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Summary. For multivariate failure time data, we propose a new class of shared gamma frailty models by
imposing the Box–Cox transformation on the hazard function, and the product of the baseline hazard and
the frailty. This novel class of models allows for a very broad range of shapes and relationships between
the hazard and baseline hazard functions. It includes the well-known Cox gamma frailty model and a
new additive gamma frailty model as two special cases. Due to the nonnegative hazard constraint, this
shared gamma frailty model is computationally challenging in the Bayesian paradigm. The joint priors are
constructed through a conditional–marginal specification, in which the conditional distribution is univariate,
and it absorbs the nonlinear parameter constraints. The marginal part of the prior specification is free
of constraints. The prior distributions allow us to easily compute the full conditionals needed for Gibbs
sampling, while incorporating the constraints. This class of shared gamma frailty models is illustrated with
a real dataset.
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1. Introduction
1.1 Cox Frailty Model
Multivariate failure time data often arise in biomedical re-
search due to natural or artificial clustering effects. For ex-
ample, in family-based studies of genetic diseases, dental re-
search, or litter-matched mice experiments, failure times in
the same cluster may be correlated. The intracluster corre-
lation needs to be taken into account to ensure the validity
of estimation and inference. A well-known example is from
the Diabetic Retinopathy Study (DRS; Diabetic Retinopa-
thy Study Research Group, 1985), which was conducted to
assess the effectiveness of laser photocoagulation in delaying
severe visual loss (blindness) among patients with diabetic
retinopathy. For each patient, one eye was randomly selected
to receive the laser treatment, while the other eye was used
as a control, for ethical reasons. The failure time of interest is
the time to blindness, as measured by visual acuity less than
5/200. Clearly, the survival times from the two eyes on the
same patient may not be independent.

A common approach to accommodating the intraclass cor-
relation is to incorporate an unobserved random effect, or a
frailty, into the Cox (1972) proportional hazards model. Let
Zik(t) (i = 1, . . . ,n; k = 1, . . . ,Ki ) be a possibly external

time-dependent covariate vector for the kth subject in the ith
cluster. The usual Cox frailty model is defined as

λ(t |Zik ,Wi) = λ0(t)Wi exp{β′Zik (t)}, (1)

where λ0(t) is the unknown and unspecified baseline hazard
function, β is the unknown p × 1 regression coefficient vec-
tor, and Wi is the unobservable frailty induced by cluster i.
Conditional on the Wi ’s, the failure times are assumed to
be independent. A common parametric distribution for Wi is
a gamma distribution with mean 1 (Clayton, 1978; Clayton
and Cuzick, 1985). A widely used alternative is to assume
that Wi has a positive stable distribution (Hougaard, 2000),
which preserves the proportional hazards structure uncondi-
tionally (after integrating Wi out). Semiparametric Bayesian
methods for multivariate failure time data have been studied
extensively in various contexts (Clayton, 1991; Sinha, 1993;
Sahu et al., 1997; Aslanidou, Dey, and Sinha, 1998; Sargent,
1998; Qiou, Ravishanker, and Dey, 1999; among others).

1.2 Additive Frailty Model
The proportional hazards formulation might not be a valid
modeling structure in many situations. The underlying true
relation of the hazards could be parallel as opposed to
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proportional. By imposing a linear relationship of the covari-
ate to the hazard function, Lin and Ying (1994) proposed
the additive hazards model for independent failure time data.
Here, we propose a new additive frailty model where an un-
observable frailty has a multiplicative effect on the baseline
hazard,

λ(t |Zik ,Wi) = λ0(t)Wi + β′Zik (t). (2)

This model is particularly interesting because it assumes that,
given the frailty, the hazard for each survival time follows
an additive hazards model. Note that in (1) and (2), the
frailty Wi is always linked to λ0(t) in a multiplicative fashion,
which indicates that the baseline hazard function for cluster
i becomes λ0(t)Wi due to the heterogeneity arising from the
ith clustering effect. The multiplicative form of λ0(t)Wi also
brings in mathematical convenience for parameter estimation
and inference. One main difficulty arising in (2) is the non-
negative hazard constraint, i.e., λ0(t)Wi + β′Zik(t) ≥ 0 for all
i, k, and t. As will be seen in Section 1.4, model (2) is in fact
a special case of a more general class of shared frailty models,
which includes model (1) as well.

1.3 Box–Cox Transformation
In the traditional linear regression model, Yi = β′Zi + εi, the
error terms εi (i = 1, . . . ,n) are usually assumed to be i.i.d.
from a zero-mean normal distribution. When the normality
assumption of εi does not hold, the Box–Cox transformation
(Box and Cox, 1964) may be applied to the response variable,

Y (γ) =

{
(Y γ − 1)/γ, γ �= 0,

log(Y ), γ = 0,

where γ is the transformation parameter and γ ∈ R1 (the real
line).

The Box–Cox transformation has also been applied to in-
dependent failure time data. Breslow and Storer (1985) and
Barlow (1985) applied this family of power transformations
to the covariate structure to model the relative risk R(Zi),

logR(Zi) =

{{(1 + β′Zi)
γ − 1}/γ, γ �= 0,

log(1 + β′Zi), γ = 0.

Aranda-Ordaz (1983) proposed a regression model by impos-
ing the Box–Cox transformation on the conditional proba-
bility, −log{1 − Pr(tj−1 < T ≤ tj |T > tj−1)} where 0 =
t0 < t1 < · · ·< tm is the partition of the time scale. However,
the focus was only on grouped data with the multiplicative
(γ = 0) and additive (γ = 1) cases because it appeared to
be intractable for a general power parameter γ. A critical
assumption of the aforementioned applications of the Box–
Cox transformation in survival analysis is the independence
of the failure times, which may not be satisfied in the DRS
data.

1.4 A New Class of Frailty Models
In biomedical studies involving clustered time-to-event data,
it might not be reasonable to assume independence of failure
times. In this article, we propose a class of shared gamma

frailty models based on the Box–Cox transformation for clus-
tered survival data,

λ(t |Zik ,Wi)
γ − 1

γ
=

{λ0(t)Wi}γ − 1

γ

+β′Zik (t), γ ∈ [0, 1]. (3)

The frailty has a multiplicative effect on the common base-
line hazard function, implying heterogeneity due to cluster-
ing. The Wi ’s allow members within the same cluster to share
a common baseline hazard function, and different hazards
across clusters. In linear models, a traditional Box–Cox trans-
formation is applied to the response variable Y, which is ob-
served. However, the transformation proposed here is simul-
taneously applied to the unknown hazard, and the product
of the baseline hazard and the unobservable frailty, as in (3).
Throughout this article, we consider γ as known, while treat-
ing γ as an unknown parameter might cause numerical dif-
ficulty and instability. It is easy to see that as γ → 0, (3)
becomes

log{λ(t |Zik ,Wi)} = log{λ0(t)Wi} + β′Zik (t),

which reduces to the Cox frailty model (1), and when γ = 1,
(3) reduces to our proposed additive frailty model (2). Our
primary interest in γ lies in [0, 1], which contains broad mod-
eling structures between the proportional (γ = 0) and the ad-
ditive (γ = 1) hazards, though γ could mathematically take
any value on the real line. The relationship between the haz-
ard functions and the modeling structure change as γ varies
from 0 to 1. The interpretations of the β’s are conditional on
the random effects, which change with respect to γ in (3).
For γ = 0, model (3) yields the hazard ratios, i.e., exp(β),
while for γ = 1, (3) gives the hazard differences. However, for
0 < γ < 1, it is difficult to interpret the β’s, which are some
intermediate statistical quantities between hazard ratios and
differences. We assume that Wi ∼ Gamma(η, η), where Wi

induces the heterogeneity on the baseline hazard due to the
cluster-specific effect.

This family of shared gamma frailty models is general and
flexible, which allows for a very rich class of hazard patterns.
In many multivariate survival applications where the hazards
are neither proportional nor parallel, our new gamma frailty
model provides a very unified methodology. As will be shown
in Section 5 where we apply model (3) to the DRS example,
the best fitting model is indeed neither when γ = 0 nor when
γ = 1, based on a suitable model selection criterion.

The rest of this article is organized as follows. In Sec-
tion 2.1, we introduce notation and quantify the underly-
ing failure time correlation using the dependence measure,
Kendall’s τ . In Section 2.2, we derive the likelihood function
for the proposed frailty model within the Bayesian paradigm.
In Section 2.3, we study the prior distributions under the con-
strained parameter space. In Section 3, we derive the full con-
ditional distributions needed for Gibbs sampling and specify
the constrained sampling support range for each parameter.
In Section 4, we propose a model selection technique based
on the conditional predictive ordinate (CPO; Geisser, 1993).
We illustrate the proposed methods with the DRS example
in Section 5, and provide concluding remarks in Section 6.
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2. Dependence, Likelihood, and Priors
2.1 Dependence Measure
Suppose that there are n clusters, and within cluster i, there
are Ki subjects. Let Tik (i = 1, . . . ,n; k = 1, . . . ,Ki ) be the
failure time for the kth subject in the ith cluster, and Zik(t) be
the corresponding p × 1 vector of bounded and possibly time-
dependent covariates. Let Cik be the censoring variable, Yik =
min(Tik , Cik ) be the observed time, and νik = I(Tik ≤ Cik ) be
the failure time indicator, where I(·) is the indicator function.
Assume that Tik and Cik are conditionally independent given
Zik(t). Within cluster i, {(Tik , Cik , Zik(t)), k = 1, . . . ,Ki}
may be dependent but exchangeable.

Due to the parameter γ in (3), the β’s are intertwined to-
gether with the frailty term Wi and the baseline hazard λ0(t),
and thus λ0(t) cannot be factored out in the frailty model,
leading to

λ(t |Zik ,Wi) =
[
{λ0(t)Wi}γ + γβ′Zik (t)

]1/γ
, (4)

where Wi ∼ Gamma(η, η), with mean 1 and variance η−1.
Without loss of generality, considering the bivariate dis-

tribution of (T 1, T 2), the joint survival function given time-
independent covariate vectors (Z1, Z2) is

S(t1, t2 |Z1,Z2)

=

∫ ∞

0

exp

[
−

∫ t1

0

{
λ0(u)γW γ + γβ′Z1

}1/γ
du

−
∫ t2

0

{
λ0(u)γW γ + γβ′Z2

}1/γ
du

]

× ηη

Γ(η)
W η−1 exp(−ηW ) dW.

Apparently, there is no explicit closed form for this bivariate
survival function for a general γ. For γ = 0, that is the Cox
shared gamma frailty model,

S(t1, t2 |Z1,Z2)

=

{
1 +

Λ0(t1) exp(β′Z1) + Λ0(t2) exp(β′Z2)

η

}−η

,

where Λ0(·) is the cumulative hazard function, and for γ = 1
corresponding to model (2),

S(t1, t2 |Z1,Z2)

=

{
1 +

Λ0(t1) + Λ0(t2)

η

}−η

exp{−(β′Z1t1 + β′Z2t2)}.

As η → ∞, the bivariate failure times (T 1, T 2) become inde-
pendent, i.e., S(t1, t2 |Z1, Z2) = S(t1 |Z1)S(t2 |Z2).

Kendall’s τ (Kendall, 1938) is a global measure of de-
pendence, which can be estimated by enumeration of the
concordant and discordant pairs of bivariate observations
(Hougaard, 2000). For independent clusters of a and b with
paired data, (T a1, T a2) and (T b1, T b2),

τ = E[sign{(Ta1 − Tb1)(Ta2 − Tb2)}].
An alternative definition is given by the integration of the
bivariate baseline survival function,

τ = 4

∫ ∞

0

∫ ∞

0

f(t1, t2)S(t1, t2) dt1 dt2 − 1,

where f(t1, t2) is the joint density function. We evaluate
Kendall’s τ without any covariates, in which case model (4)
reduces to the proportional hazards structure no matter what
value γ takes. Therefore, Kendall’s τ is invariant with respect
to γ and τ = (2η + 1)−1. For the Cox shared gamma frailty
model (γ = 0), τ takes the same form with or without covari-
ates. To quantify the short- or long-term dependence, a local
correlation measure θ(t1, t2) (Clayton, 1978; Oakes, 1989) is
defined as

θ(t1, t2) =
S(t1, t2)∆1∆2S(t1, t2)

∆1S(t1, t2)∆2S(t1, t2)
,

where ∆i denotes the operator −∂/∂ti , i = 1, 2. Without any
covariates, θ = 1 + η−1 for all γ in (4).

2.2 Likelihood Function
The following complex nonlinear constraints in {β,λ0(t)Wi , γ}
need to be satisfied,

{λ0(t)Wi}γ + γβ′Zik ≥ 0 (i = 1, . . . , n; k = 1, . . . ,Ki). (5)

Here, we propose to carry out estimation and inference using a
Bayesian approach. We assume a piecewise exponential distri-
bution for the baseline hazard function λ0(t) (Ibrahim, Chen,
and Sinha, 2001). Let J denote the number of partitions of the
time axis, i.e., 0 < s1 < · · ·< sJ . When J = 1, namely with
no partition, the baseline hazard reduces to that of an ex-
ponential distribution. The piecewise constant hazards model
assumes that λ0(y) = λj for y ∈ (sj−1, sj ], j = 1, . . . , J . By
increasing J, i.e., with finer partitions of the time scale, we
obtain a more flexible model for the underlying baseline haz-
ard. The piecewise exponential model is useful and simple
for modeling survival data, which serves as a benchmark for
comparisons with other semiparametric and fully parametric
models. The likelihood function is constructed as follows. Let
yik be the observed time for the kth subject in the ith cluster,
y = (y11, . . . , y1K1 ; . . . ; yn1, . . . , ynKn)′, ν = (ν11, . . . , ν1K1 ; . . .;
νn1, . . . , νnKn)′, and Z(t) be the (N × p)-dimensional covari-
ate matrix where N is the total sample size, i.e., N =

∑n

i=1 Ki.
Define δikj = 1 if subject k in cluster i fails or is censored in
interval j, and 0 otherwise. The hazard function in the jth
interval for the shared gamma frailty model is then given by

λj(t |Zik ,Wi) =
{
(λjWi)

γ + γβ′Zik (t)
}δikj /γ

,

where γ is assumed fixed (known) in the range [0, 1]. Let D =
(N , y, Z(t), ν) denote the observed data, W = (W 1, . . . ,Wn)

′

and λ = (λ1, . . . ,λJ)′. For ease of exposition, let Zik ≡ Zik(t).
The likelihood function is given by

L(β,λ,W |D)

=

n∏
i=1

(
Ki∏
k=1

J∏
j=1

(
λγ
jW

γ
i + γβ′Zik

)δikj νik/γ

× exp

[
−δikj

{(
λγ
jW

γ
i + γβ′Zik

)1/γ
(yik − sj−1)

+

j−1∑
q=1

(
λγ
qW

γ
i + γβ′Zik

)1/γ
(sq − sq−1)

}])
π(Wi),

(6)

where π(Wi ) is the probability density function (p.d.f.) of a
Gamma(η, η) random variable. For a general γ, the marginal
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likelihood involves a complicated integral over Wi , which does
not have a closed form. Therefore, instead of integrating Wi

out, we treat (W 1, . . . ,Wn) as “parameters” that need to be
sampled in the Gibbs iterations as shown in Section 3.

2.3 Prior Specification with Constrained Parameters
The joint prior distribution of (β, λ, W) needs to accommo-
date the nonnegativity constraint for the hazard function,

λγ
jW

γ
i + γβ′Zik ≥ 0

(i = 1, . . . , n; k = 1, . . . ,Ki; j = 1, . . . , J). (7)

Bayesian computation and analysis become complicated in
the constrained parameter space (Gelfand, Smith, and Lee,
1992; Chen and Shao, 1998; Chen, Shao, and Ibrahim, 2000,
Chapter 6). For example, the order constraints on a set of
parameters is very common in Bayesian modeling, where one
can incorporate monotonicity constraints to improve testing
efficiency (Dunson and Neelon, 2003). However, (7) is very
different from the usual order constrained parameter prob-
lems. If the nonlinear constraint (7) is violated, the likelihood
function and the posterior density are not well defined.

To accommodate the constraint (7), we bypass the multi-
dimensional inequality and reduce the prior specification to
a one-dimensional truncated distribution by absorbing (7)
into one parameter βg. Hence, we are able to obtain the
normalizing constant required for the full conditional dis-
tributions of λ, W, and the rest of β’s in a closed form.
Without loss of generality and for ease of exposition, we as-
sume that all the covariates are positive. Let Z(−g) denote the
N × (p − 1)-dimensional covariate matrix with the gth
covariate (column) deleted, and β(−g) denote the (p − 1)-
dimensional parameter vector with the gth component of
β removed; thus Z(−g) = (Z1, . . . ,Zg−1, Zg+1, . . . ,Zp) and
β(−g) = (β1, . . . ,βg−1, βg+1, . . . ,βp)

′. We propose a joint
“prior” for (β, λ, W) of the form

π(β1, . . . , βp;λ1, . . . , λJ ;W1, . . . ,Wn)

= π(βg |β1, . . . , βg−1, βg+1, . . . , βp;λ1, . . . , λJ ;W1, . . . ,Wn)

× I

(
βg ≥ −

λγ
jW

γ
i + γβ′

(−g)Z(−g),ik

γZg,ik
,

i = 1, . . . , n; k = 1, . . . ,Ki; j = 1, . . . , J

)
×π(β1, . . . , βg−1, βg+1, . . . , βp;λ1, . . . , λJ ;W1, . . . ,Wn).

(8)

From (8), we see that βg and (β(−g), λ, W) are not inde-
pendent a priori due to the nonlinear constraint. This joint
prior specification only involves one parameter βg in the con-
straints and makes all the other parameters (β1, . . . ,βg−1,
βg+1, . . . ,βp; λ1, . . . ,λJ ; W 1, . . . ,Wn ; η) free of constraints.
It gives great flexibility in the choice of joint prior and is
computationally attractive. Informative priors via historical
data or expert opinion can be easily specified through the
free parameters β(−g), λ, and η.

Let Φ(·) denote the cumulative distribution function
of the standard normal distribution. Specifically, we take
(βg |β(−g), λ, W) to have a truncated normal prior distri-
bution given by

π
(
βg |β(−g),λ,W

)
= c−1

(
β(−g),λ,W

)
exp

{
−

β2
g

2σ2
g

}
× I

(
βg ≥ −min

i,k,j

{
λγ
jW

γ
i + γβ′

(−g)Z(−g),ik

γZg,ik

})
, (9)

where the normalizing constant depends on β(−g), λ, and W,

c
(
β(−g),λ,W

)
=

∫ ∞

−mini,k,j

{
λ
γ
j
W

γ
i

+γβ′
(−g)

Z(−g),ik
γZg,ik

} exp

{
−

β2
g

2σ2
g

}
dβg

=
√

2πσg

[
1 − Φ

(
−min

i,k,j

{
λγ
jW

γ
i + γβ′

(−g),ikZ(−g),ik

γZg,ikσg

})]
.

(10)

Although not required for the development, we can take
β(−g), λ, and W to be independent a priori in (8), that is,

π(β(−g),λ,W) = π(β(−g))π(λ)π(W | η)π(η).

The components of λ are assumed to be independent a pri-
ori, and each λj has a Gamma(αλ, ξλ) distribution. One can
easily construct priors to make the λj ’s dependent a priori by
considering first-order autoregressive structures or Markovian
relations on the λj ’s, as in Arjas and Gasbarra (1994) and
Ibrahim et al. (2001). We assume that Wi ∼ Gamma(η, η),
and η ∼ Gamma(a, b) where the shape parameter a and the
scale parameter b are specified to yield a large prior uncondi-
tional variance of Wi , with var(Wi ) = b/(a − 1).

3. Gibbs Sampling
For γ = 0, (4) is the Cox shared gamma frailty model, and
the likelihood function is log-concave for all the parameters
(β1, . . . ,βp; λ1, . . . ,λJ ; W 1, . . . ,Wn) (for details, see Ibrahim
et al., 2001, p. 100–112). For 0 < γ ≤ 1, because the priors for
the β’s are log-concave, without loss of generality, it suffices to
examine only the likelihood function in (6) for the log-concave
properties of the parameters. It can be shown that for γ ∈
(0, 1], the second derivative ∂2logL(β, λ, W |D)/∂β2

l ≤ 0,
(l = 1, . . . , p), that is the full conditional of βl is log-concave in
βl. Therefore, we only need to use the adaptive rejection sam-
pling algorithm proposed by Gilks and Wild (1992) to sample
from the full conditional distributions of βl (l = 1, . . . , p).
However, the full conditionals of (λ1, . . . ,λJ ; W 1, . . . ,Wn) are
not log-concave, thus a metropolis step needs to be imple-
mented within the Gibbs steps (Gilks, Best, and Tan, 1995).

Suppose that the gth component of β has a truncated nor-
mal prior as given in (9), to satisfy the nonlinear constraint
(5), and the rest of the parameters are unconstrained. We
define the conditional likelihood function as

L(β,λ |W,D) =

n∏
i=1

Li(β,λ |Wi,D),
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where Li (β, λ |Wi , D) is the likelihood contribution for the
ith cluster. Let [U |V ] denote the posterior distribution of U
given V. The full conditionals of the parameters are given as
follows:[
βg

∣∣β(−g),λ,W,D
]
∝ L(β,λ |W,D)π(βg),[

βl

∣∣β(−l),λ,W,D
]
∝ L(β,λ |W,D)π(βl)

c
(
β(−g),λ,W

)
(l �= g, l = 1, . . . , p),[

λj

∣∣β,λ(−j),W,D
]
∝ L(β,λ |W,D)π(λj)

c
(
β(−g),λ,W

) (j = 1, . . . , J),[
Wi

∣∣β,λ,W(−i), η,D
]

∝ Li(β,λ |Wi,D)W η−1
i exp(−ηWi)

c
(
β(−g),λ,W

) (i = 1, . . . , n),

[η |W,D] ∝
ηnη+a−1

(
n∏
i=1

Wi

)η−1

exp

{
−η

(
n∑
i=1

Wi + b

)}
{Γ(η)}n ,

where π(βl) is the p.d.f. of an N(µl, σ
2
l ) distribution, π(λj)

is that of a Gamma(αλ, ξλ) distribution, and c(β(−g), λ,
W) is given by (10). These full conditionals have nice
tractable structures with our proposed prior specification be-
cause c(β(−g), λ, W) has an analytic closed form. The pos-
terior estimates are very robust with respect to the choice
of g in (8), which is an attractive and remarkable feature
as demonstrated in Section 5. In the usual random effects
model, the full conditional distribution of the ith random
effect, Wi , only involves the data corresponding to the ith
cluster. However, in our proposed model, the full conditional
of Wi involves the data from all clusters through the nor-
malizing constant c(β(−g), λ, W). In each Gibbs sampling
step, the support for each parameter needs to be set to
accommodate the nonlinear constraint, such that the like-
lihood function is always well defined within the sampling
boundaries. For i = 1, . . . ,n; k = 1, . . . ,Ki ; j = 1, . . . , J ;
l = 1, . . . , p, the following inequalities need to be satisfied:

βl ≥ −
λγ
jW

γ
i + γβ′

(−l)Z(−l),ik

γZl,ik
,

λj ≥
{
−min

(
γβ′Zik

W γ
i

, 0

)}1/γ

,

Wi ≥
{
−min

(
γβ′Zik

λγ
j

, 0

)}1/γ

.

4. Model Adequacy Evaluation
Model checking plays an important role in regression models.
It is critical to compare a class of competing models for a
given dataset and select the one that best fits the data. The
CPO statistic cross-validates the conditional predictive distri-
bution from single observation deletion against the observed
responses (Gelfand, Dey, and Chang, 1992; Geisser, 1993; Dey,
Chen, and Chang, 1997).

We derive the cluster-based CPO statistic as follows. For
the ith cluster, yi = (yi1, . . . , yiKi

)′ are assumed to be inde-
pendent, conditional on the unobservable random effect Wi .

Let y(−i) denote the (N − Ki ) × 1 response vector with yi

deleted, and thus y = {y′
i, y(−i) ′}′. Let θ = (β′, λ′, W′)′.

The CPOi for the ith cluster is defined as the joint posterior
predictive density of yi given y(−i), which can be written as

CPOi = f
(
yi

∣∣y(−i)
)

=
f(y)

f
(
y(−i)

)
=

∫
f(y |θ)π(θ)

π(θ |y)f(y)
π(θ |y) dθ∫

f
(
y(−i)

∣∣θ)
π(θ)

π(θ |y)f(y)
π(θ |y) dθ

=


∫

π(θ |y)
Ki∏
k=1

f(yik |θ)

dθ



−1

,

where π(θ |y) is the joint posterior density function and
f(yik |θ) is the conditional density function of yik . For model
(6), a Monte Carlo approximation of CPOi is given by

ĈPOi =

{
1

M

M∑
m=1

1

Li

(
β[m],λ[m]

∣∣Wi,[m],yi,Zi

)}−1

,

where M is the number of Gibbs samples after burn-in, and

Li

(
β[m],λ[m]

∣∣Wi,[m],yi,Zi

)
=

Ki∏
k=1

J∏
j=1

(
λγ
j,[m]W

γ
i,[m] + γβ′

[m]Zik

)δikjνik/γ

× exp

[
−δikj

{(
λγ
j,[m]W

γ
i,[m] + γβ′

[m]Zik

)1/γ
(yik − sj−1)

+

j−1∑
q=1

(
λγ
q,[m]W

γ
i,[m] + γβ′

[m]Zik

)1/γ
(sq − sq−1)

}]
,

β[m] = (β1,[m], . . . ,βp,[m])
′, λ[m] = (λ1,[m], . . . ,λJ,[m])

′, and
W i,[m] (i = 1, . . . ,n) are the Markov chain Monte Carlo
(MCMC) samples of the mth Gibbs iteration. For correlated
data, we propose the summary statistic B =

∑n

i=1 log(CPOi),
where a larger value of B indicates a better fit.

5. Application
As an illustration, we applied the proposed methods to data
from the DRS example. There were 197 high-risk patients
in the dataset, and we considered three covariates: treat-
ment, type of diabetes (adult-onset or juvenile-onset dia-
betes), and age (ranging from 1 to 58 years with a mean of
around 21 years). The response variable was time to blindness
(in months), which might be right censored. Figure 1 shows
the Kaplan–Meier survival curves stratified by treatment and
type of diabetes groups.

In the analysis, we constrained the regression coefficient for
laser treatment (β1) to have a truncated normal prior, and set
γ = (0, 0.25, 0.5, 0.75, 1). The priors for β = (β1, β2, β3)

′

and λ = (λ1, . . . ,λJ)′ were all taken to be noninformative,
where (β1 |β2, β3, λ, W) had a truncated N(0, 10, 000) prior
as defined in (9), β2 and β3 were independent a priori and
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Figure 1. Kaplan–Meier curves stratified by treatment and
type of diabetes in the DRS.

were taken to have N(0, 10, 000) distributions. For γ = 0,
we took λj ∼ Gamma(0.001, 0.001), and independent for j =
1, . . . , J , and Wi ∼ Gamma(η, η), η ∼ Gamma(a, b) with a
= b = 0.001 to yield a noninformative “prior” on Wi . For γ
∈ (0, 1], we took λj ∼ Gamma(2, 0.001), and a = 2 and b =
1000 in order to have a large variance for Wi . Under different
modeling structures, we accordingly chose more suitable pri-
ors that would lead to better model convergence. We specified
noninformative priors such that the likelihood dominated the
posterior distribution. We took J = 1 (no partition) and J = 5
because the shape and flexibility of the baseline hazard func-
tion is controlled by J. The optimal J usually lies around 5,
seldom exceeds 10, and the partition points should be chosen
such that we would obtain an approximately equal number

Table 1
Posterior means, standard deviations, and 95% HPD intervals for the DRS data, using J = 1

γ B Covariate Mean Std. dev. 95% HPD interval

0 −830.4 Treatment 0.9974 0.1790 (0.6434, 1.3506)
Type of diabetes −0.3796 0.4193 (−1.2307, 0.4287)
Age 0.2416 0.2134 (−0.1771, 0.6608)
Frailty η 0.9162 0.2693 (0.5501, 1.6018)

0.25 −825.4 Treatment 0.3856 0.0509 (0.2879, 0.4852)
Type of diabetes 0.1166 0.1210 (−0.1277, 0.3419)
Age −0.0082 0.0802 (−0.1643, 0.1500)
Frailty η 0.0947 0.0072 (0.0815, 0.1091)

0.5 −824.4 Treatment 0.0927 0.0145 (0.0642, 0.1206)
Type of diabetes −0.0130 0.0266 (−0.0663, 0.0395)
Age 0.0057 0.0177 (−0.0286, 0.0412)
Frailty η 0.0933 0.0073 (0.0794, 0.1081)

0.75 −826.7 Treatment 0.0241 0.0043 (0.0156, 0.0324)
Type of diabetes −0.0083 0.0064 (−0.0198, 0.0049)
Age 0.0022 0.0044 (−0.0061, 0.0113)
Frailty η 0.0946 0.0072 (0.0813, 0.1095)

1 −825.9 Treatment 0.0065 0.0013 (0.0039, 0.0089)
Type of diabetes −0.0028 0.0015 (−0.0053, 0.0006)
Age 0.0006 0.0010 (−0.0013, 0.0028)
Frailty η 0.0938 0.0073 (0.0797, 0.1084)

of failures in each interval. For the proposed shared gamma
frailty model, γ also directly affects the shapes of the hazard
functions. The parameter estimates are usually very robust
with respect to J, whereas γ has a critical influence on the
estimates of the β’s. Therefore, we look for the best γ, which
yields the largest B-statistic for a given J.

After taking a burn-in of 5000 samples, we then ran 30,000
Gibbs iterations and kept every fifth iteration (thinning = 5).
Table 1 summarizes the B-statistic, posterior mean, standard
deviation, and the 95% highest posterior density (HPD) in-
terval for the β’s and η, using J = 1 (the parametric model),
and Table 2 corresponds to J = 5. The parameter estimates
are close between J = 1 and J = 5 for a given γ, but are
different among the set of γ’s for a given J. Across the 10
competing models, the laser treatment effect is significant
and neither the type of diabetes nor age has significant ef-
fects on survival. Therefore, the treatment effect is well con-
firmed under a variety of shared gamma frailty models with
different γ’s. By appropriately varying γ from 0 to 1, we can
obtain a comprehensive evaluation of covariate effects under
a series of modeling structures. Using J = 5, the model with
γ = 0 concludes that the untreated eye of a subject is about
2.6 times at more risk of blindness than his or her treated
eye, exp(β̂treat,γ=0) = 2.6, while the model with γ = 1 states
that the risk difference per month between the untreated and
treated eyes of a subject is around 0.006, β̂treat,γ=1 = 0.0063.
Based on the B-statistics, the model with J = 5 and γ =
0.75 is deemed as the best fitting model, from which all of the
following analyses will be based. To quantify the underlying
failure time dependence, we estimated [Kendall’s τ̂ = 0.848
and Oakes’ θ̂ = 12.186], using J = 5, where τ → 0 or θ → 1
indicates independence of the bivariate failure times.

Model convergence was monitored by running two paral-
lel MCMC chains with diverse starting values and different
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Table 2
Posterior means, standard deviations, and 95% HPD intervals for the DRS data, using J = 5

γ B Covariate Mean Std. dev. 95% HPD interval

0 −835.3 Treatment 0.9449 0.1765 (0.5996, 1.3003)
Type of diabetes −0.3220 0.4089 (−1.1283, 0.4693)
Age 0.2158 0.2014 (−0.1684, 0.6037)
Frailty η 1.2487 0.6928 (0.6123, 2.9588)

0.25 −827.9 Treatment 0.3817 0.0531 (0.2778, 0.4844)
Type of diabetes 0.0100 0.1344 (−0.2646, 0.2624)
Age 0.0221 0.0870 (−0.1454, 0.1893)
Frailty η 0.0933 0.0073 (0.0798, 0.1080)

0.5 −822.7 Treatment 0.0902 0.0147 (0.0609, 0.1187)
Type of diabetes −0.0152 0.0274 (−0.0675, 0.0380)
Age 0.0053 0.0176 (−0.0286, 0.0396)
Frailty η 0.0882 0.0069 (0.0753, 0.1021)

0.75 −819.4 Treatment 0.0233 0.0041 (0.0152, 0.0314)
Type of diabetes −0.0085 0.0061 (−0.0191, 0.0040)
Age 0.0023 0.0043 (−0.0055, 0.0114)
Frailty η 0.0894 0.0072 (0.0759, 0.1039)

1 −821.1 Treatment 0.0063 0.0012 (0.0039, 0.0086)
Type of diabetes −0.0027 0.0014 (−0.0052, 0.0005)
Age 0.0006 0.0010 (−0.0011, 0.0029)
Frailty η 0.0880 0.0068 (0.0753, 0.1019)

seeds, and these converged to the same range of values for
each parameter. All of the model parameters appeared to mix
satisfactorily from the trace plots. The convergence test pro-
posed by Gelman and Rubin (1992) is analogous to a clas-
sical analysis of variance, which compares the within-chain
and between-chain variances. We estimated the factor by
which the scale parameter might shrink if the chain were
run to infinity. The median and 97.5% quantiles of the
sampling distribution for the shrink factor reported by the

Table 3
Sensitivity analysis with noninformative prior specifications for the DRS data using J = 5 and γ = 0.75

σβ ξλ b Covariate Mean Std. dev. 95% HPD interval

10 0.001 1000 Treatment 0.0236 0.0043 (0.0152, 0.0320)
Type of diabetes −0.0072 0.0062 (−0.0181, 0.0061)
Age 0.0013 0.0041 (−0.0066, 0.0095)

1000 0.001 1000 Treatment 0.0231 0.0043 (0.0147, 0.0316)
Type of diabetes −0.0076 0.0066 (−0.0200, 0.0057)
Age 0.0026 0.0046 (−0.0058, 0.0122)

100 0.01 1000 Treatment 0.0239 0.0041 (0.0157, 0.0318)
Type of diabetes −0.0089 0.0060 (−0.0194, 0.0035)
Age 0.0022 0.0041 (−0.0050, 0.0107)

100 0.0001 1000 Treatment 0.0236 0.0042 (0.0154, 0.0317)
Type of diabetes −0.0092 0.0063 (−0.0202, 0.0037)
Age 0.0034 0.0043 (−0.0048, 0.0119)

100 0.001 100 Treatment 0.0225 0.0041 (0.0146, 0.0306)
Type of diabetes −0.0096 0.0055 (−0.0189, 0.0022)
Age 0.0027 0.0039 (−0.0045, 0.0110)

100 0.001 10,000 Treatment 0.0245 0.0042 (0.0163, 0.0326)
Type of diabetes −0.0070 0.0063 (−0.0184, 0.0062)
Age 0.0012 0.0042 (−0.0066, 0.0096)

Gelman and Rubin (1992) diagnostics were close to 1 for all
the β’s, λ’s, and η’s. This indicated convergence of the Markov
chains.

We carried out two sets of sensitivity analyses to inves-
tigate the robustness of the posterior inference with respect
to the prior distributions and the choice of βg assigned to
have the truncated normal prior. Table 3 shows that the
parameter estimates obtained from the proposed model are
very robust with respect to noninformative prior distributions
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Table 4
Analysis of the DRS data with different regression parameters having the truncated normal priors using

J = 5 and γ = 0.75

Truncated coefficient Covariate Mean Std. dev. 95% HPD interval

Type of diabetes Treatment 0.0234 0.0042 (0.0152, 0.0316)
Type of diabetes −0.0084 0.0061 (−0.0190, 0.0047)
Age 0.0021 0.0041 (−0.0055, 0.0105)

Age Treatment 0.0237 0.0041 (0.0157, 0.0316)
Type of diabetes −0.0084 0.0059 (−0.0186, 0.0040)
Age 0.0020 0.0040 (−0.0054, 0.0103)

Table 5
Frequentist analysis of the DRS data under the Cox shared

gamma frailty model

Covariate β̂ SE p-Value

Treatment 0.919 0.175 <0.001
Type of diabetes −0.304 0.401 0.450
Age 0.208 0.201 0.300

under a wide range of hyperparameters. Table 4 summarizes
the results regarding the constraint, where β2 (type of dia-
betes) or β3 (age) has the truncated normal prior. Clearly, the
posterior estimates are very robust with respect to the choice
of the constrained parameter. This demonstrates the flexibil-
ity and robustness of our proposed prior specification. In the
frequentist paradigm, model (1) has been studied extensively
and estimation is usually based on the EM algorithm. For ex-
ample, Klein (1992) proposed a profile likelihood construction
while assuming a nonparametric baseline intensity function as
opposed to the piecewise exponential rate. For comparison,
we applied the frequentist estimation procedure to the DRS
data under model (1) and summarized the results in Table 5.
The estimate of the frailty parameter is η̂ = 1.149, which is
statistically significant at the α = 0.05 level. Under the Cox
shared gamma frailty model, the frequentist results are very
close to those corresponding to the Bayesian model with γ =
0, especially for J = 5.

6. Discussion
We have proposed a class of shared gamma frailty models
based on the Box–Cox transformation for multivariate fail-
ure time data. This family of frailty models makes the hazard
modeling scheme more flexible, general, and versatile com-
pared to other methods, and facilitates a wide variety of re-
lationships between the baseline hazard and hazard function.
Proportional or additive modeling structures are now unified
into a general class. Due to the complexity of the model, we
have proposed a general joint prior specification by absorb-
ing the nonlinear constraint into one parameter while leaving
all other parameters free of constraints. This prior specifica-
tion can be applied to other constrained parameter problems
arising from other types of regression models. The proposed
methods would have great potential in applications where cor-
related survival data arise.

An alternative form is to include the random effect as an
additive factor. For example, a possible model is given by

λ(t |Zik ,Wi)
γ − 1

γ
=

{λ0(t) + Wi}γ − 1

γ
+ β′Zik (t). (11)

Assuming a zero-mean normal distribution for Wi , the non-
negative hazard constraint imposed by (11) is rarely achieved
in practice and thus (11) is not an attractive from of the
model. As γ → 0, model (11) reduces to

λ(t |Zik ,Wi) = {λ0(t) + Wi} exp{β′Zik (t)},

which is not the well-known Cox shared gamma frailty model.
By specifying a multiplicative random effect on the base-

line hazard in (3), i.e., λ0(t)Wi , we are able to assume Wi ∼
Gamma(η, η) for every γ in [0, 1]. The frailty may be incor-
porated into the model in a different form or fashion, which
heavily depends on the motivation from the scientific appli-
cation as well as mathematical convenience.

Acknowledgements

We would like to thank the editor, an associate editor, and
a referee for their critical reading of the manuscript and con-
structive comments, which led to a great improvement of an
earlier version. We thank Donald Berry and Peter Müller for
very helpful discussions. This research was partially supported
by National Cancer Institute grants 70101 and 74015.

Résumé

Nous proposons ici, dans le cadre des données de survie,
une nouvelle classe de modèles à fragilité gamma partagée
en appliquant la transformation de Box-Cox à la fonction de
hasard, ainsi qu’au produit du risque de base et de la fragilité.
Cette nouvelle classe de modèles offre un large éventail de
formes et relations entre la fonction de hasard et le risque
de base, et inclut, en tant que cas particuliers, le modèle de
Cox usuel à fragilité gamma ainsi qu’un nouveau modèle ad-
ditif à fragilité gamma. De par la contrainte que le risque soit
non négatif, ce modèle à fragilité gamma partagée présente un
défi calculatoire dans le paradigme bayésien. Les distributions
conjointes a priori sont définies par une distribution condition-
nelle marginale, où la distribution conditionnelle est univariée:
cela permet d’intégrer les contraintes non linéaires sur les
paramètres. La partie marginale de la distribution a priori,
quant à elle, est libre de toute contrainte. Les distributions a
priori permettent de programmer facilement l’intégralité des
distributions conditionnelles requises pour l’échantillonnage
de Gibbs, tout en intégrant les contraintes. Un jeu réel de
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données permet d’illustrer cette classe de modèles à fragilité
gamma partagée.

References

Aranda-Ordaz, F. J. (1983). An extension of the proportional-
hazards model for grouped data. Biometrics 39, 109–117.

Arjas, E. and Gasbarra, D. (1994). Nonparametric Bayesian
inference from right censored survival data, using the
Gibbs sampler. Statistica Sinica 4, 505–524.

Aslanidou, H., Dey, D. K., and Sinha, D. (1998). Bayesian
analysis of multivariate survival data using Monte Carlo
methods. Canadian Journal of Statistics 26, 38–48.

Barlow, W. E. (1985). General relative risk models in strati-
fied epidemiologic studies. Applied Statistics 34, 246–257.

Box, G. E. P. and Cox, D. R. (1964). An analysis of transfor-
mations (with discussion). Journal of the Royal Statistical
Society, Series B 26, 211–252.

Breslow, N. E. and Storer, B. E. (1985). General relative risk
functions for case-control studies. American Journal of
Epidemiology 122, 149–162.

Chen, M. and Shao, Q. (1998). Monte Carlo methods for
Bayesian analysis of constrained parameter problems.
Biometrika 85, 73–87.

Chen, M., Shao, Q., and Ibrahim, J. G. (2000). Monte Carlo
Methods in Bayesian Computation. New York: Springer.

Clayton, D. G. (1978). A model for association in bivariate life
tables and its application in epidemiological studies of fa-
miliar tendency in chronic disease incidence. Biometrika
65, 141–151.

Clayton, D. G. (1991). A Monte Carlo method for Bayesian
inference in frailty models. Biometrics 47, 467–485.

Clayton, D. G. and Cuzick, J. (1985). Multivariate general-
izations of the proportional hazards model (with discus-
sion). Journal of the Royal Statistical Society, Series A
148, 82–117.

Cox, D. R. (1972). Regression models and life tables (with
discussion). Journal of the Royal Statistical Society, Series
B 34, 187–220.

Dey, D. K., Chen, M., and Chang, H. (1997). Bayesian ap-
proach for nonlinear random effects models. Biometrics
53, 1239–1252.

Diabetic Retinopathy Study Research Group. (1985). Di-
abetic Retinopathy Study. Investigative Ophthalmology
and Visual Science 21(part 2), 149–226.

Dunson, D. B. and Neelon, B. (2003). Bayesian inference on
order-constrained parameters in generalized linear mod-
els. Biometrics 59, 286–295.

Geisser, S. (1993). Predictive Inference: An Introduction.
London: Chapman and Hall.

Gelfand, A. E., Dey, D. K., and Chang, H. (1992). Model
determination using predictive distributions with imple-
mentation via sampling based methods (with discus-
sion). In Bayesian Statistics, Volume 4, J. M. Bernardo,
J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds),
147–167. Oxford: Oxford University Press.

Gelfand, A. E., Smith, A. F. M., and Lee, T. (1992). Bayesian
analysis of constrained parameter and truncated data
problems using Gibbs sampling. Journal of the American
Statistical Association 87, 523–532.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative
simulation using multiple sequences. Statistical Science
7, 457–511.

Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling
for Gibbs sampling. Applied Statistics 41, 337–348.

Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995). Adaptive
rejection Metropolis sampling within Gibbs sampling.
Applied Statistics 44, 455–472.

Hougaard, P. (2000). Analysis of Multivariate Survival Data.
New York: Springer.

Ibrahim, J. G., Chen, M., and Sinha, D. (2001). Bayesian
Survival Analysis. New York: Springer.

Kendall, M. G. (1938). A new measure of rank correlation.
Biometrika 30, 81–93.

Klein, J. P. (1992). Semiparametric estimation of random ef-
fects using the Cox model based on the EM algorithm.
Biometrics 48, 795–806.

Lin, D. Y. and Ying, Z. (1994). Semiparametric analysis of
the additive risk model. Biometrika 81, 61–71.

Oakes, D. (1989). Bivariate survival models induced by frail-
ties. Journal of the American Statistical Association 84,
487–493.

Qiou, Z., Ravishanker, N., and Dey, D. K. (1999). Multivari-
ate survival analysis with positive stable frailties. Bio-
metrics 55, 637–644.

Sahu, S. K., Dey, D. K., Aslanidou, H., and Sinha, D. (1997).
A Weibull regression model with gamma frailties for mul-
tivariate survival data. Lifetime Data Analysis 3, 123–
137.

Sargent, D. J. (1998). A general framework for random effects
survival analysis in the Cox proportional hazards setting.
Biometrics 54, 1486–1497.

Sinha, D. (1993). Semiparametric Bayesian analysis of multi-
ple event time data. Journal of the American Statistical
Association 88, 979–998.

Received August 2003. Revised February 2004.
Accepted April 2004.


