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Abstract: The authors propose a novel class of cure rate models for right-censored failure time data. The 
class is formulated through a transformation on the unknown population survival function. It includes the 
mixture cure model and the promotion time cure model as two special cases. The authors propose a general 
form of the covariate structure which automatically satisfies an inherent parameter constraint and includes 
the corresponding binomial and exponential covariate structures in the two main formulations of cure mod- 
els. The proposed class provides a natural link between the mixture and the promotion time cure models, 
and it offers a wide variety of new modelling structures as well. Within the Bayesian paradigm, a Markov 
chain Monte Car10 computational scheme is implemented for sampling from the full conditional distribu- 
tions of the parameters. Model selection is based on the conditional predictive ordinate criterion. The use 
of the new class of models is illustrated with a set of real data involving a melanoma clinical trial. 

Une approche unifiee des modeles de survie a taux de guerison 
R h m t  : Les auteurs proposent une nouvelle classe de modkles pour des durdes de vie c e n s u h s  Zi droite 
dans lesquels une possibilitd de gudrison est prise en compte. Cette classe est ddfinie par le biais d’une 
transformation de la fonction de survie thdorique inconnue. Les modkles dans lesquels la gudrison est in- 
corportk par voie de mdlange et par temps d’apparition de tumeurs ddtectables en sont des cas particuliers. 
Les auteurs proposent une forme gdndrale de structure de covariables qui satisfait automatiquement Zi une 
contrainte paramdtrique inhdrente au probltme et qui inclut les structures binomiales et exponentielles cor- 
respondant aux deux principales formulations des modkles h taux de gudrison. En plus de lier de facon 
naturelle les modkles Zi taux de gukrison par melange et h temps d’apparition de tumeurs ddtectables, la 
classe proposCe suggkre un grand nombre de nouvelles structures de modkles. Dans le cadre du paradigme 
baydsien, un algorithme de calcul de Monte-Carlo Zi chaine de Markov est implant6 pour l’dchantillonnage 
Zi partir des lois conditionnelles complttes des paramttres. La sdlection de modtle s’appuie sur un crittre 
faisant intervenir des prdvisions conditionnelles. L‘emploi de la nouvelle classe de modkles est illustrd au 
moyen de donndes issues d’essais cliniques sur le mdlanome. 

1. INTRODUCTION 

Cure rate models, which are used for modelling time-to-event data incorporating a cure fraction, 
have become increasingly important in clinical trials. Let Spop(t I Zi, Xi) be the population 
survival function, which is improper (i.e., limt,oo Spop(t I Zi ,  Xi) > 0), and let S(t  I Xi) be 
a proper survival function (i.e., limt+oo S(t I Xi) = 0), where Z, and Xi are two covariate 
vectors for subject i (i = 1, . . . , n). Note that Zi includes 1 and may share common components 
with Xi. The mixture cure model (Berkson & Gage 1952) is the mixture of a certain fraction 
1 - O(Zi) of the population being cured and the remaining proportion e(Zi) which are not cured, 
such that 

(1) 

where S(t  1 Xi) is the survival function for the uncured population. A logistic regression formu- 
lation is usually assumed for e ( Z i )  so that 

spop(t I zi, xi) = 1 - e(zi) + e(z,)s(t I xi), 



560 YIN & IBRAHIM Vol. 33, No. 4 

The mixture cure model (1) has been extensively studied in the literature, including Gray & 
Tsiatis (1989), Kuk & Chen (1992), Taylor (1999, Sy & Taylor (2000), Peng & Dear (2000) and 
Betensky & Schoenfeld (2001), among others. Extensive discussion of frequentist methods for 
the mixture cure model is given in the book by Maller & Zhou (1996). Although (1) is intuitively 
attractive and widely used, it does not have a proportional hazards structure in the presence of 
covariates, which is an undesirable feature when doing covariate analysis as noted in Ibrahim, 
Chen & Sinha (2001a, ch. 5) .  

An alternative definition of a cure rate model has been proposed and investigated by Yakovlev 
et al. (1993), Yakovlev & Tsodikov (1996), Tsodikov (1998), Chen, Ibrahim & Sinha (1999) 
and Ibrahim, Chen & Sinha (2001b), among others, which we refer to as the promotion time 
cure model. This model, which is strongly motivated by biological considerations, is given a 
Bayesian formulation by Chen, Ibrahim & Sinha (1999). For the ith individual with covariate 
Zi in the population, let Ni be the number of tumour cells which have the potential of metas- 
tasizing, that is, Ni is the number of metastasis-competent tumour cells. Assume that Ni has 
a Poisson distribution with mean O(Zi). Denote the promotion time for the kth tumour cell by 
t k .  k = 1, . . . , Ni, which is the time for the lcth metastasis-competent tumour cell to produce a 
detectable tumour mass. Conditional on Ni, assume that the ik are independent and identically 
distributed with cumulative distribution function F ( t ) ,  and S( t )  = 1 - F ( t ) .  Both Ni and f k  
are unobservable latent variables. The time to relapse of cancer, which is observed, is defined as 
Ti = rnin(i1, . . . , i ~ ~ ) .  Therefore, the survival function for the population is given by 

- 

= exp{-O(Z,)F(t)}. (2) 

The corresponding population hazard function of (2) is Xpop(t I Zi) = Q ( Z i ) f ( t ) .  where f ( t )  = 
d F ( t ) / d t  is the density function corresponding to F ( t )  and O(Zi) = exp(PTZi). The cure rate 
for subject i under model (2) is limt,, Spop(t 1 Zi) = exp{-O(Z,)}. To make (2) consistent 
with (l), a natural generalization of (2) is to allow F ( t )  to depend on a set of covariates Xi, 
leading to 

(3) 

The mixture and promotion time cure models are the most widely used cure rate models, 
which may be seen as competitors. Each model offers its own advantages as well as its disad- 
vantages (Ibrahim, Chen & Sinha 2001a). Specifically, the posterior distribution for p is always 
proper for the promotion time cure model, but is always improper for the mixture cure rate model, 
when a uniform improper prior is given for p. In this paper, we establish a general class of cure 
rate models that contain these two cure rate models as special cases. The unified family that we 
construct is indexed by a link parameter, where a particular value of the parameter yields the 
mixture cure model, while another value yields the promotion time cure model. This class of 
models is built through a transformation (Box & Cox 1964) on the population survival function. 

The transformation we consider here is conceptually different from the usual Box-Cox trans- 
formation applied to the response variable or the covariates, as in linear regression. For example, 
when the normality assumption of the errors is not satisfied in linear models, the transformed 
response variable is defined as Y(.) = (Y" - 1 ) / a  if a # 0, and log(Y) if a = 0, where a is the 
transformation parameter and a E R' (the real line). Transformation models have been studied 
for survival data as well. For example, Aranda-Ordaz (1983) proposed to impose a transforma- 
tion on a conditional probability related to the hazard for grouped failure time data. Breslow & 
Storer (1985) and Barlow (1985) applied power transformations to the covariate structure to 
model the relative risk. More recently, Yin & Ibrahim (2005) have proposed a class of transfor- 
mation models for proper and improper survival functions. 

spop(t I & , X i )  = exp{-O(Zi)F(t I Xi)}. 
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Here, we propose a novel family of cure rate models by imposing the Box-Cox transforma- 
tion on the population survival function. This class of transformation models is very general, and 
it links the standard mixture cure model and the promotion time cure model in an attractive and 
elegant fashion. By adding an extra transformation parameter, the two main formulations of cure 
rate models are unified together and the resulting modelling structure allows a much wider class 
of cure rate structures. 

0 2 4 6 

l-me (years) 

FIGURE 1 : Kaplan-Meier curves of high-dose interferon and observation groups in E1690. 

Failure time data with a cure fraction is quite common in oncology studies. The analysis 
of a phase III melanoma clinical trial (E1690) conducted by the Eastern Cooperative Oncology 
Group (Kirkwood et al. 2000) provides an interesting illustration of this class of cure rate models. 
The objective of this study was to compare treatment with high-dose interferon to observation 
(control). Relapse-free survival (in years) was the outcome of interest, which was defined as 
the time from randomization to progression of tumour or death. There were a total of n = 427 
patients on these combined treatment arms. Figure 1 shows the estimated survival curves for 
the interferon and the observation groups. An obvious plateau can be observed after about 5 
years of follow-up, which offers empirical evidence for a cure possibility in E1690. If indeed 
a certain percentage of patients were cured and risk-free, then the conventional proportional 
hazards assumption (Cox 1972) would be violated in this data set. 

The rest of this article is organized as follows. In Section 2, we introduce notation and a new 
class of cure rate models based on the transformed population survival function. In Section 3, 
we propose a covariate structure which is general and versatile. The covariate structure naturally 
satisfies the underlying model constraint and simplifies the proposed method, yielding an un- 
constrained parameter problem. In Section 4, we formulate the piecewise exponential likelihood 
function within the Bayesian paradigm, study prior specifications and derive the full conditional 
distributions needed for Gibbs sampling. In Section 5 we introduce a model selection criterion 
based on the conditional predictive ordinate (Geisser 1993). We present numerical studies in 
Section 6, including an in-depth analysis of the El690 data as well as simulation studies, and 
give a brief discussion in Section 7. 

2. A NEW CLASS OF CURE MODELS 
Let Ti (i = 1, . . . , n) be the failure time for the ith subject, and let Zi (p x 1) and Xi (q  x 1) 
be the covariate vectors which may have elements (covariates) in common. The first component 
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of Zi is 1. Let C, be the censoring variable and yi = min(Ti, Ci) is the observed time. The 
failure time indicator vi = 1 if Ti is observed, and vi = 0 otherwise. Assume that Ti and Ci are 
conditionally independent given Zi and Xi. 

Analogous to the BoxXox transformation, we impose a transformation on the population 
survival function, and propose a class of cure models of the form 

It is easy to see that as a -+ 0, (4) becomes log{Spop(t I Zi, Xi)} = - O ( O ,  Z,)F(t I Xi), and 
thus reduces to model (3). When a = 1, (4) becomes model (l), 

where F ( t  I Xi) = 1 - S(t  1 Xi). 
Our primary interest for a lies in [0,1], since it yields an intermediate modelling structure 

between the promotion time cure model (a  = 0) and the standard mixture cure model (a  = l), 
although a could mathematically take any value on the real line. We can rewrite (4) as, 

where the corresponding cure rate for subject i is limt.+m Spop(t I Zi, Xi) = (1 -aQ(a, Zi)}l/.. 
Thus, we can model a broad class of improper survival functions with a variety of cure fractions 
for different values of a. The cure rate is jointly determined by @(a, Zi) and a, but it does not 
depend on Xi. In (5 ) ,  we need the constraint 0 5 aO(a, Zi)F( t  I Xi) 5 1 to be satisfied for all 
i and t ,  which can be simplified to 0 5 d ( a ,  Zi) 5 1, since 0 5 F ( t  I Xi) 5 1. Constrained 
parameter problems typically involve unknown normalizing constants in the posterior distrib- 
ution and thus complicate Bayesian computation and analysis (Gelfand, Smith & Lee 1992; 
Chen & Shao 1998). If the normalizing constant in the posterior density contains analytically 
intractable integrals, it is very difficult to implement Gibbs sampling or Metropolis-Hastings al- 
gorithms (Chen, Shao & Ibrahim 2000). The nonnegativity of the survival function constraint in 
our model is very different from and substantially more complicated than the usual order con- 
straints in other Bayesian constrained parameter problems. If the survival function is negative, 
the likelihood function and the posterior density are not well defined. 

3. A GENERAL COVARIATE STRUCTURE 

To accommodate different covariate structures for long-term survivors in models (1)  and (2), we 
propose the general form 

When a = 0, (6) has the exponential form as in the promotion time model (2), i.e., O(0, Zi) = 
exp(PTZi), and when a = 1, it has the binomial structure of the mixture cure model (l), i.e., 
e( i ,  zi) = exp(PTZi)/{l  + exp(PTzi)}.  The interpretation of qa, zi) varies with respect 
to a. For a = 0, O(0, Zi) has an exponential form, which is analogous to the Cox (1972) propor- 
tional hazards model, and O(0, Zi) can take any positive value. For a = 1, O(1, Zi) is a proba- 
bility and lies in [0, 11. For a general a, the cure rate for subject i is (1 + aexp(pTZi)}-l /a.  
Furthermore, with the class of covariate structures (6), the constraint arising from ( 5 )  is automat- 
ically satisfied, since 
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Thus, (6) reduces a complex constrained parameter problem to an unconstrained one and facili- 
tates the implementation of Markov chain Monte Car10 (MCMC) in'a relatively straightforward 
fashion. 

Based on the proportional hazards model, we incorporate the covariates Xi through 

F ( t  I Xi) = 1 - S(t)""p(~TX~),  (7) 

where S( t )  is the baseline survival function, and y can be viewed as the associated parameter 
vector for short-term survivors. From (4), the population density function is given by 

and the population hazard function by 

4. LIKELIHOOD, PRIOR AND POSTERIOR 
We assume a piecewise exponential distribution for the baseline survival function S( t )  in (7). 
The likelihood function is constructed as follows. Let yi be the observed time for the ith subject, 
and let J denote the number of partitions of the time axis, i.e., 0 < s1 < . . . < SJ, s J > yi 
for i = 1,. . . ,n, and Xo(y) = X j  for y E ( s j - ~ , s j ] ,  j = 1,. . . , J. When J = 1, we obtain a 
parametric exponential model. There is a trade-off between model flexibility and the number of 
partitions. By increasing J, the piecewise exponential model can essentially capture any shape 
of the underlying hazard; this approach is flexible and is commonly used. A reasonable way to 
partition the time scale is to balance the number of failure times in the time intervals and also 
guarantee that at least one failure is in each interval. Define 6,j = 1 if subject i fails or is censored 
in interval j ,  and 0 otherwise. Let D denote the observed data and let X = ( X I , .  . . , X J ) ~ .  Then 
the likelihood function based on the piecewise exponential assumption is given by 

where 

and 

Although not required for the development, we can take a, P, 7 and X to be independent a 
priori, i.e., ~ ( a ,  P ,  y, A) = T(~)T(P)T(T)T(X) .  We take a discrete uniform prior for a E [0,1], 
for example, a = uk,  k = 1,. . . ,K with probability 1/K, where a1 = 0 and UK = 1. It is 
appealing to assign discrete probability masses on a set of a values, which can explicitly include 
the two most popular cure models arising from a = 0 and a = 1. If a continuous prior on a 
is used, the model becomes numerically unstable when a is close to 0. This instability can be 
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avoided with a discrete prior on a. We also assume that the components of A are independent 
a priori, and each X j  has a gamma prior distribution, denoted Gamma(ax, E x ) ,  where a x  and 

are the hyperparameters. The components of A can be easily correlated a priori by imposing 
a first-order autoregressive structure or Markovian relation on the X j  (&as & Gasbarra 1994; 
Ibrahim, Chen & Sinha 2001a). The joint posterior distribution of a, 0, y and A is thus given by 

(10) 

Through a transformation on Spop ( t  I Zi, Xi), we build a general, flexible, and encompassing 
class of cure rate models that unifies the various cure modelling approaches (i.e., the mixture and 
promotion time cure models and intermediate structures), and also provides a better fit to the 
data than a particular member of the class, e.g., models with a = 0 and a = 1. This class 
of models provides estimates of (P, y, A) that are averaged over the cure rate models arising 
from the different values of a in [0, I], and thus this extended class of models provides “model- 
averaged” estimates of (P, 7, A). Therefore, from a data analytic perspective, the general class in 
(4) along with (6) provides an extended cure rate modelling structure that is fit to the data once, 
and by specifying a discrete prior on a, we are able to conduct posterior inference for (P,y, A) 
for several values of a simultaneously. In such a framework, the interpretations of the parameters 
are based on averaging over the possible values of a, and the posterior estimates of (P, y, A) 
are based on the various cure rate models generated by (4) and (6) for a in [0,1]. As shown in 
Section 6, there is typically little information in most real applications that would strongly favor 
a particular value of a. 

Assuming a priori independence between P, y and A as well as a priori independence in the 
components of A, the full conditionals of the parameters are given as follows: 

4% P, 7, A I 0)  oC L(a,  P, 7, A I w4.)4P)..(r)7r(A). 

T(P I a, 7, A, 0) 

n ( r  I a, P,  A, 0)  
T ( A J  I a ,  P, 7, +j), 0) 

L(a,  P,  7, A I m ( P > ,  
L(a, P, 7, A I m(-/), 
L(a,  P, 7, A I 0).(Xj>,  0: 

where A(-J) is the ( J  - 1) x 1 vector after the j th component removed, and n(P) - N(pD, Xp), 
~ ( 7 )  - N(p7, X7), and X j  - Gamma(ax, E x ) ,  j = 1, .  . . , J .  Due to the non-log-concavity of 
the full conditionals of the parameters, a metropolis step is required within the Gibbs sampler 
(Gilks, Best & Tan 1995). 

5. CHOICE OF J 
Misspecification of the modelling structure may bring severe bias into the estimation and lead 
to incorrect statistical inference. Comparing a set of competing models is critical for a given 
data set. For the proposed cure models, we use the conditional predictive ordinate statistic for 
model selection. It is a Bayesian cross-validation approach and measures the adequacy of a 
given model. The conditional predictive ordinate has been well studied in a variety of contexts 
(Geisser 1993; Gelfand, Dey & Chang 1992; Dey, Chen & Chang 1997). We use the conditional 
predictive ordinate (CPO) here only to determine the appropriate number of intervals, J .  To 
obtain the CPO, let ~ ( - 2 )  denote the (n  - 1) x 1 response vector with yi deleted, and let d-z), 
Z(-Z) and X(-Z) be defined similarly. The observed data that result after we delete the ith case 
can be written as ~ ( - 2 )  = { (n - I), y(-Z), ~ ( - 2 1 ,  x(+, ~ ( - 2 ) ) .  Let g(yi I zi, xi, a, P, y, A) 
be the density function of yi, and let ~ ( a ,  p, y, A 1 D(-Z)) be the posterior density of (a, P ,  7 ,  A) 
given D(-i), i = 1, . . . , n. Then, CPOi is the marginal posterior predictive density of yi given 
D(-Z), which can be written as 

CPOZ = g(y2 I zz, xi, l3-2)) 
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Let M be the number of Gibbs samples after bum-in, and a[,] P[,] ,  ?[,I and A[,] are the 
posterior samples of the mth Gibbs iteration. A Monte Carlo approximahon of CPOi (Chen, 
Shao & Ibrahim 2000) is given by 

and for a censoring time, it takes the form of 

where fj[ ,](yi  I Xi) and Fj[m~(gi I X i )  are given in (8) and (9) with 7 and X replaced by 
rIml and XI,], respectively. A common summary statistic based on the CPOi is B = x:=l log(CP0i).  A larger value of B indicates a better fitting model. 

6. NUMERICAL STUDIES 

6.1. Example. 

As an illustration, we applied the class of cure rate models to the El 690 data. The covariates in- 
cluded in this analysis were treatment (high-dose interferon = 1, observation = 0), age (a contin- 
uous variable ranging from 19.13 to 78.05 with a mean of 47.93 years, which was standardized) 
and sex (female = 1, male = 0). 

All the Bayesian computations were based on posterior samples recorded every loth itera- 
tion from 100,000 Gibbs samples after a burn-in of 2,000 samples. We chose a uniform discrete 
prior for a and noninformative priors for the pel yk and A j ,  independent for C = 0,1,2,3, 
k = 1,2 ,3  and j = 1,. . . , J. We assigned the prior probabilities for a = (0, .25, .5, .75,1) as 
(.2, .2, .2, .2, .2), & N N(0, lO,OOO), T k  N N(0, lO,OOO), and A j  N Gamma(2, .01) which has 
mean 200 and variance 20,000. Markov chain Monte Carlo convergence was monitored accord- 
ing to the methods recommended by Cowles & Carlin (1996). The Markov chains converged 
very quickly and the parameters mixed very well. 

We considered the class (4) using J = (1,2,3,4). Table 1 summarizes the B statistics, 
posterior means, standard deviations, and 95% highest probability density (HPD) intervals for 
the regression parameters in the model. We use the B statistic to help us determine an appropriate 
partition of the time axis J. Based on the B statistic, the model with J = 1 is deemed as the best 
fitting model. In fact, the posterior estimates are quite close for different values of J and age is 
clearly an important predictor for long-term survival. 
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TABLE 1 : The B statistics, posterior means, standard deviations, and 95% HPD intervals for the 
continuous parameters in the El690 data. 

P Y 
J B Covariate Mean SD HPD Interval Mean SD HPDlnterval 

1 -522.08 Intercept 
Treatment 

Age 
Sex 

A1 

2 -523.05 Intercept 
Treatment 

Age 
Sex 
A1 

A 2  

3 -522.60 Intercept 
Treatment 

Age 
Sex 
A1 

A 2  

A3 

4 -524.18 Intercept 
Treatment 

Age 
Sex 
A1 

A2 

A3 

A4 

S255 
-.2380 

.2356 
-.2246 

.744 1 

.6075 
-.243 1 

.2504 
-.2384 

.8265 

.7493 

,6927 
-.2194 

.28 16 
-.2558 

.8157 

.9595 
,6720 

.6994 
-.2091 

,2833 
-.2520 

.8200 
1.0025 
.8741 
.7006 

.2594 

.2129 

. I  137 

.2138 
,1370 

.2717 

.2295 

.I237 

.2308 

.I506 
,1372 

.2856 

.2494 

.I442 

.2563 

.I506 
,1708 
.I469 

.2824 
,2547 
.I492 
.2592 
,1551 

.I852 

.I602 

.I733 

(.0505, 1.0295) 
(-.6528, .1784) 
(.024 1, .4693) 

(-.6368, .1945) 
(.4641, .9923) 

(.0769, 1.1300) 
(-.6825, ,2174) 
(.0104, .4970) 

(-.7049, .2069) 
(S305, 1.1124) 
(.4888, 1.0272) 

(.1342, 1.2569) 
(-.6962, .2917) 
(.0137, .5765) 

(-.7513, ,2488) 
(S216, 1.1115) 
(.6314, 1.2981) 
(.4078, .9754) 

(.1264, 1.2388) 
(-,7313, .2706) 
(.0100, .5837) 

(-.7773, .2380) 
(S220, 1.1250) 
(.6372, 1.3665) 
(S707, 1.1914) 
(.3821, 1.0555) 

.0696 
-.I 176 

.023 1 

-.I051 
- . I 1 1 1  

.007 1 

-.1577 
- . I  149 

.om2 

-.I838 
-.I 124 

.0284 

.i957 

.I 193 

.2080 

.1949 

.1142 

.2039 

,2036 
,1182 
.2095 

.2007 

.I 137 

.2074 

(-.4485, .3129) 
(-.3584, .I 126) 
(-.3890, ,4241) 

(-.4874, .2820) 
(-.3480, .1004) 
(-.3954, .4026) 

(-,5593, .2402) 
(-,3518, . I  127) 
(-.4166, .4046) 

(-.5555, ,2305) 
(-.3397, ,1036) 
(-.4578, ,3706) 

To evaluate the robustness of our cure rate model with respect to the prior hyperparameters, 
we conducted a set of sensitivity analyses using J = 1. We varied the value of one hyperpara- 
meter while keeping others fixed, e.g., the prior standard deviation of and 7, ag/, = 1,000, 
and the scale parameter = .001. Table 2 shows that the proposed model is very robust for a 
wide range of noninfomative priors. 

6.2. Simulation. 
To examine the performance of the proposed class of cure rate models, we conducted a sim- 
ulation study. We assumed an exponential distribution for the baseline survival function, i.e., 
S( t )  = exp(-At) where we took X = 1. We independently generated two covariates: 21 had a 
Bernoulli distribution taking values of 0 or 1 with probability .5; and 2 2  had the standard normal 
distribution. The failure time data were simulated from model (4) with a = .5, and 
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where X1 = 21, X:, = 2 2 ,  and the true parameter values were PO = .4, = .5, P2 = .l, 
y1 = 1 and 7 2  = .2. To generate failure time data with a cure fraction, we calculated the cure 
rate for each subject, 8(.5, Z,) = (1 + . 5 e ~ p ( p ~ Z i > } - ~ ,  and created an indicator denoting 
whether the subject was cured or not. For uncured subject i, we generated a uniform random 
variable from Uniform(8(.5, Zi), 1) and set it equal to Spop(t I Zi, Xi). We took the sample 
sizes to be n = 300, n = 500, n = 1000 and n = 2000. The censoring times were. generated 
from a uniform distribution yielding a censoring rate of 30%. 

TABLE 2: Sensitivity analysis with different hyperparameters on the priors for the El690 data, with J = 1. 

P Y 

up/, <A Covariate Mean SD HPDInterval Mean SD HPDInterval 
~ ~ 

1000 .01 Intercept 
Treatment 

Age 
Sex 

A1 

100 .001 Intercept 
Treatment 

Age 
Sex 
A1 

S302 
-.2453 

.2348 
-.2243 

.7451 

.5 186 
-.2385 

,2333 
-.2279 

.7418 

.25 84 

.2119 

.1144 

.2139 

.1373 

.2609 

.2098 

.1127 

.2120 

.1377 

(.0405, 1.0196) 
(-.6488, .1909) -.0685 .1984 (-.4542, .3253) 
(.0251, .4664) -.1172 .1197 (-.3477, .1195) 

(-.6319, .2132) .0208 .2084 (-.3917, .4312) 
(.4782, 1.0066) 

(.0363, 1.0089) 
(-.6594, .1627) -.0688 .1961 (-.4656, .3088) 
(.0199, .4623) -.1189 .1195 (-.3561, .1141) 

(-6443, .190 1) .0249 .2098 (-.3765, .4488) 
(.4790. 1.0102) 

We specified noninformative priors for all the parameters. For each simulated data set, we 
obtained 3,000 posterior samples from the full conditional distributions after a bum-in of 200, 
using Gibbs sampling. For each configuration, we conducted 500 replicates. The results are 
summarized in Table 3. We can see that the posterior means are close to the true values and the 
posterior standard deviations decrease as the sample size increases. This clearly demonstrates 
the well-behaved model convergence and estimation properties of this model within the Bayesian 
framework. The data are usually not very informative on estimating a. We are mainly interested 
in inference on ,kl and 7. Incorporating a uniform discrete prior on a yields an encompassing 
model across different values of a E [0,1], as opposed to fixing a at a point mass. 

7 .  DISCUSSION 
We have carried out an analysis assuming that a is random. Allowing a to be random thus 
facilitates a full Bayesian solution to the transformation cure model. We conducted a similar 
Bayesian analysis of the El690 data based on model (4) while fixing a at a certain value in [0,1]. 
There seems to be substantial posterior dependence between a and the regression parameters, and 
the interval estimates for the models treating a as random are generally wider than those under 
the models with a fixed. Our experience, however, shows that allowing a to be random might 
not offer additional advantages over the fixed a case. This issue of a random versus a fixed is a 
general issue that arises for power parameters in parametric models, where the power parameter 
is the power of an unobservable quantity (the population survival function in our case). When 
such power transformations are taken, the general principle is that an analysis with the power 
parameter fixed is as advantageous as an analysis with the power parameter random. This issue 
was mentioned and elaborated upon in the context of the power priors in Ibrahim & Chen (2000). 

We have proposed a class of cure rate models by imposing the Boxxox transformation on the 
population survival function. Even though a nonlinear parameter constraint naturally arises from 
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the new model, our proposed general covariate form in (6)  removes the constraint completely. 
Hence, Gibbs sampling can be easily implemented for the resulting unconstrained model. This 
class of transformation models makes the cure rate modelling scheme much more flexible and 
more general than other methods. It nicely links the two main formulations of cure rate models, 
i.e., the mixture cure model and the promotion time cure model. This family of cure rate models 
has great potential in clinical trials and for modelling survival data with a cure fraction. 

TABLE 3: Simulation results with 500 replications, and the true regression parameter values are 
po = .4,p1 = .5, p2 = .1,y1 = 1,y2 = .2, X I  = 1. 

Posterior Estimates Posterior Probabilities of a 

300 Mean 
SD 

500 Mean 
SD 

lo00 Mean 
SD 

2000 Mean 
SD 

.54 .58 . I 1  1.00 

.24 .26 .I3 .I6 

S O  .58 .12 .99 
.20 .20 .10 .13 

.48 .55 .I2 1.01 

. I 6  .I4 .07 .09 

.46 .53 .I0 1.01 

.I0 .I0 .04 .06 

.20 1.11 

.08 .I6 

.20 1.09 

.06 .13 

.20 1.06 

.04 . I 0  

.20 1.04 

.03 .07 

.06 . I  1 .I8 .27 .37 

.06 .13 .21 .28 .32 

.04 .15 .28 .31 .22 

.OO .I1 .49 .31 .09 
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