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Summary. Clinical trial designs involving correlated data often arise in biomedical research. The intraclus-
ter correlation needs to be taken into account to ensure the validity of sample size and power calculations.
In contrast to the fixed-sample designs, we propose a flexible trial design with adaptive monitoring and
inference procedures. The total sample size is not predetermined, but adaptively reestimated using observed
data via a systematic mechanism. The final inference is based on a weighted average of the block-wise test
statistics using generalized estimating equations, where the weight for each block depends on cumulated data
from the ongoing trial. When there are no significant treatment effects, the devised stopping rule allows for
early termination of the trial and acceptance of the null hypothesis. The proposed design updates informa-
tion regarding both the effect size and within-cluster correlation based on the cumulated data in order to
achieve a desired power. Estimation of the parameter of interest and its confidence interval are proposed.
We conduct simulation studies to examine the operating characteristics and illustrate the proposed method
with an example.

Key words: Correlated data; Generalized estimating equation; Hypothesis testing; Power; Sample size;
Self-designing trial.

1. Introduction
In biomedical applications, we often encounter longitudinal
data measured over time for each patient or clustered out-
comes. For example, blood pressures measured repeatedly on
one patient, and clinical trials studying the eyes, ears, or teeth
naturally involve dependent data. Methodological develop-
ment for analyzing correlated data has been greatly advanced
(Diggle et al., 2002), and clinical trial designs involving sample
size and power calculations have also been studied for corre-
lated outcomes (e.g., Vonesh and Schork, 1986; Rochon, 1991;
Liu and Liang, 1997; Liu, Shih, and Gehan, 2002), where all
the design parameters including the effect size and correlation
structure are assumed to be known.

For fixed-sample designs, one usually relies on previous
studies or expert experience to determine the effect size and
correlations among the outcomes. With uncertainty in mul-
tiple design parameters, it is often difficult to obtain a sam-
ple size that is sufficient to detect the expected treatment
effect. One must consider the intracluster correlation in addi-
tion to the parameters required for independent observations
when designing a trial. Misspecification of any design param-
eter may lead to a design with an insufficient power or an
overestimation of the total sample size. For trials with corre-
lated data, it is particularly appealing to update the initial
design parameters using the ongoing trial data and reesti-
mate the sample size at interim stages to ensure an adequate
testing power. Extensive research in adaptive clinical trial de-
signs has been recently carried out by Gould (1992), Shih

(1992), Bauer and Köhne (1994), Proschan and Hunsberger
(1995), Betensky and Tierney (1997), Fisher (1998), Wass-
mer (1998), Cui, Hung, and Wang (1999), Lehmacher and
Wassmer (1999), Shen and Fisher (1999), Posch and Bauer
(2000), Liu and Chi (2001), and Müller and Schäfer (2001),
among others. However, the adaptive designs described in the
aforementioned studies have been proposed for independent
data. Limited attention has been paid to adaptive trial designs
with correlated outcomes, because correlation often makes the
design and adaptation much more complicated.

For the fixed-sample designs with correlated data, Liu and
Liang (1997) extended the sample size and power calculations
for generalized linear models (Self and Mauritsen, 1988), and
developed a unified framework for experimental designs in-
volving correlated observations based on the generalized esti-
mating equations (GEE; Liang and Zeger, 1986). Zucker and
Denne (2002) and Lake et al. (2002) studied two-stage adap-
tive designs with correlated data, where the sample size is
reestimated at one interim point based on an internal pi-
lot study. In contrast, without prespecifying the maximum
number of interim analyses, we present a flexible design and
inference procedure for correlated observations in the GEE
framework. The proposed method is applicable in a wide va-
riety of situations including discrete and continuous correlated
data using regression models. A working correlation structure
needs to be specified in GEE while the values in the corre-
lation matrix are updated inherently. In an adaptive fashion,
we update the sample size given the observed data in the
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ongoing trial to ensure an adequate power, as well as to main-
tain the type I error rate under a desirable level. Throughout,
the sample size refers to the number of clusters instead of
total observations.

2. Design and Inference Strategies
2.1 Generalized Estimating Equations
Let (y1, . . . ,yn) be independent vectors of response variables
with means (µ1, . . . ,µn), where yi = (yi, . . . , yiLi

)′ for the
ith cluster, i = 1, . . . ,n. Let µil = E(yil ), and var(yil ) =
ζh(µil), l = 1, . . . ,Li , where h(·) is the variance function and
ζ is the scale parameter. A function g(·) links the mean µil

with the covariate vectors zil and xil through

g(µil) = φ′zil + ψ′xil, (1)

where φ, a p × 1 vector, represents the parameters of interest,
and ψ, a q × 1 vector, is nuisance. The hypotheses are H0: φ =
0 versus H1: φ = δ, where δ > 0 is the vector of the assumed
treatment effects. Inference for φ based on a quasi-score or
Wald test statistic has been well investigated and shown to
have desirable properties (Diggle et al., 2002).

Let θ = (φ′, ψ′)′, and let Ci denote the working correlation
matrix which may not be identical to the true correlation
matrix. The generalized estimating equations are given by

n∑
i=1

D′
iV

−1
i (yi − µi) = 0, (2)

where Di = ∂µi/∂θ, Vi = GiCiGi, and Gi = diag
{[h(µi)]

1/2}. Under certain regularity conditions, the estima-
tor θ̂ obtained from (2) is consistent and asymptotically Gaus-
sian, that is, as n → ∞,

√
n(θ̂ − θ)−→N(0,Σθ), Σθ = lim

n→∞
nA−1

1 A2A−1
1 , (3)

where

A1 =

n∑
i=1

D′
iV

−1
i Di, A2 =

n∑
i=1

D′
iV

−1
i ΓiV−1

i Di, and

Γi = var(yi).

The consistent variance estimator of Σθ is obtained by evalu-
ating the matrices A1 and A2 at their empirical estimates and
replacing Γi in A2 by (yi − µi)(yi − µi)

′, which is referred
to as the sandwich variance estimator.

The sample size calculation for correlated data is often
complicated even for the fixed-sample design (Liu and Liang,
1997). In addition to the marginal modeling structure, the
working correlation matrix, and the type I (α) and II (β) er-
ror rates, one must specify all the design parameters, includ-
ing nuisances in the models under the null and alternative
hypotheses. Moreover, the design relies on the assumed dis-
tributions for the configurations on discretized covariates of
(zil, xil). Conversely, with the generalized self-designing trial,
one can adaptively derive the sample size based on the spec-
ified α and β, the expected treatment effects (only used for
futility stopping), and the marginal regression model, while
the treatment effects and intracluster correlations can be up-
dated sequentially.

2.2 Adaptive Design and Test Statistics
In a self-designing trial (Shen and Fisher, 1999), the data
are reviewed periodically after observing every Bj clusters of
observations, where Bj is a prefixed block size for the jth
stage, and j = 1, 2, . . . As opposed to the fixed-sample design,
the total sample size is adaptively determined through the
cumulated data so that a desired power may be achieved.

It is important to terminate the trial early for ethical and
economic reasons if the cumulated information shows that
the new treatment is ineffective or inferior to the standard
one. If the trial is not terminated at the (j − 1)th stage, we
continue to observe the next block of data and estimate a
weight function wj using data up to the (j − 1)th stage. The
strategy will be iterated until the weight function is used up at
a certain step, m, when

∑m−1
j=1 w2

j < 1 and
∑m

j=1 w
2
j ≥ 1, when

the conditional power based on the cumulated data is greater
than or equal to (1 − β), or when the cumulated data indicate
the treatment to be ineffective based on a futility stopping
rule introduced in the next section. We then exit the trial and
let the weight at the final stage be wm = (1 −

∑m−1
j=1 w2

j)
1/2.

Thus, the total number of blocks, m, is not prespecified but is
a finite random integer depending on the data observed prior
to the mth block.

Let Dj denote the cumulated data up to step j. The cor-
responding information at that time can be defined by σ-
algebra, Fj = σ(Dj). To construct a final test statistic, we
derive a Wald-type statistic for each block of data,

Uj =
√

BjΣ̂
− 1

2
φj

φ̂j ,

where φ̂j and Σ̂φj
are the consistent estimators of φ and

Σφ, using the data only from the jth block. One referee sug-

gested a preferable alternative to estimate Σ̂φj
based on all

the cumulated data up to stage j, for which the asymptotic
properties can be justified by Slutsky’s theorem. Under H0,
Uj asymptotically follows a standard p-dimensional normal
distribution, Np(0, I).

We can show that the weighted average of the block-
wise statistics, Tm =

∑m

j=1 wjUj , asymptotically converges

to Np(0, I) under H0, where
∑m

j=1 w
2
j = 1 and wj = wj(Dj−1).

Under H1, it is much more difficult to obtain the distribution
of Tm, which usually does not follow a multivariate normal
distribution. However, the pivot , which is a function of Tm,

Pm =

m∑
j=1

wjQj , with Qj =
√

BjΣ̂
− 1

2
φj

(φ̂j − φ),

asymptotically follows a normal distribution under both the
null and the alternative hypotheses (Cheng and Shen, 2004).
The proof is outlined in the Appendix.

Testing for efficacy is only performed at the final stage,
based on the fact that T′

m Tm asymptotically follows a central
chi-square distribution with p degrees of freedom, χ2

p, under
the null hypothesis. The validity of the test statistic T′

mTm

depends on the condition of
∑m

j=1 w
2
j = 1. If φ is scalar (i.e.,

p = 1), the final test statistic, Tm , reduces to a statistic having
a standard normal distribution under H0.

Following rejection or acceptance of the null hypothesis, it
is of interest to estimate the unknown parameter φ. Estima-
tion of φ and its confidence interval can be derived from the
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asymptotic property of Pm. Let cp,1−2α denote the (1 − 2α)
percentile of χ2

p. The elliptical confidence set is then defined
by Pr(P′

mPm ≤ cp,1−2α) = 1 − 2α, which may not have an
explicit closed form. For ease of exposition, let p = 1 (i.e., we
consider the special case with one overall treatment effect).
The 100(1 − 2α)% confidence interval of φ is constructed as
follows:

1 − 2α = Pr

{
−z1−α ≤

m∑
j=1

wj

√
BjΣ̂

− 1
2

φj
(φ̂j − φ) ≤ z1−α

}

= Pr




m∑
j=1

wj

√
BjΣ̂

− 1
2

φj
φ̂j − z1−α

m∑
j=1

wj

√
BjΣ̂

− 1
2

φj

≤ φ

≤

m∑
j=1

wj

√
BjΣ̂

− 1
2

φj
φ̂j + z1−α

m∑
j=1

wj

√
BjΣ̂

− 1
2

φj


 ,

where z1−α is the (1 − α) percentile of the standard normal
distribution. It is known that the naive estimator of φ, ob-
tained by treating the self-designing trial as a fixed-sample
design, is often biased. Based on the moment estimation, a
consistent estimator of φ with reduced bias is given by

φ̂ =

m∑
j=1

wj

√
BjΣ̂

− 1
2

φj
φ̂j

m∑
j=1

wj

√
BjΣ̂

− 1
2

φj

. (4)

To ensure the validity of the estimation procedure, one
more block of data should be observed after the cumulated
data indicate that the trial should terminate due to futility,
or that the conditional power exceeds the specified level. If
we allow the trial to stop at the jth step and accept H0 due to
futility, the sum of the weights up to step j is most likely less
than 1. In this case, the pivot Pm(m = j) does not have a
standard multivariate normal distribution, and then the con-
struction of the confidence interval for φ via Pm is invalid.
Therefore, it is important to take one more block of data to
spend the remaining weight. Moreover, it is worth emphasiz-
ing that the decision to accept H0 should not be altered when
the trial is stopped early due to futility, even though another
block of data is observed at the last stage for the purpose of
estimation.

2.3 Futility Stopping Rule
The futility stopping rule is outlined as follows. We apply the
GEE method to data cumulated up to the jth step to obtain

the consistent estimators of φ and Σφ, denoted by φ̂
(j)

and

Σ̂
(j)
φ , where Σφ is the submatrix corresponding to φ of the

covariance matrix Σθ in (3). We can estimate the confidence
ellipsoid of vector φ at stage j, Ej , having the limiting confi-
dence coefficient (1 − αf ) based on the following asymptotic

distribution,

nj

(
φ̂

(j) − φ
)′(

Σ̂
(j)
φ

)−1(
φ̂

(j) − φ
) d→ χ2

p,

where nj is the cumulated sample size up to the jth step.
Specifically,

Pr(φ ∈ Ej) = Pr
{
nj

(
φ̂

(j) − φ
)′(

Σ̂
(j)
φ

)−1(
φ̂

(j) − φ
)

≤ cp,1−αf

}
= 1 − αf . (5)

At the jth step, if the assumed design parameter vector, δ, is
not contained in Ej , we then step down to estimate the con-
fidence interval with the limiting confidence coefficient (1 −
αf ) for each φk(k = 1, . . . , p) marginally, [φ̂

(j)
L,k, φ̂

(j)
U,k]. If there

exists a k such that φ̂
(j)
U,k < δk, we stop the trial at step j for

insufficient beneficial treatment effects. As long as the design
parameter corresponding to one endpoint is out of the range
of the confidence region marginally, we terminate the trial
due to futility. Note that this futility stopping rule is a con-
servative one to stop a futile trial with multiple endpoints. An
alternative rule may be proposed to terminate a trial for fu-
tility when all components of δ lie outside of their confidence
intervals marginally. Indeed, the futility stopping rule is not
unique and can be specified according to the actual problem
in practice and elicited from the study investigators. For this
type of adaptive designs, it is not only desirable but neces-
sary to have a futility stopping rule for ethical and regulatory
reasons.

2.4 Constructing Weight Functions
An efficient self-designing trial relies on a sensitive weighting
scheme, which plays a critical role in determining when to ex-
tend or terminate the trial. At the design stage, we would like
to use the observed data from the ongoing trial to adaptively
determine the weight for the next block. An inverse function
of the conditional sample size can be a sensible choice for the
weight function so that the trial can be terminated soon after
a strong treatment effect is revealed from the cumulated data.
Based on the conditional power derivation (Lan, Simon, and
Halperin, 1982), we obtain the additional sample size N∗

j for
step j when assuming that j is the last step, to ensure the
power of (1 − β) given the observed data up to step (j −
1). The purpose of estimating N∗

j is to calculate the weight
for the next block of data, as opposed to using it directly for
determining the sample size needed for the next step. In fact,
the actual block size of each step is pre-fixed.

The conditional sample size N∗
j can be obtained from the

proposed chi-square test statistic,

Pr

{(
j−1∑
i=1

wiUi + wjU∗
j

)′ ( j−1∑
i=1

wiUi + wjU∗
j

)

> cp,1−2α

∣∣∣Fj−1

}
= 1 − β, (6)

where U∗
j =

√
N ∗

jΣ
− 1

2
φ φ̂

∗
j and φ̂

∗
j is the statistic based on N∗

j

observations. Note that wj = (1 −
∑j−1

i=1 w
2
i)

1/2 in the deriva-
tion, when we assume that the jth step is the last step of
the trial. Given the data observed up to the (j − 1)th step,
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U∗
j + w−1

j

∑j−1
i=1 wiUi approximates to a p-dimensional normal

distribution with mean

γj =
√

N ∗
jΣ

− 1
2

φ φ + w−1
j

j−1∑
i=1

wiUi,

and an identity covariance matrix, thus the quadratic form
(U∗

j + w−1
j

∑j−1
i=1 wiUi)

′(U∗
j + w−1

j

∑j−1
i=1 wiUi) has a noncen-

tral chi-square distribution with p degrees of freedom. The
noncentrality parameter is γj

′ γj , which is a function of N∗
j .

To estimate the conditional sample size N∗
j , we can solve the

following equation numerically:

cp,1−2α =

(
1 −

j−1∑
i=1

w2
i

)
cp,1−β(γ ′

jγj), (7)

where cp,1−β(γ ′
j γj) is the (1 − β) percentile for a noncen-

tral chi-square distribution with p degrees of freedom. The
unknown parameters of φ and Σφ in γ j can be replaced by
their consistent estimators using the cumulated observations
up to the (j − 1)th step.

To illustrate the procedure, we consider an important spe-
cial case in which the repeated measurements follow a gener-
alized linear regression model,

g(µil) = φzil + ψxil, i = 1, . . . , n; l = 1, . . . , Li,

where the scalar φ represents the treatment effect. For a typ-
ical two-sample problem with repeated measurements, it is of
interest to test the hypothesis that H0: φ = 0, for an over-
all treatment effect. In contrast to equation (7), an explicit
conditional sample size formula can be obtained for this case.
Specifically, we can solve the conditional power equation using
the Gaussian approximation for U∗

j ,

N ∗
j =




z1−α −
j−1∑
i=1

wiUi√√√√1 −
j−1∑
i=1

w2
i

+ z1−β




2

Σ̂
(j−1)
φ

(φ̂(j−1))2
.

It is clear that the conditional sample size N∗
j will be small,

if the cumulated data indicate a strong treatment effect. In
this case, it is reasonable to assign a relatively large weight to
the next block of data, because we want the trial to terminate
soon. Toward this goal, the weight function for the jth block
should be inversely associated with N∗

j , and thus a natural
form is given by

wj =

{
Bj

N ∗
j

(
1 −

j−1∑
i=1

w2
i

)}1/2

, j = 2, . . . ,m− 1,

and for the last step, wm = (1 −
∑m−1

i=1 w2
i)

1/2.

3. Simulation Studies
We carried out simulations to compare the proposed adaptive
design and the fixed-sample design with respect to the type I
error rate, statistical power, average sample number (ASN),
and estimation of the parameter of interest. We considered
linear models with multivariate Gaussian errors, and logistic
regression with correlated binary data, and also conducted

a sensitivity analysis on the misspecification of the working
correlation matrix in the GEE. We replicated 5000 trials for
each setup.

3.1 Repeated Measurements with Gaussian Errors
The linear regression model with repeated measurements is
common in longitudinal studies, where a typical example is to
compare two treatment groups with repeated measurements.
For clarity and ease of exposition, suppose that all the clusters
are of the same size, that is, Li ≡ L. Let p = q = 1 with xil =
1 corresponding to the intercept, and a treatment indicator
zil ≡ zi = 1 or 0 with probability 0.5. The linear regression
model for repeated measurements is given by

yil = ψ + φzi + εil, i = 1, . . . , n; l = 1, . . . , L, (8)

where εi = (εi, . . . , εiL)′ is assumed to follow a multivariate
normal distribution with mean 0 and covariance σ2R. With an
exchangeable correlation matrix R = (1 − ρ̃)I + ρ̃11′, a type I
error rate of α and a power of (1 − β), the sample size formula
for the fixed-sample design (Liu and Liang, 1997) is

K =
4(z1−α + z1−β)2σ2{1 + (L− 1)ρ̃}

δ2L
.

Note that δ and ρ̃ are the design parameters from previous
studies or expert opinions, which may be misspecified.

We set α = 0.025, β = 0.1, the cluster size L = 2, underlying
model parameters σ2 = 1, ψ = 1, ρ = 0.3, H0: φ = 0, and
H1: φ = 0.5. We took a constant block size with B = 15
or 20. The size of the first block is usually relatively large
in order to obtain a more reliable result at the initial step,
for example, B1 = 2B. The corresponding weight at the first
block should not depend on the data; we took w1 = 0.4. In
the GEE procedure, we chose the working correlation matrix
to be exchangeable in Tables 1 and 2. We used αf = 0.01 for
the futility stopping rule in (5).

Three different scenarios were examined: δ taking the true
value (δ = φ) and varying ρ̃ = (0, 0.1, 0.2, 0.3, 0.4, 0.5); fixing
ρ̃ at the true value (ρ̃ = ρ) and varying δ = (0.4, 0.5, 0.6,
0.7); and varying both δ and ρ̃. These various configurations
gave us an opportunity to examine how sample size, type
I error rate, and power changed with respect to one design
parameter while the other was fixed, and also when all the
design parameters were misspecified.

The evaluation of the test size based on data generated
under H0 is given in Table 1. We see that the proposed self-
designing trial is able to preserve the type I error rate in all the
cases, while the fixed-sample design shows slight inflation in
some scenarios. Because of the futility stopping rule, the type I
error rate is in fact deflated for the proposed method. This
stopping rule is somewhat conservative, and may be improved
in the future. No substantial difference is observed in terms of
the average sample number (ASN) between the self-designing
trial and the fixed-sample design. Apparently, the estimator
φ̂ using (4) is less biased compared to φ̂naive when naively
treating the adaptive design as the fixed-sample design. The
95% confidence interval coverage rates are slightly lower than
the nominal level. This undercoverage phenomenon could be
caused by the variation due to the relatively small sample size
in each block.

Table 2 summarizes the comparisons of the ASN and power
between the fixed-sample design and the self-designing trials.
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Table 1
Simulation results under H0: φ = 0,ρ = 0.3, with one-sided α = 0.025, β = 0.1, and the Gaussian error

Fixed design Self-designing (B = 15) Self-designing (B = 20)

δ ρ̃ Size K Size ASN n.b. Size ASN n.b. φ̂naive φ̂ c.r.

0.4 0.3 0.0288 171 0.0158 126.1 7.4 0.0098 138.1 5.9 −0.054 −0.017 0.921
0.5 0.3 0.0264 110 0.0164 91.5 5.1 0.0088 104.0 4.2 −0.046 −0.012 0.914
0.6 0.3 0.0322 76 0.0138 73.0 3.9 0.0090 84.6 3.2 −0.036 −0.010 0.918

0.5 0 0.0234 85 0.0174 91.6 5.1 0.0120 103.0 4.2 −0.045 −0.013 0.915
0.5 0.1 0.0296 93 0.0150 91.4 5.1 0.0112 103.7 4.2 −0.045 −0.012 0.917
0.5 0.2 0.0254 101 0.0116 91.4 5.1 0.0136 104.4 4.2 −0.042 −0.008 0.913
0.5 0.4 0.0248 118 0.0108 91.7 5.1 0.0110 103.1 4.2 −0.046 −0.011 0.915
0.5 0.5 0.0306 127 0.0148 91.2 5.1 0.0110 102.6 4.1 −0.049 −0.015 0.918

B is the block size, size corresponds to the type I error rate, K is the fixed-sample size, ASN is the average sample number, n.b. is the average
number of blocks, and c.r. is 95% confidence interval coverage rate.

Table 2
Simulation results under H1: φ = 0.5, and ρ = 0.3 with one-sided α = 0.025, β = 0.1, and the Gaussian error

Fixed design Self-designing (B = 15) Self-designing (B = 20)

δ ρ̃ Power K Power ASN n.b. Power ASN n.b. φ̂naive φ̂ c.r.

0.5 0.3 0.8976 110 0.9032 105.8 6.0 0.9138 117.7 4.9 0.542 0.518 0.922
0.6 0.3 0.7772 76 0.8376 97.6 5.5 0.8570 109.0 4.4 0.536 0.522 0.917
0.7 0.3 0.6434 56 0.7246 87.0 4.8 0.7484 97.5 3.9 0.527 0.517 0.915

0.5 0 0.8146 85 0.8918 105.5 6.0 0.9094 115.9 4.8 0.541 0.519 0.923
0.5 0.1 0.8504 93 0.8954 104.7 6.0 0.9054 117.8 4.9 0.544 0.520 0.918
0.5 0.2 0.8764 101 0.8920 104.8 6.0 0.9058 114.9 4.7 0.545 0.521 0.924
0.5 0.4 0.9206 118 0.9028 104.9 6.0 0.9110 117.8 4.9 0.543 0.522 0.911
0.5 0.5 0.9394 127 0.8862 105.6 6.0 0.9148 116.5 4.8 0.544 0.521 0.916

0.6 0 0.6772 59 0.8342 97.4 5.5 0.8484 108.0 4.4 0.537 0.520 0.916
0.6 0.1 0.7074 65 0.8272 96.9 5.5 0.8428 109.1 4.5 0.533 0.516 0.915
0.6 0.2 0.7496 71 0.8294 96.6 5.4 0.8528 109.4 4.5 0.533 0.515 0.923

0.7 0 0.5330 43 0.7272 85.8 4.7 0.7458 97.4 3.9 0.522 0.512 0.913
0.7 0.1 0.5776 48 0.7238 86.2 4.7 0.7472 98.3 3.9 0.524 0.516 0.921
0.7 0.2 0.6270 52 0.7244 86.6 4.8 0.7542 98.6 3.9 0.527 0.514 0.915

B is the block size, K is the fixed-sample size, ASN is the average sample number, n.b. is the average number of blocks, and c.r. is 95%
confidence interval coverage rate.

When the design parameters δ and ρ̃ are specified correctly
(the first row), both the fixed and the adaptive designs can
achieve 90% power, and the corresponding ASNs are very
close. However, when δ overestimates φ, or ρ̃ underestimates
ρ, the powers based on the self-designing procedure are much
higher than those of the fixed-sample design. As expected, the
estimated sample size for the fixed-sample design decreases
as δ increasingly deviates away from φ, and increases as ρ̃
becomes greater than ρ. Figure 1 shows the pattern of the
weight function assigned to each step for 100 randomly repli-
cated trials and the histogram of the number of blocks, using
B = 20 under model (8). It is clear that most of the trials are
terminated after the second or third interim analysis, and only
a few trials continue beyond the eighth step.

The working correlation structure in the GEE might be
specified incorrectly in the design stage. Following this route,
we studied the sensitivity of the proposed method by specify-
ing the “independence” or “unstructured” working correlation
matrix while the true correlation was exchangeable. Table 3
shows that the adaptive procedure is very robust when the

working matrix is not the same as the true one, under either
H0 or H1. There are no notable differences in terms of the
ASN and power between using the true and the misspecified
working correlation matrices.

3.2 Logistic Regression with Clustered Data
Correlated binary responses are often encountered in biomed-
ical research. Considering a two-group comparison with L =
2 and a treatment covariate zil ≡ zi = 0 or 1 with probability
0.5, via a logit link function,

logit(µil) = ψ + φzi.

The response probabilities corresponding to zi = 0 and zi =
1 are given by

p0 =
exp(ψ)

1 + exp(ψ)
, p1 =

exp(ψ + φ)

1 + exp(ψ + φ)
.

Testing p0 = p1 is equivalent to testing H0: φ = 0. With an
exchangeable correlation matrix, the required sample size for
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Figure 1. Weight functions varying over steps, and the his-
togram of the number of blocks under H1: φ = 0.5, ρ = 0.3, δ
= 0.5 with the Gaussian errors in 100 simulations.

the fixed-sample design is

K =

4(z1−α + z1−β)2{p0(1 − p0)/2 + p1(1 − p1)/2}{1 + (L− 1)ρ̃}
(p1 − p0)2L

.

(9)

It is not trivial to generate correlated binary data. Much re-
search has been conducted in efficiently simulating dependent
binary variates (Qaqish, 2003). Based on the fact that any
Poisson random variable can be expressed as a convolution of
other independent Poisson random variables, we generated de-
pendent binary data from correlated Poisson variables (Park,
Park, and Shin, 1996). In the logistic regression model, we as-

Table 3
Sensitivity analysis for misspecification of the correlation matrix under H0 : φ = 0 versus H1 : φ = 0.5,

when the true exchangeable correlation is ρ = 0.3, with one-sided α = 0.025, β = 0.1, B = 20,
and the Gaussian error

Fixed design Self-designing

δ ρ̃ Working correlation Size/power K Size/power ASN n.b.

Size under H0
0.5 0.3 Exchangeable 0.0264 110 0.0088 104.0 4.2

Independence 0.0258 110 0.0102 102.9 4.1
Unstructured 0.0254 110 0.0130 103.5 4.2

Power under H1
0.5 0.3 Exchangeable 0.8976 110 0.9138 117.7 4.9

Independence 0.9026 110 0.9136 116.1 4.8
Unstructured 0.9032 110 0.9100 114.9 4.7

K is the fixed-sample size, ASN is the average sample number, and n.b. is the average number of blocks.

Table 4
Simulation results under H0: φ = 0 versus H1 : φ = 1, and
ρ = 0.3 with one-sided α = 0.025, β = 0.1, and B = 20 with

logistic regression

Fixed design Self-designing

δ ρ̃ Size/power K Size/power ASN n.b.

Size under H0
0.8 0.3 0.0248 171 0.0122 147.1 6.4
1 0.3 0.0226 110 0.0112 108.4 4.4
1.2 0.3 0.0248 77 0.0078 87.6 3.4

1 0 0.0248 85 0.0138 109.2 4.5
1 0.1 0.0282 93 0.0108 108.7 4.4
1 0.2 0.0220 102 0.0112 108.2 4.4
1 0.4 0.0246 119 0.0118 109.0 4.4

Power under H1
1 0.3 0.8842 110 0.9214 125.3 5.3
1.2 0.3 0.7446 77 0.8504 117.7 4.9
1.5 0.3 0.5640 51 0.7034 100.3 4.0

1 0 0.8008 85 0.9150 124.8 5.2
1 0.1 0.8376 93 0.9208 125.8 5.3
1 0.2 0.8600 102 0.9116 124.4 5.2

1.2 0 0.6442 60 0.8630 117.4 4.9
1.2 0.1 0.6760 66 0.8578 117.3 4.9
1.2 0.2 0.7122 71 0.8552 117.1 4.8

1.5 0 0.4700 39 0.7058 99.5 4.0
1.5 0.1 0.5108 43 0.7146 99.8 4.0
1.5 0.2 0.5418 47 0.7012 100.1 4.0

K is the fixed-sample size, ASN is the average sample number, and
n.b. is the average number of blocks.

sumed an independence working correlation, and set ρ = 0.3,
ψ = −0.2, H0: φ = 0, and H1: φ = 1. We examined the fol-
lowing scenarios under H0: fixing ρ̃ = ρ = 0.3 and taking δ =
(0.8, 1, 1.2); and fixing δ = 1 and taking ρ̃ = (0, 0.1, 0.2, 0.4).
As shown in Table 4, the test sizes under the self-
designing trials are well preserved under the nominal level of
α = 0.025.

Under H1, we similarly examined different configurations
by varying δ or/and ρ̃, as indicated in Table 4. When de-
sign parameters moderately deviate from the true values, the
adaptive design still maintains a power above 85%, whereas
the fixed-sample design only achieves a power of 65–70%. As
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an extreme case with δ = 1.5 and ρ̃ = 0, the fixed-sample de-
sign results in a power of 47%. Through updating the sample
size, the proposed adaptive design shows great improvement
in power, with an increase that is close to 25%.

4. Rodent Teratology Data
As an illustration, we applied the proposed method to a ran-
domized rodent teratology experiment with correlated binary
data (Lefkopoulou and Ryan, 1993). Hartsfield (1986) con-
ducted a study to investigate the effects of in utero exposure
to the anticonvulsant, phenytoin. The degree of skeletal ma-
turity was the outcome of interest. Because no particular site
was more important than the other sites, we chose to base
our design and analysis on the binary outcome (the presence
of ossification or not) in the forepaws of the examined off-
spring. If the fetus had at least one digit ossified, we recorded
a response of 0, otherwise the response was 1. The litter size
varied from 1 to 10 with an average size of 7. Nineteen litters
(clusters) were under dosage-exposure while 17 served as the
control. We randomized the order of the data, and then parti-
tioned the data into five blocks. The first block contained 12
clusters with 6 from the exposed arm and 6 from the control.
After the first block, we used the block of size B = 6 with
three clusters for each arm. Because the observed data were
not exactly evenly distributed between the two arms, the last
block of data had four litters in the treatment arm and two
litters in the control.

The hypothesis of interest was the following: H0: φ = 0
versus H1: φ = δ, where φ was the treatment effect of the
anticonvulsant phenytoin on the rate of ossification. The de-
sign parameters were specified as δ = 1.3, for the one-sided
α = 0.025 and β = 0.1. With a total of 36 litters of average
litter size 7, the study would have a power of 90% to detect
the treatment difference δ at the significance level of 0.025,
assuming an exchangeable correlation matrix with a common
intralitter correlation of 0.32.

Applying the proposed adaptive design and analysis strat-
egy, the interim analysis at each step did not direct the trial
to stop early for futility. After observing the data up to the
fourth block, the estimated weight function for the fifth block
indicated that the trial should stop at the fifth block (m = 5),
so that the rest of the weight should be used up. The Wald
test statistics (Uj ) for the five blocks of data were (0.88, 2.57,
1.57, 5.08, and −0.61), and the corresponding weights (wj )
were (0.40, 0.19, 0.33, 0.46, and 0.70). The final weighted test
statistic was T 5 = 3.24, while that from the fixed-sample de-
sign was 3.02. Both test statistics asymptotically followed the
standard normal distribution under H0 and showed a signifi-
cant dosage-exposure effect. Employing an independent work-
ing matrix in the adaptive GEE procedure also indicated that
the trial should be terminated at the fifth step, and the re-
sulting final test statistic had a value of 3.39.

5. Discussion
We have extended the self-designing method of Fisher (1998)
and Shen and Fisher (1999) to multivariate cases. The in-
vestigated adaptive design and analysis procedure for corre-
lated observations are flexible and general within the GEE
framework. The total sample size is not pre-fixed but adap-
tively determined based on the accrued data while the trial

is ongoing, in order to achieve a desirable power. The final
test statistic is a weighted sum of the block-wise Wald test
statistics, where the weight for each block is calculated based
on the conditional sample size. We have proposed an estima-
tor for the parameter of interest with reduced bias and have
constructed its confidence interval. The comparisons between
the adaptive and the conventional fixed-sample designs sug-
gest that adaptation be necessary when the initial estimates
of design parameters are not reliable or are misspecified.

The proposed adaptive methodology can be particularly
valuable in a clinical trial design with correlated data, be-
cause it is often difficult to obtain reliable estimates for the
intracluster correlations. In the adaptive design, the param-
eters for the correlation are not required to be prespecified.
All the design parameters, such as the treatment difference,
variance, and correlation, are updated inherently at each step
in the procedure.

In the analysis of correlated data, we often encounter mul-
tiple outcomes and need to test composite hypotheses, for ex-
ample, when different treatment effects are expected for sev-
eral correlated outcomes. One-sided hypothesis testing with
multiple endpoints has been well studied (Bloch, Lai, and
Tuber-Bitter, 2001). In the scenarios that we investigated,
the futility boundary would cause the trial to terminate early
and to accept H0, if the multivariate test of the treatment
effects did not show sufficient overall superiority. Thus, the
global test statistic for the usual two-sided test is virtually
equivalent to the one-sided efficacy test. In the situation of
forced termination of a trial due to financial or administra-
tive reasons, we can simply assign the remaining weight to
the last block and then conduct the testing procedure, which
remains to be validated.

As pointed out by the referees, we often need an estimate
of the sample size to make an assessment of the necessary
resources and logistics of the trial during the planning stage.
This initial sample size estimate can be based on the conven-
tional fixed-sample design with initial estimates of the design
parameters. By using the interim data, we can then apply the
adaptation rules to extend the sample size to restore power,
or to terminate the study early for futility. Because it is of-
ten more difficult to implement an adaptive design in clinical
trials involving fast recruitment but time-lagged responses,
the adaptive design is particularly useful for group sequential
trials where the recruitment can be controlled by the investi-
gators.
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Appendix

Asymptotic Normality of Pm

Recall that Fj is σ-algebra induced by the observed data up

to the jth block. Note that m = inf{k :
∑k

j=1 w
2
j = 1} is a

stopping time and Fm−1 measurable, where wj = wj(Dj−1).

Given Fk−1, wk(Uk − (Bk)
1/2Σ

− 1
2

φ φ)|Fk−1 ∼ Np(0, w2
kI), and

the characteristic function is

E{exp(it′wkUk)|Fk−1} = exp
(
it′wk

√
BkΣ

− 1
2

φ φ− w2
kt

′t/2
)
.

Define

Sk =

exp

(
it′

k∑
j=1

wjUj

)

exp

(
it′

k∑
j=1

wj

√
BjΣ

− 1
2

φ φ−
k∑

j=1

w2
jt

′t/2

) .

Through some algebraic manipulations, we have
E(Sk | Fk−1) = Sk−1, and thus (Sk,Fk; k = 1, . . . ,m) is a
bounded martingale with E(S1) = E(Sm) = 1. By using the
fact that Σ̂φj

is a consistent estimator of Σφ, we can show
the asymptotic normality of Pm .


