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Summary. We propose a new class of survival models which naturally links a family of proper and improper
population survival functions. The models resulting in improper survival functions are often referred to as
cure rate models. This class of regression models is formulated through the Box–Cox transformation on the
population hazard function and a proper density function. By adding an extra transformation parameter
into the cure rate model, we are able to generate models with a zero cure rate, thus leading to a proper
population survival function. A graphical illustration of the behavior and the influence of the transformation
parameter on the regression model is provided. We consider a Bayesian approach which is motivated by
the complexity of the model. Prior specification needs to accommodate parameter constraints due to the
nonnegativity of the survival function. Moreover, the likelihood function involves a complicated integral on
the survival function, which may not have an analytical closed form, and thus makes the implementation
of Gibbs sampling more difficult. We propose an efficient Markov chain Monte Carlo computational scheme
based on Gaussian quadrature. The proposed method is illustrated with an example involving a melanoma
clinical trial.
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1. Introduction
In many clinical studies, especially in cancer research, there
may be a certain percentage of patients who respond favor-
ably to treatment and appear to be risk free or “cured” of the
disease of interest after a sufficient period of follow-up. For
such failure-time data, a proportion of subjects from the pop-
ulation are susceptible to, and others are not susceptible to,
the target event. Empirical evidence to confirm this feature of
the population is a long and stable plateau with heavy cen-
soring at the tail of the Kaplan–Meier survival curve. With
long-term survivors (i.e., survival data with a cure fraction),
the usual Cox proportional hazards model (Cox, 1972) is not
applicable since the proportional hazards assumption is vio-
lated. Cure rate models (Ibrahim, Chen, and Sinha, 2001a) are
constructed specifically for modeling time-to-event data incor-
porating a cure fraction. These types of models are becom-
ing increasingly useful in clinical trials, especially in oncology
studies.

There are two major approaches to modeling survival data
with a cure fraction. One is the standard mixture cure model
(Berkson and Gage, 1952) where a proportion of the pop-

ulation, say θ(0 < θ < 1), is cured and free of risk of the
event, and (1 − θ) of the patients are not “cured” and fol-
low a proper survival function. Let Spop(t) be the population
survival function, and let S(t) be the (proper) survival func-
tion for the “noncured” subjects. The standard mixture cure
model is defined as

Spop(t) = θ + (1 − θ)S(t). (1)

Clearly, we see that (1) is improper since Spop(∞) = θ. When
covariates are included, we have a different θi for each subject,
i = 1, . . . ,n. A logistic regression structure for θi is usually
(Kuk and Chen, 1992) assumed, i.e.,

θi =
exp(β′Zi)

1 + exp(β′Zi)
,

where θi is a probability and cannot be zero. The stan-
dard mixture cure model has been extensively studied in
the literature (Gray and Tsiatis, 1989; Kuk and Chen, 1992;
Taylor, 1995; Maller and Zhou, 1996; Peng and Dear, 2000;
Sy and Taylor, 2000; Betensky and Schoenfeld, 2001; among
others). Although model (1) is intuitively attractive and
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widely used, it does not have a proportional hazards struc-
ture for Spop(t), which is a desirable property in carrying out
covariate analyses.

An alternative cure rate model, with a proportional hazards
structure for the population, sometimes called the promotion
time cure rate model (Yakovlev et al., 1993; Chen, Ibrahim,
and Sinha, 1999), is given by

Spop(t) = exp{−θF (t)}, (2)

where F(t) is a proper cumulative distribution function (c.d.f.)
and represents the promotion time, i.e., time to develop-
ment of a detectable tumor mass (see Ibrahim et al., 2001a,
Chapter 5). The corresponding population hazard function is
λpop(t) = θf(t), where f(t) = dF (t)/dt is the density corre-
sponding to the promotion time c.d.f. In this formulation, we
typically model the covariates by letting θi = exp(β′Zi). The
cure rate implied by (2) is exp(−θi), and for subject i with
covariate vector Zi , the population hazard can be written as

λpop(t |Zi) = f(t) exp(β′Zi). (3)

Tsodikov (1998, 2002) among others investigated (2) in the
frequentist framework, while Chen et al. (1999) and Ibrahim,
Chen, and Sinha (2001b) formulated a Bayesian approach
to (2). Model (2) is biologically motivated as follows. For a
given patient, let N be the number of metastasis-competent
tumor cells that remain active (capable of metastasizing) after
treatment. Further, assume that N follows a Poisson distribu-
tion with mean θ, and let Xj be the time for the jth tumor
cell in that individual to produce detectable metastatic dis-
ease. Given N , (X0, X1, . . . ,XN ) are assumed to be indepen-
dent and identically distributed (i.i.d.) with a common c.d.f.
F (x) = 1 − S(x) where Pr(X0 = ∞) = 1. Thus, the time to
relapse of cancer is T = min(X1, . . . ,XN ) which has a popu-
lation survival function given by

Spop(t) = Pr(no metastatic cancer by time t)

= Pr(N = 0)

+Pr(X1 > t, . . . ,XN > t |N ≥ 1)Pr(N ≥ 1)

= exp(−θ) +

∞∑
k=1

S(t)k
θk exp(−θ)

k!

= exp{−θF (t)}.

Chen et al. (1999) introduced the latent Poisson random
variable N to facilitate the Markov chain Monte Carlo
(MCMC) computation. They showed that under some mild
conditions, a uniform improper prior for β in (3) still
leads to a proper posterior, while it always yields an im-
proper posterior for β if we use (1). This is a solid fea-
ture of the promotion time cure rate model, since it fa-
cilitates Bayesian inference with improper priors. Tsodikov,
Ibrahim, and Yakovlev (2003) provide a comprehensive re-
view of the recent developments of model (2). Both mod-
els (1) and (2) result in improper population survival func-
tions, since they do not allow for a zero cure fraction, i.e.,
Spop(∞) �= 0.

As opposed to a multiplicative structure in (2), analogous
to the additive hazards model (Lin and Ying, 1994), we pro-
pose a new additive model,

λpop(t |Zi) = f(t) + β′Zi, (4)

where f(t) is a proper density function instead of a base-
line hazard function λ0(t), and “proper” means

∫ ∞
0 f(t) dt =

1. Note that (4) leads to a proper survival function since
the population cumulative hazard function Λpop(∞|Zi) =∫ ∞

0 λpop(t |Zi) dt is not bounded. In fact, both models (2) and
(4) belong to a more general family of transformation models,
as demonstrated in Section 2. In conventional linear models,
the Box–Cox transformation (Box and Cox, 1964) is well stud-
ied and routinely used to transform the observed outcomes,
which is defined as,

Y (γ) =

{
(Y γ − 1)/γ γ �= 0

log(Y ) γ = 0,
(5)

where γ is the transformation parameter and γ ∈ R1

(the real line). This is a continuous transformation, since
limγ→0(Y

γ − 1)/γ = log(Y ).
In this article, we unify the promotion time cure model

(3) and the additive model (4) into a general class, by im-
posing the Box–Cox transformation on λpop(t |Zi) and f(t)
in (4). Instead of modeling the baseline hazard, we build up
this new family of survival models from the density function.
This opens a whole new arena of modeling structures as al-
ternatives to the Cox proportional hazards model. This class
of transformation models is very general, which provides a
natural link between proper and improper survival functions
(i.e., zero and nonzero cure fractions), through a single Box–
Cox transformation parameter γ. The transformation class
has model (2) as a special case, which is the only one in this
family that has a nonzero cure fraction, and it also includes
a broad range of regression models yielding proper popula-
tion survival functions (zero cure fractions). In the Bayesian
framework, we derive the likelihood function based on a piece-
wise exponential assumption, and study the prior specification
under a constrained parameter space. Because the full condi-
tionals involve a complicated integral that does not have a
closed form for some γ’s, we propose an efficient Gaussian
quadrature approximation to carry out Gibbs sampling.

The rest of this article is organized as follows. In Section 2,
we introduce notation and a new class of transformation sur-
vival models. In Section 3, we formulate the likelihood func-
tion within the Bayesian paradigm, discuss the prior specifi-
cation, and derive the full conditional distributions needed for
Gibbs sampling. In Section 4, we propose two types of model
assessment procedures based on the Conditional Predictive
Ordinate (Geisser, 1993) and the Deviance Information Cri-
terion (Spiegelhalter et al., 2002). We illustrate the proposed
methods with a melanoma clinical trial in Section 5 and give
concluding remarks in Section 6.

2. A Class of Transformation Survival Models
Let Ti be the failure time for the ith subject, let Ci be the
censoring time, and Yi = min(Ti , Ci ) is the observed time for
i = 1, . . . ,n. Correspondingly, the failure-time indicator is
νi = I(Ti ≤ Ci ) where I(·) is the indicator function. Let Zi

be the (p + 1) × 1 covariate vector where the first component
of Zi is a constant, 1, which corresponds to the intercept. We
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Figure 1. Simulated population survival curves for a set of γ’s given Z = 1.

assume that Ti and Ci are independent conditional on Zi , and
{(Ti , Ci , Zi), i = 1, . . . ,n} are i.i.d.

By imposing the Box–Cox transformation on the popula-
tion hazard function and the baseline density function, we
propose a class of survival models as

λpop(t |Zi)
γ − 1

γ
=

f(t)γ − 1

γ
+ β′Zi, γ ∈ [0, 1]. (6)

It is apparent that we can rewrite (6) as

λpop(t |Zi) =
{
f(t)γ + γβ′Zi

}1/γ
. (7)

As γ → 0, model (6) becomes log{λpop(t |Zi)} = log{f(t)} +
β′Zi, and thus reduces to (3), and when γ = 1, model (6)
reduces to (4) with an additive structure. Here, the utilization
of the Box–Cox transformation is substantially different from
(5), since it is applied to the unknown functions λpop(t |Zi)
and f(t) rather than to observable quantities. We take γ as
fixed throughout the article since treating γ as an unknown
parameter leads to intractable posterior distributions as well
as weak identifiability (more discussion on this issue is given
in Section 6). Our primary interest for γ lies in [0, 1], since
γ = 0 and γ = 1 represent the two extreme cases, i.e., the
multiplicative and additive modeling schemes, respectively,
and 0 < γ < 1 results in an intermediate modeling structure.
Although γ could mathematically take any value on the real
line in (6), values of γ ∈ [0, 1] are perhaps the most meaningful
and useful. It is important to note that γ = 0 is the only case
that results in an improper survival function, and that γ �= 0
always leads to a proper survival function.

To gain some insight into the generality and flexibility
of model (7), we present a numerical study here. We take
f(t) to be an exponential density with mean 5, i.e., f(t) =
λ exp(−λt) and λ = .2. The true values of the regression pa-
rameters are β0 = .1 and β1 = 1 and a single binary covariate Z
takes a value of 0 or 1 with probability .5. We take γ = (0, .25,

.5, .75, 1). Figure 1 shows how the population survival func-
tions for Z = 1 vary with respect to the different γ’s. The solid
line represents γ = 0, which is the only survival function with
a nonzero cure fraction. The rest of the functions are proper
survival functions, satisfying Spop(∞) = 0. Based on (7), the
population cumulative hazard function for the ith subject is
given by

Λpop(t |Zi) =

∫ t

0

{
f(u)γ + γβ′Zi

}1/γ
du

=

∫ t

0

{
λγ exp(−γλu) + γβ′Zi

}1/γ
du, (8)

and the population survival function is given by Spop(t |Zi) =
exp{−Λpop(t |Zi)}. When γ �= 0, clearly, |λγ exp(−γλu) +
γβ′Zi|1/γ ≥ |γβ′Zi|1/γ , and thus Λpop(∞|Zi) is not bounded
and Spop(∞|Zi) = 0, thus leading to a proper survival func-
tion. When γ → 0,

Λpop(∞|Zi) =

∫ ∞

0

f(t) exp(β′Zi) dt = exp(β′Zi),

which is bounded and the cure rate is Spop(∞|Zi) =
exp{−exp(β′Zi)} resulting in an improper survival function.
Specifically, we derive Λpop(∞|Zi) for several γ’s under the
exponential assumption for f(t) to demonstrate how a variety
of proper survival distributions can be generated. For exam-
ple, when γ = 1,

Λpop(t |Zi) = 1 − exp(−λt) + β′Zit,

and when γ = .5,

Λpop(t |Zi) = 1 − exp(−λt) + (β′Zi)
2t/4

+2β′Ziλ
−1/2{1 − exp(−λt/2)}.

More generally, if 1/γ is an integer, we have a closed form for
(8),
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Figure 2. Kaplan–Meier curves of patient groups treated with IFN versus GMK vaccine in E1694.

Λpop(t |Zi) =

1/γ∑
g=0

(
1/γ

g

)
λγg(γβ′Zi)

1/γ−g

∫ t

0

exp(−γgλu) du,

(9)

where the integral in (9) equals {1 − exp(−γgλt)}/(γgλ) if
g �= 0, and equals t if g = 0.

In practical applications, we can prespecify a set of γ’s cov-
ering the interval [0, 1] in order to model a broad class of pop-
ulation hazard functions, then choose the best fitting model
according to a suitable model selection criterion. Because the
hazard function in (7) cannot be negative, the following pa-
rameter constraint is required when γ �= 0:

f(t)γ + γβ′Zi ≥ 0, i = 1, . . . , n. (10)

Because f(t) is a probability density function, limt→∞f(t) =
0, and the constraint (10) reduces to β′Zi ≥ 0.

Due to the power parameter γ in (7), the regression pa-
rameters β are intertwined together with f(t), thus making
parameter estimation computationally challenging. To over-
come the numerical difficulties, we propose to fit this trans-
formation model using a Bayesian approach. A comprehensive
discussion of Bayesian cure rate models is given in Chapter 5
of the book by Ibrahim et al. (2001a).

One interesting application of the proposed methodology
is from a recent phase III melanoma cancer vaccine clinical
trial conducted by the Eastern Cooperative Oncology Group
(ECOG), the Southwest Oncology Group (SWOG), and the
Cancer and Leukemia Group B, labeled E1694 (Kirkwood
et al., 2001). Melanoma is a malignant form of skin cancer
that affects melanin, the substance that pigments the skin.
E1694 was a two-arm clinical trial comparing a new vaccine
to high-dose interferon for prolonging relapse-free and overall
survival in melanoma patients. Cancer vaccines are specifi-
cally designed to stimulate the immune system to recognize

and attack cancer cells. Such vaccines are usually less toxic
than chemotherapies and are used as adjuvant therapy follow-
ing surgery to build up the antibody levels against a possible
relapse of the tumor. The primary endpoint in E1694 was
relapse-free survival time (in months), which was right cen-
sored. Relapse-free survival time was defined as the time from
randomization to progression of tumor or death. The vaccine,
labeled GMK, is a combination of GM2 (a ganglioside that
is serologically defined to be a melanoma antigen) and KLH
(keyhole limpet hemocyanin), administered with the adjuvant
QS-21. Figure 2 shows the Kaplan–Meier survival plots for the
two treatment arms.

3. Likelihood, Priors, and Gibbs Sampling
We consider a piecewise exponential model, which is a flex-
ible and widely used modeling scheme for survival data. We
formulate the likelihood function as follows. Let yi be the ob-
served time for subject i, and we partition the time scale into
J intervals, i.e., 0 < s1 < , . . . ,< sJ , sJ > yi for i = 1, . . . ,n,
where λ0(y) = λj for y ∈ (sj−1, sj ], j = 1, . . . , J . By increasing
J, the piecewise constant hazard model can essentially model
any shape of the underlying hazard. A larger J allows more
flexibility but it also introduces more unknown parameters,
namely the λj ’s. Thus, there is a trade-off in determining the
optimal J. The best J usually lies between 5 and 10. Define
δij = 1 if the ith subject fails or is censored in the jth interval,
and 0 otherwise. Under the piecewise exponential assumption,
the promotion time density function in the jth interval is

fj(t) = λj exp

[
−

{
j−1∑
k=1

λk(sk − sk−1) + λj(t− sj−1)

}]
.

Let D denote the observed data, and λ = (λ1, . . . ,λJ)′. The
likelihood function is given by
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L(β,λ |D)

=

n∏
i=1

{
f(yi)

γ + γβ′Zi

}νi/γ

× exp

[
−

∫ yi

0

{
f(t)γ + γβ′Zi

}1/γ
dt

]

=

n∏
i=1

J∏
j=1

(
λγ
j exp

[
−γ

{
j−1∑
k=1

λk(sk − sk−1)

+λj(yi − sj−1)

}]
+ γβ′Zi

)νiδij/γ

× exp{−δijΛj(yi |Zi)}.

When 1/γ is an integer, we can obtain an explicit closed form
for the integral associated with the population cumulative
hazard as follows,

Λj(yi |Zi)

=

j∑
k=1

I(yi > sk−1)

∫ min(sk,yi)

sk−1

×
(
λγ
k exp

[
−γ

{
k−1∑
q=1

λq(sq − sq−1)

+λk(t− sk−1)

}]
+ γβ′Zi

)1/γ

dt

=

j∑
k=1

I(yi > sk−1)

∫ min(sk,yi)

sk−1

1/γ∑
g=0

(
1/γ

g

)
λγg
k

× exp

[
−γg

{
k−1∑
q=1

λq(sq − sq−1) + λk(t− sk−1)

}]

× (γβ′Zi)
1/γ−g dt

=

j∑
k=1

1/γ∑
g=0

(
1/γ

g

)
λγg
k exp

[
−γg

{
k−1∑
q=1

λq(sq − sq−1)

−λksk−1

}]
(γβ′Zi)

1/γ−g

× I(yi > sk−1)

∫ min (sk,yi)

sk−1

exp(−γgλkt) dt.

If 1/γ is not an integer, Λj(yi |Zi) does not have a closed
form, and in this case, we use Gaussian quadrature to ap-
proximate the integral (Press et al., 1992). The Gaussian
quadrature approximation provides flexibility in choosing the
weights and abscissae where the functions are to be evalu-
ated. In particular, we can take the 10 tabulated abscissae
and weighting coefficients based on the Gauss–Legendre for-
mula, which in fact yields satisfactory accuracy in our real

data example. Let (ζ1, . . . , ζ10) be the chosen abscissae, and
let {w(ζ1), . . . ,w(ζ10)} be the corresponding weights. Then,
when 1/γ is not an integer, the Gauss–Legendre quadrature
approximation is given by

Λj(yi |Zi)

≈
j∑

k=1

I(yi > sk−1){min(sk, yi) − sk−1}
2

10∑
l=1

w(ζl)

×
{
λγ
k exp

(
−γ

[
k−1∑
q=1

λq(sq − sq−1) + λk

{
min(sk, yi) − sk−1

2
ζl

+
min(sk, yi) + sk−1

2
− sk−1

}])
+ γβ′Zi

}1/γ

.

Although not required for our development, we can take β
and λ to be independent a priori, where π(β, λ) = π(β)π(λ).
We also assume that the components of λ are independent
a priori, and that each λj has a Gamma(α, ξ) distribution.
One can easily construct priors to make the components of
λ dependent a priori by considering first-order autoregressive
structures or Markovian relations on the λj ’s, as in Arjas and
Gasbarra (1994) and Ibrahim et al. (2001a). The constraint
β0 + β1Z1i + · · · + βpZpi ≥ 0, (i = 1, . . . ,n), needs to be incor-
porated in the prior specification and each step of the Gibbs
iterations. We can reduce the multiple dimensional constraint
into a univariate one through a conditional-marginal specifi-
cation of the joint prior (Yin and Ibrahim, 2005). In such a
prior formulation, the constraint is completely absorbed in the
conditional part of the prior specification, while the marginal
part is free of constraints. For ease of exposition, we let β(−0) =
(β1, . . . ,βp)

′, and let λ(−j) be the vector λ with the jth com-
ponent removed. In particular, we propose a joint prior for β
of the form

π(β) = π(β0 |β(−0))I(β0 ≥ −{β1Z1i + · · · + βpZpi},

i = 1, . . . , n)π(β(−0)), (11)

where the intercept β0 is constrained. A natural prior for
β0 |β(−0) is a truncated normal distribution. Let Φ(·) denote
the c.d.f. of the standard normal distribution. Thus, we have

π(β0 |β(−0)) = c(β(−0))
−1 exp

(
− β2

0

2σ2
0

)
× I

(
β0 ≥ − min

i=1,...,n
{β1Z1i + · · · + βpZpi}

)
,

(12)

where the normalizing constant is given by

c(β(−0)) =
√

2πσ0

[
1 − Φ

(
− min

i=1,...,n

{
β1Z1i + · · · + βpZpi

σ0

})]
.

Therefore, the full conditionals of the parameters are given
by

π(β0 |β(−0),λ,D) ∝ L(β,λ |D)π(β0 |β(−0)),

π(β(−0) |β0,λ,D) ∝ L(β,λ |D)π(β(−0))c(β(−0))
−1,

π(λj |β,λ(−j),D) ∝ L(β,λ |D)π(λj),
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where β(−0) ∼ Np(0, Σ), and λj ∼ Gamma(α, ξ) for j =
1, . . . , J . Based on the full conditional distributions, we use
the ARMS (Adaptive Rejection Metropolis Sampling) algo-
rithm of Gilks, Best, and Tan (1995) to obtain the posterior
samples in each Gibbs iteration. The C code for implementing
the proposed method is available upon request from the first
author.

4. Model Comparison
Model selection plays an important role in survival analysis.
After fitting the proposed models for a set of prespecified γ’s,
we can compute the Conditional Predictive Ordinate (CPO)
statistic (Gelfand, Dey, and Chang, 1992; Geisser, 1993; Dey,
Chen, and Chang, 1997). CPO is a Bayesian crossvalidation
statistic and measures the adequacy of a given model. The
CPO statistic validates the conditional predictive distribu-
tion from a single observation deletion against the observed
responses.

Let D(−i) denote the data with the ith observation deleted.
We denote the density function of yi by f(yi |β, λ, Zi), and
the posterior density of (β, λ) given D(−i) by π(β, λ |D(−i)),
i = 1, . . . ,n. CPOi is the marginal posterior predictive density
of yi given D(−i), which can be written as

CPOi = f
(
yi |Zi,D

(−i)
)

=

{∫∫
π(β,λ |D)

f(yi |β,λ,Zi)
dβ dλ

}−1

.

For the proposed transformation model, a Monte Carlo ap-
proximation of CPOi (Chen, Shao, and Ibrahim, 2000) is
given by

ĈPOi =

{
1

M

M∑
m=1

1

Li(β[m],λ[m] | yi,Zi, νi)

}−1

,

where M is the number of Gibbs samples after burn-in, and
β[m] and λ[m] = (λ1,[m], . . . ,λJ,[m])

′ are the samples corre-
sponding to the mth Gibbs iteration. Note that Li (β[m], λ[m] |
yi , Zi, νi) is a density function if νi = 1 and a survival func-
tion if νi = 0. Specifically,

Li(β[m],λ[m] | yi,Zi, νi)

=

J∏
j=1

(
λγ
j,[m] exp

[
−γ

{
j−1∑
k=1

λk,[m](sk − sk−1)

+λj,[m](yi − sj−1)

}]
+ γβ′

[m]Zi

)νiδij/γ

× exp

{
−δij

j∑
k=1

I(yi > sk−1)

×
∫ min(sk,yi)

sk−1

(
λγ
k,[m] exp

[
−γ

{
k−1∑
q=1

λq,[m](sq − sq−1)

+λk,[m](t− sk−1)

}]
+ γβ′

[m]Zi

)1/γ

dt

}
.

A summary statistic based on the CPOi ’s is B =∑n

i=1 log(CPOi). The larger the value of B, the better the
fit of the model.

The Deviance Information Criterion (DIC) recently pro-
posed by Spiegelhalter et al. (2002) is a Bayesian measure of
fit and complexity for model selection, defined as

DIC = Dev(β,λ) + pDev.

The deviance Dev(β, λ) = −2 log L(β, λ |D), pDev =
Dev(β,λ) − Dev(β̄, λ̄), and thus DIC = 2Dev(β,λ) −
Dev(β̄, λ̄), where β̄, λ̄ and Dev(β,λ) are the corresponding
posterior means. The penalty term pDev reflects the effective
number of parameters in the model. In the proposed model,

DIC = − 4

M

M∑
m=1

logL(β[m],λ[m] |D) + 2 logL(β̄, λ̄ |D).

The smaller the DIC, the better the fit of the model. As shown
in the E1694 example, the CPO and DIC statistics are quite
consistent with each other in discriminating between different
models.

5. Application
To illustrate the methodology, we applied the proposed class
of survival models to the E1694 trial, in which the primary
objective was to evaluate whether the GMK vaccine was su-
perior to interferon-α2b (IFN) with respect to the endpoint
of relapse-free survival. In this analysis, there were 876 sub-
jects in the combined treatment arms, of which 517 were right
censored. The covariates of interest were treatment (GMK =
1 or IFN = 2), age (a continuous variable which ranged from
19.24 to 84.85 years with a mean of 51.15 years), and sex
(female = 1, male = 2).

We examined J = 1 (a parametric exponential model) and
J = 5 with γ = (0, .25, .5, .75, 1). All the parameters were
assumed independent a priori and assigned noninformative
priors. For example, we took βk ∼ N(0, 10, 000), for k = 0,
1, 2, 3, where β0 had a truncated normal prior in (12), λj ∼
Gamma(2, .01), and independent for j = 1, . . . , J . We mon-
itored the convergence of the Gibbs chain using the method
proposed by Geweke (1992). The posterior samples, especially
for the βk’s, showed some autocorrelations among the itera-
tions, and thus we used every 10th sample in the chain for
obtaining posterior estimates. After a burn-in of 5000 samples
and thinning by 10, we had 5000 MCMC posterior samples
on which the analyses were based.

We fit a piecewise exponential proportional hazards
(PEPH) model to the E1694 data for comparison. The likeli-
hood function for the PEPH model (see Ibrahim et al., 2001a)
is given by

L(β,λ |D)

=

n∏
i=1

{λ0(yi) exp(β′Zi)}νi exp

[
−

∫ yi

0

{λ0(t) exp(β′Zi)} dt
]

=

n∏
i=1

J∏
j=1

{λj exp(β′Zi)}δijνi

× exp

[
−δij

{
j−1∑
k=1

λk(sk − sk−1)+λj(yi − sj−1)

}
exp(β′Zi)

]
,
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Table 1
Posterior means, standard deviations, and 95% HPD intervals for the E1694 data with J = 1

Model B/DIC Covariate Mean SD 95% HPD interval

γ = 0 −1667.83/3335.68 Intercept −.4397 .3357 (−1.0616, .2424)
Treatment −.2765 .1065 (−.4879, −.0717)
Age .1132 .0537 (.0080, .2172)
Sex .1514 .1118 (−.0657, .3654)

γ = .25 −1673.26/3346.02 Intercept .1080 .0883 (−.0584, .2793)
Treatment −.0571 .0373 (−.1285, .0114)
Age .0082 .0104 (−.0104, .0292)
Sex .0177 .0291 (−.0346, .0822)

γ = .5 −1673.51/3346.56 Intercept .0365 .0317 (−.0220, .0963)
Treatment −.0190 .0139 (−.0480, .0040)
Age .0026 .0036 (−.0035, .0103)
Sex .0060 .0103 (−.0124, .0279)

γ = .75 −1674.01/3347.52 Intercept .0139 .0126 (−.0090, .0377)
Treatment −.0070 .0055 (−.0176, .0026)
Age .0009 .0012 (−.0013, .0036)
Sex .0019 .0040 (−.0057, .0105)

γ = 1 −1674.24/3347.98 Intercept .0047 .0047 (−.0033, .0143)
Treatment −.0022 .0020 (−.0066, .0011)
Age .0003 .0004 (−.0005, .0012)
Sex .0006 .0015 (−.0023, .0036)

PEPH −1694.84/3388.12 Treatment −.3330 .1075 (−.5335, −.1170)
Age .0905 .0512 (.0098, .1917)
Sex .1320 .1100 (.0876, .3436)

Table 2
Posterior means, standard deviations, and 95% HPD intervals for the E1694 data with J = 5

Model B/DIC Covariate Mean SD 95% HPD interval

γ = 0 −1667.84/3335.66 Intercept −.5039 .3420 (−1.1947, .1620)
Treatment −.2768 .1087 (−.4967, −.0774)
Age .1116 .0534 (.0035, .2139)
Sex .1432 .1126 (−.0819, .3588)

γ = .25 −1665.90/3331.07 Intercept .1367 .1045 (−.0667, .3357)
Treatment −.0836 .0420 (−.1701, −.0073)
Age .0218 .0175 (−.0097, .0550)
Sex .0330 .0366 (−.0335, .1083)

γ = .5 −1665.36/3329.85 Intercept .0444 .0400 (−.0326, .1213)
Treatment −.0307 .0158 (−.0620, −.0006)
Age .0104 .0073 (−.0024, .0246)
Sex .0139 .0144 (−.0136, .0421)

γ = .75 −1665.03/3329.10 Intercept .0148 .0154 (−.0168, .0435)
Treatment −.0111 .0060 (−.0228, .0005)
Age .0045 .0028 (−.0005, .0099)
Sex .0052 .0054 (−.0047, .0166)

γ = 1 −1664.92/3329.01 Intercept .0048 .0057 (−.0058, .0159)
Treatment −.0038 .0023 (−.0080, .0005)
Age .0017 .0009 (−.0001, .0034)
Sex .0017 .0019 (−.0017, .0059)

PEPH −1670.97/3340.22 Treatment −.4452 .1061 (−.6571, −.2401)
Age .0044 .0514 (−.0961, .1020)
Sex −.0419 .1066 (−.2437, .1676)
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Figure 3. Posterior densities for the treatment effect under
different models using J = 5.

Table 3
Sensitivity analysis with different regression parameters having

truncated normal priors using J = 5 and γ = 1

Truncated Regression 95% HPD
covariate coefficient Mean SD interval

Treatment Intercept .0044 .0057 (−.0065, .0148)
Treatment −.0036 .0022 (−.0080, .0004)
Age .0017 .0009 (−.0002, .0034)
Sex .0017 .0020 (−.0021, .0056)

Age Intercept .0052 .0059 (−.0060, .0167)
Treatment −.0039 .0023 (−.0083, .0004)
Age .0016 .0009 (−.0002, .0033)
Sex .0016 .0020 (−.0019, .0058)

Sex Intercept .0044 .0059 (−.0065, .0159)
Treatment −.0037 .0023 (−.0083, .0005)
Age .0017 .0009 (−.0001, .0035)
Sex .0018 .0019 (−.0017, .0058)

where the unknown baseline hazard λ0(t) is modeled as a
piecewise constant hazard function. Tables 1 and 2 summa-
rize the B statistics, DICs, posterior means, posterior stan-
dard deviations, and 95% highest posterior density (HPD)
intervals for each regression parameter in the model. There
is not much difference between the competing models associ-
ated with different γ’s in terms of the B and DIC statistics.
The log-rank test for the treatment effect yields a p value of
.0063 for ρ = 0 and .0038 for ρ = 1 in the Gρ family of tests
(Harrington and Fleming, 1982), which is consistent with the
PEPH model. In fact, all the models with different values of γ
demonstrate a similar trend in which the treatment effect fa-
vors IFN over GMK for relapse-free survival. A kernel-based
estimate of the posterior density for the treatment effect is
shown in Figure 3. We see that most of the mass is concen-
trated on the negative side of the horizontal axis (β1) for each
case.

6. Discussion
We have proposed a class of Bayesian survival models by ap-
plying the Box–Cox transformation to the population hazard
function and the baseline density function. This class of re-
gression models allows a zero as well as a nonzero cure frac-
tion. It unifies a class of proper and improper population sur-
vival functions into a single family through the transforma-
tion parameter, γ. In the prior specification, for simplicity,
we constrained the intercept (β0) and allowed the other pa-
rameters to be free of constraints. We carried out a sensitiv-
ity analysis in which we constrained other parameters, but
not β0. In this case, we let β(−k) denote β without the kth
component βk, then we take βk to have a truncated normal
prior,

π(βk |β(−k)) = c(β(−k))
−1 exp

(
− β2

k

2σ2
k

)
I

(
βk ≥ − min

i=1,...,n

{
β0 + · · · + βk−1Z(k−1)i + βk+1Z(k+1)i + · · · + βpZpi

Zki

})
.
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As shown in Table 3, the posterior estimates were very robust
with respect to the choice of the constrained parameter βk in
the prior distribution.

We took the power parameter γ as fixed, since treating γ as
random causes numerical difficulties and it generally results
in a computationally intractable model. The reason for this
intractability is that the parameter β is very sensitive to the
values of γ. For different γ ∈ [0, 1], the posterior samples of
β can be quite different, and thus often cause the constraint
(10) to be easily violated in the Gibbs sampling algorithm.
For instance, the previous posterior sample quite often lies
outside the parameter range of the current iteration under the
constraints. Moreover, in most applications, there is typically
not enough information in the data to precisely estimate γ
and thus it is very sensitive to the choice of the prior for
these proposed models. In this sense, γ is weakly identified in
the model. Thus, in practice, it might not be feasible to allow
γ to be random and assign a prior distribution to it because
of the inherent parameter constraints and the complexity of
the model.
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