed methods. In the first set of
studies, the failure times were generated from the following
special case of model (2):

− logit{S(t|X1ij,X2ij,bi)} = log t − X1ij + X2ij + bi,

i = 1, . . . ,n; j = 1,2,

where X1i1 = 0, X1i2 = 1, X2i1 ≡ X2i2 is a uniform(0,1) random
variable, and bi is 0-mean normal with variance σ 2. The censor-
ing times were generated from the uniform(0,15) distribution,
corresponding to approximately 33% censoring rate.

We used the optimization algorithm fminunc in the optimiza-
tion toolbox of MATLAB to obtain the maximum likelihood es-
timates of β1, β2, σ , and H. When the gradients and the Hessian
derivatives of the likelihood function are provided, the search
algorithm is a subspace trust region method and is based on the
interior-reflective Newton method described by Coleman and Li
(1994, 1996). In each iteration of the search, a large linear sys-
tem is approximately solved by using the method of precondi-
tioned conjugate gradients. The algorithm converges when the
search step size and the norm of the search gradients are smaller
than certain thresholds. To avoid negative estimates of the jump
sizes for H or negative estimates of σ , we used the logarithms
of the jumps sizes and logσ as the parameters during the search.
The starting values for (β1, β2, σ ) were set to be (0,0,1). The
starting value for the jump size H{Yij} at the failure time Yij was
given by (A.1) in Section A.1, on the right side of which the val-
ues for (β1, β2, σ ) were set to be the initial values and H(t) was
set to be t. In general, the search algorithm converged within
10 iterations. After the algorithm converged, the variance es-
timates were calculated by inverting the observed information
matrix.
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Table 1 displays the results of these simulation studies with
n = 200. The MLEs for all of the parameters show little bias.
The proposed standard error estimators agree well with the em-
pirical standard errors, and the confidence intervals provide rea-
sonable coverages.

For comparison, we also computed the estimates based on
the method of Cai et al. (2002), which minimizes the criterion
function

nρ

n∑

i=1

ni∑

l �=k=1

[
�ilI(Yil ≤ Yik ∧ t0)

Ĝw(Yil)

−
∫

b

∫ α

−∞
e−(t+XT

ikβ+b)

1 + e−(t+XT
ikβ+b)

× e−(t+XT
ilβ+b)

{1 + e−(t+XT
ilβ+b)}2

1√
2πσ

e−b2/(2σ 2) dt db

]2

+
n∑

j �=i=1

ni∑

k=1

nj∑

l=1

[
�jlI(Yjl ≤ Yik ∧ t0)

Ĝ2
c(Yjl)

−
∫

b,̃b

∫ α

−∞
e−(t+XT

ikβ+b)

1 + e−(t+XT
ikβ+b)

× e−(t+XT
jlβ+̃b)

{1 + e−(t+XT
jlβ+̃b)}2

1√
2πσ

e−b2/(2σ 2)

× 1√
2πσ

e−̃b2/(2σ 2) dt db d̃b

]2

, (4)

where t0 is the minimum of the 95th percentile of the ob-
served Yij and the 98th percentile of the observed Yij for which
�ij = 1. In (4), ρ is chosen to minimize the asymptotic variance

of the estimator for β0, Ĝc(t) = e−�̂c(t) and Ĝw(t) = e−�̂w(t),
where �̂c is the Nelson–Aalen estimator based on (Yij,1−�ij),
i = 1, . . . ,n; j = 1, . . . ,ni, and �̂w is the Nelson–Aalen estima-
tor based on {Yik ∧ Yil,1 − (I(Yik ≤ Yil)�ik + I(Yik > Yil)�il)},
i = 1, . . . ,n,1 ≤ k < l ≤ ni. The mean squared errors (MSEs)
for Cai et al.’s estimators of β1, β2, and σ turned out to be
.096, .749, and .935 under σ = 3, and .055, .192, and .311 un-

Table 1. Summary Statistics for the Simulation Studies With
One Random Effect

σ Parameter Value Mean SE SEE 95% CP MSE

3 β1 1.00 .981 .205 .207 .956 .042
β2 −1.00 −1.020 .797 .809 .950 .634
σ 3.00 2.918 .317 .297 .924 .107

H(τ/4) 3.75 4.176 2.519 2.101 .946 6.517
H(τ/2) 7.50 8.306 4.842 4.334 .944 24.044
H(3τ/4) 11.25 12.667 7.550 6.919 .956 58.894

H(τ ) 15.00 16.229 10.583 9.763 .948 113.299

1 β1 1.00 .989 .185 .191 .958 .034
β2 −1.00 −1.014 .390 .400 .952 .152
σ 1.00 .949 .211 .207 .980 .047

H(τ/4) 3.75 3.856 1.037 1.063 .962 1.085
H(τ/2) 7.50 7.724 2.347 2.365 .962 5.545
H(3τ/4) 11.25 11.519 4.029 3.964 .952 16.274

H(τ ) 15.00 14.837 6.877 6.306 .934 47.220

NOTE: Mean and SE represent the mean and standard error of the estimator. SEE is the mean
of the standard error estimator, and 95% CP is the coverage probability of the 95% confidence
interval. Each entry is based on 500 simulated datasets.

der σ = 1. Thus these estimators can be considerably less effi-
cient than the MLEs, especially when there is strong intraclass
dependence. It would be interesting to make comparisons with
Lam et al.’s method. Their estimators are not easy to program,
however.

In our second set of studies, we considered bivariate normal
random effects. The failure times were generated from the fol-
lowing model:

− logit{S(t|Xi,b1i,b2i)}
= log{(1 + t/2)2 − 1} + .5X1ij − .5X2ij + b1i + X2ijb2i,

i = 1, . . . ,n; j = 1,2,

where X1i1 = 0, X1i2 = 1, X2i1 ≡ X2i2 is a uniform(0,1) random
variable, and (b1i,b2i) has a bivariate normal distribution with 0
means, unit variances, and covariance −.4. The censoring times
were set to be min(3,C∗), where C∗ is uniform(3/8,11/8),
so that approximately 34% of the failure times were censored.
The optimization algorithm fminunc was again used to find
the maximum likelihood estimates. We used the logarithms of
the jump sizes of H and the elements in the square root of the
covariate matrix of the random effects as the parameters dur-
ing the search. To ensure that the covariance matrix estimate is
positive-definite, we let the objective function be a large neg-
ative value (i.e., −105) if any condition for a positive-definite
matrix was violated. This penalization essentially restricts the
search within the meaningful regions of the parameters. As be-
fore, both the gradients and the Hessian derivatives of the objec-
tive function were supplied in the search algorithm. The starting
values for the regression parameters and the covariance matrix
were 0’s and the identity matrix, whereas the starting values
for the jump sizes of H were determined by (A.1), in which
the parametric components were set to be the initial values and
H(t) to be t.

Table 2 displays the results for n = 200 and n = 400. For
n = 200, the search usually converged after about 10 itera-
tions, and it took less than 2 hours to complete 500 repeti-
tions on 20 1.4-GHz Athlon machines. For n = 400, it took
about 10 hours to complete. In the table, σ11, σ22, and σ12 are

Table 2. Summary Statistics for the Simulation Studies With
Two Random Effects

n Parameter Value Mean SE SEE 95% CP MSE

200 β1 .50 .498 .186 .188 .958 .035
β2 −.50 −.520 .391 .412 .956 .153
σ11 .979 .861 .341 .440 .978 .130
σ12 −.204 −.324 .454 .620 .968 .221
σ22 .979 1.069 .837 1.222 .946 .708

H(τ/4) .891 .920 .231 .237 .962 .054
H(τ/2) 2.063 2.119 .540 .568 .964 .295
H(3τ/4) 3.517 3.630 1.069 1.052 .956 1.153

H(τ ) 5.250 5.412 1.821 1.796 .952 3.336

400 β1 .50 .504 .135 .133 .950 .018
β2 −.50 −.499 .299 .291 .948 .089
σ11 .979 .891 .263 .295 .982 .077
σ12 −.204 −.258 .381 .475 .938 .148
σ22 .979 1.019 .731 .984 .938 .535

H(τ/4) .891 .903 .169 .163 .952 .029
H(τ/2) 2.063 2.088 .419 .393 .946 .176
H(3τ/4) 3.517 3.527 .761 .716 .944 .578

H(τ ) 5.250 5.250 1.355 1.222 .932 1.834

NOTE: See the Note to Table 1.
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the elements in the square root of the covariance matrix for
b1 and b2 so that σ11 = σ22 = .979 and σ12 = −.204. For the
regression parameters and the function H, the MLEs show little
bias and the proposed standard error estimators agree well with
the empirical standard errors. The parameters for the covariance
matrix of the random effects are estimated less well, although
there is a trend for improvement as n increases.

5. AN EXAMPLE

We now illustrate the proposed methods with the well-known
Diabetic Retinopathy Study (Huster, Brookmeyer, and Self
1989), which was conducted to assess the effectiveness of laser
photocoagulation in delaying visual loss among patients with
diabetic retinopathy. One eye of each patient was randomly se-
lected to receive the laser treatment, while the other eye was
used as a control. The failure time of interest is the time to vi-
sual loss as measured by visual acuity less than 5/200. Follow-
ing previous authors, we confine our attention to a subset of
197 high-risk patients, and consider three covariates: X1ij in-
dicates, by the values 1 versus 0, whether or not the jth eye
( j = 1 for the left eye and j = 2 for the right eye) of the ith
patient was treated with laser photocoagulation, X2i1 ≡ X2i2 in-
dicates, by the values 1 versus 0, whether the ith patient had
adult-onset or juvenile-onset diabetics, and X3ij = X1ij ∗ X2ij.
We fit model (2) with these three covariates, along with random
effects bi to account for the correlation between the two eyes of
the same patient. We used the fminunc function with the start-
ing values described in the previous section. The results of the
analysis are given in Table 3. There is a high degree of depen-
dence between the failure times of the two eyes from the same
patient. Both the treatment indicator and the interaction term are
significant, whereas the diabetic type is not. Cai et al. (2002) re-
ported estimates of β1, β2, and β3 of −.46, .74, and −1.41 with
estimated standard errors of .30, .38, and .54. The conclusions
based on the two sets of results would be somewhat different.

To compare the fit of competing models, Cai et al. (2002,
p. 516) proposed a distance measure that summarizes the dif-
ferences between the observed and fitted values of the failure
times. This distance measure turns out to be 2.233×104 for the
proportional odds model with normal random effect as opposed
to 2.241 × 104 for the proportional hazards model with gamma
frailty. Thus the former model appears to fit the data slightly
better than the latter.

One important application of random-effects models is to
predict the future survival experience of one member given the
survival history of the other members of the same cluster. In
the Diabetic Retinopathy Study, one may be interested in es-
timating, for example, the conditional survival probabilities of
the treated eye given that it has not failed before 30 months

Table 3. Maximum Likelihood Estimates of the Random-Effect
Proportional Odds Model for the Diabetic Retinopathy Study

Parameter Estimate SE Est /SE p value

β1 −.659 .295 −2.233 .025
β2 .496 .345 1.438 .150
β3 −1.234 .466 −2.650 .008
σ 1.296 .251 5.168 <.001

NOTE: SE is the estimated standard error, and p value pertains to the two-sided test of zero
parameter value.

while the untreated eye failed between 24 and 30 months, that
is, Pr(T2 > t|T2 > 30,24 < T1 < 30,X11 = 0,X12 = 1,X2) for
t > 30, where T2 is the failure time for the treated eye and T1 is
the failure time for the untreated eye, X1k is the treatment status
for the kth eye, and X2 is the diabetic type for this patient. It is
straightforward to show that

Pr(T2 > t|T2 > 30,24 < T1 < 30,X11 = 0,X12 = 1,X2)

=
∫

u
g(u, t,1,X2;β, σ,H)

{
g(u,24,0,X2;β, σ,H)

− g(u,30,0,X2;β, σ,H)
}
φ(u)du

×
(∫

u
g(u,30,1,X2;β, σ,H)

{
g(u,24,0,X2;β, σ,H)

− g(u,30,0,X2;β, σ,H)
}
φ(u)du

)−1

, (5)

where φ(·) is the standard normal density function and

g(u, t,X1,X2;β, σ,H) = e−β1X1−β2X2−β3X1X2−σu

H(t) + e−β1X1−β2X2−β3X1X2−σu
.

We can easily estimate this probability function by replacing
β1, β2, σ , and H in (5) by their respective maximum likelihood
estimates and then evaluating the integration via the Gaussian-
quadrature formula. The variance function is given by DTJ−1

n D,
where D is the derivative of (5) with respect to (β1, β2, σ ) and
the jump sizes of H at the Yij for which �ij = 1. Figure 1 dis-
plays the estimated survival curves along with the 95% confi-
dence intervals for the two diabetic types.

6. DISCUSSION

We have developed consistent and efficient estimators for the
proportional odds model with random effects, which is a use-
ful alternative to the popular proportional hazards model with
gamma frailty. The proposed estimators are more efficient than
those of Cai et al. (2002). It is computationally less demanding
to evaluate the variances of the proposed estimators than those
of Cai et al.’s estimators, because the latter require a multilayer
summation.

The proposed numerical algorithm does not guarantee a
global maximum. This is a common problem for all MLEs in
complex settings. Our experience, however, indicates that the
proposed algorithm works well in practice. One approach to
increase one’s confidence in the estimates is to employ differ-
ent starting values. We have tried different starting values in our
simulated and real data and obtained very similar answers. Note
that the existing ad hoc estimating equations may have multiple
solutions as well.

For the variance estimation, we invert the observed informa-
tion matrix on the basis of Theorem 3. When the number of
uncensored observations is large, the matrix inversion may po-
tentially be unstable. An alternative approach is to use the nu-
merical differentiation of the profile log-likelihood function, as
implemented by Huang and Rossini (1997) and Murphy et al.
(1997). In the latter approach, the choice of the neighborhood
is arbitrary, and no variance estimates are available for the sur-
vival function estimators.
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Zeng, Lin, and Yin: Proportional Odds Model With Random Effects 475

Figure 1. Estimated Conditional Survival Probabilities for the Diabetic Retinopathy Patients. The “——” curve represents the point estimate of the
survival function for the adult-onset diabetics; the “· · · · · ·” curves represent the corresponding 95% confidence limits; the “− − −” curve represents
the point estimate of the survival function for the juvenile-onset diabetics; and the “− · − · −” curves represent the corresponding 95% confidence
limits.

It would be worthwhile to study maximum likelihood esti-
mation for a general class of linear transformation models with
random effects

ψ{S(t|Xij,Zij,bi)} = G(t) + XT
ijβ + ZT

ijbi, (6)

where ψ is a given link function. A versatile family of link func-
tions is ψ(s) = log{λ−1(s−λ − 1)}, λ ≥ 0, which contains both
the proportional hazards model (λ = 0) and the proportional
odds model (λ = 1). General linear transformation models have
been studied by Bickel (1986), Dabrowska and Doksum (1988),
Cheng et al. (1995), and Chen et al. (2002), among others, for
independent failure time data and by Cai et al. (2002) for clus-
tered failure time data (with a scalar random effect), although
asymptotically efficient estimators have yet to be developed.
It is expected that the asymptotic normality and the efficiency
of the MLEs for this class of models depend on the smooth-
ness property of ψ . We are currently investigating the condi-
tions for ψ and developing the requisite asymptotic theory.

The proposed methods are based on the normality of the ran-
dom effects. The normality assumption may not be satisfied in
some applications. It would be desirable to relax this assump-
tion and to require only that the random effects have 0 means.
One possible approach is to approximate the density of ran-
dom effects with a truncated series expansion (Davidian and
Giltinana 1995, chap. 7). We pursue this generalization in our
future work.

APPENDIX: PROOFS OF THEOREMS

A.1 Proof of Theorem 1

The proof of Theorem 1 mimics Murphy’s (1994) proof of con-
sistency for the proportional hazards model with gamma frailty. Sub-
stantial technical complications arise from the fact that, unlike in the

gamma frailty model, in our setting the random effects cannot be inte-
grated out explicitly. The proof consists of two major steps. In the first
step, we show that Ĥn(·) has an upper bound in [0, τ ] with probabil-
ity 1; in the second step, we show that any convergent subsequence of
(β̂n, �̂n, Ĥn) must converge to (β0,�0,H0).

Step 1. We prove that Ĥn(·) has an upper bound in [0, τ ] with
probability 1. Our approach is to show that because Ĥn maximizes Ln,
it cannot diverge. Let ln(β,�,H) = log Ln(β,�,H). By definition,
ln(β̂n, �̂n, Ĥn) − ln(β,�,H) ≥ 0 for any β , �, and H. We wish to
show that if Ĥn diverges, then the difference in the log-likelihood must
be negative, which will be a contradiction. If H is continuous, then
ln(β,�,H) will be infinite for finite n. Thus the choice of H = H0
is excluded. The key is to construct a suitable function H̃n that uni-
formly converges to H0. Suppose that Ĥn(τ ) → ∞ in some sample
space with positive probability. We show that n−1{ln(β̂n, �̂n, Ĥn) −
ln(β0,�0, H̃n)} diverges to −∞ if Ĥn(τ ) → ∞.

We construct the function H̃n by imitating Ĥn. By differentiating
ln(β,�,H) with respect to H{Yij} and setting the derivative to 0, we
see that Ĥn{Yij} satisfies the equation

�ij

H{Yij}

=
n∑

k=1

{∫

b
R1k(β̂n,H,b)R2k(Yij, β̂n,H,b)

× e−bT �̂−1
n b/2|�̂n|−1/2 db

×
(∫

b
R1k(β̂n,H,b)e−bT �̂−1

n b/2|�̂n|−1/2 db
)−1}

, (A.1)

where

R1k(β,H,b) =
nk∏

l=1

e−(XT
klβ+ZT

klb)

{H(Ykl) + e−(XT
klβ+ZT

klb)}1+�kl
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and

R2k(t,β,H,b) =
nk∑

l=1

(1 + �kl)I(Ykl ≥ t)

H(Ykl) + e−(XT
klβ+ZT

klb)
.

Thus we define H̃n(t) as a step function with jumps only at the Yij for
which �ij = 1 and the jump size H̃n{Yij} satisfies the equation

�ij

H̃n{Yij}

=
n∑

k=1

{∫

b
R1k(β0,H0,b)R2k(Yij,β0,H0,b)

× e−bT�−1
0 b/2|�0|−1/2 db

×
(∫

b
R1k(β0,H0,b)e−bT�−1

0 b/2|�0|−1/2 db
)−1}

. (A.2)

Specifically, H̃n(t) =∑n
i=1

∑ni
j=1 I(Yij ≤ t)H̃n{Yij}.

We show that H̃n(t) converges to H0(t) uniformly in t ∈ [0, τ ] with
probability 1. By the Glivenko–Cantelli theorem (van der Vaart and
Wellner 1995, p. 122), H̃n(t) converges almost surely to
E{∑ni

j=1 I(Yij ≤ t)�ij/µ(Yij)}, where

µ(y) = E

{∫

b
R1k(β0,H0,b)R2k(y,β0,H0,b)

× e−bT�−1
0 b/2|�0|−1/2 db

×
(∫

b
R1k(β0,H0,b)e−bT�−1

0 b/2|�0|−1/2 db
)−1}

= E

[ nk∑

l=1

E

{
(1 + �kl)I(Ykl ≥ y)

H0(Ykl) + e−(XT
klβ0+ZT

klb)

∣∣∣nk

}]

.

If we denote by Sc(·|Xkl,Zkl) the survival function of Ckl given
(Xkl,Zkl), then

E

{
(1 + �kl)I(Ykl ≥ y)

H0(Ykl) + e−(XT
klβ0+ZT

klb)

∣∣∣nk

}

= E

[
2
∫ ∞

y

1

H0(t) + e−(XT
klβ0+ZT

klb)

× H′
0(t)

{H0(t) + e−(XT
klβ0+ZT

klb)}2
Sc(t|Xkl,Zkl)dt

]

− E

{∫ ∞
y

1

H0(t) + e−(XT
klβ0+ZT

klb)

× 1

H0(t) + e−(XT
klβ0+ZT

klb)
dSc(t|Xkl,Zkl)

∣∣∣nk

}

= E

[
Sc(y|Xkl,Zkl)

{H0(y) + e−(XT
klβ0+ZT

klb)}2

∣∣∣nk

]
,

where the second equality follows from integration by part. Thus,
{ ni∑

j=1

I(Yij ≤ t)�ij

µ(Yij)

}

= E

( ni∑

j=1

E

[∫ t

0

Sc(y|Xij,Zij)H′
0(y)

µ(y){H0(y) + e−(XT
ijβ0+ZT

ij b)}2
dy
∣∣∣ni

])

=
∫ t

0
H′

0(y)dy = H0(t).

Consequently, H̃n(t) uniformly converges to H0(t) in [0, τ ].
By plugging (A.1) into ln(β̂n, �̂n, Ĥn), we obtain

ln(β̂n, �̂n, Ĥn)

=
n∑

i=1

log

{∫

b
R1i(β̂n, Ĥn,b)|�̂n|−1/2e−bT �̂−1

n b/2 db
}

−
n∑

i=1

ni∑

j=1

�ij log

{ n∑

k=1

∫

b
R1k(β̂n, Ĥn,b)R2k(Yij, β̂n, Ĥn,b)

× e−bT �̂−1
n b/2|�̂n|−1/2 db

×
(∫

b
R1k(β̂n, Ĥn,b)e−bT �̂−1

n b/2|�̂n|−1/2 db
)−1

}

.

Likewise, by plugging (A.2) into ln(β0,�0, H̃n) and applying the
Glivenko–Cantelli theorem, we see that n−1ln(β0,�0, H̃n) = O(1) −
n−1 ∑n

i=1
∑ni

j=1 �ij log(n), where O(1) denotes a random variable
bounded away from infinity almost surely. Thus,

n−1{ln(β̂n, �̂n, Ĥn) − ln(β0,�0, H̃n)}
= O(1)

+ n−1
n∑

i=1

log

{∫

b
R1i(β̂n, Ĥn,b)|�̂n|−1/2e−bT �̂−1

n b/2 db
}

− n−1
n∑

i=1

ni∑

j=1

�ij log

{

n−1
n∑

k=1

∫

b
R1k(β̂n, Ĥn,b)

× R2k(Yij, β̂n, Ĥn,b)e−bT �̂−1
n b/2|�̂n|−1/2 db

×
(∫

b
R1k(β̂n, Ĥn,b)e−bT �̂−1

n b/2|�̂n|−1/2 db
)−1

}

. (A.3)

We show that if Ĥn(τ ) → ∞, then the right side of (A.3) will di-
verge to −∞. To this end, we bound each term in (A.3). Let m and M

be constants such that 0 < m ≤ e−XT
klβ̂n ≤ M < ∞ almost surely for

all k = 1, . . . ,n; l = 1, . . . ,nk . Because

Ĥn(y) + e−(XT
klβ̂n+ZT

klb)

≥





Ĥn(y) + e−XT
klβ̂n , if ZT

klb ≤ 0

e−ZT
klb
{
Ĥn(y) + e−XT

klβ̂n
}
, if ZT

klb > 0,

we have Ĥn(y) + e−(XT
klβ̂n+ZT

klb) ≥ e−|ZT
klb|{Ĥn(y) + m}. Similarly,

Ĥn(y) + e−(XT
klβ̂n+ZT

klb) ≤ e|ZT
klb|{Ĥn(y) + M}. Thus there exist con-

stants C1 and C2 such that the following results hold:
∫

b
R1i(β̂n, Ĥn,b)|�̂n|−1/2e−bT �̂−1

n b/2 db

≤
∫

b

ni∏

j=1

e−(XT
ij β̂n+ZT

ij b)+(1+�ij)|ZT
ij b|

(Ĥn(Yij) + m)1+�ij
|�̂n|−1/2e−bT �̂−1

n b/2 db

≤ C1

ni∏

j=1

1

(Ĥn(Yij) + m)1+�ij
(A.4)

and
∫

b
R1k(β̂n, Ĥn,b)R2k(Yij, β̂n, Ĥn,b)|�̂n|−1/2e−bT �̂−1

n b/2 db

≥
∫

b

nk∏

l=1

e−(XT
klβ̂n+ZT

klb)−(1+�kl)|ZT
klb|

(Ĥn(Ykl) + M)1+�kl
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×
{ nk∑

l′=1

(1 + �kl′)I(Ykl′ ≥ Yij)e
−|ZT

kl′ b|

Ĥn(Ykl′) + M

}

× |�̂n|−1/2e−bT �̂−1
n b/2 db

≥ C2

nk∑

l′=1

I(Ykl′ ≥ Yij)

Ĥn(Ykl′) + M

nk∏

l=1

1

(Ĥn(Ykl) + M)1+�kl
. (A.5)

After plugging (A.4) and (A.5) into (A.3), we obtain

n−1{ln(β̂n, �̂n, Ĥn) − ln(β0,�0, H̃n)}

= O(1) − n−1
n∑

i=1

ni∑

j=1

(1 + �ij) log
(
Ĥn(Yij) + m

)

− n−1
n∑

i=1

ni∑

j=1

log

[

n−1
n∑

k=1

nk∑

l′=1

{
I(Ykl′ ≥ Yij)

Ĥn(Ykl′) + M

}

×
∏nk

l=1 C2(Ĥn(Ykl) + m)1+�kl

∏nk
l=1 C1(Ĥn(Ykl) + M)1+�kl

]

.

Because there exists a constant C3 such that
∏nk

l=1 C2(Ĥn(Ykl) + m)1+�kl

∏nk
l=1 C1(Ĥn(Ykl) + M)1+�kl

≥ C3 > 0,

we conclude that

n−1{ln(β̂n, �̂n, Ĥn) − ln(β0,�0, H̃n)}

= O(1) − n−1
n∑

i=1

ni∑

j=1

(1 + �ij) log
(
Ĥn(Yij) + m

)

− n−1
n∑

i=1

ni∑

j=1

�ij log

{

n−1
n∑

k=1

nk∑

l=1

I(Ykl ≥ Yij)

Ĥn(Ykl) + M

}

. (A.6)

It remains to show that if Ĥn(τ ) → ∞, then the right side of (A.6)
diverges to −∞. To this end, we choose a partition of [0, τ ] as follows:
With s0 = τ , choose s1 < s0 such that

1

2
E

{ ni∑

j=1

(1 + �ij)I(Yij = s0)

}

> E

{ ni∑

j=1

�ijI
(
Yij ∈ [s1, s0)

)
}

.

By conditions C2 and C4, such an s1 exists. Define a constant
ε ∈ (0,1) such that

ε

1 − ε
<

E{∑ni
j=1 I(Yij ∈ [s1, s0))}

E{∑ni
j=1 �ijI(Yij ∈ [0, τ ))} .

If s1 > 0, then we can choose s2 ≡ max(0, s) such that s is the mini-
mum value less than s1, satisfying that

(1 − ε)E

{ ni∑

j=1

(1 + �ij)I
(
Yij ∈ [s1, s0)

)
}

≥ E

{ ni∑

j=1

�ijI
(
Yij ∈ [s, s1)

)
}

.

Clearly, s2 exists under condition C4, and s2 < s1. This process is
continued so that we obtain a sequence τ ≡ s0 > s1 > s2 > · · · ≥ 0
such that

1

2
E

{ ni∑

j=1

(1 + �ij)I(Yij = s0)

}

≥ E

{ ni∑

j=1

�ijI
(
Yij ∈ [s1, s0)

)
}

and

(1 − ε)E

{ ni∑

j=1

(1 + �ij)I
(
Yij ∈ [sp, sp−1)

)
}

≥ E

{ ni∑

j=1

�ijI
(
Yij ∈ [sp+1, sp)

)
}

, p ≥ 1.

We claim that such a sequence cannot be infinite, that is, there exists a
finite N such that sN+1 = 0; otherwise, sp → s∗ for some s∗ ∈ [0, τ ).
By the definition of sp,

(1 − ε)E

{ ni∑

j=1

(1 + �ij)I
(
Yij ∈ [sp, sp−1)

)
}

= E

{ ni∑

j=1

�ijI
(
Yij ∈ [sp+1, sp)

)
}

, p ≥ 1.

We sum the foregoing equations over p = 1,2, . . . , and by the conti-
nuity of true densities, we obtain

(1 − ε)E

{ ni∑

j=1

(1 + �ij)I
(
Yij ∈ [s∗, τ )

)
}

= E

{ ni∑

j=1

�ijI
(
Yij ∈ [s∗, s1)

)
}

.

Thus,

(1 − ε)E

{ ni∑

j=1

I
(
Yij ∈ [s∗, τ )

)
}

≤ εE

{ ni∑

j=1

�ijI
(
Yij ∈ [s∗, s1)

)
}

,

which contradicts the choice of ε. Therefore, the sequence is finite,
τ = s0 > · · · > sN+1 = 0. Now the right side of (A.6) can be bounded
by

−n−1
n∑

i=1

ni∑

j=1

I(Yij = τ )(1 + �ij) log
(
Ĥn(τ ) + m

)

−
N∑

p=0

n−1
n∑

i=1

ni∑

j=1

(1 + �ij)I
(
Yij ∈ [sp+1, sp)

)

× log
(
Ĥn(sp+1) + m

)

−
N∑

p=0

n−1
n∑

i=1

ni∑

j=1

�ijI
(
Yij ∈ [sp+1, sp)

)

× log

{

n−1
n∑

k=1

nk∑

l=1

I(Ykl ≥ Yij,Ykl ∈ [sp+1, sp))

Ĥn(sp) + M

}

+ O(1)

≤ − 1

2n

n∑

i=1

ni∑

j=1

(1 + �ij)I(Yij = τ ) log
(
Ĥn(τ ) + m

)

−
{

1

2n

n∑

i=1

ni∑

j=1

(1 + �ij)I(Yij = τ ) log
(
Ĥn(τ ) + m

)

− n−1
n∑

i=1

ni∑

j=1

�ijI
(
Yij ∈ [s1, s0)

)
log

(
Ĥn(τ ) + M

)
}

−
N∑

p=1

{

n−1
n∑

i=1

ni∑

j=1

(1 + �ij)I
(
Yij ∈ [sp, sp−1)

)
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× log
(
Ĥn(sp) + m

)

− n−1
n∑

i=1

ni∑

j=1

�ijI
(
Yij ∈ [sp+1, sp)

)
log

(
Ĥn(sp) + M

)
}

−
N∑

p=0

n−1
n∑

i=1

ni∑

j=1

�ijI
(
Yij ∈ [sp+1, sp)

)

× log

{

n−1
n∑

k=1

nk∑

l=1

I
(
Ykl ≥ Yij,Ykl ∈ [sp+1, sp)

)
}

+ O(1). (A.7)

The first term on the right side of (A.7) diverges to −∞ as
Ĥn(τ ) → ∞. The second term is negative as n is large due to the
choice of s1. By the selection of sp,p = 1, . . . ,N, the third term can-
not diverge to +∞. Finally, the fourth term is bounded because of
the Glivenko–Cantelli theorem. Hence the right side of (A.7) diverges
to −∞. This contradicts the fact that the left side of (A.6) is nonnega-
tive.

In conclusion, we have shown that Ĥn(τ ) has an upper bound with
probability 1. Thus it follows from Helly’s selection theorem that there
exists a convergent subsequence, still denoted by Ĥn(·), that converges
pointwise to a monotone function H∗(·) in [0, τ ]. Because β̂n and
�̂n belong to a compact set, by choosing a further subsequence, we
can assume that β̂n → β∗ and �̂n → �∗ for some random vectors
β∗ and �∗.

Step 2. We show that β∗ = β0,�∗ = �0, and H∗(t) = H0(t). De-
fine

R3k(t,β,�,H) =
∫

b R1k(β,H,b)R2k(t,β,H,b)e−bT�−1b/2 db
∫

b R1k(β,H,b)e−bT�−1b/2 db
.

In view of (A.1) and (A.2), we see that Ĥn(t) is absolutely continuous
with respect to H̃n(t), and

Ĥn(t) =
∫ t

0

∑n
k=1 R3k(u,β0,�0,H0)

∑n
k=1 R3k(u, β̂n, �̂n, Ĥn)

dH̃n(u).

By taking the limits on both sides of the display, we conclude that
H∗(t) is absolutely continuous with respect to H0(t), so that H∗(t) is
differentiable with respect to t. In addition, dĤn(t)/dH̃n(t) converges
to dH∗(t)/dH0(t) uniformly in t. On the other hand,

0 ≤ n−1{ln(β̂n, �̂n, Ĥn) − ln(β0,�0, H̃n)}

= n−1
n∑

i=1

log

{∫

b
R1i(β̂n, Ĥn,b)|�̂n|−1/2e−bT �̂−1

n b/2 db
}

− n−1
n∑

i=1

log

{∫

b
R1i(β0, H̃n,b)|�0|−1/2e−bT�−1

0 b/2 db
}

+ n−1
n∑

i=1

ni∑

j=1

�ij log
(
Ĥn{Yij}/H̃n{Yij}

)
. (A.8)

By letting n → ∞ in (A.8), we have

0 ≤ E

{
log

((∫

b
R1i(β

∗,H∗,b)|�∗|−1/2e−bT�∗−1b/2 db

×
ni∏

j=1

H∗′
(Yij)

�ij

)

×
(∫

b
R1i(β0,H0,b)|�0|−1/2e−bT�−1

0 b/2 db

×
ni∏

j=1

H0
′(Yij)

�ij

)−1)}
.

Because the right side is the negative Kullback–Leibler information,
we have

ni∏

j=1

H∗′
(Yij)

�ij

∫

b
R1i(β

∗,H∗,b)|�∗|−1/2e−bT�∗−1b/2 db

=
ni∏

j=1

H0
′(Yij)

�ij

×
∫

b
R1i(β0,H0,b)|�0|−1/2e−bT�−1

0 b/2 db

almost surely. In other words,

∫

b

ni∏

j=1

e−(XT
ijβ

∗+ZT
ij b)H∗′(Yij)

�ij

{H∗(Yij) + e−(XT
ijβ

∗+ZT
ij b)}1+�ij

|�∗|−1/2e−bT�∗−1b/2 db

=
∫

b

ni∏

j=1

e−(XT
ijβ0+ZT

ij b)H0
′(Yij)

�ij

{H0(Yij) + e−(XT
ijβ0+ZT

ij b)}1+�ij

× |�0|−1/2e−bT�0
−1b/2 db. (A.9)

We show that (A.9) entails that β∗ = β0,�∗ = �0, and H∗ = H0.
Fix an integer k such that 1 ≤ k ≤ ni. We let �ij = 1,Yij = 0 in (A.9)
for j = 1, . . . , k; for those j such that j > k, we perform the following
action on the jth term on both sides of (A.9). If �ij = 0, then we replace
Yij with τ ; if �ij = 1, then we integrate Yij from 0 to τ . Thus we obtain

∫

b

k∏

j=1

{
H∗′

(0)eXT
ijβ

∗+ZT
ij b
} ni∏

j=k+1

{
H∗(τ )eXT

ijβ
∗+ZT

ij b

H∗(τ )eXT
ijβ

∗+ZT
ij b + 1

}�ij

×
{

1

H∗(τ )eXT
ijβ

∗+ZT
ij b + 1

}1−�ij

|�∗|−1/2e−bT�∗−1b/2 db

=
∫

b

k∏

j=1

{
H0

′(0)eXT
ijβ0+ZT

ij b
} ni∏

j=k+1

{
H0(τ )eXT

ijβ0+ZT
ij b

H0(τ )eXT
ijβ0+ZT

ij b + 1

}�ij

×
{

1

H0(τ )eXT
ijβ0+ZT

ij b + 1

}1−�ij

|�0|−1/2e−bT�−1
0 b/2 db.

(A.10)

Because {�ij : j = k + 1, . . . ,ni} are arbitrary, we sum the two sides of
(A.10) over all possible �ij, j = k + 1, . . . ,ni, to yield

∫

b

k∏

j=1

{
H∗′

(0)eXT
ijβ

∗+ZT
ij b
}|�∗|−1/2e−bT�∗−1b/2 db

=
∫

b

k∏

j=1

{
H0

′(0)eXT
ijβ0+ZT

ij b
}|�0|−1/2e−bT�−1

0 b/2 db.
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Thus,

exp

{ k∑

j=1

XT
ijβ

∗ + (
∑k

j=1 Zij)
T�∗(

∑k
j=1 Zij)

2

}

H∗′
(0)k

= exp

{ k∑

j=1

XT
ijβ0 +

(
∑k

j=1 Zij)
T�0(

∑k
j=1 Zij)

2

}

H′
0(0)k.

(A.11)

Condition C4 implies that H∗′(0) > 0. Note that the index set
{1, . . . , k} in (A.11) can be replaced by any subset of {1, . . . ,ni}. Thus,
it is easy to derive from (A.11) that

ZT
ij�

∗Zij′ = ZT
ij�0Zij′ , j �= j′; j, j′ = 1, . . . ,ni,

and

XT
ijβ

∗ +
ZT

ij�
∗Zij

2
+ log H∗′

(0)

= XT
ijβ0 +

ZT
ij�0Zij

2
+ log H′

0(0), j = 1, . . . ,ni.

According to condition C3, �∗ = �0, β∗ = β0, and H∗′(0) = H′
0(0).

To show that H∗ = H0, we let �i1 = 1 in (A.10) and integrate Yi1
from 0 to y; we also perform the following action on the jth term on
both sides of (A.10) for j = 2, . . .ni. If �ij = 0, then we replace Yij
with τ ; if �ij = 1, then we integrate Yij from 0 to τ . Then we sum the
resulting equalities over all possible {�ij : j = 2, . . . ,ni} to yield

∫

b

{
H∗(y)eXT

i1β
∗+ZT

i1b

H∗(y)eXT
i1β

∗+ZT
i1b + 1

}
|�∗|−1/2e−bT�∗−1b/2 db

=
∫

b

{
H0(y)eXT

i1β0+ZT
i1b

H0(y)eXT
i1β0+ZT

i1b + 1

}
|�0|−1/2e−bT�−1

0 b/2 db.

Because the two sides of the foregoing equation are strictly monotone
in H∗(y) and H0(y), we have H∗(y) = H0(y).

Combining the results from Steps 1 and 2, we conclude that, almost
surely, ‖β̂n − β0‖ → 0, ‖�̂n − �0‖ → 0, and |Ĥn(y) − H0(y)| → 0.
The uniform convergence of Ĥn to H0 follows from the fact that H0 is
a continuous function.

A.2 Proof of Theorem 2

Consider the set

H = {
(h1,h2,h3) : h1 ∈Rd1 ,h2 ∈Rd2(d2+1)/2,

h3(·) is a function on [0, τ ]; |h1| ≤ 1, |h2| ≤ 1,‖h3‖V ≤ 1
}
,

where ‖h3‖V denotes the total variation of h3(·) in [0, τ ]. We define
a sequence of maps Sn mapping a neighborhood of (β0,�0,H0), de-
noted by U , in the parameter space for (β,�,H) into l∞(H) (i.e., the
space consisting of bounded functionals on H) as:

Sn(β,�,H)[h1,h2,h3]

≡ n−1 d

dε
ln

(
β + εh1,� + εh2,H(t) + ε

∫ t

0
h3(s)dH(s)

)∣∣∣∣
ε=0

≡ An1[h1] + An2[h2] + An3[h3],
where Anp, p = 1,2,3, are linear functionals on Rd1 ,Rd2(d2+1)/2,
and BV[0, τ ] and BV[0, τ ] is the space of functions with finite total
variation in [0, τ ]. In fact, if we let lβ , l� , and lH[h3] be the score
function for β , the score function for �, and the score for H along the
path H(t) + ε

∫ t
0 h3(s)dH(s) for a single cluster, then

An1[h1] = Pn
[
hT

1 lβ
]
, An2[h2] =Pn

[
hT

2 l�
]
,

and

An3[h3] =Pn
[
lH[h3]],

where Pn denotes the empirical measure based on n independent clus-
ters.

We can explicitly write the functionals Anp, p = 1,2,3, as follows.
Define the operation “ · ” between two matrices M1 and M2 of the
same size as the trace of (M1MT

2 ), and for each h2 ∈ Rd2(d2+1)/2,
let D(h2) be the symmetric matrix such that the extended vector taken
from D(h2) is the same as h2. Then

An1[h1] = n−1
n∑

i=1

(∫

b
R1i(β,H,b)

×
ni∑

j=1

XT
ij h1

[
1 + �ij

1 + H(Yij)e
XT

ijβ+ZT
ij b

− 1

]

× e−bT�−1b/2 db

)

×
(∫

b
R1i(β,H,b)e−bT�−1b/2 db

)−1
,

An2[h2] = n−1
n∑

i=1

(∫

b
R1i(β,H,b)

× e−bT�−1b/2{bT�−1D(h2)�−1b/2

− �−1 ·D(h2)/2
}

db
)

×
(∫

b
R1i(β,H,b)e−bT�−1b/2 db

)−1
,

and

An3[h3] = n−1
n∑

i=1

ni∑

j=1

{
�ijh3(Yij)

− (1 + �ij)

∫ Yij

0
h3(y)dH(y)

×
(∫

b
R1i(β,H,b)/

(
H(Yij) + e−(XT

ijβ+ZT
ij b))

× e−bT�−1b/2 db
)

×
(∫

b
R1i(β,H,b)e−bT�−1b/2 db

)−1}
.

Correspondingly, we define the limit map S : (β,�,H) → l∞(H) as

S(β,�,H)[h1,h2,h3] = A1[h1] + A2[h2] + A3[h3],
where the linear functionals Ap, p = 1,2,3, are obtained by re-
placing the empirical sum in the Anp by the expectation. Clearly,
Sn(β̂n, �̂n, Ĥn) = 0 and S(β0,�0,H0) = 0.

The desired asymptotic normality will follow if we can verify the
four conditions stated in theorem 2 of Murphy (1995). The first condi-
tion, that

√
n(Sn(β0,�0,H0) − S(β0,�0,H0)) weakly converges to

a tight Gaussian process on l∞(H), holds because H is a Donsker
class and the functionals Anp are bounded Lipschitz functionals with
respect to H. By the smoothness of S(β,�,H), the Fréchet differentia-
bility holds and the derivative of S(β,�,H) at (β0,�0,H0), denoted
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by Ṡ(β0,�0,H0), is a map from the space
{
(β − β0,� − �0,H − H0) :

(β,�,H) is in the neighborhood U of (β0,�0,H0)
}

to l∞(H). The approximation condition that

sup
(h1,h2,h3)∈H

∣∣(Sn − S)(β̂n, �̂n, Ĥn)[h1,h2,h3]

− (Sn − S)(β0,�0,H0)[h1,h2,h3]∣∣

= op

(
n−1/2 ∨

{
‖β̂n − β0‖ + ‖�̂n − �0‖

+ sup
y∈[0,τ ]

|Ĥn(y) − H0(y)|
})

can be verified along the lines of Murphy (1995, app.).
It remains to show that the linear map Ṡ(β0,�0,H0), denoted by �,

is continuously invertible on its range. Note that � maps (β −β0,� −
�0,H − H0) to a bounded functional on H. Algebraic manipulations
yield

�(β − β0,� − �0,H − H0)[h1,h2,h3]
= (β − β0)TQ1(h1,h2,h3) + (� − �0)TQ2(h1,h2,h3)

+
∫ τ

0
Q3(h1,h2,h3)d(H − H0),

where

Q1(h1,h2,h3) = B1

(
h1
h2

)
+
∫ τ

0
h3(y)D1(y)dy,

Q2(h1,h2,h3) = B2

(
h1
h2

)
+
∫ τ

0
h3(y)D2(y)dy,

and

Q3(h1,h2,h3) = B3

(
h1
h2

)
+ b4h3(y) +

∫ τ

0
h3(t)D3(t, y)dt;

B1,B2 and B3 are constant matrices; D1(y),D2(y), D3(t, y) are
continuously differentiable functions depending on the true densi-
ties; and b4 > 0. Thus the operator Q(h1,h2,h3) ≡ (Q1(h1,h2,h3),

Q2(h1,h2,h3),Q3(h1,h2,h3))T can be considered a sum of a con-
tinuously invertible linear operator and a compact operator from the
linear span of H to itself.

The invertibility of � ≡ Ṡ(β0,�0,H0) is equivalent to the in-
vertibility of the linear operator Q(h1,h2,h3). It suffices to prove
that Q(h1,h2,h3) is a one-to-one map (Rudin 1973, pp. 99–103). If
Q(h1,h2,h3) = 0, then �(β − β0,� − �0,H − H0)[h1,h2,h3] = 0
for any (β,�,H) in the neighborhood U . In particular, we choose

β = β0 + εh1, � = �0 + εh2,

H(y) = H0(y) + ε

∫ y

0
h3(t)dH0(t)

for a small constant ε. By the definition of �,

0 = �(β − β0,� − �0,H − H0)[h1,h2,h3]
= εE

{(
lβ [h1] + l�[h2] + lH[h3])2}

.

Thus lβ [h1] + l�[h2] + lH[h3] = 0 almost surely. Writing out the ex-
pression of this equation, we obtain

ni∑

j=1

∫

b
R4i(β0,H0,b)

×
[

XT
ij h1

{
−1 + (1 + �ij)

(H0(Yij)e
(XT

ijβ0+ZT
ij b) + 1)

}]
dbN(0,�0)

+
∫

b

{
−1

2
�−1

0 ·D(h2) + 1

2
bT�−1

0 D(h2)�−1
0 b

}

× R4i(β0,H0,b)dbN(0,�0)

+
ni∑

j=1

∫

b
R4i(β0,H0,b)

×
{
�ijh3(Yij)

− (1 + �ij)
∫ Yij

0 h3(y)dH0(y)

(H0(Yij) + e−(XT
ijβ0+ZT

ij b)
)

}
dbN(0,�0) = 0, (A.12)

where R4i(β,H,b) = R1i(β,H,b)
∏ni

j=1{H′
0(Yij)}�ij .

We show that (A.12) entails h1 = 0,h2 = 0, and h3 = 0 by adopting
the ideas used in the proof of the identifiability for Theorem 1. First,
we let Xij and Zij be fixed. Then for a fixed k such that 1 ≤ k ≤ ni, we
define measures µ1, . . . ,µni on the set {0,1} × [0, τ ] as follows: For
any Borel set A ⊂ [0, τ ],

µm({0} × A) = 0, µm({1} × A) = I(0 ∈ A), m ≤ k,

and

µm({0} × A) = I(τ ∈ A), µm({1} × A) =
∫

IA dx, m > k.

We integrate both sides of (A.12) over {(�i,1,Y1), . . . , (�i,ni ,Yi,ni)}
with respect to the product measure dµ1 · · ·dµni . In other words,
we let �im = 1 and Yim = 0 for m ≤ k; we sum all of the equali-
ties of (A.12) for all possible combinations of {�i,k+1, . . . ,�i,ni } ∈
{0,1}ni−k , in which we choose Yim = τ if �im = 0 and integrate Yim
from 0 to τ if �im = 1. The resulting integration is 0.

We study the integral of each term on the left side of (A.12) with
respect to the measure

∏ni
m=1 µm. For the first term on the left side of

(A.12), from the expression of R4i(β0,H0,b), we have that for any b,
if j ≤ k, then

∫ [

R4i(β0,H0,b)XT
ij h1

×
{
−1 + (1 + �ij)

(H0(Yij)e
(XT

ijβ0+ZT
ij b) + 1)

}]

d

( ni∏

m=1

µm

)

= XT
ij h1

∏

m≤k

{
H′

0(0)eXT
imβ0+ZT

imb}

×
[

∑

δim∈{0,1},m>k

∏

m>k

{
1

(H0(τ )eXT
imβ0+ZT

imb + 1)1−δim

×
(

1 − 1

H0(τ )eXT
imβ0+ZT

imb + 1

)δim
}]

= XT
ij h1

∏

m≤k

{
H′

0(0)eXT
imβ0+ZT

imb};

if j > k, then it holds that
∫ [

R4i(β0,H0,b)XT
ij h1

×
{
−1 + (1 + �ij)

(H0(Yij)e
(XT

ijβ0+ZT
ij b) + 1)

}]

d

( ni∏

m=1

µm

)

= XT
ij h1

∏

m≤k

{
H′

0(0)eXT
imβ0+ZT

imb}
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×
[

∑

δim∈{0,1}
m>k,m �=j

∏

m>k,m �=j

{
1

(H0(τ )eXT
imβ0+ZT

imb + 1)1−δim

×
(

1 − 1

H0(τ )eXT
imβ0+ZT

imb + 1

)δim
}]

×
∑

δij∈{0,1}

{

(1 − δij)
1

(H0(τ )eXT
ijβ0+ZT

ij b + 1)

×
(

−1 + 1

H0(τ )eXT
ijβ0+ZT

ij b + 1

)

+ δij

∫ τ

0

H′
0(t)e−(XT

ijβ0+ZT
ij b)

(H0(t) + e−(XT
ijβ0+ZT

ij b)
)2

×
(

−1 + 2

H0(t)eXT
ijβ0+ZT

ij b + 1

)
dt

}

= XT
ij h1

∏

m≤k

{
H′

0(0)eXT
imβ0+ZT

imb}

×
∑

δij∈{0,1}

{

(1 − δij)
1

(H0(τ )eXT
ijβ0+ZT

ij b + 1)

×
(

−1 + 1

H0(τ )eXT
ijβ0+ZT

ij b + 1

)

+ δij

∫ τ

0

H′
0(t)e−(XT

ijβ0+ZT
ij b)

(H0(t) + e−(XT
ijβ0+ZT

ij b)
)2

×
(

−1 + 2

H0(t)eXT
ijβ0+ZT

ij b + 1

)
dt

}

= 0.

Therefore,

∫ ni∑

j=1

∫

b
R4i(β0,H0,b)

×
[

XT
ij h1

{
−1 + (1 + �ij)

(H0(Yij)e
(XT

ijβ0+ZT
ij b) + 1)

}]

× dbN(0,�0)d

( ni∏

m=1

µm

)

=
∑

j≤k

XT
ij h1

∫

b

∏

m≤k

{
H′

0(0)eXT
imβ0+ZT

imb}dbN(0,�0). (A.13)

Likewise,
∫ ∫

b

{
−1

2
�−1

0 ·D(h2) + 1

2
bT�−1

0 D(h2)�−1
0 b

}

× R4i(β0,H0,b)dbN(0,�0)d

( ni∏

m=1

µm

)

=
∫

b

{
−1

2
�−1

0 ·D(h2) + 1

2
bT�−1

0 D(h2)�−1
0 b

}

×
∏

m≤k

{
H′

0(0)eXT
imβ0+ZT

imb}dbN(0,�0). (A.14)

Furthermore, if j ≤ k, then
∫

R4i(β0,H0,b)

×
{
�ijh3(Yij) − (1 + �ij)

∫ Yij
0 h3(y)dH0(y)

H0(Yij) + e−(XT
ijβ0+ZT

ij b)

}
d

( ni∏

m=1

µm

)

= h3(0)
∏

m≤k

{
H′

0(0)eXT
imβ0+ZT

imb};

if j > k, then
∫

R4i(β0,H0,b)

×
{
�ijh3(Yij) − (1 + �ij)

∫ Yij
0 h3(y)dH0(y)

H0(Yij) + e−(XT
ijβ0+ZT

ij b)

}
d

( ni∏

m=1

µm

)

=
∏

m≤k

{
H′

0(0)eXT
imβ0+ZT

imb}

×
[

∑

δij∈{0,1}

{

−(1 − δij)
1

H0(τ )eXT
ijβ0+ZT

ij b + 1

×
∫ τ

0 h3(y)dH0(y)

H0(τ ) + e−(XT
ijβ0+ZT

ij b)

+ δij

∫ τ

0

H′
0(t)e−(XT

ijβ0+ZT
ij b)

(H0(t) + e−(XT
ijβ0+ZT

ij b)
)2

×
(

h3(t) − 2
∫ t

0 h3(y)dH0(y)

H0(t) + e−(XT
ijβ0+ZT

ij b)

)
dt

}]

= 0.

Thus,
∫ ni∑

j=1

∫

b
R4i(β0,H0,b)

×
{
�ijh3(Yij)

− (1 + �ij)
∫ Yij

0 h3(y)dH0(y)

(H0(Yij) + e−(XT
ijβ0+ZT

ij b)
)

}
dbN(0,�0)d

( ni∏

m=1

µm

)

=
∑

j≤k

h3(0)

∫

b

∏

m≤k

{
H′

0(0)eXT
imβ0+ZT

imb}dbN(0,�0). (A.15)

Combining (A.13), (A.14), and (A.15) and integrating over b, we
obtain

k∑

j=1

XT
ij h1 + 1

2

( k∑

j=1

Zij

)T

D(h2)

( k∑

j=1

Zij

)

+ kh3(0) = 0.

Because the order for the subscripts j = 1, . . . , k is arbitrary, it holds
that

k2∑

j=k1+1

XT
ij h1 + 1

2

( k2∑

j=k1+1

Zij

)T

×D(h2)

( k2∑

j=k1+1

Zij

)

+ (k2 − k1)h3(0) = 0

for any 1 ≤ k1 < k2 ≤ ni. Thus ZT
ijD(h2)Zij′ = 0 for j �= j′ and XT

ij h1 +
ZT

ijD(h2)Zij/2 + h3(0) = 0. By condition C3, D(h2) = 0. As a result,
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h2 = 0 and h1 = 0. In (A.13), we set Yij = 0, j = 2, . . . ,ni, and �ij =
1, j = 1, . . . ,ni, so as to obtain

h3(Yi1)

= 2
∫ Yi1

0
h3(y)dH0(y)

×
∫

b e−(XT
i1β0+ZT

i1b)+∑ni
j=2(X

T
ijβ0+ZT

ij b)e−bT�−1
0 b/2

(H0(Yi1) + e−(XT
i1β0+ZT

i1b))3 db

×
(∫

b e−(XT
i1β0+ZT

i1b)+∑ni
j=2(X

T
ijβ0+ZT

ij b)e−bT�−1
0 b/2

(H0(Yi1) + e−(XT
i1β0+ZT

i1b))2 db.

)−1
.

That is, g(y) ≡ ∫ y
0 h3(t)dH0(t) satisfies the homogeneous equation

g′(y)
H′

0(y)
− g(y)

∫
b e−(XT

i1β0+ZT
i1b)+∑ni

j=2(X
T
ijβ0+ZT

ij b)e−bT�−1
0 b/2

(H0(Yi1) + e−(XT
i1β0+ZT

i1b))3 db

×
(∫

b e−(XT
i1β0+ZT

i1b)+∑ni
j=2(X

T
ijβ0+ZT

ij b)e−bT�−1
0 b/2

(H0(Yi1) + e−(XT
i1β0+ZT

i1b))2 db

)−1

= 0

with boundary condition g(0) = 0. Thus it is clear that g(y) = 0, that is
h3(y) = 0. Hence we have verified that Q is one-to-one map and thus
have shown the invertibility of Ṡ(β0,�0,H0).

The asymptotic distribution stated in theorem 2 now follows from
theorem 2 of Murphy (1995). Furthermore,

√
nṠ(β0,�0,H0)(β̂n − β0, �̂n − �0, Ĥn − H0)[h1,h2,h3]
= √

n(β̂n − β0)TQ1(h) + √
n(�̂n − �0)TQ2(h)

+ √
n
∫ τ

0
Q3(h)d(Ĥn − H0)

= √
n(Pn −P)

[
hT

1 lβ + hT
2 l� + lH[h3]]+ op(1) (A.16)

uniformly in h1, h2, and h3, where h = (h1,h2,h3). Because it has
already been shown that Q ≡ (Q1,Q2,Q3)T is invertible, we can find
N ≡ d1 + d2(d2 + 1)/2 unique directions ω1 ≡ (ω11,ω12,ω13), . . . ,

ωN ≡ (ωN1,ωN2, ωN3) ∈ H such that

(β̂n − β0)T(Q1(ω1), . . . ,Q1(ωN)
)

+ (�̂n − �0)T(Q2(ω1), . . . ,Q2(ωN)
)

+
∫ τ

0

(
Q3(ω1), . . . ,Q3(ωN)

)
d(Ĥn − H0)

= (
(β̂n − β0)T , (�̂n − �0)T).

For such ω’s,
√

n
(
(β̂n − β0)T , (�̂n − �0)T)

= √
n(Pn −P)

(
ωT

11lβ + ωT
12l� + lH[ω13], . . . ,

ωT
N1lβ + ωT

N2l� + lH[ωN3])+ op(1).

Thus β̂n and �̂n are asymptotically linear estimators for β0 and �0
and their influence functions belong to the space spanned by the score
functions. It follows that (β̂n, �̂n) are semiparametrically efficient
(Bickel et al. 1993, chap. 3).

A.3 Proof of Theorem 3

The proof of Theorem 3 parallels the proof of theorem 3 of Parner
(1998), and thus we keep it brief. The left side of (A.16) is equal to√

n times the expectation of the second derivative of the log-likelihood
function along the directions of (β̂n −β0, �̂n −�0, Ĥn − H0) and the

direction (h1,h2,
∫

h3 dH0). This second derivative can be approxi-
mated uniformly in (h1,h2,h3) ∈H by

(hT
1 ,hT

2 , �hT
3 ) (Jn/n)




β̂n − β0

�̂n − �0
{Ĥn{Yij} − δH0(Yij) :�ij = 1}



 ,

where �h3 denotes the vector of {h(Yij) : �ij = 1} and δH0(Yij) =
H0(Yij)−maxYkl<Yij,�kl=1 H0(Ykl). On the other hand, for large n, the
distribution of the right side of (A.14) approximates
(hT

1 ,hT
2 , �hT

3 ) (Jn/n)1/2G, where G is standard multivariate normal.
It follows that

√
n (hT

1 ,hT
2 , �hT

3 ) (Jn/n)




β̂n − β0

�̂n − �0
{Ĥn{Yij} − δH0(Yij) :�ij = 1}





d≈ (hT
1 ,hT

2 , �hT
3 ) (Jn/n)1/2G,

where “X
d≈ Y” means that X and Y have the same asymptotic distri-

bution. The replacement of (hT
1 ,hT

2 , �hT
3 ) by (hT

1 ,hT
2 , �hT

3 ) (Jn/n)−1

yields

√
n (hT

1 ,hT
2 , �hT

3 )




β̂n − β0

�̂n − �0
{Ĥn{Yij} − δH0(Yij) :�ij = 1}





d≈ (hT
1 ,hT

2 , �hT
3 ) (Jn/n)−1/2G.

Thus
√

n(β̂n − β0)T h1 + √
n(�̂n − �0)T h2 + ∫ τ

0 h3(t)d(Ĥn(t) −
H0(t)) converges to a 0-mean normal distribution whose variance is
the limit of n (hT

1 ,hT
2 , �hT

3 )J−1
n (hT

1 ,hT
2 , �hT

3 ). Hence the conclusion of
Theorem 3 holds.

[Received July 2003. Revised July 2004.]
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